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Abstract— Network protocols in layered architectures
have historically been obtained on an ad-hoc basis, and
much of the recent cross-layer designs are conducted
through piecemeal approaches. Network protocols may in-
stead be holistically analyzed and systematically designed
as distributed solutions to some global optimization prob-
lems in the form of generalized Network Utility Maximiza-
tion (NUM), providing insight on what they optimize and on
the structures of network protocol stacks.

In the form of 10 Questions and Answers, this paper
presents a short survey of the recent efforts towards a sys-
tematic understanding of “layering” as ‘“‘optimization de-
composition”. The overall communication network is mod-
eled by a generalized NUM problem, each layer corre-
sponds to a decomposed subproblem, and the interfaces
among layers are quantified as functions of the optimiza-
tion variables coordinating the subproblems. Furthermore,
there are many alternative decompositions, each leading
to a different layering architecture. Industry adoption of
this unifying framework has also started. Here we summa-
rize the current status of horizontal decomposition into dis-
tributed computation and vertical decomposition into func-
tional modules such as congestion control, routing, schedul-
ing, random access, power control, and coding. We also dis-
cuss under-explored future research directions in this area.

More importantly than proposing any particular cross-
layer design, this framework is working towards a mathe-
matical foundation of network architectures and the design
process of modularization.
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I. OVERVIEW

In order to practically realize the potential of network-
centric technology, system-level analysis and design for
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performance and robustness must become far more sys-
tematic than the state-of-the-art, and ideally should be
based on a firm theoretical foundation and first principles.
While the individual subjects of communications, control,
and computation have rich theories of practical relevance,
they are fragmented and incompatible. Network-level de-
sign must coherently integrate all of these issues and until
recently has been largely ad hoc and heuristic. This is
inadequate both for the evolution of existing network in-
frastructure and the successful deployment of future, ad-
vanced network-centric technologies. We argue that the
viewpoint of “architecture first” is essential and outline
the progress and promise of a new framework of “layer-
ing as optimization decomposition”.

The idea that network architectures may be mathemat-
ically understood is a bold one. Network architecture de-
termines functionality allocation: “who does what” and
“how to connect them”, rather than just resource alloca-
tion. Layered architectures form one of the most funda-
mental and influential structures of network design. It
adopts a modularized and often distributed solution ap-
proach to network coordination and resource allocation.
Each layer controls a subset of the decision variables, and
observes a subset of constant parameters and the variables
from other layers. Intuitively, layered architectures enable
a scalable, evolvable, and implementable network design
while introducing potential risks to manageability of the
network. There is clearly more than one way to “divide
and conquer” the network design problem. For example,
from a data-plane performance point of view, some layer-
ing schemes may be more efficient or more fair than oth-
ers. Examining the choices of modularized design for net-
works, we would like to tackle the question of “how to”
and “how not to” layer. Most of the recent work focus on
resource allocation functionalities and performance met-
rics only. The limitations of such focus will also be dis-
cussed here.

Each layer in the protocol stack hides the complexity of
the layer below and provides a service to the layer above.
While the general principle of layering is widely recog-
nized as one of the key reasons for the enormous success
of data networks, there is little quantitative understand-
ing to guide a systematic, rather than an ad hoc, process



of designing layered protocol stack for wired and wire-
less networks. One possible perspective to rigorously and
holistically understand layering is to integrate the various
protocol layers into a single coherent theory, by regarding
them as carrying out an asynchronous distributed compu-
tation over the network to implicitly solve a global op-
timization problem. Different layers iterate on different
subsets of the decision variables using local information
to achieve individual optimality. Taken together, these lo-
cal algorithms attempt to achieve a global objective. Such
a design process of modularization can be quantitatively
understood through the mathematical language of decom-
position theory for constrained optimization [51].

Such a framework of “layering as optimization decom-
position” exposes the interconnection between protocol
layers and can be used to study rigorously the perfor-
mance tradeoff in protocol layering, as different ways
to modularize and distribute a centralized computation.
Even though the design of a complex system will always
be broken down into simpler modules, this theory will al-
low us to systematically carry out this layering process
and explicitly trade off design objectives.

The key idea in “layering as optimization decomposi-
tion” is as follows. Different vertical decompositions of
an optimization problem, in the form of a generalized Net-
work Utility Maximization (NUM), are mapped to differ-
ent layering schemes in a communication network, with
each decomposed subproblem in a given decomposition
scheme corresponds to a layer, and functions of primal or
Lagrange dual variables (coordinating the subproblems)
correspond to the interfaces among the layers. Horizontal
decompositions can be further carried out within one func-
tionality module into distributed computation and control
over geographically disparate network elements. Since
different decompositions lead to alternative layering ar-
chitectures, we can also tackle the question “how and how
not to layer” by investigating the pros and cons of de-
composition techniques. Furthermore, by comparing the
objective function values under various forms of optimal
decompositions and suboptimal decompositions, we can
seek “separation theorems” among layers: conditions un-
der which layering incurs no loss of optimality. Robust-
ness of these separation theorems can be further charac-
terized by sensitivity analysis in optimization theory: how
much will the differences in the objective value (between
different layering schemes) fluctuate as constant parame-
ters in the generalized NUM formulation are perturbed.

There have been many recent research activities along
the above direction by research groups around the world.
In Section II, we use an innovative format in this paper
to explain the “common language” of “layering as op-

timization decomposition”. We pose 10 skeptical ques-
tions that critically challenge the meaning and utility of
the framework, and present the associated answers as we
understand them today. Some of the answers are far from
being complete, reflecting the fact this research area is a
very active one that still needs much future work. Some
key messages are summarized in Section II1.

This short paper only provides a high-level tutorial of
the collective efforts by many in the research community
in this area. A more comprehensive survey can be found
in [10].

II. TEN QUESTIONS AND ANSWERS

A. Isn’t this just another cross-layer design? What kind
of architectural issues does it resolve?

Answer: There are two intellectually fresh cornerstones
behind “layering as optimization decomposition”. The
first is “network as an optimizer”. The idea of “proto-
col as a distributed solution” to some global optimization
problem (in the form of the basic NUM) has been suc-
cessfully tested in trials for Transmission Control Proto-
col (TCP) [26]. The key innovation from this line of work
[29], [34], [35], [44], [45], [47], [55] is to view TCP/IP
network as an optimization solver and each variant of con-
gestion control protocol as a distributed algorithm solving
a specified basic NUM with a different utility function. In
the basic NUM, the objective is the sum of source util-
ities as functions of rates, the constraints are linear flow
constraints, and optimization variables are source rates.
Other recent results also show how to reverse engineer
Border Gateway Protocols (BGP) as solving the Stable
Path Problem [20], and contention-based Medium Access
Control (MAC) protocols as game-theoretic selfish utility
maximization [38], [59]. Starting from a given protocol
originally designed based on engineering heuristics, re-
verse engineering discovers the underlying mathematical
problems being solved by the protocols and demonstrates
the application of derived insights through forward engi-
neering improvements of the protocols.

The second key concept is “layering as decomposition”.
As will be discussed in the answers to the next two ques-
tions, generalized NUM problems can be formulated to
represent a network design problem. These generalized
NUM problems put the end user utilities at the “driver’s
seat” for network design. For example, benefits of inno-
vations in physical layers through better modulation and
coding schemes are now characterized by the enhance-
ment to applications rather than just the drop in bit error
rates, which the users do not directly observe. An optimal
solution to a generalized NUM formulation automatically
establishes the benchmark for all layering schemes. The



problem itself does not have any pre-determined layering
architecture. Indeed, layering is a human engineering ef-
fort.

The overarching question then becomes how to attain
an optimal solution to a generalized NUM in a mod-
ularized and distributed way. Vertical decompositions
across modules and horizontal decompositions across dis-
parate network elements can be conducted systematically
through the theory of decomposition for nonlinear opti-
mization. Implicit message passing (where the messages
have physical meanings and need to be measured anyway)
or explicit message passing quantifies the amount of infor-
mation sharing and decision coupling required for a par-
ticular decomposition.

There are many different ways to decompose a given
problem, each of which corresponds to a different layer-
ing architecture. Even a different representation of the
same NUM problem can lead to different decomposabil-
ity structures even though the optimal solution remains the
same. These decompositions, i.e., layering schemes, have
different characteristics in efficiency, robustness, asym-
metry of information and control, and tradeoff between
computation and communication. Some are “better” than
others depending on the criteria set by the network users
and managers. A systematic exploration in the space of
alternative decompositions is possible, where each partic-
ular decomposition represents a holistically designed pro-
tocol stack.

Given the layers, crossing layers is tempting. For exam-
ple, layers can be crossed for wired or wireless networks
in many different ways. As evidenced by the large and
ever growing number of papers on cross layer design over
the last few years, we expect that there will be no shortage
of cross layer ideas based on piecemeal approaches. The
growth of the “knowledge tree” on cross layer design has
been exponential. However, any piecemeal design jointly
over multiple layers does not bring more structured think-
ing process than the ad hoc design of just one layer. What
seems to be lacking is a level ground for fair comparison
among the variety of cross layer designs, a unified view
on how to and how not to layer, and fundamental limits
on the impacts of layer-crossing on network performance
and robustness metrics.

“Layering as optimization decomposition” provides a
candidate for such a unified framework. It attempts at
shrinking the “knowledge tree” on cross layer design
rather than growing it. It is important to note that “lay-
ering as optimization decomposition” is not the same as
the generic phrase of “cross-layer optimization”. What is
unique about this framework is that it views the network as
the optimizer itself, puts the end user application needs as

the optimization objective, provides the globally optimal
performance benchmark, and leads to a systematic design
of decomposed solutions to attain the benchmark. Not
all architectural principles may be readily quantified, but
“layering as optimization decomposition” provides one of
the few promising directions towards a mathematical the-
ory of network architectures.

B. How to pick utility objective functions? How to guar-
antee QoS?

Answers: First of all, in reverse engineering, utility
functions are implicitly determined by the given protocols
already, and are to be discovered rather than designed. In
forward engineering, utility functions can be picked based
on any of the following four considerations:

o First, elasticity of application traffic can be modeled
through utility functions.

o Second, utility can be defined by human psycholog-
ical and behavioral models such as Mean Opinion
Score in voice applications.

 Third, utility functions provide a metric to define op-
timality of resource allocation efficiency.

o Fourth, different shapes of utility functions lead to
optimal resource allocations that satisfy some defini-
tion of fairness (e.g., a-fair utilities parameterized by
a>0:U(xr) = (1 —a) tx!=* [47] leads to a-fair
resource allocation).

In general, depending on who is interested in the out-
come of network design, there are two types of objective
functions: sum of utility functions by end users, which
can be functions of rate, reliability, delay, jitter, or power
level, and a network-wide cost function by network oper-
ators, which can be functions of congestion level, energy
efficiency, network lifetime, or collective estimation error.
Utility functions can be coupled across the users, and may
not have an additive structure (e.g., network lifetime).

Maximizing a weighted sum of all utility functions is
only one of the possible formulations. An alternative is
multi-objective optimization to characterize the Pareto-
optimal tradeoff between the user objective and operator
objective. Another set of formulations is game-theoretic
between users and operators, or among users or operators
themselves.

While utility models lead to objective functions, the
constraint set of a NUM formulation incorporates the fol-
lowing two types of constraints. First is the collection of
physical, technological, and economic restrictions in the
communication infrastructure. Second is the set of per-
user, hard, inelastic QoS constraints that cannot be vio-
lated at the equilibrium. This is in contrast to the utility



objective functions, which may represent elastic QoS de-
mands of the users.

C. What kind of NUM formulations are there?

Answers: The basic NUM problem is the following for-
mulation [29], known as monotropic programming and
studied since 1960s. TCP variants have recently been re-
verse engineered to show that they are implicitly solving
this problem, where source rate vector x is the only set
of optimization variables, and routing matrix R and link
capacity vector c are both constants:

maximize >, Us(zs)

subjectto Rx < c. M

Utility functions U are often assumed to be smooth, in-
creasing, concave, and dependent on local rate only, al-
though recent investigations have removed some of these
assumptions for applications where they are invalid.

Many of the papers on “layering as optimization de-
composition” are special cases of the following generic
problem [8], one of the possible formulations of a gener-
alized NUM for the entire protocol stack:

maximize Y-, Us(xs, Pe,s) + 32, Vi(w;)
subjectto Rx < ¢(w,P,),
x € C1(P.), x € Cy(F)or €11,
ReR, FEF, weW.

2)

Here, s denotes the rate for source s and w; denotes
the physical layer resource at network element j. The
utility functions U, and V; may be any nonlinear, mono-
tonic functions. R is the routing matrix, and c are the
logical link capacities as functions of both physical layer
resources w and the desired decoding error probabilities
P.. The issue of signal interference and power control
can be captured in this functional dependency. The rates
must also be constrained by the interplay between chan-
nel decoding reliability and other error control mecha-
nisms like ARQ. This constraint set is denoted as C; (P.).
The issue of rate-reliability tradeoff and coding is cap-
tured in this constraint. The rates are further constrained
by the medium access success probability, represented by
the constraint set Co(F) where F is the contention ma-
trix, or the schedulability constraint set II. The issue of
medium access control (either random access or schedul-
ing) is captured in this constraint. The sets of possible
physical layer resource allocation schemes, of possible
scheduling or contention based medium access schemes,
and of single-path or multi-path routing schemes are rep-
resented by W, F, R, respectively. The optimization vari-
ables are x, w, P., R, F. Holding some of the variables

as constants and specifying some of these functional de-
pendencies and constraint sets will then lead to a special
class of this generalized NUM formulation. As discussed
in the answer to the last question, utility functions and
constraint sets can be even richer.

A deterministic fluid model is used in the above for-
mulations. Stochastic network utility maximization is an
active research area, as discussed later in this section.
Whether it is the basic, general, or stochastic NUM, there
are three separate steps in the process: first formulate a
specific NUM problem, then devise a modularized and
distributed solution following a particular decomposition,
and finally explore the space of alternative decomposi-
tions that provide a choice of layered protocol stack and
coupling across the layers.

There are many remaining challenges in formulating
NUM. For example, it is still difficult to fully incorporate
BGP for inter-AS routing in the generalized NUM frame-
work. Similarly, an optimization-based, unifying view on
wireless ad hoc network routing is lacking. Much fur-
ther work remains to be done to model utility functions in
specific applications, especially inelastic, real-time appli-
cations such as VoIP and streaming media [25]. In a more
refined physical/link layer model, the option of forward-
ing rather than re-encoding at intermediate nodes must be
considered, as well as retransmission through ARQ.

D. Isn’tit just all about dual decomposition?

Answers: The basic idea of decomposition is to di-
vide the original large problem into smaller subproblems,
which are then coordinated by a master problem by means
of some kind of signalling. Most of the existing decom-
position techniques can be classified into primal decom-
position and dual decomposition methods !. The for-
mer is based on decomposing the original primal problem,
whereas the latter is based on decomposing the Lagrange
dual of the problem. Primal decomposition methods have
the interpretation that the master problem directly gives
each subproblem an amount of resources that it can use;
the role of the master problem is then to properly allocate
the existing resources. In dual decomposition methods,
the master problem sets the price for the resources to each
subproblem which has to decide the amount of resources
to be used depending on the price; the role of the master
problem is then to obtain the best pricing strategy. Pri-
mal decomposition and dual decomposition can in fact be
inter-changed by introducing auxiliary variables [51].

Almost all the papers in the vast, recent literature on
NUM use a standard dual-based distributed algorithm.

! This is not to be confused with primal-dual interior-point algorithm,
or primal driven network control, or primal penalty function approach.



Contrary to the apparent impression that such a decompo-
sition is the only possibility, there are in fact many alterna-
tives to solve a given network utility problem in different
but all distributed manners [52], including multi-level and
partial decompositions. Each of the alternatives provides
a possibly different network architecture with different en-
gineering implications.

Alternative horizontal decomposition (i.e., distributed
control across geographically disparate network elements)
has been studied in [52]. Recent results on alternative ver-
tical decomposition (i.e., modularized control over multi-
ple functional modules or layers) scatter in an increasingly
large research literature. For example, on the topic of joint
congestion control, routing, and scheduling, different de-
compositions have been obtained in [1], [5], [16], [41],
[57], on the topic of joint congestion control and random
access, different decompositions have been obtained in
[62], [39], and on the topic of rate control for network cod-
ing based multicast, different decompositions have been
obtained in [43], [64], [65], [2], [67], [7]. A systematic
treatise on this variety of vertical decompositions is an in-
teresting research direction that will contribute to a rigor-
ous understanding of the architectural choices of allocat-
ing functionalities to control modules.

Coupling for generalized NUM can happen not only in
constraints, but also in the objective function, where the
utility of source s, Us(zs, {i}icr(s)), depends on both
its local rate x and the rates of a set of other sources
with indices in set I(s). If Us is an increasing func-
tion of {z;};cy(s), this coupling models cooperation in a
clustered system, otherwise it models competition such as
power control in wireless network or spectrum manage-
ment in DSL. Such coupling in the objective function can
be decoupled [58] by first introducing auxiliary optimiza-
tion variables and consistency equality constraints, thus
shifting coupling in objective to coupling in constraints,
then introducing “consistency prices” to decouple the con-
sistency constraints. These consistency prices are itera-
tively updated through local message passing.

E. How do you know which decomposition to pick?

Answers: Even a different representation of the same
primal problem may change the duality and decompos-
ability structures even though it does not change the op-
timal solution. It remains an open issue how to system-
atically explore the space of alternative vertical and hor-
izontal decompositions, and thus the space of alternative
network architectures, for a given set of requirements on,
e.g., rate of convergence, symmetry of computational load
distribution, and amount of explicit message passing.

An intellectually bold direction for future research is to
explore if both the enumeration and comparison of alter-
native decompositions, horizontally and vertically, can be
carried out systematically or even be automated.

To enumerate the set of possible decompositions, one
has to take into account that transformations of the prob-
lem (e.g., change of variable) may lead to new decompos-
ability structure, or turn a seemingly non-decomposable
problem into a decomposable one [21]. This would open
the door to even more alternative decompositions, each
of which has a different engineering implication to dis-
tributed and modularized network architecture.

To compare alternative decompositions and the associ-
ated variety of distributed algorithms, the following met-
rics all need to be considered: speed of convergence,
the amount and symmetry of message passing for global
communication, the distribution of local computational
load, robustness to errors, failures, or network dynamics,
the possibility of efficient relaxations and simple heuris-
tics, and the ability to remain evolvable as the applica-
tion needs change over time. Some of these metrics do
not have any quantitative units of measurement, such as
evolvability. Some do not have a universally agreed upon
definition, such as the measure of how distributed an al-
gorithm is. Some are difficult to analyze accurately, such
as the rate of convergence. Application contexts lead to a
prioritization of these possibly conflicting metrics, based
on which, the “best” decomposition can be chosen from
the range of alternatives.

Summarizing, there are three stages of conceptual un-
derstanding of an optimization/decomposition view of
network architectures:

« First, layered and distributed network architectures
can be rigorously understood as decompositions of
an underlying optimization problem.

e Second, there are in fact many alternatives of decom-
positions and therefore alternatives of network archi-
tectures. Furthermore, we can systematically explore
and compare such alternatives.

e Third, there may be a methodology to exhaustively
enumerate all alternatives, to quantify various com-
parison metrics, and even to determine a priori which
alternative is the best according to any given combi-
nation of comparison metrics.

Many issues in the third stage of the above list remain
open for future research.

F. What about those nonconvex optimization formula-
tions?

Answers: Nonconvex optimization formulations of
generalized NUM may appear for four types of reasons.



First, non-concave utilities, such as sigmoidal utility. Sec-
ond, non-convex constraint set, such as lower bounds on
SIR as a function of transmit power vector, in the low-
SIR regime of interference-limited networks. Third, inte-
ger constraints, such as those in single-path routing proto-
cols. Fourth, convex constraint sets that would require a
description length that grows exponentially with the num-
ber of variables, such as certain schedulability constraints
in multihop interference models. In general, nonconvex
optimization is difficult in theory and in practice.

For example, nonconvex optimization often has non-
zero duality gaps. A non-zero duality gap means that
the standard dual-based distributed subgradient algorithm,
and in general dual decomposition approaches, may lead
to suboptimal and even infeasible primal solutions and
instability in cross layer interactions. This very diffi-
cult problem can be tackled through a combination of
well-established and more recent optimization techniques
(e.g., sum-of-squares programming [53] and geometric-
signomial programming [9]). For example, there have
been three recent approaches to solve nonconcave utility
maximization over linear constraints:

e [36] proposes a distributed, suboptimal heuristic (for
sigmoidal utilities) called “self-regulating” heuris-
tics, which is shown to avoid link congestion caused
by sigmoidal utilities.

e [22] determines optimality conditions for the dual-
based distributed algorithm to converge globally (for
all nonlinear utilities). The engineering implication
is that appropriate overprovisioning of link capacities
will ensure global convergence of the dual-based dis-
tributed algorithm even when user utility functions
are nonconcave.

e [19] develops an efficient but centralized method to
compute the global optimum (for a wide class of util-
ities that can be transformed into polynomial utili-
ties), using the sum-of-squares method.

There are at least three very different approaches to
tackle the difficult issue of nonconvexity:

Go around nonconvexity: discover a change of variable
that turns the seemingly nonconvex problem into a con-
vex one, determine conditions under which the problem is
convex or the KKT point is unique, or make approxima-
tions to make the problem convex.

Go through nonconvexity: use successive convex relax-
ations (e.g., Sum-of-squares, Signomial programming),
utilize special structures in the problem (e.g., difference of
convex, generalized quasiconcavity), or leverage smarter
branch and bound methods.

Go above nonconvexity: observe that optimization
problem formulations are induced by some underlying as-

sumptions on what the architectures and protocols should
look like. By changing these assumptions, a different,
much easier-to-solve or easier-to-approximate NUM for-
mulations may result. This is referred to as design for
optimizability [24], which concerns with redrawing archi-
tectures to make the resulting generalized NUM easier to
solve, rather than optimization that tries to solve a given,
possibly difficulty NUM problem.

G. Isn’t fluid model with infinite backlog too restrictive?

Answers: When sessions (i.e., flows, connections, end-
users) arrive and depart, packets come in bursts, channels
vary over time, and topology is subject to change, new
formulations of stochastic NUM become necessary, pre-
senting new challenges on stability and performance char-
acterization. Most of the known results concern stochastic
stability and validity of the deterministic fluid model, with
little characterization on the distribution of utility or user-
perceived delay induced by the distributions of stochastic
models at various levels.

Session level. For Poisson arrivals of sessions with ex-
ponentially distributed file size, [3], [14], [46] showed
that, for certain classes of utility functions under the time-
scale separation assumption 2, the stability region of the
basic NUM is the largest possible, which is the capac-
ity region formed by the fixed link capacities in the de-
terministic NUM formulation. Then [40], [56] extended
this stochastic stability result to the case without the time-
scale separation assumption. Extensions have recently
been carried out to other models [57], [69], with fluid lim-
its and diffusion approximations proposed as well [31],
[32]. Recent results have also established session-level
stochastic stability for any filesize distribution with finite
moments (e.g., see [11] and references therein).

Packet level. There have been three sets of results that
appeared over the last two years: translating on-off HTTP
session utility into transport layer TCP utility (mapping
from microscopic to macroscopic model) [4], showing
many-flow asymptotical validation of fluid model (jus-
tifying the transition from microscopic to macroscopic
model) [15], [54], and demonstrating convergence behav-
ior for stochastic noisy feedback [72].

Channel level. Channel variations offer both the
challenge to prove stability/optimality for existing algo-
rithms and the ability to do opportunistic transmission
and scheduling. For example, in [5], stability and opti-
mality are established for dual algorithms under channel-
level stochastic for any convex optimization where the
constraint set has the following structure: a subset of the

2Here time-scale separation means that the resource allocation algo-
rithm converges before the number of sessions changes.



variables lie in a polytope and other variables lie in a con-
vex set that varies according to an irreducible, finite-state
Markov chain. “Layering as optimization decomposition”
type of algorithms that only require instantaneous knowl-
edge of the current channel state (e.g., queue-lengths) re-
main stable and optimal (in the expected sense).

Topology level. Very little has been explored on this
topic, which is important for battery based or highly mo-
bile wireless ad hoc networks.

H. Is anyone actually going to use this framework?

Answers: The application of “layering as optimization
decomposition” has been illustrated through many case
studies carried out by various research groups in the last
couple of years, generating considerable general insights
in addition to the specific cross-layer designs.

In the terminology of the standard seven layer reference
model, it is well-known that physical layer algorithms
try to solve the data transmission problem formulated by
Shannon: maximizing data rate subject to vanishing error
probability constraints. Recent progress have put proto-
cols in layers 2-4 of the standard reference model on a
mathematical foundation as well:

e The congestion control functionality of TCP has
been reverse engineered to be implicitly solving the
basic NUM problem (1). While heterogeneous con-
gestion control protocols do not solve an underlying
NUM problem, its equilibrium and dynamic proper-
ties can still be analyzed through a vector field rep-
resentation and Poincare-Hopf index theorem [60],
[61], which show that sufficiently small “degree of
heterogeneity” implies global uniqueness and local
stability of network equilibrium.

e IGP of IP routing are known to be variants of short-
est path routing solvers, and the policy-based routing
protocol in BGP has recently been modeled as the
solution to the Stable Path Problem [20].

e Scheduling based MAC protocols are known to be
solving variants of maximum weight matching, and
random access (contention based MAC) protocols
have recently been reverse engineered as a non-
cooperative selfish utility maximization game [38],
[59].

Following is a non-exhaustive list of some of the re-
cent publications using “layering as optimization decom-
position”, with references given in the bibliography 3. In
all these cases, a NUM problem that is more complicated
than the basic NUM represents a more general networking

3We apologize in advance for any references we may have missed
and would appreciate any information about other citations.

problem encompassing more than congestion control, and
some functions of the Lagrange dual variables act as the
“layering variables”.
« Jointly optimal congestion control and adaptive cod-
ing or power control
« Jointly optimal congestion and contention control
« Jointly optimal congestion control and scheduling
« Jointly optimal routing and scheduling
« Jointly optimal routing and power control
o Jointly optimal congestion control, routing, and
scheduling
« Jointly optimal routing, scheduling, and power con-
trol
e Jointly optimal routing, resource allocation, and
source coding
e TCP/IP interactions and jointly optimal congestion
control and routing
o Network lifetime maximization
Industry adoption of “layering as optimization decom-
position” has already started. For example, insights from
reverse-engineering TCP has lead to an improved version
of TCP implemented over the last several years: FAST
(Fast AQM Scalable TCP) [17], [26]. Putting end-user
application utilities as the objective function has lead to
a new way to leverage innovations in the physical and
link layers beyond the standard metrics such as bit error
rate, e.g., in “FAST Copper” Project (here FAST stands
for Frequency, Amplitude, Space, Time) for an order-of-
magnitude boost to rates in fiber/DSL broadband access
systems [18].

1. Who cares about convergence at time infinity under a
weird stepsize?

Answers: Understanding practical stepsize choices’
impacts in an asynchronous environment, characterizing
transient behaviors of iterative algorithms, and tightly
bounding the rate of convergence are all important and
under-explored topics in this area.

For example, for certain applications, if the resource
allocation (e.g., window size, signal-to-interference-ratio)
for a user drops below a threshold during the transient, the
user may be disconnected. In such cases, the whole idea
of equilibrium becomes meaningless. Invariance during
transients, instead of convergence in the asymptote, be-
comes a more useful concept: how fast can the algorithm
gets close enough to the optimum and stay in that re-
gion? Usually the overall system performance derived out
of a modularized design determines “how close is close
enough” for each module’s transients.

Similarly, in the objective function, utility as a function
of delay, jitter, and even the entire time series of resource



allocation during the transients needs to be further inves-
tigated.

J. Why should network operators optimize performance
in the first place?

Answers: Indeed, optimality is not the key point. Op-
timization is used here primarily as a modeling language
and a starting point to develop and compare architectural
choices, rather than defining a particular point of oper-
ation at global optimum. Suboptimal, but simple (low
spatial-temporal complexity) algorithms can be used in
various modules (e.g., the scheduling module), and, as
long as the suboptimality gap is bounded and the network
architecture is “good”, then the “damage” from the subop-
timal design in one layer can be contained at the systems
level [41]. Similarly, stochastic dynamics may also wash
away the corner cases and be beneficial to the average sys-
tem performance, if the network architecture is appropri-
ately designed. In such cases, it is interesting to study the
meaning of utility-suboptimality in terms of degradation
to fairness.

Protocols and layered architectures are not just for max-
imizing the efficiency of performance metrics, such as
throughput, latency, and distortion, but also robustness
metrics, such as evolvability, scalability, availability, and
manageability. Interactions among layers introduce the
risks of losing robustness against unforseen demands aris-
ing over time or significant growth over space. Despite
the importance in practical network operations, these net-
work X-ities remain as important yet fuzzy notions, and a
quantified foundation for them is long overdue [12]. In-
tuitively, “design by decomposition” enhances scalability
and evolvability, but may present risks to manageability
such as diagnosability and optimizability. This is in part
because layering means that each layer is limited in what
it can do (optimization variables in a decomposed sub-
problem) and what it can observe (a subset of constant
parameters and variables in other decomposed subprob-
lems). Quantifying network X-ities, and trading-off net-
work X-ities with performance metrics, in layered proto-
col stack design is a long-term, challenging direction.

Carrying the intellectual thread from “forward engi-
neering” (solve a given problem) to “reverse engineer-
ing” (find the problem being solved by a given proto-
col) one step further to “design for optimizability”, it may
be that the difficulty of solving a particular set of sub-
problems also illustrates that the given decomposition was
conducted possibly in a wrong way and suggests that bet-
ter alternatives exist.

Under the metrics of deployment cost and operations
cost, the success of IP networks comes down to the scal-

ability and evolvability of TCP/IP and the way control
is distributed and modularized. A long-term goal of the
framework of “layering as optimization decomposition”
is to provide a simple, relevant abstraction of what makes
a network successful in this sense.

ITII. KEY MESSAGES

In summary, “layering as optimization decomposition”
is a unifying framework for understanding and designing
distributed control and cross-layer resource allocation in
wired and wireless networks. It has been developed by
various research groups over the last several years, and
is now emerging to provide a mathematically rigorous
and practically relevant approach to quantify the risks and
opportunities of modifying existing layered network ar-
chitecture. It shows that network protocols in layers 2,
3, and 4 can be reverse-engineered as implicitly solving
some optimization-theoretic or game-theoretic problems.
By distributively solving generalized NUM formulations
through decomposed subproblems, we can systematically
generate layered protocol stacks. There are many alterna-
tives for both horizontal decomposition into disparate net-
work elements and vertical decomposition into functional
modules (i.e., layers). While queuing delay or buffer oc-
cupancy is often used as the “layering price”, it may some-
times lead to unstable interactions. A variety of tech-
niques to tackle coupling and nonconvexity issues have
become available.

Some of the key messages obtained from many case
studies are outlined below, and, as briefly discussed in
this tutorial paper, even more open problems and new di-
rections present themselves in this emerging area of re-
search.

e Protocols in layers 2,3,4 can be reverse engineered.
Reverse engineering in turn leads to better design in
a rigorous manner.

o There is a unifying approach to cross-layer design, as
summarized in Section I of this paper.

e Loose coupling through “layering price” can be op-
timal, and congestion price (or queuing delay, or
buffer occupancy) is often the right “layering price”
for stability and optimality, with important excep-
tions as well.

o There are many alternatives in decompositions, lead-
ing to different divisions of tasks across layers and
even different time-scales of interactions.

e Convexity of the generalized NUM is the key to de-
vising a globally optimal solution.

e Decomposability of the generalized NUM is the key
to devising a distributed solution.



o Architecture, rather than optimality, is the most im-

portant theme.

More than just an ensemble of specific cross-layer de-
signs for existing protocol stacks, “layering as optimiza-
tion decomposition” is a mentality that views networks as
optimizers, a common language that allows researchers to
quantitatively compare alternative network architectures,
and a suite of methodologies that facilitates a systematic
design approach for modularized network architectures.
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