
1806 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 4, NOVEMBER 2013

Combining UML-MARTE and Preemptive Time
Petri Nets: An Industrial Case Study

Irene Bicchierai, Giacomo Bucci, Member, IEEE, Laura Carnevali, and Enrico Vicario, Member, IEEE

Abstract—We present an approach for integration of formal
methods within an industrial SW process, illustrating results
obtained in a real scenario subject to Military Standard 498
(MIL-STD-498). On the one hand, the formal nucleus of pre-
emptive Time Petri Nets (pTPNs) is used to support design and
verification activities of the development process; on the other
hand, the Unified Modeling Language (UML) profile for Modeling
and Analysis of Real-Time and Embedded (MARTE) systems
is adopted to manage the documentation process prescribed
by MIL-STD-498. The two cores are integrated by providing
guidance for translation of UML-MARTE specifications into
equivalent pTPN models, with specific reference to concurrency
control and synchronization mechanisms. This permits to attain a
smooth transition from the standard artifacts of MIL-STD-498 to
pTPN models and analyses, facilitating deployment of the formal
core of pTPNs with a limited impact on the industrial practice.
The experience proves practical feasibility and effectiveness of the
approach, comprising a step towards industrial applicability of
formal methods and practices.

Index Terms—Execution Time profiling, Military Standard
498 (MIL-STD-498), model-driven development, preemptive
time Petri Nets (pTPNs), real-time code, real-time systems, SW
development process, Unified Modeling Language Modeling and
Analysis of Real-Time and Embedded (UML-MARTE), V-model.

I. INTRODUCTION

I N several application domains, the development of
safety-critical SW is subject to certification standards

such as RTCA/DO-178B [46], Military Standard 498
(MIL-STD-498) [52], CENELEC EN 50128 [22], ECSS
E-40 [47], and IEC 62304 [31]. Some of these standards ex-
plicitly recommend the introduction of formal methods as a
means to improve the rigor of development and the quality of
SW, provided that the adoption of these techniques does not
radically upset the consolidated practice. Hence, an increasing
attention is focused on any measure aimed at smoothing the
impact of formal methods so as to facilitate an effective inte-
gration within the development life cycle.
Various efforts have been pursued to accommodate the two

issues by compiling UML specifications [41], [42] into formal
models used for performance prediction [2] and dependability
analysis [9]. In many of these approaches, UML diagrams are
translated into Petri Net models [6]–[8], [26], [38]. In [38], a

Manuscript received September 30, 2011; revised January 23, 2012; accepted
February 22, 2012. Date of publication June 20, 2012; date of current ver-
sion October 14, 2013. This work was supported by the SW-Initiative of the
FinMeccanica Group. Paper no. TII-11-602.
The authors are with the Dipartimento Sistemi e Informatica, Univer-

sità di Firenze, 50139, Firenze, Italy (e-mail: irene.bicchierai@unifi.it;
giacomo.bucci@unifi.it; laura.carnevali@unifi.it; enrico.vicario@unifi.it).
Digital Object Identifier 10.1109/TII.2012.2205399

compositional approach derives a Generalized Stochastic Petri
Net (GSPN) from a UML State Machine based on StateChart
Diagrams, defining a formal semantics for a significant subset
of State Machine elements. The approach is extended in [7] by
applying the translation also to UML Sequence Diagrams, pro-
viding a more complete representation of system behavior. The
method proposed in [8] combines State Machines and Activity
Diagrams to derive a Stochastic Well-formed Net for evalua-
tion of performance metrics, such as sojourn time and response
time. In [26], performance of an SW architecture is evaluated
through a two-phase methodology which first annotates a UML
specification with tags and stereotypes of the UML profile for
Schedulability, Performance, and Time Specification (SPT) [39]
and then generates a corresponding Non-Markovian Stochastic
Petri Net (NMSPN)model. In [6], a Time Petri Net (TPN)model
is derived from a UML-based SW specification enriched with
annotations of the UML profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE) [40], which is
specifically targeted to capture nonfunctional properties of real-
time embedded systems. The resulting TPN is used to assess the
risk of timing failures in early stages of SW life-cycle.
Several other approaches address translation of UML speci-

fications into performance models based on Queuing Networks
(QN) and process algebrae (PA) [3], [23], [24], [28], [29], [36],
[44], [45], [50], [56]. The approach proposed in [44] builds
a Layered Queuing Network (LQN) from a UML description
of system architecture made of Class/Object Diagrams and Se-
quence Diagrams, by converting each architectural pattern into
a performance submodel. In [24], QN models are incrementally
built from UML diagrams early available during SW develop-
ment, providing fast feedback to the designer. The approach
is extended in [28] to encompass mobility-based paradigms in
the SW architecture of an application. In [36], a set of anno-
tated Use Case, Activity, and Deployment Diagrams is trans-
lated into a discrete-event simulation model used to derive per-
formance indexes. The methodology is improved in [3] using
QN analysis to derive performance bounds. In the approach of
[50], annotated UML specifications are exported and analyzed
as QN models, using an XML-based interchange format which
allows flexibility in design and analysis stages. SW performance
analysis is also applied in [23] in the context of an industrial
case study from the telecommunication domain, translating Se-
quence Diagrams and StateChart Diagrams first into flow graphs
and then into a specification based on Æmilia [10], an Architec-
tural Description Language (ADL) defined upon a Stochastic
Process Algebra (SPA). In [45], a metamodel named Core Sce-
nario Model (CSM) is defined which supports derivation of var-
ious kinds of performance models from a UML diagram anno-
tated with UML-SPT stereotypes. The approach is implemented

1551-3203 © 2012 IEEE



BICCHIERAI et al.: COMBINING UML-MARTE AND PREEMPTIVE TIME PETRI NETS: AN INDUSTRIAL CASE STUDY 1807

in the Performance by UnifiedModel Analysis (PUMA) tool ar-
chitecture [56], which provides a unified interface between SW
design models and performance models. An intermediate meta-
model is used also in [29] to derive performance models from
UML diagrams. The transformation framework is based on a
kernel language called KLAPER and helps in bridging the gap
between design-oriented and analysis-oriented notations.
Integration of formal methods along the development

process of real-time SW has been practiced in various Model
Driven Development (MDD) approaches and related tools [1],
[13], [20], [30], [34], [51], supporting formalization of system
requirements and design choices through Domain Specific
Modeling Languages (DSMLs), and automated derivation of
concrete artifacts such as real-time code, documentation, and
tests [33], [48]. The model-based SW development process
presented in [13] supports simulation and testing of complex
embedded systems in automotive applications. To this end,
an executable specification of the entire system is gener-
ated during early design phases and then iteratively refined
throughout the design process. The Palladio model-driven
approach [32] supports prediction of Quality of Service (QoS)
properties of component-based SW architectures, providing
a meta-model for specification of performance-relevant in-
formation [5] and a simulator for derivation of performance,
reliability, maintainability, and cost metrics. It is implemented
in a well-established tool which enables integration within
a component-based development process [34]. In [20], an
MDD framework is presented that integrates the core theory
of preemptive TPNs (pTPNs) [15], [16] in a tailoring of the
V-Model SW life cycle [19], enabling automated derivation
of pTPN models from a semiformal specification, automated
compilation of models into real-time code running on RTAI
[25], and measurement-based Execution Time evaluation. As
a characterizing trait, pTPNs encompass temporal parameters
varying within an assigned interval and support representation
of suspension in the advancement of clocks. This attains an
expressivity that compares with StopWatch Automata [21],
Petri Nets with hyper-arcs [43], and Scheduling-TPNs [35],
enabling convenient modeling of usual patterns of real-time
concurrency [18].
In this paper, we extend the formal methodology of [20]

according to the experience of application in a one-year-long
project of development at the FinMeccanica site of Selex
Galileo in Florence. The approach introduces UML-MARTE
[40] diagrams to manage the documentation process prescribed
by MIL-STD-498 [52], providing guidance for translation into
equivalent pTPN models. This provides a base ground that fits
the industrial practice subject to MIL-STD-498 and facilitates
subsequent deployment of the formal nucleus of pTPNs; at
the same time, this also attains a limited impact on both the
development process and life cycle data. We illustrate the
experimented methodology and exemplify its application to the
case study, discussing specific peculiarities and complexities in
depth while avoiding disclosure of classified details subject to
industrial secrecy constraints.
The remainder of this paper is organized as follows. In

Section II, we present an industrial tailoring of the V-Model

framework (Section II-A), and we illustrate the experimented
methodology (Section II-B). In Section III, we report on a
notation similar to Class Responsibility Cards (CRC) employed
to document analysis of SW requirements (Section III-A);
we show how UML-MARTE has been conveniently in-
troduced to manage the documentation process prescribed
by MIL-STD-498 (Section III-B), and we illustrate how
UML-MARTE diagrams have been converted into timeline
schemata [18] prior to pTPNs to provide a synthetic description
of SW design, extending the notation of [20] to model one-shot
tasks, branches, and rejoins (Section III-C). In Section IV, we
illustrate application of the core theory of pTPNs to SW devel-
opment. Specifically: we extend the process of translation of
timeline schemata into pTPN specifications to include one-shot
tasks, branches, and rejoins (Section IV-A). We discuss au-
tomated verification of sequencing and timing constraints in
Section IV-B. We provide guidance for disciplined implementa-
tion of real-time code that conforms with pTPN semantics and
runs on VxWorks 6.5 [55] in Section IV-C, and we report on
profiling of temporal parameters of the model in Section IV-D.
Conclusions are finally drawn in Section V.

II. INTEGRATING FORMAL METHODS IN AN

INDUSTRIAL SW PROCESS

We introduce here a methodology that integrates UML-
MARTE [40] and pTPNs [16] in an industrial SW process, illus-
trating its application in a real project subject to MIL-STD-498
[52].

A. Industrial Tailoring of the V-Model Life Cycle

Fig. 1 shows the general structure of a V-Model SW life cycle
[19] (inner scheme) and the specific industrial tailoring (outer
scheme) at our experimentation site, emphasizing the artifacts
of the documentation process prescribed by MIL-STD-498 [52]
and possible iterative refinements along the development. The
steps are briefly recalled to introduce the concepts that are sig-
nificant for the proposed methodology.
SD1 (SystemRequirements Analysis), SD2 (SystemDesign),

and the first part of SD3 (SW-HW Requirements Analysis) are
integrated in a single activity named System/Subsystem Analysis
and Design. This develops on the outcomes of the Planning
and Budget activity (out of the scope of the V-Model) and
produces the SSDD (System/Subsystem Design Description)
document, specifying system decomposition into units made of
CSCIs (Computer Software Configuration Items), HCIs (Hard-
ware Configuration Items), and FCIs (Firmware Configuration
Items). The second part of SD3 is mapped on SW Requirements
Analysis, which lists all functional and non-functional SW
requirements in the SRS (Software Requirements Specification)
document, and defines inter-unit communication requirements
of each unit interface in individual IRS (Interface Requirements
Specification) documents.
SD4-SW (Preliminary Software Design) and SD5-SW (De-

tailed Software Design) are integrated in SW Design, which
produces the SDD (Software Design Description) document,
specifying the dynamic architecture of each CSCI as a set of



1808 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 4, NOVEMBER 2013

Fig. 1. Scheme of the SystemDevelopment (SD) submodel of the V-Model life cycle [19] tailored according toMIL-STD-498 [52]. The picture highlights artifacts
of the proposed methodology (white boxes), inclusion of artifacts within MIL-STD-498 documents (dashed arrows), translation of documentation artifacts into a
formal specification (dotted arrows), and development iterations supported by the approach (bold arrows).

concurrent tasks with allocated resources and prescribed time
requirements.
SD6-SW (SW Implementation) is covered by SW Coding,

which implements the dynamic architecture of each CSCI and
their functional behavior, and by the first part ofHW-in-the-loop
Testing, which addresses testing of low-level modules. SD7-SW
(SW Integration) at the SW Component Level is mapped on
the second part of HW-in-the-loop Testing, which verifies the
integration of low-level modules within each CSCI.
SD7-SW (SW Integration) at the Unit Level and SD8 (System

Integration) are aggregated in System Integration and Testing,
which tests first the integration of CSCIs, HCIs and FCIs within
each unit, and then the integration of all units within the system;
SD9 (Transition To Utilization) puts the completed system into
operation at the intended application site. These activities are
out of the scope of the industrial tailoring described here.

B. Formal Methodology Based on UML-MARTE and pTPNs

Certification standards for safety-critical SW, such as
RTCA/DO-178B [46], usually encourage the adoption of
formal methods as a means to improve the degree of rigor
attained by the development process, especially when SW

includes complex behavior characterized by concurrency con-
trol, synchronization mechanisms, distributed processing, and
nondeterministic timings. Formal methods can actually con-
tribute to increase the quality of SW components by supporting
multiple activities along the development life cycle. Formal
modeling provides a well-defined semantics, which removes
inconsistencies of natural language and permits definition of
a non-ambiguous specification. This enables rigorous analysis
through comprehensive exploration of system behaviors, sup-
porting derivation of a proof of correctness of SW design. As a
relevant point, early assessment of requirements allows early
feedback at design stage, which may have an impact on the
quality and the cost of the final product. Formal specification
also supports MDD, including derivation of code that preserves
model semantics, fast prototyping, incremental integration, and
testing of low-level modules. The formal description supports
the testing stage as well, providing the basis for automation of
the testing process and for generation of a test oracle.
At the same time, certification standards also require that

technological transfer of formal methods into industry be
achieved at a reasonable cost and with a limited impact on
the SW life cycle. Unfortunately, the characteristics of an



BICCHIERAI et al.: COMBINING UML-MARTE AND PREEMPTIVE TIME PETRI NETS: AN INDUSTRIAL CASE STUDY 1809

industrial development process comprise various hurdles
per se, impeding the introduction of advanced formal tech-
niques without disrupting conventional practices. An industrial
process of SW development is usually subject to a documen-
tation standard defining the procedure that should be followed
for document production as well as structure, information
content, and presentation of each document. These artifacts
are traditionally written in natural language and illustrated
through domain-specific visual notations, which result from
the consolidated experience rather than from an established
standard. This comprises not only the design practice which
domain experts are best skilled at, but also what is often ex-
pected from them in a certification process. As a matter of fact,
industrial developers would encounter major troubles in man-
aging formal techniques, due to the complexity of notations,
the difficulties in properly understanding analysis outputs, and
the limited familiarity with existing tools. For all of these good
reasons, straight introduction of formal specifications in an
industrial documentation process is not viable. Hence, formal
methods should be combined with formalisms and tools that
permit to attain a smooth transition from standard artifacts of
the documentation process to formal modeling and analysis
techniques, guaranteeing conservative representation, ease of
use, and rapid configuration.
In the approach proposed here, we extend [20] by com-

bining UML-MARTE diagrams [40] and pTPN theory [16]
both to manage the documentation process prescribed by
MIL-STD-498 [40] and to support development activities. In
particular, UML-MARTE provides a semiformal specification
that is sufficiently practical to meet the needs of an advanced
industrial domain and sufficiently structured to allow mapping
on pTPNs. This enables integration of the two core processes
in a unified methodology, yielding an effective ground for
deployment of pTPN theory while attaining a smooth impact
on the consolidated practice. The methodology provides guid-
ance for translation of UML-MARTE diagrams into equivalent
pTPN models, using timeline schemata as an intermediate
artifact supplying a synthetic and compact representation of
SW design.
In a different perspective, not developed in this paper, in-

tegration of documentation and development processes could
be achieved the other way round, by compiling pTPN/timeline
models into UML-MARTE diagrams to be exposed in the doc-
umentation process. The approach is actually feasible and rep-
resents the viewpoint of MDD, where a formal specification is
transformed not only into code and tests but also into documen-
tation artifacts [48].
The methodology also provides a quantitative ground that

drives feedback cycles allowed by the SW development process.
As illustrated in Fig. 1, some iterations of the V-Model frame-
work may be performed until contractual SW Requirements are
satisfied. During SW Design, if the analysis detects a dead-
line miss or a deadline satisfied with a very small laxity, then
the dynamic architecture is refined to fix the identified flaw. If
this cannot be performed without relaxing some SW Require-
ment, then the development process is restarted from SW Re-
quirements Analysis. During HW-in-the-loop Testing, if an un-

sequenced execution or a time-frame violation [20] is detected,
then pTPN formal specification is used to identify task program-
ming defects or cycle stealing in the real-time code, and a first
attempt is done to fix and/or refine the implementation. If this
does not succeed, for instance, because a function with an Ex-
ecution Time out of its nominal range cannot be further opti-
mized, the development process is restarted from SW Design
and then, if necessary, from SW Requirements Analysis.

III. SUPPORTING THE DOCUMENTATION PROCESS
THROUGH UML-MARTE

Here, we show how UML-MARTE [40] and other notations
can be used to support the documentation process prescribed by
MIL-STD-498 [52], providing a bridge towards deployment of
advanced formal methods.
The proposed methodology starts with System/Subsystem

Analysis and Design, and it accompanies the development up
to SW Coding and HW-in-the-Loop Testing. For space limita-
tions, we avoid to report here on the way how UML-MARTE
is employed in System/Subsystem Analysis and Design and we
start from SW Requirements Analysis, assuming that the SSDD
document provides the definition of User Requirements and
enables the allocation of system functionalities to units and, in
turn, the allocation of unit functionalities to CSCIs, HCIs, and
FCIs.
In the industrial case study addressed in this paper, an electro-

optical system is developed as a part of the equipment of a mili-
tary vehicle to guarantee battlefield advantage through the use of
visual, infra-red and thermal imaging, long-range target acquisi-
tion and illumination, and precise aiming. Therefore, the system
is decomposed into: an Optical Unit (OU)made of sensors, cam-
eras, and servo-motors; an Electronic Unit (EU) responsible for
sensor control and image processing; and, a System Monitoring
Unit (SMU) managing the entire system. We focus here on the
development of EU, which is sufficient to illustrate the method-
ology of the approach and the complexities of the case study.
According to this, we illustrate decomposition of OU into HCIs
only to make explicit the connections with HCIs of EU, and we
leave SMU out of the scope for this paper.
EU plays the role of a bridge in the communication between

SMU and OU, forwarding the commands periodically sent by
SMU to OU and sending back the corresponding replies. EU
also processes images acquired by OU and sends obtained re-
sults to SMU. Therefore, EU functionalities are allocated to
two CSCIs: System Control (SC), responsible for communica-
tion with OU and SMU, and Image Tracking (IT), responsible
for image processing. In turn, each CSCI is associated with a
real-time task-set and allocated to an HCI. Specifically: SC is
allocated to Main Board (MB), which embeds a PowerPC MPC
5200B processor [27] and runs the VxWorks 6.5 [55] Real-Time
Operating System (RTOS); and, IT is allocated to Video Pro-
cessor (VP), which runs a proprietary commercial RTOS. OU is
made of six HCIs: Servo-Motor (SM); InfraRed Camera (IRC);
and, a Laser Visual Device collecting four HCIs named TeleVi-
sion Camera (TVC), Laser Sensor (LS), Optical Sensor (OS),
and Temperature Sensor (TS).



1810 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 4, NOVEMBER 2013

TABLE I
SW REQUIREMENTS ANALYSIS: SRS DOCUMENT.
CRC CARD OF SYSTEM CONTROL CSCI (SC)

TABLE II
SW REQUIREMENTS ANALYSIS: SRS DOCUMENT. DECOMPOSITION OF

SMU-OU_COMMANDS IN SUB-CAPABILITIES

A. SW Requirements Analysis

SW Requirements Analysis and subsequent activities pro-
ceed separately for each CSCI up to the final integration. In the
SRS document of a CSCI, a conventional structure similar to
Class Responsibility Collaboration (CRC) cards [4] can be used
to specify its functional behavior as a set of capabilities. Each
capability reflects a CSCI functionality, is associated with one
or more collaborating HCI/CSCI/Unit, and may be decomposed
in sub-capabilities.
From now on, the proposed methodology is illustrated with

reference to SC, i.e., the CSCI of EU that implements more
complex behavior and provides more stimuli for discussion.
Table I specifies its capabilities. Init initializes HW and SW; ca-
pabilities from IT_Comm up to SM_Comm manage buses con-
necting SC with IT, SMU, and four HCIs of OU (i.e., LS, IRC,
TVC, and SM); LS-IRC_Power and TVC_Config control LS,
IRC, and TVC sensors; SMU-OU_Cmd manages communica-
tion between SMU and OU and, since it requires the most com-
putational effort, it is decomposed in subcapabilities, shown in
Table II.

B. SW Design: Semi-Formal Specification Through
UML-MARTE

In the proposed methodology, the SDD document produced
by SW Design specifies the dynamic architecture of a CSCI in

the form of a set of concurrent tasks [18] following a pre-de-
fined structure. In addition to the task-set structure described in
[20], a task may be either recurrent or one-shot. A one-shot task
is a single job activated in reaction to an internal event (e.g., the
release of a semaphore) or an external event (e.g., the arrival of
a signal), with deadline less or equal to the minimum inter-oc-
currence time of the event. The model of a task-set can be con-
veniently documented through a UML-MARTE Class Diagram,
as illustrated in Fig. 2. Tasks are specified by the SwSchedula-
bleResource stereotype (i.e., a resource that executes concur-
rently with other resources under the supervision of a scheduler
according to a scheduling policy); chunks are modeled through
the EntryPoint stereotype (i.e., a routine to be executed) and the
association between a task and its chunks is modeled as a depen-
dency; binary semaphores are represented by the SwMutualEx-
clusionResource stereotype (i.e., a resource used to synchronize
the access to shared variables).
During SW Design, capabilities identified during SW Re-

quirements Analysis are allocated to tasks, enabling definition
of their functional and non-functional requirements. Referring
to the industrial case study, the six capabilities managing
buses that connect SC with OU, SMU, and IT (in Table II,
Comm capabilities) are allocated to separate tasks named
Tsk2, Tsk3, …, and Tsk7, respectively; the remaining four
capabilities (in Table II, Init, LS-IRC_Power, TVC_Config,
and SMU-OU_Cmd) are assigned to a single task named Tsk1.
According to this, the SC task-set is made of seven tasks and
Tsk1 comprises its central element. Tsk2, Tsk4, Tsk5, Tsk6, and
Tsk7 interface the associated HCI/CSCI with Tsk1 which, in
turn, is interfaced to SMU through Tsk3.
According to the proposed methodology, SW Design pro-

ceeds through i) the definition of non-functional requirements
through a UML-MARTE Object Diagram and ii) the specifica-
tion of functional requirements through UML-MARTEActivity
Diagrams.
1) Specification of Non-Functional Requirements: In the

definition of the dynamic architecture of a task-set, non-func-
tional requirements are derived from contractual prescriptions,
or obtained from previous artifacts, or autonomously chosen by
the developer. Minimum inter-release times and deadlines are
directly prescribed by User Requirements, while task periods
are usually design choices. The number of chunks constituting
a task reflects the number of sub-capabilities allocated to the
task, and it may be refined during development iterations
depending on the number of branches in the structure of the
task. The Execution Time of a chunk can be first tentatively
guessed through analogy with previous or similar realizations,
and it is progressively refined during development iterations.
Semaphore synchronizations necessary to access shared data
directly come from tasks interactions.
A UML-MARTE Object Diagram can effectively capture the

dynamic architecture of a task-set, enabling representation of
non-functional properties, as exemplified in Fig. 3 with refer-
ence to the SC task-set of the industrial case study. Tsk1 and
Tsk2 are periodic tasks with period and deadline of 10 and 20
ms, respectively; Tsk3 and Tsk4 are sporadic tasks with min-
imum inter-release time and deadline of 20 and 40 ms, respec-
tively; Tsk5, Tsk6, and Tsk7 are one-shot tasks with deadline of



BICCHIERAI et al.: COMBINING UML-MARTE AND PREEMPTIVE TIME PETRI NETS: AN INDUSTRIAL CASE STUDY 1811

Fig. 2. SW Design: SDD document. UML-MARTE Class Diagram of the task-set model.

10ms. Tsk1 requires cpuwith priority level 1; the other tasks re-
quire cpu with priority level 2. Specifically, minimum inter-re-
lease times and deadlines of Tsk3 and Tsk4 directly come from
User Requirements constraining timeliness of image processing
and system management; Tsk5, Tsk6, and Tsk7 are modeled as
one-shot tasks since communication with IRC, TVC, and LS is
activated on demand by Tsk1, depending on the HCI/CSCI ad-
dressed by the current SMU command; Tsk1 and Tsk2 are mod-
eled as periodic tasks to guarantee recurrent control on servo-
motors and SMU-OU messages; Tsk2 period and deadline are
chosen equal to Tsk3 deadline so as to timely actuate SMU com-
mands addressing servo-motors; Tsk1 period and deadline are
selected equal to half Tsk3 deadline as a result of the subsequent
analysis.
A UML-MARTE Object Diagram also permits to specify the

chunks of each task and their semaphore synchronizations. This
is exemplified in Fig. 3 with reference to the SC task set of the
industrial case study, avoiding representation of every chunk
and semaphore to reduce the cluttering. For instance, Tsk1 is
made of 22 chunks, which result from the four capabilities as-
signed to SC, the subcapabilities of SMU-OU_Commands, and
some branches introduced during refinement of entry-points;
chunk C11 executes entry-point with an Execution Time
constrained within [0.005, 0.100] ms, and it is synchronized
with chunk C23 on semaphore sem1 to access data that Tsk1
shares with Tsk2.
2) Specification of Functional Requirements: The proce-

dural aspects of a task-set can be conveniently specified using
UML-MARTE Activity Diagrams according to the following
methodology.
• Each task is represented by a separate swimlane labeled
with the task name.

• Releases of periodic, sporadic, and one-shot tasks are mod-
eled by input signals labeled with the period, the inter-re-
lease interval, and the activating event, respectively.

• Chunk computations are specified by actions labeled with
the chunk name.

• Private data structures of a task are represented by objects
lying within the task swimlane.

• Data structures shared with other tasks are represented by
objects lying on the border of the task swimlane.

• Wait and signal semaphore operations are represented
through input and output signals, respectively, labeled
with the semaphore name.

Fig. 4 illustrates the concept with reference to the first part
(up to the first branch) of task Tsk1 of the industrial case study.
The task is periodically activated every 10 ms; after activation,
it performs the sequence of chunks C11, C12, C13, and C14,
synchronizing on semaphores sem1, sem2, sem3, and sem4,
respectively, to access shared memories. Afterwards, different
paths are followed depending on OU and EU configuration
parameters.
For reasons of space, the rest of the diagram and the UML-

MARTE Activity Diagrams of Tsk2 through Tsk7, each com-
posed of a task swimlane, are not shown here.

C. SW Design: Semi-Formal Specification Through Timelines

In practical applications, UML-MARTE diagrams often tend
to explode in complexity, as illustrated by Figs. 3 and 4. To
circumvent the problem, the methodology of development can
conveniently integrate a domain specific notation based on
the concept of timelines [18]. These provide a synthetic and
intuitive description of the dynamic architecture, acting as an
intermediate model that helps in bridging the gap between



1812 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 4, NOVEMBER 2013

Fig. 3. SW Design: SDD document. UML-MARTE Object Diagram of the SC task-set (times expressed in ms). For the sake of readability, only the first and the
last chunk of each task are represented, e.g., Tsk1 is made of 22 chunks from C11 up to C122.

a semiformal specification suitable for SW documentation
and a formal specification supporting correctness verification
through analysis. In this perspective, the proposed approach
exposes similarities with [26], [29], and [45], where interme-
diate artifacts are used as an interface between design-oriented
and analysis-oriented models. In addition to the formalism of
timelines described in [20], we introduce the following:
• a double-headed or a single-headed arrow over the open
box of a task to indicate whether the task is recurrent or
one-shot, respectively;

• diamonds to specify branches and re-joins in a sequence of
chunks;

• a dotted-arrow from a chunk to each one-shot task acti-
vated in reaction to an event thrown by the chunk.

Fig. 5 exemplifies the concept with reference to the SC
task-set of the industrial case study, making explicit the se-
quence of chunks executed by each task and their semaphore
synchronizations. Note that the single schema of Fig. 5 replaces
the Class Diagram of Fig. 2, the Object Diagram of Fig. 3,
the Activity Diagram of Fig. 4, and the remaining Activity
Diagrams of Tsk2 through Tsk7 (not reported here).

IV. SUPPORTING THE DEVELOPMENT PROCESS
THROUGH PTPNS

Here, we illustrate how the formal nucleus of pTPNs [16]
is used to support design and verification activities of the de-
velopment process, providing guidance for derivation of pTPN
models from timeline schemata to achieve integration with the



BICCHIERAI et al.: COMBINING UML-MARTE AND PREEMPTIVE TIME PETRI NETS: AN INDUSTRIAL CASE STUDY 1813

Fig. 4. SW Design: SDD document. A fragment of the UML-MARTE Activity Diagram of task Tsk1 of SC, showing the flow of control up to the first branch
(times expressed in milliseconds).

documentation process prescribed by MIL-STD-498 [52]. It is
worth remarking that the translation process can be automated
and the resulting pTPN can even remain transparent to the de-
signer, who will be only concerned with the construction of the
timeline schema.

A. SW Design: Formal Specification Through pTPNs

A pTPN [15], [16] extends the model of TPNs [11], [37],
[53] with a set of preemptable resources whose availability
conditions the progress of timed transitions. According to this,
each transition is associated with a firing interval, delimited by
a static Earliest Firing Time (EFT) and a static Latest Firing
Time, and may request a set of resources with a priority level.
A transition is enabled if all its input places contain at least one
token: in this case, it is associated with a dynamic time-to-fire
taking a non-deterministic value within its static firing interval.
An enabled transition is progressing and reduces its time-to-fire
if every of its associated resources is not requested by any
other enabled transition with a higher priority level; otherwise,
it is suspended and maintains the value of its time-to-fire,
which is resumed when the transition is assigned all its asso-
ciated resources again. A progressing transition is firable if its
time-to-fire is not higher than that of any other progressing
transition. When a transition fires, a token is removed from
each of its input places and a token is added to each of its output
places.
Note that the form of syntax and semantics of pTPNs could

be reasonably extended so as to account for weights associated
with pre-conditions (i.e., arcs from a place to a transition) and
post-conditions (i.e., arcs from a transition to a place). In gen-
eral, this can help in representing contexts where places account
for resources and where multiple resources may be needed to
perform semaphore actions. However, in the proposed method-
ology, this element of expressivity is not needed as transitions
account for actions that always depend on boolean conditions.
A pTPN model can be derived from a timeline schema either

manually or automatically, following a procedure steered by
the model structure. In general, the translation associates a
place with each logical condition of each job and with each

semaphore, and uses transitions to account for job releases,
chunk completions, branches, semaphore and priority opera-
tions. With respect to the derivation process described in [20],
we add the translation of one-shot task releases, branches,
and rejoins. Releases of one-shot tasks are represented by a
transition preconditioned by the output place of the transitions
that model the completion of the activating chunk. Its firing
interval accounts for the time spent in the elaboration of the ac-
tivating signal. Branches are modeled by immediate transitions
preconditioned by the output place of the preceding chunk;
conversely, rejoins are accounted by making the chunks share
the same output place. For space limitations, Fig. 6 shows only
the first part (up to the first branch) of task Tsk1 of the SC
task-set of the industrial case study. Periodic releases of Tsk1
are modeled by transition t10 with neither input places nor
resource requests; therefore, it fires repeatedly with inter-firing
times falling within its static firing intervals. Job chunks are
modeled by transitions with static firing intervals equal to the
Execution Time range, with requested resources and static
priorities. For instance, transition t12 models the completion
of chunk C11 of Tsk1. Transitions t113, t146, and t157 are
preconditioned by place p113 to represent a branch among the
mutually exclusive chunks C15, C16, and C17 of Tsk1.
According to the priority ceiling emulation protocol [49],

low-priority tasks Tsk2, Tsk3, …, and Tsk7 undergo a priority
boost and synchronize on a semaphore in the sections where
they access memories shared with the high-priority task Tsk1.
Binary semaphores are modeled as places initially marked with
one token. Since experimental results prove that the time spent
in priority boost/deboost and semaphore wait/signal operations
is not negligible with respect to the Execution Time range of the
SC entry-points, these operations are represented by separate
transitions with nonpoint-like firing interval. For instance, sem1
represents a binary semaphore synchronizing the access to a
memory shared between chunks C11 and C23; t11 accounts for
sem1 wait operation; t12 represents the completion of C11; t13
models sem1 signal operations. This differs from [20], where
priority boost and semaphore wait operations are represented
by immediate transitions, while priority deboost and semaphore



1814 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 4, NOVEMBER 2013

Fig. 5. SW Design: SDD document. The timeline schema of the SC task-set (times expressed in milliseconds).

signal operations are accounted by transitions also modeling
chunk completions. The abstraction of [20] is motivated by the
fact that, on the RTOS in use there, the time spent in priority
and semaphore operations is negligible with respect to the
Execution Time range of entry-points under development.
Thus, since preemption by a different task within the priority
ceiling cannot occur at deboost, the model of [20] does not
need to distinguish chunk completions from semaphore signal
and priority deboost operations.
Note that deadlines do not have a direct counterpart in the

pTPN model, although they could be explicitly represented
through additional watch transitions as proposed in [12].

However, this would considerably increase the degree of con-
currency of the model and thus the complexity of the analysis.
Moreover, in most of the cases, deadlines are coincident with
minimum inter-release times, so that deadline misses can be
easily identified as task releases occurring while a task-job is
still pending.

B. SW Design: Architectural Verification

The pTPN representation of a task-set opens the way to
automated verification of non-functional requirements through
state-space analysis. This comprises the step of development
where the proposed methodology permits to achieve major



BICCHIERAI et al.: COMBINING UML-MARTE AND PREEMPTIVE TIME PETRI NETS: AN INDUSTRIAL CASE STUDY 1815

Fig. 6. SW Design: SDD document. A fragment of the pTPN of the dynamic architecture of SC, showing the model of task Tsk1 up to the first branch (times
expressed in ms).

results, which would be significantly hard to perform without
relying on a rigorous formal basis.
Verification of non-functional requirements develops on the

enumeration of the space of state-classes, which is called state-
class-graph [15], [16]. A symbolic run is a path in the state-
class-graph representing the dense variety of runs that execute
a sequence of transitions with a dense variety of timings be-
tween subsequent firings. Selection and timeliness analysis of
all symbolic runs that start with a task release and terminate
with its completion, which we call task symbolic runs, enable
the derivation of the Best Case Completion Time (BCCT) and
the Worst Case Completion Time (WCCT) of each task. This
supports verification of deadlines as well as derivation of the
minimum laxity which they are attained with.
Architectural verification can be performed through the Oris

Tool [14], which implements state-space enumeration, selection
of paths attaining specific sequencing and timing constraints,
and their tight timeliness analysis. In the case of industrial ap-
plication, the first round of verification detected a deadline miss
by one-shot tasks Tsk5, Tsk6, and Tsk7, which are triggered by
Tsk1. Reduction of Execution Times of chunk entry-points was
not feasible, since allocated ranges had already been narrowed
up to an acceptable trade-off between precise estimates and
safe bounds [54]. Therefore, the dynamic architecture was re-
designed by raising Tsk1 period from its initial value of 5 ms up
to 10 ms, as shown in the final specification depicted in Figs. 3
and 5. Architectural verification finally yielded the following
results: state-space analysis enumerated 4041 state-classes in
nearly 1 second; selection and timeliness analysis of task sym-
bolic runs spent nearly 5 seconds to derive 5941, 5660, 5135,
4100, 46 paths for Tsk1, Tsk2, Tsk3, Tsk4, Tsk5/Tsk6/Tsk7, re-
spectively, with a WCCT of 1.55, 5.67, 4.02, 7.76, 8.56 ms, re-
spectively. This proved that all deadlines were met with min-
imum laxity of 8.45, 14.33, 15.98, 32.24, 1.44ms for Tsk1, Tsk2,
Tsk3, Tsk4, Tsk5/Tsk6/Tsk7, respectively.

C. SW Coding: Implementation of Real-Time Code

During SW Coding, the proposed methodology permits to
compile the pTPN model of the dynamic architecture of a CSCI
into a skeleton of control code, i.e., the code that performs job
releases, manages semaphore and priority handling operations,
and invokes functional code represented by chunk entry-points.
The control code conforms with pTPN semantics and can be
implemented manually, following a programming discipline
steered by the model structure which could be easily automated.

We address here translation of pTPN models into real-time
code running on VxWorks 6.5 [55], which comprises a common
platform for industrial applications. Each task of the timeline
specification can be implemented as a real-time task with a pri-
ority and an associated entry-function. In particular, each peri-
odic task is triggered by a periodic alarm and it is actually made
recurrent through an explicit loop control structure programmed
in its entry-function. At each iteration of the loop, the entry-
function synchronizes on the alarm and performs a single job
execution. In a similar manner, a loop control structure is also
programmed in the entry-functions of sporadic and one-shot
tasks. Specifically, at each loop repetition, the entry-function of
a sporadic task synchronizes on an external signal, whereas the
entry-function of a one-shot task synchronizes on an additional
semaphore instrumental to one-shot activation. This semaphore
is created by the function and signaled by the activating
task.
The architecture of the implementation is further extended to

enable observation of possible re-entrant job releases, i.e., the
situations in which a job is released before the previous one
is completed. Therefore, releases of each task are performed
by a single high-priority real-time task that spawns a separate
task for each job execution. This keeps the Execution Time of
each loop of the high-priority task sufficiently short to avoid
the completion after the subsequent release. Though useful for
testing purposes in early implementation stages, this solution is
not suitable for deployment code, since the dynamic creation
of tasks is deprecated by most regulatory standards for safety-
critical SW, e.g., the Ravenscar profile [17].
In the industrial case study, the SC task-set was implemented

as a kernel module of VxWorks 6.5 [55]. The function
of the kernel module creates semaphores sem1, sem2, and sem7
which are explicitly represented in the timeline schema of Fig. 5.
It also invokes the primitive to set the period
of the system clock equal to the minimum value that can be
imposed on the Main Board, i.e., 1 ms. To obtain fine-grained
time measurements, a hardware counter was used that attains 1
ns granularity.

D. HW-in-the-Loop Testing: Execution Time Profiling

During HW-in-the-loop Testing, the proposed methodology
supports a disciplined and focused testing that uses the model as
an oracle to reveal defects pertaining to concurrency control and
timing. In particular, this enables verification of design assump-
tions about temporal parameters through profiling, with specific



1816 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 4, NOVEMBER 2013

emphasis on Execution Times of implemented chunks and tim-
ings actually provided by the RTOS. Inconsistencies between
assumptions and evidences can be managed through different
approaches: by fixing implementation so as to fit specification
assumptions; by repeating formal verification on a refined spec-
ification that accounts for actually observed parameter values;
by providing a recommendation that draws attention on aspects
of the implementation that may be not completely covered by
formal verification.
The code of a CSCI can be instrumented so as to produce

a time-stamped log of each event corresponding to each tran-
sition in the pTPN model of the task-set. The impact of log-
ging on a real-time queue is evaluated by estimating its Execu-
tion Time through several repetitions of the operation. The op-
eration of logging is conveniently allocated to the dynamic ar-
chitecture in order to keep instrumentation code separate from
functional code of chunk entry-points. This supports automa-
tion of the procedure of code generation, leaving the developer
only the responsibility of implementing functional entry-points.
At the end of each run of the implementation, the sequence of
time-stamped logs is sent to the desktop machine for off-line
analysis. Logs support reconstruction of the sequence of states
visited during execution, evaluation of the sojourn time in each
state, and identification of progressing/suspended transitions in
each state. This permits to determine whether the execution log
comprises a feasible behavior of the pTPN specification, en-
abling off-line derivation of the Execution Time of any event
as the sum of sojourn times in the visited states where the cor-
responding transition is progressing. As a salient trait, measure-
ments are carried out by letting chunk entry-points execute in
interrupted mode, thus taking into account preemption events,
HW/SW interrupts, pipeline and cache effects [54].
In the case of industrial application, we performed 10,000

repetitions of the logging operation and we measured the dif-
ference between subsequent logged time-stamps: 99.5% of the
values fall in the range [0.00306, 0.00456] ms, with a mean
value of 0.003282 ms and a standard deviation of 0.000165 ms;
recurrent peaks in the interval [0.017, 0.022] ms occur in 0.5%
of the cases and can be ascribed to timing uncertainties due to
HW effects, which are usually in the order of a few tens of s.
Unfortunately, the time spent for logging turned out to be not
negligible with respect to the granularity of temporal parameters
of the task-set, which in fact are in the order of 0.005 ms to 40
ms. To circumvent overestimation of Execution Times, which
may be caused by the logging overhead, firing intervals of tem-
poral parameters were enlarged during iterative refinements of
the dynamic architecture of the task-set.
In the industrial case study, the SC code was integrated with

functional entry-points of its chunks and finally tested in a sim-
ulated environment, where selected HCIs/CSCIs of the system
were emulated by a SW application running on a desktop pro-
cessor connected to the Main Board through five serial buses.
The first round of profiling detected an un-sequenced execution
during which the high-priority task Tsk1 was overtaken by the
low-priority task Tsk2. Inspection of functional code of the two
tasks revealed that the failure was caused by a task program-
ming defect, consisting of two chunks (i.e., chunk C21 of Tsk2
and chunk C13 of Tsk1) synchronizing on a semaphore that was

Fig. 7. Histogram of observed inter-release times of periodic release of Tsk2.

not explicitly represented in the dynamic architecture. The in-
consistency was fixed by adding a semaphore named sem3 to
the SC task-set and by repeating formal verification.
During subsequent executions, time-frame violations were

detected on different chunks of different tasks. Optimization of
chunk entry-points did not succeed in fixing the problem. Fi-
nally, we found out that the failure was due to a cycle stealing by
a VxWorks task named tNetTask, which provides packet-pro-
cessing network services and runs at priority level 50. The issue
was circumvented by refining the model and repeating formal
verification. In particular, the priority of SC tasks was raised
from their initial values higher than 100, as usual for user tasks,
to values lower than 50, as shown in the final specification of
Fig. 6.
We measured inter-release times of task Tsk2 which is peri-

odic with period of 20ms. The -th inter-release time is equal
to

(1)

where 20 ms is Tsk2 period and is the duration that
elapses between the time at which the th task job should
be released and the th time-stamp. We can fairly assume that

are independent and identically distributed random
variables. If were uniformly distributed over an in-
terval , then would be triangularly distributed over

. However, in the practice, they are not uniformly dis-
tributed due to processor, bus, and cache effects. The histogram
of observed inter-release times plotted in Fig. 7 reveals that
98.9% of cases fall within [19.920, 20.069] ms with a peak on
20 ms, while the remaining 1.1% fall within [19.784, 19.920]
ms and [20.069, 20.217] ms. Fixing the implementation so as to
conform with the design assumption of period 20 ms was not a
viable option, as release time jitters are dependent on the in-
teraction between the RTOS and the Main Board. Repetition
of the analysis on a refined model was not a convenient ap-
proach as well, since asynchronous releases largely increase the
state space. Therefore, in this case, the most appropriate action
seemed to be a warning to subsequent testing stages.



BICCHIERAI et al.: COMBINING UML-MARTE AND PREEMPTIVE TIME PETRI NETS: AN INDUSTRIAL CASE STUDY 1817

V. CONCLUSION

We have proposed a comprehensive methodology for integra-
tion of UML-MARTE and pTPNs within an industrial process
of SW development. Experimentation in a one-year-long indus-
trial project has proved feasibility and effectiveness of the ap-
proach, showing that the joint use of formal methods and ad-
vanced practices of SW engineering can largely help to afford
the development of case studies of real complexity.
The structure of the SW life cycle addressed by the proposed

approach is resumed in Fig. 1, with emphasis on develop-
ment artifacts and iterations. UML-MARTE is conveniently
used to manage the documentation process prescribed by
MIL-STD-498, providing a semiformal specification that is
sufficiently practical to fit the industrial practice and sufficiently
structured to enable subsequent application of advanced formal
methods. This provides an effective ground for deployment of
pTPN theory, supporting the steps of design, implementation
and verification. Integration of documentation and development
processes in a unified methodology is achieved by providing
support for translation of UML-MARTE diagrams into pTPN
models, using timeline schemata as an intermediate artifact
providing a synthetic and intuitive representation.
As recommended by main regulatory standards for safety-

critical SW, the methodology achieves a limited impact on the
mainstream practice. In fact, the difficulties in properly under-
standing and managing pTPN theory are largely mitigated not
only by the adoption of UML-MARTE but also by the possi-
bility to automate the overall approach, which would permit to
maintain pTPNs completely transparent to the developer. More-
over, the use of timeline schemata also easies the effort on the
part of the developer when practical factors of complexity make
specification through UML-MARTE more difficult.
As a remarkable trait, the code of the implementation follows

usual patterns of real-time concurrency, providing a clear struc-
ture which can be easily controlled and extended by the devel-
oper. The main requirement that the methodology brings along
in the implementation stage is the necessity to keep functional
and control code separate. This can be done at a reasonable cost
and comprises one of the aspects that contribute most to code
readability, which is essential to achieve industrial acceptance.

ACKNOWLEDGMENT

The authors would like to thank P. Viliani and S. Orsi of Selex
Galileo, Florence, Italy, for guidance in understanding the prac-
tice of industrial development.

REFERENCES
[1] R. Alur, I. Lee, and O. Sokolsky, “Compositional refinement for hier-

archical hybrid systems,” in Hybrid Systems: Computation and Con-
trol. Berlin, Germany: Springer-Verlag, 2001, vol. 2034, LNCS, pp.
33–48.

[2] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-based
performance prediction in software development: A survey,” IEEE
Trans. Softw. Eng., vol. 30, no. 5, pp. 295–310, May 2004.

[3] S. Balsamo, M. Marzolla, and R. Mirandola, “Efficient performance
models in component-based software engineering,” in Proc. 32nd EU-
ROMICRO Conf. SW Eng. Adv. Applications, Washington, DC, 2006,
pp. 64–71.

[4] K. Beck and W. Cunningham, “A laboratory for teaching object ori-
ented thinking,” SIGPLAN Not., vol. 24, no. 10, pp. 1–6, 1989.

[5] S. Beckera, H. Koziolekb, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” J. Syst. SW, vol. 82,
pp. 3–22, 2009.

[6] S. Bernardi, J. Campos, and J. Merseguer, “Timing-failure risk assess-
ment of UML design using Time Petri Net bound techniques,” IEEE
Trans. Ind. Inf., vol. 7, no. 1, pp. 90–104, Feb. 2011.

[7] S. Bernardi, S. Donatelli, and J. Merseguer, “From UML sequence di-
agrams and statecharts to analysable Petri Net models,” in Proc. 3rd
Int. Workshop Software Performance, New York, 2002, pp. 35–45.

[8] S. Bernardi and J. Merseguer, “Performance evaluation of UML de-
sign with Stochastic Well-formed Nets,” J, Syst. Software, vol. 80, pp.
1843–1865, Nov. 2007.

[9] S. Bernardi, J. Merseguer, and D. C. Petriu, “Dependability modeling
and analysis of software systems specified with UML,” ACM Com-
puting Survey, accepted for publication.

[10] M. Bernardo, L. Donatiello, and P. Ciancarini, “Stochastic process
algebra: From an algebraic formalism to an architectural descrip-
tion language,” in Performance Evaluation of Complex Systems:
Techniques and Tools. Berlin, Germany: Springer, 2002, vol. 2459,
Lecture Notes in Computer Science, pp. 173–182.

[11] B. Berthomieu andM. Diaz, “Modeling and verification of time depen-
dent systems using time Petri Nets,” IEEE Trans. Softw. Eng., vol. 17,
no. 3, pp. 259–273, Mar. 1991.

[12] B. Berthomieu and M. Menasche, R. E. A. Mason, Ed., “An enumer-
ative approach for analyzing time Petri Nets,” in Inf. Process.: Proc.
IFIP Congress, 1983, vol. 9, pp. 41–46.

[13] C. Bodenstein, F. Lohse, and A. Zimmermann, “Executable specifica-
tions for model-based development of automotive software,” in Proc.
IEEE Int. Conf. Syst., Man Cybern., Oct. 2010, pp. 727–732.

[14] G. Bucci, L. Carnevali, L. Ridi, and E. Vicario, “Oris: A tool for mod-
eling, verification and evaluation of real-time systems,” Int. J. SW Tools
Technol. Transfer, vol. 12, no. 5, pp. 391–403, 2010.

[15] G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario, “Modeling flexible
real time systems with preemptive time Petri Nets,” in Proc. 15th Eu-
romicro Conf. Real-Time Syst., Jul. 2003, pp. 279–286.

[16] G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario, “Timed state space
analysis of real time preemptive systems,” IEEE Trans. Softw. Eng.,
vol. 30, no. 2, pp. 97–111, Feb. 2004.

[17] A. Burns, B. Dobbing, and T. Vardanega, “Guide on the use of the ADA
Ravenscar profile in high integrity systems,” ADA Lett., vol. XXIV, no.
2, pp. 1–74, 2004.

[18] G. Buttazzo, Hard Real-Time Computing Systems. Berlin, Germany:
Springer, 2005.

[19] “V-Model 97, Lifecycle Process Model-Developing Standard for IT
Systems of the Federal Republic of Germany,” BWB – Federal Office
for Military Technology and Procurement of Germany, 1997, General
Directive No. 250.

[20] L. Carnevali, L. Ridi, and E. Vicario, “Putting preemptive Time Petri
Nets to work in a V-Model SW life cycle,” IEEE Trans. Softw. Eng.,
vol. 37, no. 6, pp. 826–844, Nov./Dec. 2011.

[21] F. Cassez and K. G. Larsen, in The Impressive Power of Stopwatches,
Aug. 2000, vol. 1877, LNCS.

[22] “EN 50128 – Railway Applications: SW for Railway Control and Pro-
tection Systems,” CENELEC, 1997.

[23] D. Compare, A. D’Onofrio, A. D.Marco, and P. Inverardi, “Automated
performance validation of software design: An industrial experience,”
in Proc. ASE, 2004, pp. 298–301.

[24] V. Cortellessa and R. Mirandola, “PRIMA-UML: A performance
validation incremental methodology on early UML diagrams,” Sci.
Comput. Programming, vol. 44, pp. 101–129, Jul. 2002.

[25] “RTAI: Real Time Application Interface for Linux,” Dept.
of Aerospace Eng. Polytechnic of Milan [Online]. Available:
https://www.rtai.org

[26] S. Distefano, M. Scarpa, and A. Puliafito, “From UML to Petri Nets:
The PCM-based methodology,” IEEE Trans. Softw. Eng., vol. 37, no.
1, pp. 65–79, Jan./Feb. 2011.

[27] “MPC5200B Data Sheet,” Freescale Semiconductor, 2010.
[28] V. Grassi and R. Mirandola, “PRIMAmob-UML: A methodology for

performance analysis of mobile software architectures,” in Proc. 3rd
Int. Workshop SW and Performance, New York, 2002, pp. 262–274.

[29] V. Grassi, R. Mirandola, and A. Sabetta, “Filling the gap between de-
sign and performance/reliability models of component-based systems:
A model driven approach,” J. Syst. SW, vol. 80, pp. 528–558, 2007.

[30] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-trig-
gered language for embedded programming,” Proc. IEEE, vol. 91, no.
1, pp. 84–99, 2003.



1818 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 4, NOVEMBER 2013

[31] P. Jordan, “IEC 62304 international standard edition 1.0 Medical de-
vice software – Software life cycle processes,” in Proc. IET Seminar
Softw. Medical Devices, 2006, pp. 41–47.

[32] “Palladio: A Software Architecture Simulation Approach,” Karlsruhe
Inst. Technol., FZI Res. Ctr. Inf. Technol, University of Paderborn [On-
line]. Available: http://www.palladio-simulator.com

[33] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated
development of embedded software,” Proc. IEEE, vol. 91, no. 1, pp.
145–164, Jan. 2003.

[34] H. Koziolek and J. Happe, “A QoS driven development process model
for component-based software systems,” in Proc. 9th Int. Symp. Com-
ponent-Based SW Eng., Berlin, Germany, 2006, vol. 4063, LNCS, pp.
336–343.

[35] D. Lime andO. H. Roux, “Formal verification of real-time systemswith
preemptive scheduling,” Real-Time Syst., vol. 41, no. 2, pp. 118–151,
2009.

[36] M.Marzolla and S. Balsamo, “UML-PSI: The UML performance SIm-
ulator,” in Proc. 1st Int. Conf. Quantitative Evaluation Syst., Enschede,
The Netherlands, Sep. 2004, pp. 340–341.

[37] P.Merlin andD. Farber, “Recoverability of communication protocols,”
IEEE Trans. Commun., vol. COM-24, no. 9, pp. 1036–1043, Sep. 1976.

[38] J. Merseguer, J. Campos, S. Bernardi, and S. Donatelli, “A composi-
tional semantics for UML state machines aimed at performance eval-
uation,” in Proc. 6th Int. Workshop Discrete Event Syst., Washington,
DC, 2002, pp. 295–302.

[39] “UML Profile for Schedulability, Performance and Time Specifica-
tion,” Object Management Group, 2005.

[40] “UML Profile for MARTE: Modeling and Analysis of Real-Time Em-
bedded Systems v1.0,” Object Management Group, 2009.

[41] “Unified Modeling Language: Infrastructure,” ver. 2.3, Object Man-
agement Group, 2009, 2.3 ed. .

[42] “Unified Modeling Language: Superstructure,” ver. 2.3, Object Man-
agement Group, 2009.

[43] H. R. Olivier and L. Didier, “Time Petri Nets with inhibitor hyperarcs:
Formal semantics and state-space computation,” in 25th Int. Conf. on
Theory and Application of Petri Nets, 2004, vol. 3099, pp. 371–390.

[44] D. Petriu, C. Shousha, and A. Jalnapurkar, “Architecture-based perfor-
mance analysis applied to a telecommunication system,” IEEE Trans.
Softw. Eng., vol. 26, no. 11, pp. 1049–1065, Nov. 2000.

[45] D. B. Petriu and M. Woodside, “An intermediate metamodel with sce-
narios and resources for generating performance models from UML
designs,” SW Syst. Modeling, vol. 6, pp. 163–184, 2007.

[46] “DO-178B, Software Considerations in Airborne Systems and Equip-
ment Certification,” Radio Technical Commission for Aeronautics,
1992.

[47] “ECSS-E-ST-40C Space Engineering Software,” Requirements &
Standards Division, ESA-ESTEC, ECSS Secretariat, 2009.

[48] D. C. Schmidt, “Model-driven engineering,” IEEE Computer, pp. 1–2,
Feb. 2006.

[49] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Trans. Comput.,
vol. 39, no. 9, pp. 1175–1185, Sep. 1990.

[50] C. U. Smith, C. M. Lladó, V. Cortellessa, A. D. Marco, and L. G.
Williams, “From UML models to software performance results: An
SPE process based on XML interchange formats,” in Proc. 5th Int.
Workshop SW and Performance, 2005, pp. 87–98.

[51] “Simulink,” The Mathworks [Online]. Available: www.math-
works.com/products/simulink

[52] “Military Standard for Software Development and Documentation,”
USDoD, MIL-STD-498, 1994, .

[53] E. Vicario, “Static analysis and dynamic steering of time dependent
systems using time Petri Nets,” IEEE Trans. Softw. Eng., vol. 27, no.
8, pp. 728–748, Aug. 2001.

[54] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Statshulat, and P. Stenstroem, “Priority inher-
itance protocols: The worst case execution-time problem: Overview
of methods and survey of tools,” ACM Trans. Emb. Comp. Sys., vol.
7, no. 3, pp. 1–53, 2008.

[55] “VxWorks,” Wind River [Online]. Available: www.windriver.com/
products/vxworks

[56] M. Woodside, D. Petriu, D. Petriu, H. Shen, T. Israr, and J. Merseguer,
“Performance by unified model analysis (PUMA),” in Proc. 5th Int.
Workshop SW and Performance, Jul. 2005, pp. 1–12.

Irene Bicchierai received the B.S. and M.S. degrees
in informatics engineering from the University
of Florence, Florence, Italy, in 2005 and 2008,
respectively, where she is currently working toward
the Ph.D. degree in informatics, multimedia, and
telecommunications engineering.
Her research interests focus on methods for de-

sign and testing of real-time embedded systems. Her
activity mainly addresses the integration of formal
methods in the development life cycle of safety crit-
ical software.

Giacomo Bucci (M’94) received the degree in elec-
trical engineering from the University of Bologna,
Bologna, Italy, in 1968.
From 1970 to 1982, he was with the University

of Bologna, Bologna, Italy. During 1975, he was
a Visiting Researcher with IBM T. J. Watson Re-
search Center, Yorktown Heights, NY. Since 1986,
he has been a Full Professor with the Faculty of
Engineering, University of Florence, Florence, Italy,
where he teaches a course in computer architectures
and a course in software engineering. He has held

several academic positions. Currently, he coordinates the doctoral program in
Informatics, Systems and Telecommunications at the University of Florence.
His current research interests include computer architecture, real-time systems,
distributed systems, software development methodologies, and computer
performance evaluation.

Laura Carnevali received the B.S. andM.S. degrees
in informatics engineering and the Ph.D. degree in in-
formatics, multimedia, and telecommunications en-
gineering from the University of Florence, Florence,
Italy, in 2004, 2006, and 2010, respectively.
She is currently a Postdoctoral Fellow with the De-

partment of Systems and Informatics, University of
Florence, Florence, Italy. Her research is focused on
correctness verification and performance evaluation
of real-time systems, with specific interest on integra-
tion of formal methods in the development life cycle

of real-time software and stochastic characterization of timed models.

Enrico Vicario (M’95) received the Ph.D. degree
in electronics engineering and Ph.D. degree in
informatics and telecommunications engineering
from the University of Florence, Florence, Italy,
in 1990 and 1994, respectively.
He is a Full Professor of Computer Science

with the School of Engineering, University of
Florence, Florence, Italy. His research is presently
focused on formal methods for model driven
development, correctness verification of real-time
systems, and quantitative evaluation of concurrent

non-Markovian models.


