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Source Seeking for Two Nonholonomic Models
of Fish Locomotion

Jennie Cochran, Eva Kanso, Scott D. Kelly, Hailong Xiong,
and Miroslav Krstic

Abstract—In this paper, we present a method of locomotion control for
underwater vehicles that are propelled by a periodic deformation of the
vehicle body, which is similar to the way a fish moves. We have devel-
oped control laws employing “extremum seeking” for two different “fish”
models. The first model consists of three rigid body links and relies on a
2-degree-of-freedom (DOF) movement that propels the fish without relying
on vortices. The second fish model uses a Joukowski airfoil that has only 1
DOF in its movement and, thus, relies on vortex shedding for propulsion.
We achieve model-free and position-free “source seeking,” and, if position
is available, navigation along a predetermined path.

Index Terms—Adaptive control, localization.

I. INTRODUCTION

The literature on underwater vehicles has started to address vehi-
cles that are propelled forward by periodic shape deformations that are
similar to the movement of fish. In this paper, we apply our extremum-
/source-seeking method [4], [5] to two different “fish” models and
achieve the same results in each case: The fish achieves source local-
ization in underwater environments, and if position measurement is
available, it is capable of navigating along a predetermined path.

The fish models are distinguished by their respective underlying
methods of propulsion. The first fish model, developed by Kanso et al.
[8], relies on a 2-degree-of-freedom (DOF) nonreciprocal movement,
namely, out-of-phase movement at the two joints, which propels the
fish through a perfect fluid without the use of a Kutta condition to shed
vortices. The second fish model, which has been developed by Xiong
[30] (and studied by Mason [14]), has only 1 DOF in its movement
and relies on vortex shedding to move through a perfect fluid (by the
scallop theorem [24], a 1-DOF vehicle cannot locomote in a perfect
irrotational fluid). In both models, the fish can propel and turn itself by
periodically changing its shape. In this paper, we study how to use a
combination of these two “gaits” for source seeking.

Much work has been done in the area of modeling fish movement
for control [6], [8], [14], [30]. Kanso et al. [8] use conservation of
circulation and ideas from reduction theory to build a model for a three-
link fish without the explicit use of the fluid variables. This enables [8] to
explicitly derive the equations of motion for the fish model and to study
the locomotion solely due to body shape changes and not from vorticity.
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Fig. 1. (a) Three-link fish moving in a potential flow. (b) Joukowski foil fish
moving in a flow with point vortices. The arrows represent the velocity vectors
of the fluid. The “×”s are point vortices that rotate counter clockwise, while the
“◦”s are point vortices that rotate clockwise.

The model developed in [14] and [30] spans the gap between the studies
that look at deformable bodies moving through a fluid without the use of
vortex shedding and studies of systems with rigid bodies and vortices.
The Joukowski airfoil fish model relies on only one input and exploits
the presence of vortices for both propulsion and steering. Many research
groups [9], [14], [15], [17] have developed underwater vehicles that use
biology-inspired periodic motion for propulsion. Related work [23]
studies stabilization of vortex shedding.

A common theme in all these works is the periodic movement of the
body. This brings the extremum-seeking method [1], [12] to mind, as it
takes the advantage of periodic probing signals for gradient estimation.
We combine the natural gait of the fish model with the extremum
seeking for nonmodel-based optimization.

We review our study on source seeking for a nonholonomic uni-
cycle in Section II. Section III discusses the motion of the fish and
fluid systems. Section IV specifically discusses a three-link body mov-
ing in a fluid, while Section V describes a deformable Joukowski
foil moving in a fluid with discrete vortex shedding. In each of the
two sections, we present the results of applying extremum-seeking
control.

Fig. 1(a) and (b) gives a preview of the problems that we consider
and displays the two fish models, which are shown within fluid velocity

fields. For our main result, see Figs. 7 (for the three-link fish) and 12
(for the Joukowski fish).

A clarification is due regarding the use of the terms extremum seeking
and source seeking. Extremum seeking [1], [12], [29] is broad set of
methods for model-free optimization (for addressing similar problems
as genetic programming or simulated annealing but equipped with
stability proofs). Source seeking [4], [31], [32] is an application of
extremum seeking to real-time navigation of dynamics- or kinematics-
dominated vehicles to localize extrema in spatially distributed fields,
without position measurement and distribution information.

A note is in order on the two models that we consider in this paper and
on the notation that we employ. These models are quite nonstandard as
control theoretic models, as they consist of ordinary differential equa-
tions (ODEs) (the fish subsystem, with forces acting on it included, plus
vortex locations and strengths in the case of Joukowski foil fish) and an
infinite-dimensional output map (the fluid potential field that allows us
to get the entire flow distribution, which is infinite-dimensional, from
the finite-dimensional fish state). The three-link fish has five states and
two inputs, whereas the Joukowski foil fish has a large number of states
(growing to infinity in a “countable” manner as time goes to infinity)
and one input. We develop our notation in this paper so that the two
models, which are given in the spirit of geometric mechanics in the
original literature [8], [14], [30], are presented here as control-oriented
(input–state–output) models.

II. SOURCE SEEKING FOR UNICYCLE

We solved the problem of seeking the source of a scalar signal for a
nonholonomic unicycle with constant forward velocity and no position
information in [4]. The signal distribution in space is not known, except
that it decays with distance from the source.

While other groups have considered source-seeking problems (see
[19] and [22]), this paper is different in that the vehicle has no
knowledge of its position or the position of the source, there is no
communication between it and other entities, and it has nonholonomic
dynamics. Many groups have employed unicycle models in their work,
including [7] and [11], while others have used the extremum-seeking
method in their studies outside of the field of autonomous vehicles,
including [2], [3], [10], [13], [20], [21], [27], [28], and [33].

The center rc of the unicycle is governed by ṙc = Vc eiθ , where θ
is its orientation, and Vc is its constant forward velocity. The sensor
position is rs = rc + Reiθ . The control is applied through angular ve-
locity as θ̇ = aω cos(ωt) + cξ sin(ωt), with ξ = s/(s + h)J , where
J(rs (t)) is the signal sensed at the location of the vehicle sensor rs (t),
which is at a distance R away from the center, and a, ω, c, and h are
the parameters that affect the performance. The control law is made of
two terms that serve two different functions. The first term aω cos(ωt)
is a persistent excitation that allows the vehicle to probe the signal
space. The second term cξ sin(ωt) is a tuning term that steers the vehi-
cle toward the source based on the estimate of the (average) gradient.
In [4], we prove the convergence to a small set near the source using
averaging.

III. EQUATIONS OF MOTION IN A PERFECT FLUID

Two fish models are considered: the articulated body model dis-
cussed in [8] and the Joukowski airfoil model discussed in [30]. In both
models, the fluid is considered to be inviscid (no viscosity) and incom-
pressible. The presence of viscosity would affect the timing aspects
of the locomotion process and attenuate the amplitudes of periodic
signals. The tree-link fish would be slowed in its forward motion, and
steering ability of extremum seeking would be reduced due to the phase
lag. For the Joukowski fish, the vortices would be attenuated, which,
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Fig. 2. Configuration of the three-link fish model.

combined with skin friction, would lead to less-efficient propulsion and
steering.

The model in [8] does not account for a vortex shedding mechanism,
and the configuration space of the body fluid system can be identified
only with that of the submerged body. Vorticity is shed from the trailing
edge of the airfoil in the form of point vortices in [30]. Away from the
shed point vortices, the fluid is assumed to remain irrotational at all
time. In this case, the configuration space of the body fluid system can
be identified with that of the submerged body and the position of the
shed point vortices.

The fluid velocity field u, which is in the fluid domain, excluding the
body and point vortices when accounted for, can be expressed in terms
of a potential function φ as u = ∇φ. Incompressibility implies that
∇2φ = 0. The boundary conditions result from the two assumptions
that the fluid is at rest at infinity and that fluid particles may slip along
the body surface and are expressed as u|∞ = 0 and u · n = Ḃ|S · n,
where B is the set of points representing the fish body, and S is the
surface of the body (touching the fluid). In the articulated body model
[8], the potential function φ is a function of the configuration and
velocity of the body and is computed numerically using a boundary
element method [26]. In the case of the Joukowski airfoil [14], [30], φ
is a function of the configuration and velocity of the body, as well as
the position of the shed point vortices, and is obtained in a closed form
using tools from complex analysis.

The kinetic energy of the fluid is Tf = (1/2)
∫
D u2dv, where D

is the fluid domain (excluding singularities present in the form of
point vortices), and dv is the standard volume element. Using Green’s
theorem, Tf = −(1/2)

∫
∂ S

φ∇φ · nds, where ∂S is the surface of the
fish body, and n is the unit normal into the fluid. Expressions of Tf for
each model in terms of the body variables and the body variables plus
position of point vortices are presented in Sections IV and V.

The equations governing the net locomotion of the fish in both
models are variations of Kirchhoff’s equations for the motion of a rigid
body in an ideal fluid (see [16])

dL
dt

+ Ωk × L = 0,
dA

dt
+ k([U V ]T × L) = 0 (1)

where L and A are the linear and angular momenta of the body fluid
system, and U , V , and Ω are the translational and rotational velocities
associated with a net locomotion of the body. The variables L, A,
U , V , and Ω are expressed in a body frame moving with the fish. The
linear and angular momenta L and A are obtained by differentiating the
kinetic energy of the system L = [∂T/∂U, ∂T /∂V ]T , A = ∂T/∂Ω.
With conservation of momentum and starting the system from rest,
which, in turn, implies L = 0 and A = 0 for all time, one solves for
U , V , and Ω at each time step and then integrates them to derive the
locomotion of the fish.

IV. SOURCE SEEKING FOR A THREE-LINK FISH

Consider the articulated fish model discussed in [8] and formed by
three identical rigid links connected via hinge joints that allow the links
to rotate relative to each other. As depicted in Fig. 2, each link Bi of the

fish is an ellipse with semimajor axis of length δ and semiminor axis
of length µ. The joints that connect the links are located at a distance σ
away from the tips of the ellipses, and the relative angles are denoted
by θα , where α = 1 and 2. The two inputs to the system are the angular
velocities of the two joints θ̇1 and θ̇2 .

A. ODE Model With a Function-Valued Output Map for a Three-Link
Fish in a Potential Flow

As shown in [8], five state variables completely describe the shape,
as well as the position and orientation, of the three-link fish rela-
tive to an inertial frame. These five variables are given by the vector
Ξ = [θ1 θ2 gT

3 ]T , where g3 = [θf fx fy ]T , and (fx , fy ) and θf are,
respectively, the location of the center of the middle ellipse and the
orientation of the middle ellipse with respect to the fixed inertial frame.
The inputs to the system are the angular velocities of the joints, where
Ψ = [Ψ1 Ψ2 ]T , i.e., θ̇1 = Ψ1 and θ̇2 = Ψ2 , while the function-valued
output map is the potential field φ(x, y) = η[Ξ, Ψ](x, y), which is
governed by the Laplace equation ∇2φ = 0 and the solution operator
η[Ξ, Ψ], which is defined shortly.

To complete this description, we explain the governing ODE for
ġ3 . Each link Bi is defined by an orientation and position gi =
[θBi Bi x Bi y ]T with respect to a fixed inertial frame. The angular
and translational velocities are expressed with respect to the fixed
inertial frame as ġi or, with respect to their own body frame, as
ξi = [Ωi , Ui , Vi ]

T , where i = 1, 2, and 3. The relationship between
ġ3 and ξ3 is defined by

ġ3 = Υξ3 Υ(θf ) =




1 0 0

0 cos(θf ) − sin(θf )

0 sin(θf ) cos(θf )



 (2)

where we must still explain the relationship between ξ3 and (Ξ, Ψ).
The entire configuration is defined through the movement of one link
(the middle link B3 is the link of choice) plus the movement of the
joints, i.e., the entire system can be defined by the state variables Ξ.
With this in mind, the velocities of the other two links relative to the
third link, but expressed with respect to their respective fixed frames,
are ζ1 = ξ1 − Adx−1

1
ξ3 and ζ2 = ξ2 − Adx−1

2
ξ3 , where Adx−1

1
(θ1 ) and

Adx−1
2

(θ2 ) are defined as

Adx−1
1

=




1 0 0

(δ + σ) sin(θ1 ) cos(θ1 ) sin(θ1 )

(δ + σ)(1 + cos(θ1 )) − sin(θ1 ) cos(θ1 )





Adx−1
2

=




1 0 0

−(δ + σ) sin(θ2 ) cos(θ2 ) sin(θ2 )

−(δ + σ)(1 + cos(θ2 )) − sin(θ2 ) cos(θ2 )





and transform ξ3 from the B3 -fixed frame to the B1 -fixed and B2 -
fixed frames. The variables ζ1 and ζ2 are given by ζ1 = Π1 θ̇1 = Π1Ψ1

and ζ2 = Π2 θ̇2 = Π2Ψ2 , where Π1 = [1 0 + (δ + σ)]T , and Π2 =
[1 0 − (δ + σ)]T .

The kinetic energy of the fluid Tf , where ∂S =
∑3

1 ∂Bi is the
boundary over all three bodies, can be expressed in terms of “added
inertias” Mf

ij and ξi as Tf = (1/2)
∑3

i=1

∑3
j=1 ξ

T
i Mf

ij (Ξ)ξj . The

“added inertias” Mf
ij depend on the configuration of the three-link

body Ξ and are derived in [8]. This is a consequence of being
able to express φ solely in terms of the body configuration and
velocities φ =

∑3
i=1 (ΩiXi + [Ui , Vi ]ϕi ) =

∑3
i=1 [Xi ϕT

i ]ξi , where
Xi (x, y, Ξ) and ϕi (x, y, Ξ) define potential functions that depend
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Fig. 3. Snapshots in time of reciprocal motion. The background color field represents the potential field φ with red representing positive values and blue
representing negative values. β0 = 1, and θ1 |t=0 = −1, θ2 |t=0 = 0.

only on θ1 , θ2 , and g3 and on the spatial coordinates (x, y). The
quantities Xi and ϕi depend on coefficients that are found using a
boundary element method [26] and depend only on Ξ and not on
the spatial coordinates. These coefficients are used to find Mf

ij (Ξ).
The kinetic energy of the bodies TBi = (1/2)(IΩ2

i + m(U 2
i + V 2

i ))
can also be expressed in terms of ξi as TBi = (1/2)ξT

i Mb
i ξi , where

Mb
i = diag{I, m, m}, where m is the mass of the ellipse, and I =

m(a2 + b2 )/4 is the body moment of inertia. The total kinetic energy
of the system is then expressed as T = (1/2)

∑3
i=1

∑3
j=1 ξ

T
i Iij ξj ,

Iij = Mf
ij (Ξ), for i '= j, and Iii = Mf

ii (Ξ) + Mb
i . The total ef-

fective momentum hs = [A LT ]T expressed with respect to the
B3 fixed frame is hs =

∑3
i=1

∑3
j=1 AdT

x−1
i

Iij ξj , where AdT
x−1

i
(θi )

transforms from the Bi -fixed frame to the B3 -fixed frame. (Note
that AdT

x−1
3

is the identity operator.) Equation for hs can now be

rewritten as hs =
∑3

i=1 AdT
x−1

i
Ii3ξ3 +

∑3
i=1

∑2
α=1 AdT

x−1
i

Iiα (ζα +
Adx−1

α
ξ3 ) and is governed by Kirchhoff-like equations. As we

assume that the system starts from rest, hs remains zero
for all time. This leads to ξ3 (Ξ, Ψ) = − (

∑3
i=1 AdT

x−1
i

Ii3 +
∑3

i=1

∑2
α=1 AdT

x−1
i

Iiα Adx−1
α

)−1
∑3

i=1

∑2
α=1 AdT

x−1
i

IiαΠαΨα .

Thus, the input–state–output model of the system is

Ξ̇ = [ Ψ1 , Ψ2 , l(Ξ, Ψ)T ]T (3)

η[Ξ, Ψ](x, y) = τ1 (Ξ, Ψ)T Π1Ψ1 + τ2 (Ξ, Ψ)T Π2Ψ2

+
3∑

i=1

τi (Ξ, Ψ)T Γi (Ξ)ξ3 (Ξ, Ψ) (4)

where l = [l1 l2 l3 ]T = Υ(θf )ξ3 , τi (Ξ, Ψ) = [Xi (x, y, Ξ) ϕT
i (x, y,

Ξ)]T , Γ1 = Adx−1
1

(θ1 ), Γ2 = Adx−1
2

(θ2 ), and Γ3 = I . Therefore, the
complete dynamic system is given by the 5-D state equation (3) and
the function-valued output map (4).

B. Basic Gaits for Three-Link Fish

Reciprocal (in-phase) motion, such as θ̇1 = cos(t), θ̇2 = β0 cos(t),
and β0 ∈ ), results in no net forward movement, as shown in Fig. 3. We
consider two basic nonreciprocal gaits: moving forward and turning [8].
The angular velocities for both gaits are the same as

θ̇1 = aω sin(ωt), θ̇2 = aω cos(ωt) (5)

but the initial condition differs. The initial conditions to move for-
ward are θ1 |t=0 = −a, θ2 |t=0 = 0, leading to θ1 = −a cos(ωt), θ2 =
sin(ωt). However, the initial conditions for turning are θ1 |t=0 = β − a
and θ2 |t=0 = −β, leading to

θ1 = −a cos(ωt) + β, θ2 = a sin(ωt) − β . (6)

Note that β = a = ω = 1 in [8]. Fig. 4 shows the fish moving for-
ward for different parameter combinations, while Fig. 5 shows the fish

Fig. 4. Forward gaits of a three-link fish. β = 0.

Fig. 5. Turning gaits of a three-link fish. a = 1, and ω = 10.

turning in circles for different parameter combinations. Fig. 6 shows
snapshots in time of the fish moving forward.

C. Source Seeking With a Three-Link Fish

We take the basic gaits of the three-link fish and modify them. There
are two parts to our control law: 1) how to apply extremum seeking to
the gaits and 2) what function to optimize with extremum seeking.
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Fig. 6. Snapshots in time of the fish moving forward. The background color field represents the potential field φ with red representing positive values and blue
representing negative values. a = 1, θ1 |t=0 = −1, and θ2 |t=0 = 0.

As explained in Section II, the control law for the nonholonomic
unicycle is made up of two parts: the probing term aω cos(ωt) and
the tuning/steering term cξ sin(ωt). The probing aω cos(ωt) is exactly
what we see in (5), modulo a phase shift. If we assume that β depends
on time instead of being constant, and then, by following (6), we
find θ̇1 = aω sin(ωt) + β̇ and θ̇2 = aω cos(ωt) − β̇. By equating β̇ =
−cξ cos(ωt), we arrive at our control law

θ̇1 = aω sin(ωt) − cξ cos(ωt) (7)

θ̇2 = aω cos(ωt) + cξ cos(ωt) (8)

ξ =
s

s + h
[J ] (9)

where J is the signal that we want to maximize. (The transfer function
s/(s + h) should be understood as an operator on functions of time,
rather than as mixing of time and frequency domain quantities.) If the
source location is (x∗, y∗), the signal that the fish senses is

J = −qr ((fsx − x∗)2 + (fsy − y∗)2 ) (10)

fs =
[

fx + cos(θf )(δ + σ) + cos(θ1 + θf )(2δ + σ)

fy + sin(θf )(δ + σ) + sin(θ1 + θf )(2δ + σ)

]
(11)

where qr > 0, and fs = (fsx , fsy ) is the location of the sensor that we
assume to be at the tip of the forward ellipse, i.e., the fish nose. Fig. 7
shows a typical simulation of the fish moving to a desired location under
the algorithms (7)–(9). This simulation was made while enforcing the
constraint that the tuning variable β does not exceed a certain value—
the amplitude of the probing signal a. This ensures that the links do
not cross themselves as the fish moves. With measurement of J(t), the
fish reaches J ∗ without position measurement.

D. Path Following for a Three-Link Fish

The function J can be modified so that the fish follows a predefined
path. We define the target path x = a1y3 + a2y2 + a3y + a4 and de-
fine J as a function of the error between fsx and a1f 3

sy + a2f 2
sy +

a3fsy + a4 . The error can be multiplied by a gain, and can be raised
to a power to obtain different gradient fields. Fig. 8 shows the fish fol-
lowing the path defined by x = 2/300y3 − 2/5y2 + 16/3y + 1. The
fish optimizes

J = −5

√∣∣∣fsx − 2
300

f 3
sy − 2

5
f 2

sy +
16
3

fsy + 1
∣∣∣ (12)

to follow this path.
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Fig. 7. Source seeking for a three-link fish. The background color field repre-
sents the “concentration” of the signal field J with yellow representing higher
values than green. a = 1, c = 2, ω = 10, h = 10, qr = 1/100, δ = 5/6, and
σ = 1/6.

Fig. 8. Three-link fish following a predetermined path. The background color
field represents the “concentration” of the signal field J with yellow representing
higher values than green. a = 1, c = 2, ω = 10, h = 10, δ = 5/6, and σ =
1/6.

V. SOURCE SEEKING FOR A JOUKOWSKI FOIL FISH

We now move to the discussion of locomotion for a deformable
Joukowski foil [14], [30]. The transformation z = F (ζ) = ζ + ζc +
α/(ζ + ζc ) allows the parameterization of a circle ζ = rc eiθ in the
ζ-plane to describe an airfoil in the z = x + iy plane. The parameters
ζc = ζx + iζy ∈ C and α ∈ R determine the foil shape. Varying the
imaginary part +{ζc} = ζy , while enforcing the constraint rc = |ζc −
α| with rc constant, causes the camber of the foil to vary as well.
This variation allows for 1 DOF, which, by itself, will not allow the
fish to make forward progress in a potential flow. To counter this, [14]
and [30] add discrete point vortices to the system, which are modeled
after vortex shedding by the actual fish. (The potential function in this
case encompasses the domain of the fluid minus small circles at the

locations of the vortices.) The vortices are shed at discrete time instants
from the trailing edge of the fish. When this happens, an exchange of
momentum ensues, and the fish is capable of moving forward. By
periodically varying ζ̇y —the single input to the system—in a certain
way, the fish will move forward or turn.

A. ODE Model With Function-Valued Output Map for a Joukowski
Foil Fish in a Potential Flow With Point Vortices

The continually growing number of state variables of this system
are Ξ =

[
ζy g ΛT ΓT

]T
, where g = [θf fx fy ]T , Λ = [ζ1 ζ2 . . .]T ,

with ζk ∈ CN , is a vector of the location of each point vortex, and
Γ = [γ1 γ2 . . .]T , with γk ∈ R, is a vector of the strength of each
point vortex. The variables θf and (fx , fy ) are the orientation and
location of the foil fish with respect to the spatially fixed frame. The
number of vortices N grows with time; at periodic discrete times,
another vortex is added. The system has one input ζ̇y = Ψ, while the
output map defines the potential field and is given in the function-valued
form φ(x, y) = η[Ξ, Ψ](x, y).

Both [14] and [30] develop the equations of motion for a Joukowski
foil in a perfect fluid with point vortices. Reference [14] develops
the expression for the potential function, which is used in [30] (and,
therefore, we use as well). However, [14] uses Newton’s second law to
derive the motion of the body, while [30] applies conservation laws.

The complex potential W (z) = φ(z) + iψ(z) is an analytic func-
tion, where φ is the potential function, and ψ is the stream function.
Similar to the three-link fish case, we use a frame of reference attached
to the foil and express W (z) in terms of the body configuration
and velocities as w(ζ) = W (z) = Uw1 (ζ) + V w2 (ζ) + Ωw3 (ζ) +
ζ̇x ws1 (ζ)+ζ̇y ws2 (ζ) + α̇ws3 (ζ) +

∑N

k=1 wk
pv (ζ), where U and V

are the translational velocities of the foil, Ω is the rotational velocity,
N is the number of vortices in the flow, and wk

pv (ζ) represents the
contribution to the potential from the kth vortex. As noted in [30],
the subscript “s” appears in conjunction with variables describing the
shape of the foil. Finding the functions wi and wsi corresponds to sat-
isfying the boundary condition that the normal component of the fluid
velocity must match the normal component of the velocity of the foil
at its surface. The velocity of the foil at its surface is a combination of
the translational and rotational velocities of the foil plus the velocities
associated with the change in shape ζ̇x , ζ̇y , and α̇, which depends on
the input Ψ = ζ̇y . The expressions for these functions are listed in
the Appendix. The functions wk

pv are found using the Milne–Thomson
circle theorem [16] as wk

pv = iγk (log(ζ − ζk ) − log (ζ − (r2
c /ζk ))),

where ζk is the location of the kth point vortex, and γk is its
strength.

Using the complex potential W (z), the kinetic energy of the fluid
can be determined from the same integral used in Section IV-A
as Tf = −(1/2)

∫
∂ S

φ(∇φ · n)ds, where ∂S is the surface of the
foil. Given that φ is a function of the body configuration, the
body velocities, and the point vortices, Tf can be expressed as
Tf = (1/2)[UT ṡT ΓT ]MTf [UT ṡT ΓT ]T , U = [Ω U V ]T , s =
[ζx ζy α]T , and Γ = [γ1 . . . γN ]T , where the body shape s(ζy )
can be determined from ζy alone, the matrix MTf (s, Λ) depends
only on the foil shape s(ζy ), and the location of the vortices and
the change in the body shape ṡ(s, Ψ) depend only on the shape
s(ζy ) and the input Ψ. From the relationship between ζy and ζx ,
a is defined as ζx (ζy ) = ((1 − µ)/(1 + µ))

√
r2

c − ζ2
y , and α(ζy ) =

ζx −
√

r2
c − ζ2

y = −(2µ/(1 + µ))
√

r2
c − ζ2

y , where µ ∈ (0, 1) is
a constant. The kinetic energy of the foil can also be ex-
pressed in term of the body configuration and velocities TB =
(1/2)[UT ṡT ]MTB [UT ṡT ]T , where the matrix MTB (s) depends on
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only the shape s of the foil. The total effective momentum of the
system is A = ((∂(TB + Tf ))/∂Ω) − (1/2)

∑N

k=1 (−2πγk )(|zk |2 −
|z0 |2 ) and L = [(∂(TB + Tf )/∂U ), (∂(TB + Tf )/∂V )] +

∑N

k=1
(−2πγk )(zk + z0 )k, where the terms due to the vortices are devel-
oped in [25], zk = [){zk } +{zk }]T is the vector location of the kth
vortex in the foil-fixed frame, and z0 is the location of the origin of
the foil-fixed frame with respect to the spatially fixed frame. The mo-
mentum is governed by (1), and the system starts from rest; therefore,
L = [Lx Ly ]T = 0 and A = 0 for all time. Thus, we have a system of
equations

[
A
Lx

Ly

]
= I

[
Ω
U
V

]
+ B

[
ζ̇x

ζ̇y

α̇

]
+ P




γ1
...

γN



 (13)

with a solution U(Ξ, Ψ) = −I−1 (B ṡ + PΓ), where the matrices I(s)
and B(s) depend only on the foil shape s, and the matrix P (s, Λ)
depends on the shape plus the locations of the vortices.

The remaining two items to summarize are 1) the mo-
tion of the point vortices and 2) how to add vortices.
The motion of the vortices ζ̇k = pk (Ξ, Ψ) = ((dWk /dz) − (U +
iV + iΩzk ) − (∂F/∂ζc )ζ̇c − (∂F/∂α)α̇)(1/F ′(ζk )) and Wk (z) =
W (z) − iγk log(z − zk ) is stated in [30] and is found using Routh’s
rule [18]. The point vortices are added to the system one by one at
discrete points in time. The trailing edge of the foil (i.e., the stagna-
tion point) is (α − ζc ) [30], while we choose the location of the new
point vortex as ζn = 1.5(α − ζc ). A review of different vortex locating
methods (including simulations) can be found in [30]. The condition
dw(zn )/dζ = 0 must be satisfied to guarantee the stagnation point.
The addition of the new vortex causes the effective fluid momenta
to change, and thus, the body momentum must change as well. The
discrete change in U, which is denoted as ∆U, plus the strength of
the new vortex γn , must satisfy I∆U + Pγn = 0, thus ensuring the
conservation of momentum.

The calculation of U is split into: 1) intervals of time where (13)
is used to find the body’s translational and rotational velocities due to
the body configuration and its shape velocities and 2) points in time
where dw(zn )/dζ = 0 and I∆U + Pγn = 0 are used to calculate the
discrete change in the body velocities.

Thus, the complete dynamic system is given by

Ξ̇ =





ζ̇y

ġ

Λ̇

Γ̇




=





Ψ

l(Ξ, Ψ)

Π(Ξ, Ψ)

0




(14)

φ(x, y) = η[Ξ, Ψ](x, y) = ){W (z)} (15)

where Π(Ξ, Ψ) = [p1 (Ξ, Ψ) p2 (Ξ, Ψ) . . .]T , and l(Ξ, Ψ) =
Υ(θf )U(Ξ, Ψ). The initial condition for Λ is arbitrary, while
the initial condition for Γ is zero. In this way, until a vortex is
initialized, it has no effect on the system. To initialize, each ζk in
Λ and γk in Γ are reset at time k∆t, and the reset is defined as
ζk (k∆t) = 1.5(α(k∆t) − ζc (k∆t)) and γk (k∆t) = νk , where νk is
the γn part of the solution to dw(zn )/dζ = 0, and I∆U + Pγn = 0
at time k∆t, where ζn = ζk and ∆U are added to U(Ξ, Ψ) for use in
l(Ξ, Ψ).

B. Basic Gaits of the Joukowski Foil Fish

As shown in [30], the Joukowski foil fish, with the help of the
shed vortices, will move forward and turn with the same input ζ̇y =

Fig. 9. Forward gait for Joukowski foil fish. β = 0.

Fig. 10. Turning gait for Joukowski foil fish. a = 0.1, and ω = 15.

aω cos(ωt), where the other shape parameters follow from the choice
of ζy . The difference between the two gaits lies in the initial condition
of ζy . The fish will move straight forward with the initial condition
ζy |t=0 = 0, while the fish will move around circles with the initial
condition ζy |t=0 = β with β '= 0 leading to

ζy (t) = a sin(ωt) + β . (16)

Figs. 9 and 10 show the fish moving forward and in a circle for various
choices of parameters. Fig. 10 clearly shows the effect of the nondecay-
ing vortices—the fish tail still moves with the same frequency, yet the
period of resulting fish locomotion increases. Fig. 11 shows snapshots
in time of the fish moving forward and the vortices that form.

C. Source Seeking for a Joukowski Foil Fish

As in Section IV-C, we notice that both the forward gait and turning
gait have a sinusoidal term—similar to the probing term in the unicycle
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Fig. 11. Snapshots in time of a Joukowski foil fish moving forward. The background color field represents the stream/vorticity function ψ with red representing
positive (clockwise) values and blue negative (counterclockwise). a = 0.1, and β = 0.

Fig. 12. Source seeking for a Joukowski foil fish. (a) Background color field represents the stream/vorticity function ψ with red representing positive values
and blue negative. (b) Background color field represents the “concentration” of the signal field J with the darker shade representing higher values than the lighter
shade. a = 0.3, c = 0.3, ω = 20, h = 10, qr = 10.2, rc = 1, and µ = 0.74.

control law. We make β from (16) time-dependent and arrive at

ζ̇y = aω cos(ωt) + cξ sin(ωt) (17)

ξ = H(s)[J ], H(s) =
( s

s + h

)2
(18)

where our compensator H(s) is a double washout filter. The function
J that we wish to maximize is

J = −qr ((x∗ − fsx )2 + (y∗ − fsy )2 ) (19)

fs = (µ +
a2

µ
)ej θf + fx + ify (20)

where fs = (fsx , fsy ) is the location of the fish sensor, which is a
forward point of the fish—its “nose.” As mentioned previously, (x∗, y∗)
is the goal location. Figs. 12 and 13 depict the fish going toward a target
under the influence of (17).

While we constrain only the value of β in the control law for the
three-link fish, we constrain both the value of β and its time derivative
β̇ for the Joukowski foil fish.

D. Path Following for a Joukowski Foil Fish

We modify the function J in the same way as we did in Section IV-D
so that the Joukowski foil fish follows a predetermined path. Fig. 14
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Fig. 13. Source seeking for a Joukowski foil fish. (a) Background color field represents the stream/vorticity function ψ with red representing positive values
and blue negative. (b) Background color field represents the “concentration” of the signal field J with the darker shade representing higher values than the lighter
shade. a = 0.3, c = 0.3, ω = 10, h = 10, qr = 10.2, rc = 1, and µ = 0.74.

Fig. 14. Joukowski foil fish following a predetermined path. (a) Background color field represents the stream/vorticity function ψ with red representing positive
values and blue negative. (b) Background color field represents the “concentration” of the signal field J with the darker shade representing higher values than the
lighter shade. a = 0.3, c = 10, ω = 20, h = 20, rc = 1, and µ = 0.74.

shows the path that the fish takes when following the path defined by

J = 300
/√

1 +
∣∣∣∣fx −

(
3

1000
f 3

y − 4
15

f 2
y +

16
3

fy + 1
)∣∣∣∣ (21)

VI. CONCLUSION

We have shown that the sinusoid-based extremum-seeking method
can steer underwater vehicles propelled by sinusoid-dominated body
movement instead of motors. Readers might like to see detailed theoret-
ical analyses such as those that we have completed for source seeking
with nonholonomic vehicles in two [4] and three dimensions [5]. Such
detailed results are beyond reach for the highly complex (and high

dimensional) models in this paper; however, the theoretical intuition
from [4] and [5] has guided the choices of the control laws (7)–(9),
(17), and (18). Finally, in as much as the two models considered are
realistic models of body fluid interaction taking place in locomotion
of actual fish, the simple control laws (7)–(9), (17), and (18) seem as
plausible feedback strategies that actual fish may be using to navigate
gradient fields.

On an actual robotic three-link fish, each link would have a different
mass. The first may be significantly heavier than the others, thereby
affecting the gait. One would compensate the asymmetry by using
different amplitudes of sinusoids. The asymmetry primarily affects the
locomotion, rather than a source seeking. Source seeking would be
used with different amplitudes of sunusoids, and even with different
frequencies, as shown in [31].
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APPENDIX

w1 (ζ) = −r2
c

ζ
+ζc +

α2

(ζ + ζc )
, w2 (ζ) = −i

[
r2

c

ζ
+ ζc +

α2

(ζ + ζc )

]

w3 (ζ) =
−i

2

[
r2

c + 2
ζc r2

c

ζ
+ δ2 + 2α2 (r2

c /ζ) + ζc

(ζ + ζc )

+
α4 (ζ − ζc )

(ζ + ζc )(r2
c − δ2 )

]
(22)

ws1 (ζ) =

[
− r2

c

ζ
+

α2r2
c

ζζ2
c

+
α2

(ζ + ζc )

− α4ζ2
c

(ζ + ζc )(r2
c − δ2 )2 − 2α4r2

c ζc

(r2
c − δ2 )3 log

(
ζ + ζc

rc

)

−

(
α2r2

c

ζ3
c

− α2r2
c

ζc (r2
c − δ2 )2

)
ζ

(ζ + ζc )

− 2α2r2
c

(
1
ζ3

c

+
ζcα2

(r2
c − δ2 )3

)
log

(
ζ + ζc

ζ

)

+
2α4r2

c (iζy )
(r2

c − δ2 )3 log

(
ζ

rc

)]
(23)

ws2 (ζ) = (−i)

[
r2

c

ζ
− α2r2

c

ζζ2
c

+
α2

(ζ + ζc )

− α4ζ2
c

(ζ + ζc )(r2
c − δ2 )2 − 2α4r2

c ζc

(r2
c − δ2 )3 log

(
ζ + ζc

rc

)

+

(
α2r2

c

ζ3
c

− α2r2
c

ζc (r2
c − δ2 )2

)
ζ

(ζ + ζc )

+ 2α2r2
c

(
1
ζ3

c

+
ζcα2

(r2
c − δ2 )3

)
log

(
ζ + ζc

ζ

)

+
2α4r2

c ζx

(r2
c − δ2 )3 log

(
ζ

rc

)]
(24)

ws3 (ζ) = 2α

[
− r2

c

ζζc
− α2ζc

(ζ + ζc )(r2
c − δ2 )

− α2r2
c

(r2
c − δ2 )2 log

(
ζ + ζc

rc

)

+
r2

c

(
(r2

c − δ2 )2 − α2ζ2
c

)

ζ2
c (r2

c − δ2 )2 log

(
ζ + ζc

ζ

)]
(25)

where δ = |ζc |.
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Stabilization of a Hierarchical Formation of Unicycle
Robots with Velocity and Curvature Constraints
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Abstract—The paper proposes a new geometric approach to the stabi-
lization of a hierarchical formation of unicycle robots. Hierarchical forma-
tions consist of elementary leader–follower units disposed on a rooted tree:
each follower sees its relative leader as a fixed point in its own reference
frame. Robots’ linear velocity and trajectory curvature are forced to sat-
isfy some given bounds. The major contribution of the paper is to study the
effect of these bounds on the admissible trajectories of the main leader. In
particular, we provide recursive formulas for the maximum velocity and
curvature allowed for the main leader, so that the robots can achieve the
desired formation while respecting their input constraints. An original for-
mation control law is proposed and the asymptotic stabilization is proved.
Simulation experiments illustrate the theory and show the effectiveness of
the proposed designs.

Index Terms—Formation control, mobile robots, motion control,
multiagent systems, nonlinear systems.

I. INTRODUCTION

Recent years have witnessed a growing interest in robotics, in motion
coordination and cooperative control of multiagent systems [1]–[3]. In
this respect, several new problems, such as, e.g., consensus [4], [5],
rendezvous [6], [7], coverage [8], connectivity maintenance [9], [10],
and formation control, have been formulated and solved using tools
coming from computer science and control theory. Among them, for
its wide range of applicability, the formation control problem received
a special attention and stimulated a great deal of research [11]–[15].
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Fig. 1. Structure of a simple hierarchical formation. The main leader R0
guides the formation. One of the seven leader–follower units is highlighted: R1
is the relative leader of R4 . Robots R5 , R6 , and R7 act only as followers in
the formation.

By formation control, we simply mean the problem of controlling the
relative position and orientation of the robots in a group while allow-
ing the group to move as a whole. Typical working scenarios of robot
formations are terrain and utilities inspection, disaster monitoring, en-
vironmental surveillance, search and rescue, structures moving and
assembling, and planetary exploration. Research on formation control
dealt with ground vehicles [16], [17], autonomous underwater vehicles
(AUVs) [18], [19], unmanned aerial vehicles (UAVs) [20], [21], and
microsatellites [22], [23].

One of the main approaches to formation control is leader-following
[24]–[26]. A robot of the formation, designed as the leader, moves
along a predefined trajectory, while the other robots, the followers, are
to maintain a desired distance and orientation to the leader. Leader–
follower architectures are known to have poor disturbance rejection
properties. In addition, the overreliance on a single agent to achieve
the goal may be undesirable, especially in adverse conditions. Never-
theless, the leader–follower approach is particularly appreciated for its
simplicity and scalability.

This paper extends our previous work [27] on the stabilization of a
leader–follower pair of robots, to hierarchical formations of unicycles
with input constraints. Hierarchical formations are characterized by
elementary leader–follower units, whose interconnection is described
by a rooted tree graph (see Fig. 1). The main leader R0 drives the
formation, while all the other robots Ri act both as followers and
leaders (with the exception of the leaves of the tree, which are only
followers).

The original contribution of this paper with respect to the existing
literature is twofold.

1) Each follower in the formation has to maintain a desired distance
and orientation to its relative leader with respect to its own local
reference frame.

2) The velocity and the curvature admissible for each follower in
the formation are assumed to be bounded. The maximum velocity and
curvature that are allowed for the main leader are determined through
recursive formulas and a stabilizing controller is designed for each
robot, so that the desired formation is asymptotically achieved and the
input constraints are respected.

A peculiar feature of the proposed control strategy is that at steady
state the whole formation is not rigid but changes its shape according
to the motion of the main leader. Each follower’s position is not fixed
in the reference frame of its relative leader, but it varies in time in a
suitable circle arc fixed in the relative leader’s frame.

The rest of the paper is organized as follows. In Section II, some basic
definitions are provided and the problem studied in the paper is formu-
lated. In Sections III and IV, an original solution to the stabilization

1552-3098/$26.00 © 2009 IEEE

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on October 16, 2009 at 14:43 from IEEE Xplore.  Restrictions apply. 


