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Abstract

Given an object model and a black-box measure of simi-
larity between the model and candidate targets, we consider
visual object tracking as a numerical optimization problem.
During normal tracking conditions when the object is visi-
ble from frame to frame, local optimization is used to track
the local mode of the similarity measure in a parameter
space of translation, rotation and scale. However, when
the object becomes partially or totally occluded, such local
tracking is prone to failure, especially when common pre-
diction techniques like the Kalman filter do not provide a
good estimate of object parameters in future frames. To re-
cover from these inevitable tracking failures, we consider
object detection as a global optimization problem and solve
it via Adaptive Simulated Annealing (ASA), a method that
avoids becoming trapped at local modes and is much faster
than exhaustive search. As a Monte Carlo approach, ASA
stochastically samples the parameter space, in contrast to
local deterministic search. We apply cluster analysis on the
sampled parameter space to redetect the object and renew
the local tracker. Our numerical hybrid local and global
mode-seeking tracker is validated on challenging airborne
videos with heavy occlusion and large camera motions.
Our approach outperforms state-of-the-art trackers on the
VIVID benchmark datasets.

1. Introduction

The goal of visual object tracking is to repeatedly lo-
calize an object in successive frames. Most object trackers
search for the target locally in new frames, and consist of
several key components: (1) an object representation (e.g.
appearance model by color histogram [8], shape model by
active contours [5], or bag of samples for classification [2]);
(2) a similarity measure between the reference model and
candidate targets (e.g. Bhattacharya coefficient [8], Earth
Mover’s Distance [24], or classifier scores); and (3) a local
mode-seeking method for finding the most similar location
in new frames (e.g. mean-shift [8] or Lucas-Kanade [4]).
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Figure 1. (a)-(b) Tracking during normal conditions is solved by
local mode-seeking; (c)-(d) When the object becomes occluded,
for example this vehicle passes under a bridge, global mode-

seeking is needed to detect the object after occlusion and reini-
tialize the local tracker.

Efficient and robust local mode-seeking methods are of
critical importance to the tracking problem, which is why
the mean-shift hill climbing method has been popular for
ten years. The original mean-shift tracker [8] uses color
histograms as an object representation and Bhattacharya co-
efficient as a similarity measure. An isotropic kernel is used
as a spatial mask to smooth a histogram-based appearance
similarity function between model and target candidate re-
gions. The mean-shift tracker climbs to a local mode of this
smooth similarity surface to compute the translational offset
of the target blob in each frame.

In the mean-shift framework, many efforts have consid-
ered tracking an object with changing scale and orientation.
For example, multiple symmetric kernels can be used to
track object parts and compute the whole object’s orienta-
tion [15][13]. An anisotropic (elliptic) kernel mean-shift
algorithm for image and video segmentation is proposed
in [27]. The kernel associated with each pixel adapts to
the local structure by adjusting its shape, scale and orienta-
tion. Anisotropic kernels and sample point density estima-
tion both add complexity to the mean-shift procedure. As-



suming objects have ellipsoidal regions, Zivkovic and Krose
[31] approximate the object shape by a local covariance ma-
trix and update it using the EM algorithm. Yilmaz [29] pre-
sented an asymmetric kernel mean-shift algorithm to esti-
mate object orientation and scale. The “asymmetric” prop-
erty is achieved by introducing a level set kernel to represent
a complex object shape, leading to better contour tracking.
A look-up table that encodes the scale observed at each an-
gle is created for generating the modified level set kernel.

During normal tracking conditions when the object is
visible and moves predictably from frame to frame, local
mode-seeking trackers are able to localize the object. How-
ever, when the object becomes partially or totally occluded,
or motion is large and unpredictable, such local tracking is
prone to failure. In Figure 1, the vehicle’s scale and location
change quickly in the image sequence after it passes under a
bridge because the cameraman zoomed out to find it again.
When common prediction techniques like the Kalman fil-
ter do not provide a good estimate of object parameters in
the new frame, global object detection is required to re-
cover from tracking failure. For example, Collins et al.
[10] use peak difference to detect the object while avoiding
false peaks. Avidan [2] proposes to spread particle filters in
possible future locations to detect an object after occlusion.
Shen et al. [25] use multi-bandwidth mean-shift to seek the
global mode.

With the realization that tracking is an optimization
problem given a suitable similarity measure (also called dis-
tance measure, cost/energy function, or objective function),
we consider object tracking and detection in a generic nu-
merical optimization framework. The optimization func-
tion, f, is a black-box function inside which the object rep-
resentation and similarity measure can be of any type, even
something that we can’t take analytic derivatives of. Chang-
ing the object representation and similarity measure inside
the black-box doesn’t affect the outside numerical mode-
seeking algorithms. Furthermore, although different kernels
have been used under the mean-shift framework to find ob-
ject location (u,v), scale s and orientation €, the problem
has not been attacked directly by basic numerical methods.
For example, if we design a black-box function that can
accept (u,v,s,0) as input state , and output a similarity
value f(x) between the model and candidate, then during
normal tracking conditions the parameterized object state
can be found directly by numerical local mode-seeking,
i.e. solving argmaz, f(z) without deliberately designing
any specific kernel, shape map, or an extra ellipse-fitting
step. When the local tracker loses the object, global mode-
seeking can be applied with the same black-box function to
detect the object and re-initialize the local tracker.

In Section 2 we formalize object tracking as a local nu-
merical optimization problem in a parameter space repre-
senting the object’s state. Section 3 presents object de-

Figure 2. (a) Vehicles move through the woods and undergo large
appearance change and heavy occlusion; (b) Motion detection
by accumulated frame differencing; (c) Motion detection by for-
ward/backward motion history images.

tection as a global optimization problem and solves it via
Adaptive Simulated Annealing with cluster analysis. In
Section 4, we validate our numerical hybrid local and global
mode-seeking approach on challenging video sequences.

2. Tracking by Local Mode-seeking

In previous symmetric/asymmetric kernel mean-shift
tracking, each pixel is assigned a weight that votes for the
direction and magnitude of the mean-shift vector. Objects
are tracked by computing the kernel motion iteratively in the
form of a parametric transformation (e.g. translation (u, v),
orientation 6, scaling s). Here, we directly seek the mode
in a 4D parameter space by numerically maximizing the ob-
jective function f(u,v, 6, s) without specially designing an
analytic kernel.

2.1. Objective Function (Feature and Measure)

Many types of object features have been used for track-
ing and detection. For example, color histograms are an
efficient object representation for appearance-based track-
ing of nonrigid objects [8]. Histogram of oriented gradients
(HoG) is a powerful texture representation for object de-
tection [12]. When object appearance changes greatly and
heavy occlusion exists (Figure 2(a)), motion is a good fea-
ture for moving object tracking because it is invariant to
changes in object color, texture or shape. In [1], accumu-
lated frame differencing is performed to give a rough es-
timate of the moving object boundary (Figure 2(b)), and a
level-set based segmentation is applied to refine it. In [30],
moving objects are detected by forward/backward motion
history images, yielding a tighter boundary estimate around
the target. The motion likelihood map that indicates each
pixel’s possibility of being a moving pixel is also useful for
object tracking (Figure 2 (c)). All of these features can be
used in our black-box objective function, either individually
or jointly.

When a motion likelihood map, M (i), is used, we try to
find a local region inside which the majority of pixels are
moving and few are stationary. The optimization objective
function is

fle)y =" M) 1)
1€ER(x)

where R(x) is a region determined by a point x in the 4D
parameter space (u, v, 0, s).



v @ (b)
Figure 3. (a) Computing the sum or histogram inside the green
rectangle is done efficiently by the integral image or integral his-
togram methods; (b) The sum or histogram inside the rotated white
rectangle is computed from the piecewise union of green rectan-
gles, each of which is performed using an integral image or inte-
gral histogram; (c) The piecewise integration idea can be general-
ized to any complex shape; (d) The sum or histogram inside the
ring between two rotated rectangles can be computed by subtract-
ing the inside rectangle from the outside one.

When a histogram of color or histogram of oriented gra-
dients is used as a feature, we can use the Bhattacharyya
coefficient as the similarity measure

fl@)=>_Vplx) x g 2
k=1

where ¢ is the m-bin reference histogram and p(x) is the
target candidate histogram computed in region R(zx), both
normalized to sum to one so that they are m-bin probability
mass functions. As a bin-by-bin similarity, Bhattacharyya
coefficient only considers bins with the same index without
using cross-bin information. A weighted form of cross-bin
similarity is the negative quadratic form distance [14]

f(@) = =(p(z) — ¢)" A(p(z) — q) 3)
where A = [a,;] is a matrix and the weights a;; denote simi-
larity between bin 4 and j. For example, a;; = 1—d;; /dmazx
where d;; is the ground distance between bin ¢ and j and
dmaz = max(d;;), i.e. A is a Toeplitz matrix. Another
robust similarity metric between two distributions, Earth
Mover’s Distance (EMD) [24], can also be used here. It
is based on the minimal cost that must be paid to transform
one distribution into the other, and it is robust to color shift.
All of these similarity measures can be applied inside our
black-box objective function without changing the outside
numerical optimization algorithms.

To reduce computational cost of evaluating an objective
function, the integral image method [26] can be applied on
motion likelihood maps, and the integral histogram method
[23] can be applied to histogram calculations. As shown
in Figure 3(a), once an integral image/histogram H (u, v) in
the current frame has been computed, the sum/histogram of
any rectangular region with sides parallel to the image co-
ordinates can be rapidly computed as a linear combination
of four vectors:

h = H(’lLQ,’UQ) - H(UQ,’Ul) - H(ul,’Ug) +H(U1,U1) @
Lienhart et al.[20] extend the original integral image to

compute the sum within a 45° rotated rectangle (available
in OpenCV).

To compute the sum/histogram of any rotated rectangu-
lar region (Figure 3(b)), or any region of arbitrary shape for
that matter (Figure 3(c)), we break the shape into a piece-
wise union of rectangles with sides parallel to the image
coordinates. The sum/histogram inside each of these ori-
ented rectangles is calculated very quickly by Eq.4. Fig-
ure 3(d) shows how to compute the sum/histogram inside
a ring. This process is fast because it does not assign dif-
ferent weights to pixels during different iterations, as the
common kernel methods do. For each image, the integral
image/histogram is computed only once at the start of the
whole mode-seeking process. To compute histogram p(x)
or motion likelihood sum within an arbitrary region R(x),
we only need to center the region at location (u, v), orient it
by 0, scale it by s, break it into piecewise axis-aligned rect-
angles, and then rapidly compute the sum/histogram using
the piecewise integral image/histogram method.

When searching in scale space, it is important to consider
background information to avoid the shrinkage problem [9].
Thus our objective function becomes

F(x):ffg(uavaaas)_fbg(uavaavs) (5)

When maximizing F'(x), we are actually seeking x to maxi-
mize the similarity between the model and foreground while
minimizing the similarity between the model and back-
ground. This is consistent with the idea of discriminating
between foreground and background regions [2][10].

2.2. Numerical Local Mode-seeking Methods

Remarkable progress has been made in the past forty
years on the theory of unconstrained optimization of smooth
functions. In general, Nocedal and Wright [22] summa-
rize two fundamental strategies for moving from the current
point x, to a new iterate x4 line search and trust region
methods. Steepest ascent method, Newton’s method, con-
jugate gradient method and BFGS method all fall within the
line search framework as

Tht1 = T + opdy (6)

where dy, is a search direction and «, is a step size obtained
by a one-dimensional search. For steepest ascent method,

di = g )

where gj, is the gradient at the current point x, computed
as a finite central difference. For Newton’s method,
9k
dy = =55 (®)
V2 f (k)

In the BFGS method, the Hessian matrix V2 f(zy) is ap-
proximated by a matrix By computed using the observed
function values and gradient information. A search direc-
tion is then computed as

dr = By, ' gk )



Figure 4. Dashed polygons represent different starting positions.
Solid polygons are the modes found by local mode-seeking meth-
ods. The solid lines show the search paths. (a) The reference
appearance model is represented by the color histogram inside the
polygon; (b) Steepest ascent method; (c) Trust region algorithm;
(d) Nelder-Mead simplex algorithm.

Local methods | Steepest | Trust region | Simplex
Comp. cost 96.0 206.3 52.8

Table 1. Average # of times the objective function f is evaluated.

Different approaches have been tried to improve the op-
timization part of the mean-shift tracker. For example, Shen
et al. [25] use an adjustable step size during mean-shift
tracking,

Tpy1 = Tp + MV (21) (10)

where MV,.(xy) is the mean-shift vector with smooth ker-
nel of bandwidth . Yang et al. [28] propose a BFGS
method to accelerate steepest-ascent mean-shift by setting

di = By "MV () (11)

In fact, standard mean-shift tracking is also a steepest as-
cent procedure, and can be considered as one example of the
line-search framework with dy, = MV,.(x) and oy, = 1.

In the second strategy, known as the trust region method,
typically a quadratic function is constructed around the cur-
rent point x, to approximate the true function f, while re-
stricting the search range to a trust region. Depending on
the performance of the candidate solution, the trust region
will expand or shrink. Liu et al. [21] show that trust-region
tracking is more effective than line-search mean-shift track-
ing.

A shared assumption in the above local-mode seeking
methods is that the objective function f is smooth and its
gradient g is available. However, for vision-based tracking
applications, our objective function could be quite noisy.
One popular derivative-free optimization method is the
Nelder-Mead simplex method. In each iteration, the vertex
with the worst function value is removed and replaced with
a new point with a better value. The new point is obtained
by reflecting, expanding or contracting the simplex.

We compare the classic steepest ascent (mean-shift),
trust region [6] and simplex algorithms [19] via a face con-
tour alignment experiment (Figure 4). The color histogram
within a polygon in the first frame (Figure 4(a)) is used
as the reference model. Different initial points are chosen
in the test image. In this experiment, the steepest ascent
method (Figure 4(b)) and trust region method (Figure 4(c))
have straightforward search paths, while the simplex algo-
rithm (Figure 4(d)) has a more zig-zag-like path because the
simplex is reflecting, expanding or contracting in each iter-
ation. However, steepest ascent suffers from being trapped
at local modes. Since no gradient information is needed
in the simplex method, the objective function is evaluated
the fewest number of times among the compared methods
(Table 1), which could be an important difference if the ob-
jective function is expensive to compute.

3. Detection by Global Mode-seeking

When the tracked object becomes partially or totally oc-
cluded, local mode-seeking is prone to failure. To allow a
local tracker to track through occlusions, motion prediction
techniques like the Kalman filter are often used. However,
when the prediction is far away from the true position, a
global detection is required to recover from tracking fail-
ure. In this section, we consider a successful global opti-
mization technique, simulated annealing [18], and adapt it
to the problem of visual object detection.

3.1. Adaptive Simulated Annealing

The term simulated annealing derives from the physical
process of heating and then slowly cooling a substance un-
til the system settles to a minimum energy configuration.
The initial temperature 7, is set high enough to avoid being
trapped at local modes. Enough perturbation at each tem-
perature in the cooling process is needed to arrive at ther-
mal equilibrium. Since typical annealing schedules for tem-
perature 1" at annealing time k, like Boltzmann annealing
(T = Ty /Ink) and Cauchy annealing (T' = T/ k), are slow,
we adopt Adaptive Simulated Annealing [16], which expo-
nentially decreases temperature in D-dimensional space

1
T = Tpe FP (12)

where c is some constant. In ASA the exponential annealing
schedules permit resources to be spent adaptively on rean-
nealing and on pacing the convergence in all dimensions,
ensuring ample global searching in the first phase of search
and ample quick convergence in the final phase [16].
Theoretically, if the temperature decreases extremely
slowly, simulated annealing will find the global mode start-
ing from any initial point, but the time to achieve such a
solution would be unacceptable. Realizing that ASA re-
lies on Monte Carlo importance-sampling in the parameter
space, i.e. the Metropolis algorithm iteratively visits those



Figure 5. Detecting an object in 2D translation space for a given
(6, s). The top row shows the detection results with white boxes
representing the modes found by ASA. The bottom row shows
corresponding sampling maps where the bright pixels represent
the sampled points with their objective function values. From left
to right: ASA detection restarted from 25, 16, 4 and 1 different
initial points, respectively.

# of initial pts | 25 16 9 4 1
Comp. cost | 4983 | 3945 | 2315 | 1135 | 288

Table 2. # of times the objective function f is evaluated.

points in the parameter space that have low cost (i.e. high
similarity), we allow the annealing temperature to decrease
fast to save computation time but restart the simulated an-
nealing from different initial points uniformly distributed in
the parameter space. This forces the restarted ASA to “er-
godically” search the entire parameter space. Although the
parameter space is not exhaustively searched, most of the
“reasonably probable” points are sampled because of the
Monte Carlo importance sampling.

During the restarted ASA processes, all the sampled
points are stored in a single sampling map. Note that we
are considering all samples from all intermediate states of
the ASA process, not just the final sample points to which it
converges. This is different from mean-shift mode analysis
[7], where the mean shift procedure is started from multi-
ple randomly sampled locations and the location/height of
each mode and how many points converged to each mode
are analyzed. The intermediate points of mean-shift mode
seeking are ignored, since they just lie on a gradient path
from the start point up to the local mode.

Since we anneal fast, we sacrifice the global convergence
of ASA, and false peaks are detected as shown in Figure 5.
However, most intermediate sampled points in the parame-
ter space are around the global mode because of importance
sampling. The sampling property is quite similar to the par-
ticle filter framework [17] where the particles around the
modes of an estimated density get more weight, and thus
more particles will gather around those modes. When ASA
is restarted from many different initial points, more points
in the parameter space are evaluated (Table 2) and the clus-
ter of points around the global mode gets bigger. For a
240 x 360 pixel image, exhaustive search evaluates f 86400
times to find the global mode, while Table 2 shows that ASA
is much faster.

Figure 6. (a) ASA detection in 2D translation space restarted from
9 different initial points; (b) Cluster analysis on the sampling map;
(c) The object location is determined by the weighted mean of the
most confident cluster.
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Figure 7. (a)ASA detection in 3D (translation plus scale space)
restarted from 9 different initial points; (b) Sampling map in the
3D space; (c) Two clusters are generated by K-means.
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Figure 8. White rectangles represent the ASA detection results in
4D space (translation, rotation and scale) from 9 different initial
points. The red rectangle represents the weighted mean of the most
confident cluster refined by local mode-seeking.

3.2. Cluster Analysis

Previous efforts on Simulated Annealing consider how
to statistically guarantee finding an optimal solution. How-
ever, if we relax the interest in global convergence and in-
stead consider how the parameter space is sampled, this
sampling map is useful for visual object detection. Instead
of choosing the largest similarity value in the sampled space
as the final detection result, we perform cluster analysis on
the sampled space first. K-means is run on those samples
with high similarity scores. During the K-means process,
clusters that are close in the parameter space are joined to-
gether. The weighted mean of the most confident cluster is
calculated as the global mode, which tolerates noise in the
sampled parameter space and thus is more robust. The con-
fidence of each cluster is determined by the sum of all its
samples’ similarity scores. Figure 6 and 7 show the ASA
detection results and cluster analysis on a 2D and 3D space.

For clarity, we summarize our entire algorithm in Table
3. When the objective function value by local mode-seeking
is lower than some threshold ¢, global mode-seeking is
applied to redetect the object. The threshold for switch-
ing between local and global mode-seeking is learned by
recording the previous objective function scores, fitting a
Gaussian, and detecting a drop if the current score is 30
away from the mean. The threshold can also be prede-
fined [2]. To accelerate the object detection process, we en-
force discrete optimization in Adaptive Simulated Anneal-
ing with 0 € {0,7/4,7/2,3n/4} and s € {0.5,1,2}. In



Table 3. Hybrid local and global mode-seeking.

Initialization: k£ = 0; Detection = false; select object in
frame I by hand and get z§
for each frame in the sequence
k=k+1,
if !Detection [Local mode-seeking]
xj = argmax F'(x) with initial point z}_;
if F(z}) < t or Detection
Detection = true;
x;c = ASA(Iy); [Global mode-seeking]
if F(x,) >t
Detection = false;
x;, = argmax F() with initial point z ;

other words, the object shape (polygon) is allowed to ro-
tate around its center every 45 degrees and expand or shrink
twice in scale around the initial scale estimate. This allows
ASA to run at around 0.23 seconds per detection (C code
on a common desktop PC). Starting from the roughly de-
tected global mode, local mode-seeking is performed to get
a refined mode estimate. Figure 8 shows three examples
of ASA-based global object detection in a 4D space. The
global mode is roughly detected by cluster analysis on a 4D
ASA sampling map and then refined by local mode-seeking.

4. Experiments

First, we validate our numerical local mode-seeking ap-
proach by tracking a face in intensity images ! using a rect-
angular box shape. We also demonstrate tracking a compli-
cated polygonal shape by tracking a hand in color images
(Figure 9).

The hybrid numerical local and global mode-seeking ap-
proach is evaluated on challenging airborne videos with
large camera motion and heavy occlusion. In the car
chase videos (Figure 11(a-b)), color histograms are used
as an object feature and Bhattacharya coefficient is used
as the similarity measure. Although the vehicles are of-
ten occluded partially or totally and their scale/orientation
changes greatly, our tracker successfully tracks the targets
and detects them after occlusion. In the VIVID benchmark
dataset [11], we chose two challenging sequences on which
all previously evaluated trackers only manage to track 17%
or less of the way through the whole sequence due to heavy
occlusion. Since the object appearances change a lot (Fig-
ure 11(c-d)), we chose motion likelihood maps for tracking.
Since there are multiple moving vehicles in the scene, if the
target is totally occluded while some other vehicle is mov-
ing, the original ASA global mode-seeking will detect the
other vehicle and restart the local tracker from the wrong lo-
cation. To avoid such data association problems, we adopt
Kalman filter motion prediction to hypothesize an extended
trajectory during occlusion (a method also used by other

Uhttp://www.cs.toronto.edu/ fleet/research/data.html
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Figure 9. Top row: the face is represented by HoG and tracked by
the Simplex method using EMD distance. Bottom row: the hand is
represented by color histogram and tracked by the Simplex method

using Bhattacharya coefficient.
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Figure 10. Warping a unit square by an affine transformation.

benchmark dataset competitors). The ASA detection result
is accepted only if it is not too far away from the Kalman
filter’s predicted position estimate. Table 4 shows the com-
parison of our results with other state-of-the-art trackers on
these datasets.

Mean-shift in scale space [9] and our local mode-seeking
in scale space can be used to estimate an object’s scale be-
tween consecutive frames. When the object becomes oc-
cluded and reappears at a very different scale (Figure 11(b)
frame 505-593), global object detection by restarted ASA
needs to search a large scale range (e.g. in Figure 7, the
scale range is [0.1, 3]). Finding an object’s scale while be-
ing blind to rapidly changing camera parameters is chal-
lenging, and unnecessary. In fact, if the change is caused
by rapid camera zoom, we can roughly estimate the scale
change via estimation of the background camera motion.
Assuming an affine transformation between two consecu-
tive frames, we stabilize the two frames and get the affine
warping matrix A = [a,;]. A unit square matrix is warped
to the next frame as a parallelogram (Figure 10), and the
square root of area change between the two quadrilaterals
represents the camera scale change. Since the area of a par-
allelogram is the magnitude of the cross product of two ad-
jacent edge vectors, we have

A(MllMglM31M4/) = |(M2/—M11)X(M4/—M1I)| (13)

where
) a13 , a1 +ais , a12 + a3
Ml = | ao3 M2 = | ag1 + aqo3 M4 = | ag2 + as93
1 1 1
This becomes
A(MllMQIM3/M4I) — a’ll a21 (14)
aiz Q22




Chaining consecutive camera scale change estimates over
several frames gives us a rough estimate of the object scale
after a long occlusion. This approach is used in the se-
quence of Figure 11(b) to estimate a large object scale
change that occurs while the object is occluded.

5. Conclusion

We handle object tracking during normal conditions by
numerical local mode-seeking and attack the hard prob-
lem of object detection after occlusion via numerical global
mode-seeking. Since our numerical optimization methods
work on any black-box objective function that accepts a
vector of parameters as input and returns a scalar similar-
ity value, we achieve great flexibility to design the objec-
tive function without affecting the numerical optimization
methods outside the black-box function. We show that the
object location, orientation and scale can be found directly
via searching a 4D parameter space of translation, rotation
and scale by numerical mode-seeking. Different features
like histogram of color, HoG or motion, and different sim-
ilarity measures like Battacharya coefficient or EMD dis-
tance, can be used in the black-box objective function. We
use piecewise integral image/histogram methods to acceler-
ate the objective function evaluation. All the classic local
mode-seeking methods like the Simplex method can be ex-
ploited for numerical tracking. We also have introduced a
method for global object detection by performing cluster
analysis on the sampling map generated by Adaptive Sim-
ulated Annealing. Our hybrid numerical local and global
mode-seeking approach is validated on airborne videos, and
it outperforms state-of-the-art trackers on two challenging
sequences from the VIVID benchmark dataset.
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