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Abstract— Wide-area control helps in suppression of inter-
area oscillations in electric power systems, but potentially re-
quires a substantial investment into the communication network
needed to exchange state information among the power com-
panies. To provide companies with incentives to subsidize the
inter-area communication links, a fair cost-allocation method
based on the theory of cooperative network-formation games
(NFG) is developed. The Nash Bargaining Solution (NBS) is
utilized to fairly allocate the inter-area communication cost
to the companies, which act as game-players. First, the wide-
area control problem is formulated using the state-feedback-
based LQR minimization approach, and the social inter-area
cost is computed using a sparsity-promoting algorithm. Second,
the disagreement point, which determines the maximum cost
each area is willing to pay, is computed. This selfish cost is
proportional to the energy an area saves by utilizing inter-area
feedback and is derived from the Nash Equilibria (NEs) of two
noncooperative NFGs, with and without inter-area feedback,
respectively. Finally, the social cost is divided optimally among
the companies, with all players benefiting from cooperation.
The proposed cost allocation is illustrated for the Australian
50-bus power system example.

Index Terms— Wide-Area Control, Power Systems, Cost Allo-
cation, Nash Equilibrium, Sparsity promotion, Nash Bargaining
Solution, Network Formation Games, Cyber-physical Systems.

I. INTRODUCTION

Wide-area control of power systems requires real-time
feedback of massive volumes of sensor data from one
operating region of the grid to controllers located at other
regions [1]. Over the past few years several researchers have
started investigating such control designs using robust control
methods [2], [3], adaptive control [4], and LQR-based opti-
mal control [5]. One of the foremost requirements for wide-
area control is the need for a highly robust communication
system that works in sync with the control functionalities.
The envisioned architecture of wide-area communication
for the US grid, often referred to as the North American
Synchrophasor Initiative Network or NASPI-net [6], involves
Phasor Measurement Units (PMU) inside the operating
boundary of utility companies to send real-time data to local
controllers via a local-area network, and to remote controllers
over a secure wide-area network. Each area is equipped
with its own dedicated phasor gateway, which routes the
incoming PMU data-streams to the respective controllers.
Installation of communication links for transporting feedback
data from PMUs to controllers means a significant financial
investment by the utilities. A few recent papers such as [5],
[7] have proposed economically lucrative wide-area control

designs by sparsifying the number of communication links
between PMUs and controllers. However, the question of fair
allocation of installation costs of wide-area power networks
still remains open.

This paper considers the task of fair allocation of commu-
nication costs in the wide-area control networks for power
systems. Wide-area control network design is formulated as
an LQR state-feedback problem. The costs of constructing
this network are allocated to participating power companies
via the Nash Bargaining Solution (NBS) based on coop-
erative network-formation game (NFG) theory [8]. First,
the social cost is computed using the sparsity-promoting
LQR optimization algorithm in [5]. This design results in
a feedback gain matrix with reduced number of inter-area
feedback links. Second, the disagreement point is computed,
where each area specifies the maximum costs it is willing
to pay. These selfish costs increase with the amount of
energy each company saves by participating in the inter-
area network. If an area’s need for inter-area feedback is
relatively small, it might not have to contribute, especially
when a sparse social network is desired. To compute these
energy savings, we utilize the Nash Equilibria (NEs) of two
noncooperative linear-quadratic games with state feedback
[9].

In [10] we presented some preliminary results to address
this problem by modeling an area’s selfish cost as hypo-
thetical cost of global inter-area feedback that satisfies that
area’s energy objective. However, this approach involved
heuristic cost adjustment due to incompatibility of areas’
selfish networks. In contrast, in this paper, we use the
energy savings afforded by wide-area control to construct
the disagreement point, thus measuring the worth of inter-
area feedback from each area’s point of view – a sounder
objective than that in [10]. Moreover, the proposed approach
to computing the disagreement point using a NE of a
noncooperative solution [8] results in a compatible network
that corresponds to a single feedback matrix and, thus, does
not require heuristic adjustment. The first noncooperative
game used for computing the disagreement point models a
decentralized control scenario where the companies compete
to minimize their individual energies in the absence of
inter-area feedback and thus do not incur any wide-area
communication cost. We develop a novel iterative method
to compute this NE. On the other hand, the second game is
coupled since companies provide state feedback to each other
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while competing to satisfy their selfish energy objectives.
To compute this NE, we adopt the weakly-coupled system
assumption [11]. Weakly coupled interconnected system has
been studied in [12] for the decomposition and aggregation
of power networks. We employ the algorithm in [13], which
was shown to converge to a unique NE for a sufficiently
small coupling parameter ε. The energy each area saves by
participating in the inter-area feedback is computed from
the NEs of these two games, and the disagreement point is
formed by dividing the overall network cost of the coupled
game proportionally to these savings. Finally, NBS cost
allocation is performed. We employ the Australian 50-bus
power system divided into 4 areas to illustrate the proposed
method and provide insights on the relationship between the
allocated cost and companies’ feedback requirements.

The remainder of the paper is organized as follows. In
Section II we present the model of a multi-machine power
system network and formulate wide-area control design as a
sparsity-promoting LQR problem. In Section III we describe
the NBS cost allocation. Numerical results for the Australian
50-bus system divided into 4 areas are presented in Section
IV, and Section V concludes the paper.

II. PROBLEM STATEMENT

A. Power System Model

Consider a power system with n generators divided into r
coherent areas, and define the corresponding sets of generator
indices as:

s1 = (1, 2, ..., n1)⇒ belongs to area 1.
s2 = (n1 + 1, n1 + 2, ..., n1 + n2)⇒ belongs to area 2.

. . . ⇒ . . .

sr = (n1 + n2 + ...+ nr−1 + 1, ..., n)⇒ belongs to area r.

where ni is the number of generators in area i for i = 1, ..., r.
Let the number of states for each generator j be mj for
j = 1, ...n. We arrange the states in tuples for each generator
i, and denote them by Xi. So Xi ∈ Rmi×1 for i = 1, ..., n.
The controller inputs for the ith generator form Ui ∈ Rpi×1

for i = 1, ..., n, where pi is the number of control inputs for
generator i. We write the small-signal model as

Ẋ1(t)
...

˙Xn1
(t)

Ẋn1+1(t)
...

˙Xn1+n2
(t)

...
Ẋn−nr+1(t)

...
Ẋn(t)



 := ẋ1(t) := ẋ2(t)

}
... := ẋr(t)

=


A11 A12 · · · A1r

A21 A22 · · · A2r

...
Ar1 Ar2 · · · Arr





X1(t)
...

Xn1(t)
Xn1+1(t)

...
Xn1+n2(t)

...
Xn−nr+1(t)

...
Xn(t)



+


B11 B12 · · · B1r

B21 B22 · · · B2r

...
Br1 Br2 · · · Brr





U1(t)
...

Un1
(t)

Un1+1(t)
...

Un1+n2
(t)

...
Un−nr+1(t)

...
Un(t)



 := u1(t) := u2(t)

}
... := ur(t)

+ B̃d(t)

(1)

where for area i: xi(t) ∈ RMi×1 is the vector of states,
with Mi =

∑n1+...+ni

j=n1+...+ni−1+1mj ; ui(t) ∈ RNi×1 is the
vector of control inputs, with Ni =

∑n1+...+ni

j=n1+...+ni−1+1 pj ;
d(t) is a scalar impulsive disturbance input entering the
electro-mechanical swing dynamics of any generator, while
B̃ ∈ Rs×1 is an indicator vector whose entries are all zero
except for the one corresponding to the acceleration equation
of the generator at which d(t) enters. Stacking the vector
states together, the network model can be compactly written
as

ẋ(t) = Ax(t) +Bu(t) + B̃d(t). (2)

where x(t) ∈ Rs×1, u(t) ∈ Rq×1, with s :=
∑r
i=1Mi, and

q :=
∑r
i=1Ni.

In eq.(1) we consider the generic case where each gener-
ator may have different number of states and control inputs.
However, if a traditional 3rd order swing and excitation
system model is used for the synchronous generators [4],
then mi = 3 and pi = 1 for all i = 1, ..., n. In that case, each
generator has 3 states: the generator phase angle (radians) δi,
the generator rotor velocity (rad/sec) ωi, and the quadrature-
axis internal emf Ei. Following [4], it can be shown that
the linearized small-signal dynamic model of the networked
power system can be expressed in the Kron-reduced form as ∆δ̇

M∆ω̇

T∆Ė

 =

 0 I 0
−L −D −P
K 0 J


︸ ︷︷ ︸

A

 ∆δ
∆ω
∆E

+

 0 0
I 0
0 I


︸ ︷︷ ︸

B

[
∆Pm
∆EF

]
(3)

where ∆δ = col(∆δ1, ...,∆δn), ∆ω = col(∆ω1, ...,∆ωn),
∆E = col(∆E1, ...,∆En), ∆Pm = col(∆Pm1, ...,∆Pmn).
∆EF = col(∆EF1, ...,∆EFn), respectively, represent the
small-signal changes in phase angle, frequency, excitation
voltage, mechanical power input, and excitation voltage in-
put. M = diag(M1, ..Mn) represents the generator inertias,
while T = diag(τ1, ..τn) represents the excitation time con-
stants. The expressions for the various matrices on the RHS
can be found in [4]. Equation (3) serves as the primary model
for wide-area control indicating how the designable control
inputs ∆Pm and ∆EF enter the system dynamics. The
turbine mechanical power ∆Pm, however, typically has a
much lower bandwidth than needed for oscillation damping.
Therefore, for all practical wide-area control designs, ∆Pm
is treated as zero, and ∆EF is designed via PMU data
feedback. The A matrix for the general case in (1) can be
obtained by permuting matrix A in (3) in terms of the sets
s1, s2, ..., sr defined at the beginning of this section.

B. Wide-area control (WAC) via LQR

We formulate the wide-area control problem as a LQR
problem for its small-signal states in (3). The objective
function is chosen so that all generators arrive at a consensus
in their small-signal changes in phase angles and frequencies,
as dictated by the physical topology of the network, reflected
in L. However, since L is in the Kron-reduced form, the
topology contained in L is an all-to-all graph. Therefore,
the objective function is chosen as

Estates = ∆δT L̄∆δ + ∆ωT L̄∆ω + ∆ET∆E (4)
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If more detailed models of synchronous generators are used,
then the last term in (4) may be replaced by (x−)Tx−, where
x− contains all states except the electro-mechanical states
∆δ and ∆ω. The matrix L̄ is constructed as

L̄ = nI − 1n · 1Tn . (5)

Physically, this means that the first two terms in the objective
function (4) are in the consensus form

∆δT L̄∆δ =

n∑
i=1

n∑
j>i

(∆δi −∆δj)
2.

∆ωT L̄∆ω =

n∑
i=1

n∑
j>i

(∆ωi −∆ωj)
2. (6)

Next, we express (4) as

Estates =

∆δ
∆ω
∆E

T L̄ L̄
I


︸ ︷︷ ︸

Q′

∆δ
∆ω
∆E


= xT (PTQ′P)x

= xTQx (7)

where P is a permutation matrix defined in the appendix,
and x is the state vector defined in (2).

The wide-area control (WAC) problem for the small-signal
model (2) can be stated as:

min
K

∫ ∞
t=0

[x(t)TQx(t) + u(t)TRu(t)]dt

s.t. u(t) = −Kx(t)

ẋ(t) = Ax(t) +Bu(t) + B̃d(t). (8)

where Q is as designed in (7). Throughout the paper we
consider R to be the identity matrix so that the energy of
every controller has the same weight. The solution of (8) has
the form

K =


K11 K12 · · · K1r

K21 K22 · · · K2r

...
Kr1 Kr2 · · · Krr

 (9)

In (9), each block Kij ∈ RNi×Mi with i, j = 1, ..., r
represents the block of feedback gains from area j to area
i. Thus the diagonal and off-diagonal blocks represent intra-
area and inter-area feedback, respectively. This cost can be
reduced significantly if the number of inter-area links can be
reduced, i.e., if the off-diagonal blocks ofK contain as many
zero elements as possible. We next augment the wide-area
control problem (8) with such a sparse solution for K.

C. Sparsity-Promoting Wide-Area Control

The solution of the traditional WAC problem requires a
very dense communication network, which has high com-
munication cost. To characterize the communication cost,
we neglect the cost of intra-area (local) links and assign the
same fixed cost to all inter-area PMU-to-controller links. This

cost can be reduced by employing sparse off-diagonal blocks
of K, for example by utilizing the sparsity-promoting LQR
minimization algorithms proposed in [7], [14]. The sparsity-
promoting wide-area control (SPWAC) objective can then be
stated as follows:

Given a nonnegative sparsity parameter γ, solve

min
K

∫ ∞
t=0

[x(t)TQx(t) + u(t)TRu(t)]dt︸ ︷︷ ︸
e(K)

+γυ(K)

s.t. u(t) = −Kx(t)

ẋ(t) = Ax(t) +Bu(t) + B̃d(t). (10)

where e(K) is the energy term, and υ(K) is the communi-
cation cost approximated by the weighted l1-norm

υ(K) =

q∑
i=1

s∑
j=1

wij |kij | (11)

where kij is the element in row i, column j of the feedback
matrix K, and wij is the nonnegative weight of this cost
component. Since we aim to reduce only the inter-area costs,
we can assign the weights wij so that{

wij = 1, kij is inter-area link
wij = 0, kij is intra-area link (12)

When γ = 0, the SPWAC problem reduces to the traditional
WAC problem. As γ increases, a sparser feedback gain
solution emerges. Note that the l1 norm (11) is a proxy for
the cardinality metric of matrix K given by the number of
non-zero elements in the off-diagonal blocks of K, i.e.,

cardoff(K) =

r∑
i,j=1,i6=j

‖vecKij‖0 (13)

where vec operator converts a matrix to a column vector, and
‖·‖0 is the vector l0 norm [15].

III. COST ALLOCATION USING NASH BARGAINING
SOLUTION

We model inter-area communication cost allocation for
SPWAC as a cooperative game. The Nash bargaining solution
(NBS) is employed to divide this cost fairly among the areas.
First, we review the NBS concept. Then its application to
SPWAC cost allocation is presented.

A. NBS for cooperative games

In a cooperative game with transferable cost, the players
bargain before the game is played and arrive at a binding
agreement that specifies cost allocation among the players
at the completion of the game. The Shapely value solution
is often used to allocate costs to players in bargaining
games. While it provides a unique and fair cost allocation
[16], its major drawbacks include a requirement to define
the characteristic function for every subset of the grand
coalition and very large computation time for networks with
many players [8]. Another approach to cost allocation in
cooperative games is the NBS. It has been described for
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a two person general-sum game in [16]. In [8], NBS has
been extended to multiple players, applied to cooperative
network formation games, and was shown to require much
lower computational load than the Shapely value solution.

The NBS proceeds in three steps. First, let vsoc denote
the cost of a social optimization solution, where r players
cooperate to find the lowest system cost overall. Then, a
disagreement point of the cooperative game is defined as

v = (v1, v2..., vr) (14)

where vi is the maximum cost that the ith player is willing
to pay. Finally, the cost vsoc is split among the players. In
the proposed formulation, the allocated costs αi must satisfy
[8]

max
αi

r∏
i=1

(vi − αi)

s.t.
r∑
i=1

αi = vsoc

0 ≤ αi ≤ vi, ∀i = 1, ..., r. (15)

The last inequality is required to ensure nonnegative costs
and successful cooperation. From [8], when the vi’s are
sorted in the descending order, the allocated costs are

αi =

{
vi −

∑m
i=1 vi−vsoc

m , i = 1, ...,m
0 , i = m+ 1, ..., r

(16)

where m is the largest index that satisfies

1

m− 1
(

m−1∑
i=1

vi − vsoc) < vm (17)

B. Cost Allocation in SPWAC using NBS

We model cost allocation in SPWAC (10) using a coop-
erative NFG with transferable cost. The players are areas
{1, 2, ..., r}, which cooperate to form links from PMUs to
controllers to achieve desired energy performance and cost
efficiency.

The proposed SPWAC cost allocation algorithm proceeds
in 3 steps.

1) Social solution
We first compute the communication cost vsoc of social op-

timization. In this case the optimal feedback matrix Ksoc(γ)
satisfies (10) for a given sparsity parameter γ. Then the
optimal social energy is

Esoc(γ) := e(Ksoc(γ)) (18)

and the cost of social optimization is

vsoc = Csoc(γ) := cardoff(Ksoc(γ)) (19)

This cost definition accounts only for the inter-area commu-
nication cost (13) for a fixed value of γ.

2) The disagreement point
i) Selfish energy optimization via a noncooperative game:

In the selfish dynamics, each area aims to maximize its
energy savings when investing in SPWAC. To quantify each
area’s objective function, we define the selfish energy

Ei =

∫ ∞
0

(
x(t)

T
Qix(t) + ui(t)

T
Riui(t)

)
dt,

i = 1, ..., r (20)

where Qi ∈ Rs×s ≥ 0, Ri ∈ RNi×Ni > 0 are the
design matrices for the selfish LQR objective. Similarly
to the cooperative case, we choose Ri = INi×Ni

. In the
noncooperative case, each area aims to optimize only its own
intra-area energy expressed in the consensus form:

xTi Qiixi :=
∑
k∈si

∑
j∈si
j>k

(∆δk −∆δj)
2

+
∑
k∈si

∑
j∈si
j>k

(∆ωk −∆ωj)
2 +

∑
k∈si

∆E2
k

= xTQix := ∆δTLi∆δ + ∆ωTLi∆ω + ∆ETHi∆E,
i = 1, ..., r (21)

and

Li = diag(Li1,L
i
2, ...,L

i
r) (22)

Hi = diag(Hi
1,H

i
2, ...,H

i
r) (23)

where

Lij =

{
niIni×ni

− 1ni
1Tni

, j = i
0nj×nj

, j 6= i
(24)

Hi
j =

{
I(Mj−2nj)×(Mj−2nj) , j = i
0(Mj−2nj)×(Mj−2nj) , j 6= i

(25)

Note, again, if detailed models of generators are used then
the last term in (21) should be replaced by (x−)THix−
where x− represents all the non-electromechanical states.
We refer to the matrix Qi that satisfies (21) as Qintra

i . While
minimizing (20) using Qintra

i satisfies the design objective
of each area, it does not take into account the energy of the
inter-area oscillations. We quantify each area’s contribution
to the inter-area energy as follows. In (6), we collect the
difference terms that only account for the generators in area
i and attribute 1/2 of this energy to area i. Thus, the area
i’s share of the inter-area energy in terms of the phase angle
is

1

2

∑
k=1,...n,

k∈si

∑
j=1,...,n,

j /∈si

(∆δk −∆δj)
2

= ∆δTLsh
i ∆δ (26)

where

Lsh
i =

n− 2ni
2
Ii +

ni
2
I − Ii1n1Tn (I − Ii) (27)

Ii = diag(Ii1, I
i
2, ..., I

i
r) (28)

Iij =

{
Ini×ni , j = i
0nj×nj

, j 6= i
(29)
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The combined intra-area and inter-area energy associated
with area i is computed using

xTQsh
i x = ∆δT (Li + Lsh

i )∆δ

+∆ωT (Li + Lsh
i )∆ω + (x−)THix−,

i = 1, ..., r (30)

The resulting combined energy

Esh
i =

∫ ∞
0

(
x(t)

T
Qsh
i x(t) + ui(t)

T
Riui(t)

)
dt,

i = 1, ..., r (31)

Note that the matrix Qintra
i is employed for selfish opti-

mization while Qsh
i is used to determine the share of the ith

area in the overall system energy after selfish optimization
is carried out. The factor of 1/2 in (26) indicates that inter-
area power transfer terms associated with generators in two
different areas are split equally among these areas. Other
power marketing mechanisms and selfish design objectives
will be considered in our future research.

To find the disagreement point, we consider two noncoop-
erative games. In both games, the ith area’s strategic variable
is ui(t), and its objective function is Ei in (20). The strategy
set (u∗1(t),u∗2(t), . . . ,u∗r(t)) is a Nash Equilibrium if [9],
[13]

Ei(u
∗
i (t),u

∗
−i(t)) ≤ Ei(ui(t),u∗−i(t)), t = [0,∞)

∀i = 1, . . . , r (32)

where u−i(t) := (u1(t), . . . ,ui−1(t),ui+1(t), . . . ,ur(t)) is
the vector of strategies formed by all players except for
player i. These noncooperative games are discussed next.

ii) Decoupled noncooperative game:
In the first game dynamics, each area employs only intra-

area feedback and is not allowed to utilize feedback from
any other area. Thus ui(t) = −Kiixi(t), where Kii is the
diagonal feedback block of area i in (9), i.e., the feedback
is decoupled among the areas. For linear static feedback, it
can be shown that the NE criterion (32) can be restated as

Ei(K
∗
ii,K

∗
−i) ≤ Ei(Kii,K

∗
−i), i = 1, ..., r (33)

where the tuple K−i := (K11, ...,K(i−1)(i−1),K(i+1)(i+1),
...,Krr) represents the strategies for all other areas, and

Ei(Kii,K−i) =

∫ ∞
0

(
x(t)

T
Qix(t) + ui(t)

T
Riui(t)

)
dt,

s.t. ui(t) = −Kiixi(t)

ẋ(t) = Ax(t) +Bu(t) + B̃d(t). (34)

We refer to the Nash strategies (K∗11, ...,K
∗
rr) in (33) as

Decoupled Nash Equilibrium (DNE).
To find the DNE, we utilize the idea of the infinitesimal

gradient ascend (IGA) dynamics [17]. In IGA, each player
iteratively updates its strategy according to the gradient
descent direction of its objective function projected onto the
constraint. The function Ei(Kii,K−i) is differentiable in

each element of the matrix Kii. Thus, we define its gradient
with respect to Kii

∇KiiEi(Kii,K−i) = (gij,k)Ni×Mi (35)

and

gij,k =
∂

∂Kii(j, k)
Ei(Kii,K−i) (36)

where Kii(j, k) is the element in row j, column k in
matrix Kii. Each area i updates its strategy according to
the following rule

Kii(k + 1) = Kii(k)− ηk · ∇Kii
Ei(Kii,K−i)

i = 1, ..., r (37)

where k = 0, 1, 2, ... denotes the iteration index, and ηk is
the stepsize in iteration k, which is infinitesimally small in
[17]. It’s easy to show that the DNE (33) is achieved if the
gradient ∇KiiEi(K

∗
ii,K−i) = 0 for all i = 1, ..., r.

In our implementation, we replace the gradient in (37)
with the Newton direction [18] to speed up convergence, and
select ηk by Armijo line search [19]. We employ the stop-
ping criteria ||∇KiiEi(Kii,K−i)|| < 10−2,∀i = 1, ..., r.
Extensive simulations demonstrate convergence to a unique
equilibrium of the players’ strategies (or at least of their
energies). The convergence and robustness properties of this
algorithm will be further investigated in our future work.

We define the combined energy of area i (31) associated
with DNE as

ED
i = Esh

i (DNE) (38)

The terms ED
i represent the energies areas achieve in the

decentralized case, i.e. in the absence of cooperation and
inter-area feedback, while employing their individual objec-
tives. The total energy of this decentralized implementation
is

ẼD :=

r∑
i=1

ED
i . (39)

iii) Coupled noncooperative game:
Second, the areas abandon the decentralized design above

and invest in WAC while still optimizing their individual
energies. To determine the energy savings associated with
this investment, we construct a noncooperative game where
the areas can send feedback to each other. In this case,
we refer to (32) as Coupled Nash Equilibrium (CNE). The
resulting combined energy of area i in (31) is denoted

EC
i := Esh

i (CNE) (40)

We combine the areas’ energies in (40) to compute the total
energy of the noncooperative wide-area control network

ẼC :=

r∑
i=1

EC
i (41)

The Nash strategies u∗i (t) in eq.(32) can be determined
by solving the cross-coupled algebraic Riccati equations
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(CARE) [13].

Pi

A− r∑
j=1

SjPj

+

A− r∑
j=1

SjPj

T

Pi + PiSiPi +Qi = 0,

∀i = 1, ..., r

(42)

where

Bi :=

B1i

...
Bri

 (43)

Si := BiR
−1
i B

T
i

u∗i (t) = −R−1
i B

T
i Pix(t). (44)

From [11], [13], unique solution to CARE exists under the
assumption of sufficiently weak coupling among the areas,
i.e., the matrix A in (1) can be expressed as

A = A0 + εA′(ε) (45)

where 0 < ε << 1 is a small parameter, A0 is a
block diagonal matrix representing intra-area coupling, and
A′(ε) ∈ Rs×s is a matrix whose elements are continuous
functions of ε, and A0 and A′(ε) have comparable norms
[12]. Similarly, weak coupling holds for matrix B

B = B0 + εB′(ε). (46)

We adopt this assumption and utilize an iterative algorithm
in Theorem 2 of [13] to solve CARE and find the unique
CNE. Moreover, to assure that the problem is well-posed,
we assume that the triples (Aii,Bii,

√
Qii), i = 1, ..., r are

stabilizable and detectable, where Aii and Bii are defined
in (1) and Qii is the ith diagonal block of Qi in (21).

iv) The selfish costs:
The difference between the energies of the coupled (41)

and and decentralized (39) designs for each area indicates the
energy saved due to utilization of inter-area feedback in the
absence of cooperation. The communication cost associated
with this feedback is given by

CCNE = cardoff(KCNE) (47)

where KCNE is the optimal feedback gain matrix that
satisfies (32) for coupled Nash strategies. The selfish costs vi
are obtained by dividing of CCNE proportionally to the areas’
energy savings, which results in the disagreement point

vi =
ED
i − EC

i

ẼD − ẼC

· CCNE.

i = 1, ..., r. (48)

3) Cost allocation
Finally, the allocated costs are computed as in (16). Note

that for γ = 0, vsoc = CCNE since both are dense feedback
costs. As γ increases, the vsoc(γ) sequence decreases [5].
Thus, CCNE ≥ Csoc in (19) for all γ values. It follows that

n∑
i=1

vi > vsoc (49)

which guarantees successful bargaining [8]. Moreover, vi =
αi for γ = 0, and if vi ≥ vj , then αi ≥ αj (i 6= j), i.e., the
more an area gains from inter-area feedback while pursuing
its selfish energy objective, the more it has to pay. Finally,
we require αi ≥ 0 since all areas must cooperate to ensure
suppression of inter-area oscillations, and thus should not
require additional incentives in the form of reimbursement
[10].

IV. NUMERICAL RESULTS

Fig. 1: The Australian 50-bus system [20].

We validate our results using a 50-bus power system,
as shown in Fig. 1. This power system model consists of
14 synchronous generators, divided into 4 coherent areas,
and is a moderately accurate representation of the power
grid in south-eastern Australia [20]. The area distribution
is shown in different colors in Fig. 1, with the red dots
denoting generator buses. Generators 1 to 5 belong to Area 1,
generator 6 and 7 belong to area 2, generator 8 to 11 belong
to area 3, and generator 12 to 14 belong to area 4. The model
considers detailed representation of the generator dynamics,
with each machine modeled by 14 states. However, since we
are primarily interested in the electro-mechanical states, we
perform an initial round of model reduction using singular
perturbation to eliminate the non-electromechanical states,
which have very low participation in the wide-area swing
dynamics. We design a sparsity promoting LQR controller
for this model following (10), and apply the proposed NBS
approach of cost allocation for the underlying communica-
tion network.

Fig. 2 shows the social energy (18) and the communication
cost vsoc (19). We observe that the inter-area communication
cost decreases and the global social energy increases, respect-
fully, with the sparsity-promoting parameter γ, which reflects
the trade-off between the communication cost and the energy
performance [5]. Fig. 3 shows the allocated communication
costs for areas 1 to 4, and Fig. 4 illustrates the proportional
allocated costs. In this example, all areas initially contribute
to the overall communication cost, but α2 = 0 for most of
the γ values, while α1 = 0 for γ > 0.06. Thus, these areas
have low feedback needs. On the other hand, α4 > 0 for
most of the γ range, while α3 is the largest cost for all γ
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values. We have observed that as γ increases, the sparsity-
promoting algorithm eliminates all cyber links except those
leading to controllers in areas 3 and 4, with links leading to
area 3 dominating the sparsest networks. This is consistent
with Fig. 3 and 4 results, which indicate that areas 3 and
4 require inter-area feedback the most, and thus pay the
most for it. Finally, note from Fig. 2 that the energies remain
very low for γ ≤ 0.06 while vsoc decreases significantly in
this range. Thus, cost-efficient SPWAC operating scenarios
corresponds to γ = 0.06. For this γ value area 1, 3, and
4 experience significant cost savings due to cooperation
without compromising energy performance.
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Fig. 2: Communication cost and global energy of social optimiza-
tion for SPWAC [5].

V. CONCLUSIONS

A novel game-theoretic strategy by which expenditure
costs for wide-area communication in a power system can
be fairly distributed among various utility companies was
investigated. The allocated costs were computed for a 50-
bus power system model divided into 4 areas. Future work
will focus on selecting appropriate selfish energy objectives
and power marketing mechanisms as well as robustness
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Fig. 3: Allocated communication costs αi vs γ for area 1-4; the
selfish costs vi are approximated by αi values for γ = 10−6.
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Fig. 4: Proportional allocated communication costs vs γ.

and convergence of proposed game-theoretic algorithms for
cyber-physical systems.
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APPENDIX
THE PERMUTATION MATRIX P

The permutation matrix P in (7) is

P =

[
P1

P2

]
(50)

where

P2 = diag(T1, T2, ..., Tn). (51)
Ti =

[
0(mi−2)×2 I(mi−2)×(mi−2)

]
(52)

P1 = (pij)2n×s (53)

and

pij =

{
δj,ki , 1 ≤ j ≤ n
δj,ki+1 , n+ 1 ≤ j ≤ 2n

ki = 1 +

i−1∑
k=1

mk. (54)

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 American Control Conference.
Received September 28, 2015.


