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Abstract
Call-by-value languages commonly restrict recursive definitions
by only allowing functions and syntactically explicit values in the
right-hand sides. As a consequence, some very appealing program-
ming patterns that work well in lazy functional languages are hard
to apply in a call-by-value setting, even though they might not be
using laziness for any other purpose than to enable the desired form
of recursion.

In this paper we present an operational semantics as well as
a straightforward implementation technique for unrestricted re-
cursion under pure call-by-value. On that basis we are able to
demonstrate that highly recursive programming idioms such as
combinator-based parsing are indeed compatible with call-by-value
evaluation.

Categories and Subject Descriptors D.3.3 [Programming lan-
guages]: Languages constructs and features—Recursion

General Terms Languages, theory, experimentation

Keywords Call-by-value, value recursion, semantics, implemen-
tation, combinator libraries.

1. Introduction
One particularly attractive feature of lazy languages like Haskell is
the ability to freely use recursion in the definition of data objects.
Not only are recursive bindings in such languages available for ob-
jects of any type, but the right-hand sides of recursive bindings may
also utilize whatever forms of computations that are appropriate,
including function application to the variables being defined. Com-
binator libraries and domain-specific embedded languages written
in Haskell make extensive use of both abilities in order to provide
their desired abstraction boundaries. As an illustration, the follow-
ing example of a combinator-based parser is definable by recursion,
even though its type is abstract and its right-hand side contains mul-
tiple calls to abstract parser-constructing combinator functions.

exp :: Parser Exp
exp = choice [literal , seq [literal , op, exp], parens exp]

Call-by-value languages do not in general provide a comparable
level of freedom. OCaml, for example, demands that the right-hand
sides of recursive bindings are already of a form that are essentially
values, and SML further restricts the type of recursive values to
functions only. From a Haskell programmer’s point of view, these
limitations are unfortunate, as they mean that some of the most
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successful idioms developed in the Haskell community cannot eas-
ily be carried over if one would like to switch to a language with
call-by-value semantics. In this paper we use Haskell syntax, but
assume that we want to switch to a call-by-value semantics.

The debate over the relative merits of lazy and strict functional
programming has lasted for decades, and will not be repeated here.
Instead, we simply postulate that a strict but pure functional lan-
guage would be a very valuable programming tool, with a poten-
tial for marrying the run-time efficiency and resource usage pre-
dictability of call-by-value evaluation with the declarative style of
purely functional programming. However, a core question that fol-
lows from this assumption is of course to what extent programming
idioms of the Haskell world are truly generic and not inherently tied
to a lazy evaluation machinery. In this paper we demonstrate that
as far as reliance on unrestricted recursion goes, Haskell-style pro-
gramming can be comfortably applied in a suitably adapted call-
by-value setting.

Our contributions are the following:

• We scrutinize a series of examples that motivate the need for
unrestricted recursion and also build up an operational intuition
of why computing recursive data structures under call-by-value
is a much simpler problem than delaying and forcing arbitrary
computations under a lazy evaluation strategy (Section 2).

• We provide an operational semantics for a call-by-value lan-
guage with unrestricted recursion, whose clarity and simplicity
is hardly hampered at all by the recursion support (Section 3).
The semantics allows a degree of freedom in choosing whether
to evaluate a variable to its bound value or not, so we prove that
the evaluation relation is confluent, and as a corollary, referen-
tially transparent. The system is further extended with algebraic
datatypes, records and primitive datatypes in Section 4.

• We describe how the semantics of our language can be straight-
forwardly implemented, with a particular emphasis on making
value inspection (i.e., pointer dereferencing) as cheap as in any
call-by-value language not constrained by supporting value re-
cursion (Section 5).

• We demonstrate the power of our approach by means of a call-
by-value implementation of self-optimizing parser combina-
tors, imitating some of the features of a combinator library orig-
inally written in Haskell by Swierstra and Duponcheel (Sec-
tion 7). Our implementation shows – perhaps surprisingly – that
programming in this style is not inherently tied to lazy evalua-
tion semantics, simply to the availability of unrestricted recur-
sion.

• We provide a general procedure for rewriting a certain class
of programs that would otherwise be stuck according to our
evaluation semantics, and we identify a new point in the design
space between call-by-value and lazy evaluation characterized
by the ability to perform these rewrites at run-time (Section 8).
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Figure 1. Example NFA

The reader should be aware upfront that this work is not con-
cerned with the orthogonal issue of statically guaranteeing the ab-
sence of certain run-time errors, like the detection of ill-founded
recursion. Our language does indeed allow ill-founded terms such
as letx = x inx to be written, and we do not attempt to provide any
logical system for filtering them out. However, this is not a qualita-
tively different situation from being unable to statically detect non-
terminating terms, or terms that terminate exceptionally because of
division by zero. Most languages accept such terms anyway, with
the argument that conservative filtering systems are too restrictive.
We also note that even in Haskell, ill-founded recursion shows up
as dynamic errors or non-termination, not as static type errors.

Related research on recursion under call-by-value, including
some approaches to static error detection, are reviewed in Section 9.

2. Background and motivation
Consider the mutually recursive function definition

f = λx. . . . g x . . .
g = λy. . . . f e . . .

At run-time, f and g are represented as sequences of machine in-
structions that somehow must be able to refer to each other’s lo-
cations in memory. On the program top-level, the most straight-
forward implementation generates code that just refers to the ad-
dresses of f and g symbolically, relying on an assembler to substi-
tute real addresses for the symbols prior to execution. If the func-
tions are represented as heap-allocated closures, however, the re-
spective memory blocks must dynamically be set up to contain
pointers to each other. This is still straightforward, though, as both
blocks may be allocated and concrete addresses obtained before
any memory initialization takes place.

Operationally, mutually recursive data structures may be under-
stood in exactly the same way, even though their denotational se-
mantics would have to be quite different from recursive functions
in a call-by-value setting. For example, consider the definition

x = 1 : y
y = 2 : x,

where : is the infix list constructor symbol. Both x and y thus rep-
resent infinite alternating sequences of the integers 1 and 2, start-
ing one element apart. Their representation can be finite, though.
On the top level, x and y would be initialized memory areas that
contain symbolic references to each other’s addresses, with symbol
resolution delegated to the assembly pass during code generation.
If represented as heap-allocated objects, the cross-referencing ad-
dresses would be set up dynamically after both blocks have been
allocated, just like the initialization of mutually recursive function
closures.

It is important to note that there is nothing fundamentally at
odds with call-by-value evaluation going on here. One might reason
like this: In a call-by-value language, all variables stand for values,
and under this assumption expressions 1 : y and 2 : x are also
values, which is consistent with the assumption. Let us see how
such recursive value bindings can be put to good use.

Figure 1 shows an example of a non-deterministic finite automa-
ton (NFA) that accepts a certain set of strings. With recursive value
bindings we can express this automaton right away as a cyclic struc-
ture of NFA nodes.

data NFA = N [(Char,NFA)] [NFA]
| Accept

start = n1
n1 = N [(′a′, n1), (′b′, n2)] [ ]
n2 = N [(′c′, n2), (′a′, n1)] [Accept]

A function accepting or rejecting strings on basis of such an au-
tomaton could look like this:

check Accept [ ] = True
check Accept xs = False
check (N arcs eps) [ ] = try eps [ ]
check (N arcs eps) (x :xs) = try [n | (y, n)← arcs, y == x ] xs

orelse try eps (x :xs)

try [ ] xs = False
try (n : ns) xs = check n xs orelse try ns xs

Note that the presence of cycles means that a function cannot
naively traverse an NFA graph and expect to always terminate.
Instead the termination of check and try above must depend on the
finiteness of the string to be checked (and the absence of cycles with
only ε-edges in the graph). The short-circuiting orelse construct
borrowed from SML is also crucial here, as it only evaluates its
right expression in case the left one is false.

Now, if we accept the idea that variables should count as values
in a call-by-value language, we might ask why computations on
them should not be allowed too. For example, if variables are
values, the expression (λz.z) y is a call-by-value redex that reduces
to a value (the variable y) in just one step. Hence we might argue
that even though the definition

x = 1 : (λz.z) y
y = 2 : x

is not a value binding, it can be reduced to a value binding in one
step despite the mutual dependencies between x and y.

The core of our work is about how to make this idea precise
in a formal manner, and how to implement it efficiently. For now,
however, let us just assume that recursive bindings can contain
arbitrary expressions in their right-hand sides, and see what kind
of programs this would allow us to express.

One thing that becomes possible is to define a translation from
regular expressions to NFAs, using a function that itself is recur-
sive. The code could look as follows:

data RegExp = Lit Char
| Seq RegExp RegExp
| Star RegExp

toNFA (Lit c) n = N [(c, n)] [ ]
toNFA (Seq r1 r2) n = toNFA r1 (toNFA r2 n)
toNFA (Star r) n = letn′ = N [ ] [toNFA r n′, n]

inn′

Function toNFA takes two arguments, one is the regular expression
to translate and one is the NFA that the translated regexp should
enter as its accept state. Notice the local recursive binding of n′,
which turns into a value binding only after an NFA for the regular
expression r has been computed.

The reason this code works in spite of the recursive definition
of n′ is that toNFA never attempts to inspect its second argument;
it only uses its parameter n as an abstract value for storing inside
the data structures it builds. For this reason it does not really matter



that, in some cases, this abstract value is actually being computed
by the very same function call!

A natural question to ask is of course what it would mean if
a function indeed would attempt to inspect such a yet undefined
value, for example by pattern-matching or by an equality test. Our
chosen design is that such usage should be equivalent to a run-time
error, on par with other dynamic errors like division by zero. We
call programs with such behaviors ill-defined, and in the operational
semantics we provide in Section 3 they will be identified as stuck
configurations.

The most obviously ill-defined binding is

z = z,

as it makes the assumption that z is a value depend on itself. For
the same reason the following example must be wrong:

z = head z : [ ]

However, one could argue that a binding like

x = 1 : y
y = 2 + head x : x

should be correct, on basis of a fairly natural assumption that
bindings are evaluated top-to-bottom. That is, instead of insisting
that every recursively bound variable is treated like an abstract
token during evaluation of all right-hand sides, one could consider
imposing this restriction to forward variable references only, thus
making mutually recursive bindings sensitive to the order in which
they appear.

The language semantics we propose follows this idea, on the
grounds that it offers the programmer more expressive power, but
also because it appears to blend better with the rest of our technical
design choices. We will return to this topic after we have described
our operational semantics in Section 3. The order dependency be-
tween bindings might be considered unfortunate, but it should be
noted that it only applies to bindings whose right-hand sides are
not fully evaluated – value bindings can still be reordered at will as
in any purely functional language.

To illustrate the power that follows from letting later bindings
see the result of previous ones, we define a function cap :: NFA→
NFA, that returns an NFA equal to its input except that all immedi-
ate edge labels are turned into upper case.

cap (N arcs eps) = N [ (toUpper c, n) | (c, n)← arcs ] eps
cap Accept = Accept

We can now use this combinator to build an uppercase version of
an NFA node previously defined.

a = toNFA someRegExp start
b = cap a
start = N [ ] [a, b,Accept]

Note the difference between how toNFA and cap treat their respec-
tive NFA arguments. Because cap really needs to look into the given
automaton to find out which character labels it uses, the following
reordering of a and b makes the definition ill-defined:

b = cap a
a = toNFA someRegExp start
start = N [ ] [a, b,Accept]

On the other hand, the binding for start has no such dependencies to
other bindings, so it could have been placed at any position without
changing the meaning of the recursive definition.

It should be emphasized here that the function cap is not able
to capitalize all edge labels of the NFA it is given, only the labels
of the explicit edges emanating from the root of the automaton.
The reason cap is not recursively applied to the subsequent nodes
it finds is that such a behavior would not terminate in case the

given NFA contains cycles (which is exactly the kind of NFAs we
are considering here). This complication is really an instance of a
much more fundamental problem with unrestricted recursion: how
to tell the difference between data structures that are not inductively
defined and structures that actually are. While a solution to this
problem would certainly be of value to programmers using our
proposal, we consider it a topic outside the scope of our current
work.

The fact that a function really needs to inspect the value of its
argument – that it is strict in Haskell terminology – is a property
that cannot be deduced from looking at its type, at least not if
a standard Hindley/Milner type system is assumed. Programmers
will thus need to use some caution when writing recursive bindings
in our proposal, because well-typed programs might still terminate
with a run-time error. However, this is certainly not a new prob-
lem; in fact a very similar problem exists when writing recursive
bindings in Haskell.

Consider the program fragment

a = f b
b = g a

In Haskell this binding is ill-defined if both f and g are strict
(assuming the values of a or b will actually be needed), and the
program will either loop or stop with a message that a ”black
hole” has been detected. In our language it is ill-defined either
when f is strict, or when the function composition g ◦ f is. Under
both evaluation strategies, however, the programmer will have to
consult information not captured in the types of f and g in order to
conclude well-definedness.

There are many other examples of recursive value bindings be-
ing a clear and declarative mechanism to express behavior. For ex-
ample, functional reactive programming (Elliott and Hudak 1997)
builds cyclic structures, then interprets them, and could similarly
be expressed in a strict language – if we had support for value re-
cursion.

The recursive structures that may be computed by our proposal
are cyclic, but they are not infinite – i.e., they cannot encode
an infinite number of distinct nodes. A common term for data
structures of this form is regular. In contrast, Haskell allows even
irregular structures to be expressed, like the ones generated by the
function enumFrom:

enumFrom = λn. n : enumFrom (n+ 1)

Although this recursive function definition is just as valid in
call-by-value languages as it is in Haskell, any attempt to ap-
ply enumFrom in a call-by-value language would irrevocably
lead to non-termination. This is of course just what to expect –
enumFrom (n+1) is not a value even with our relaxed treatment of
variables, and enumFrom obviously lacks the base case necessary
for termination.

This observation emphasizes that our proposal for unrestricted
call-by-value recursion is not a silver bullet that allows any kind of
lazy programming pattern to be applied in a call-by-value setting.
Our work concerns cyclic structures only, although this does indeed
appear to be a feature that is particularly important to many purely
functional idioms.

Another observation is that cyclic structures – at least in a call-
by-value language – are not likely to be created only to be traversed
once and then thrown away, simply because it is not possible to tra-
verse them in finite time. A more likely role for these structures is
to be used over and over; as in string recognizers and parsers, or
perhaps even more importantly: in programs composed of mutu-
ally interacting components that encapsulate monadic state. Thus,
if there are costs to be paid for the ability to form cyclic structures,
it makes sense to take them up front at creation time rather than



e ::= λx.e | x | e e′ | let b in e Expressions
b ::= x = e | b, b′ | 0 Bindings

v ::= λx.e Values
Γ ::= x = v | Γ,Γ′ | 0 Value bindings

w ::= v | x Weak values

Figure 2. Language grammar

Γ ` (λx.e)w → [w/x]e BETA

Γ, x = v,Γ′ ` x → v VAR

Γ+E ` e → e′

Γ ` E [e] → E [e′]
NEST

Γ ` E [let Γ′ inw] → (E+Γ′)[w] MERGE

Figure 3. The evaluation relation

paying them repeatedly each time such data is referenced. Our pro-
posal is designed with this preference in mind, actually incurring
no additional cost at all for accessing cyclic data compared to the
acyclic case.

In the next section we will put these ideas on a firmer ground.

3. Semantics
Let x, y, z, f, g, h range over an enumerable set of variable identi-
fiers. Our expression syntax is the lambda calculus extended with
recursive let-bindings (algebraic datatypes, records and primitive
values will be added in Section 4). The grammars for expressions
and values are given in Figure 2.

The free variables of an expression e and the variables bound in
a binding b are written fv(e) and bv(b) respectively. The comma
operator used to combine bindings is associative and has the empty
binding 0 as both right and left unit. We capture this fact as a
structural equivalence relation ≡ on bindings:

b, (b′, b′′) ≡ (b, b′), b′′

b, 0 ≡ b
0, b ≡ b

We treat terms as syntactically identical if they are alpha equivalent
or equal up to ≡ on bindings. Moreover, a binding b, b′ is only
considered syntactically correct if b and b′ bind disjoint sets of
variables. In the following we will implicitly assume that all terms
are syntactically correct.

Evaluation in our system will potentially take place in the pres-
ence of free variables. Such variables can preferably be under-
stood as pointers in a concrete implementation, and a value binding
is thus equivalent to a heap mapping pointers to their associated
values in a mutually recursive fashion. Small step evaluation is a
ternary relation Γ ` e→ e′, which should be read ”e may evaluate
to e′ in heap Γ”. The evaluation rules are given in Figure 3.

The core technical detail in our semantics is the notion of weak
values, which include variables in addition to the ordinary values
of the lambda calculus. Weak values are ranged over by meta vari-
able w, so rule BETA is thus standard call-by-value beta reduction
extended to weak values. Note in particular that while weak values
are accepted as arguments to functions, the range of value bindings
(ranged over by Γ) is restricted to proper values v.

Rule VAR captures heap lookup, or ”pointer dereferencing”. Be-
cause variables count as weak values, applying the VAR rule is not
strictly necessary for variables occurring in the argument position
of a BETA redex. The freedom to take or not take VAR steps thus in-
troduces an element of non-determinism in our semantics, a subject
we will be returning to shortly.

Rules NEST and MERGE use an evaluation context E to capture
the position in an expression where evaluation is next about to take
place. A context is a term with a hole [ ] in place of one of its
subterms, as defined by the following grammar.

E ::= [ ] e | (λx.e) [ ] | let Γ, x = [ ], b in e | let Γ in [ ]

We write bv(E) to denote the variables bound in E and also visible
at its hole.

Rule NEST allows evaluation in a subexpression to count as
evaluation of the enclosing expression as a whole. Here the heap
environment is temporarily extended with the possible value bind-
ings in scope at the hole of the context. This is written as an opera-
tion Γ + E , whose result is an extended heap. Γ + E is defined by
pattern-matching over the different forms of E as follows.

Γ + (let Γ′, x = [ ], b in e) = Γ,Γ′

Γ + (let Γ′ in [ ]) = Γ,Γ′

Γ + ([ ] e) = Γ
Γ + ((λx.e) [ ]) = Γ

To avoid accidental name capture, Γ + E has a side-condition
requiring that bv(Γ)∩ bv(E) = ∅. It is however always possible to
meet this requirement by means of alpha-renaming.

Finally, rule MERGE lets a value binding in a subexpression
float outwards and merge with any bindings in the surrounding
context. Again we encapsulate the details in a separate operation,
writing E + Γ′ for the context that results when context E is
extended with value binding Γ′. This operation is also defined by
pattern-matching over E , assuming no overlap between Γ′ and the
bindings in E . That is, applicability of this operator is restricted to
the case where the sets bv(E)∩bv(Γ′) and fv(E)∩bv(Γ′) are both
empty.

(let Γ, x = [ ], b in e) + Γ′ = let Γ,Γ′, x = [ ], b in e
(let Γ in [ ]) + Γ′ = let Γ,Γ′ in [ ]

([ ] e) + Γ′ = let Γ′ in [ ] e
((λx.e) [ ]) + Γ′ = let Γ′ in (λx.e) [ ]

Again we note that the side conditions assumed can always be met
by alpha renaming the offending let-expression.

An evaluation context of the form let Γ′, x = [ ], b in e is note-
worthy because the variables x and bv(b) are in scope at the hole,
even though the values of the corresponding right-hand sides have
not yet been determined. When such a context extends the given
heap Γ in rule NEST, the side-condition on + enforces that Γ must
be free from any existing bindings for x and bv(b). Consequently,
rule VAR is prevented from use on these variables during evalua-
tion of the expression in the hole, as only the fully evaluated bind-
ing fragment of the context (Γ′ that is) ends up in the extended
heap. The implication of this scheme is that although a right-hand
side may very well contain forward references, it must be able to
reduce to a value without the need to treat the forward references
as anything but abstract constants. In contrast, backward references
(i.e., any references to bv(Γ′) from within the hole) may indeed be
looked up using rule VAR, should it be required.

Here are some examples of reductions defined by our evaluation
relation. For convenience we write Γ ` e1 → e2 → e3 as a short-



hand for Γ ` e1 → e2 ∧ Γ ` e2 → e3.

Γ, x = v ` (λy.y)x → (λy.y) v → v (1)
Γ, x = v ` (λy.y)x → x → v (2)

Γ ` (λy.y) (letx = v inx) → letx = v in (λy.y)x (3)
Γ, f = λx.f x ` fw → (λx.f x)w → f w → . . . (4)

Γ, g = λh.λx.h x ` let f = g f in f w → (5)
let f = (λh.λx.h x) f in f w →

let f = λx.f x in f w →
let f = λx.f x in (λx.f x)w →

. . .

Examples (1) and (2) illustrate the different paths evaluation can
take depending on whether a variable in argument position is re-
duced to its bound value or not. Example (1) shows the standard
call-by-value case (nested VAR followed by BETA), whereas ex-
ample (2) captures BETA reduction with a variable as argument
(followed by a VAR step).

In example (3) the binding for x appears in a local let-expression
that stands in the way for BETA reduction. This is where a MERGE
step becomes necessary in order to move the local value binding
outwards and expose the BETA redex.

Example (4) shows the beginning of the non-terminating reduc-
tion of a call to a trivially recursive function. The fact that it is non-
terminating is not the interesting point here, only the unfolding of
a typical recursive binding.

Example (5) essentially expresses the same non-terminating
reduction chain, only this time the recursive function is formulated
in terms of a non-recursive functional g, that is applied in the right-
hand side of a recursive binding f = g f . Since this is not a value
binding, the first steps of example (5) amount to reducing the right-
hand side g f to to the value λx.f x; that is, a VAR step followed
by a BETA. The derivation of the nested BETA step is illustrative,
so we write it out in detail:

Γ′ ` (λh.λx.h x) f → λx.f x

Γ′ ` E [(λh.λx.h x) f ] → E [λx.f x]

where E = (let f = [ ] in f w), Γ′ = (Γ, g = λh.λx.h x)

Note especially the underlying side-condition of heap extension,
which ensures that Γ′ cannot contain any prior bindings for f . This
requirement effectively turns f into a constant while its right-hand
side is being evaluated.

For contrast, we also show a couple of examples of recursive
bindings that result in stuck evaluation:

Γ ` x 9
Γ ` letx = x in e 9 (6)

Γ ` f 9
Γ ` f y 9

Γ ` let f = f y in e 9 (7)

Example (7) is actually equal to the stuck configuration that would
result if g in example (5) had been defined as λh.h y instead. As
before, it is the side-condition on heap extension that prohibits the
recursively bound variables from being captured by an outer scope.

Examples (1) and (2) above show an expression that may be
evaluated in two different ways and still yield the same result.
In general that is unfortunately not the case, however. Consider a
slight variation of the referenced examples:

Γ, x = v ` (λy.λz.y)x → (λy.λz.y) v → λz.v (8)
Γ, x = v ` (λy.λz.y)x → λz.x (9)

Γ ` e = e EQREFL

Γ ` e2 = e1

Γ ` e1 = e2
EQSYM

Γ ` e1 = e2 Γ ` e2 = e3

Γ ` e1 = e3
EQTRANS

Γ, x = v,Γ′ ` x = v EQVAR

Γ\x ` e1 = e2

Γ ` λx.e1 = λx.e2
EQLAM

Γ ` e1 = e2 Γ ` e′1 = e′2

Γ ` e1 e
′
1 = e2 e

′
2

EQAPP

Γ\bv(b1) ` b1 = b2 Γ\bv(b1) ` e1 = e2

Γ ` let b1 in e1 = let b2 in e2
EQLET1

Γ\bv(Γ1) ` Γ1 = Γ2 Γ,Γ1 ` e1 = e2

Γ ` let Γ1 in e1 = let Γ2 in e2
EQLET2

Γ ` 0 = 0 EQNULL

Γ ` e1 = e2 Γ ` b1 = b2
Γ ` (x=e1, b1) = (x=e2, b2)

EQBIND1

Γ ` v1 = v2 Γ, x = v1 ` b1 = b2

Γ ` (x=v1, b1) = (x=v2, b2)
EQBIND2

Figure 4. Referential equivalence

The resulting lambda expressions are not identical, yet they are
both values, so no further reductions are possible. This demon-
strates that our calculus is not confluent.

However, it is clear that the resulting values are still related –
in fact they only differ in subterms that are assumed equal in the
given value binding environment. This observation leads us to a
useful equivalence which we call referential equivalence; i.e., the
relation obtained when equality between a variable and its bound
value is lifted to an equivalence relation on expressions. Referential
equivalence is formalized in Figure 4.

We are now able to prove a slightly weaker confluence property,
which states that if an expression can evaluate in two different
directions, the results can always be made referentially equivalent
by evaluating them a bit further.

THEOREM 1 (Confluence up to referential equivalence). If

Γ ` e→ e1 and
Γ ` e→ e2

then there exist expressions e′1 and e′2 such that

Γ ` e1 →∗ e′1 and
Γ ` e2 →∗ e′2 and
Γ ` e′1 = e′2.

Proof By structural induction on e.

Furthermore, if two terms are referentially equivalent, contin-
ued evaluation cannot destroy that relationship. That is, referential
equivalence is preserved by evaluation. We call this property refer-
ential transparency, as it captures the ability to identify a variable



with its bound value without having to worry about the effect this
might have on the result of repeated evaluation.

THEOREM 2 (Referential transparency). If

Γ ` e1 → e′1 and
Γ ` e2 → e′2 and
Γ ` e1 = e2

then there exist expressions e′′1 and e′′2 such that

Γ ` e′1 →∗ e′′1 and
Γ ` e′2 →∗ e′′2 and
Γ ` e′′1 = e′′2 .

Proof By induction on the derivation of Γ ` e1 = e2, applying
Theorem 1 in the EQREFL case.

It should be noted that let-expressions are never fully eliminated
in this calculus; all that may happen is that local value bindings
get merged with the bindings of an enclosing let-expression in a
MERGE step. The result of successful evaluation is thus in general
a term of the form let Γ inw, irrespective of whetherw refers to the
variables bound in Γ or not. To let value bindings disappear from
a term when they are no longer needed, one could consider adding
garbage collection to the system; for example in the form of the
following evaluation rules:

Γ ` let 0 in e → e GC1

bv(Γ2) ∩ fv(Γ1,Γ3, e) = ∅
Γ ` let Γ1,Γ2,Γ3 in e → let Γ1,Γ3 in e GC2

However, doing so would necessarily introduce another source of
non-determinism in the calculus, and a need for a notion of equiva-
lence in the presence of garbage collection. While both interesting
and important, this is a topic that falls outside the scope of the cur-
rent paper.

4. Extensions
Algebraic datatypes, records, as well as integers and other primi-
tive types can easily be added to our system by simply extending
the grammars for expressions, values and evaluation contexts, and
adding the corresponding reduction axioms.

Here is a datatype extension supporting constructor applications
and case analysis, with k ranging over some enumerable set of
constructor names.

e ::= . . . | k e | case e of {ki xi → ei}
E ::= . . . | k [ ] | case [ ] of {ki xi → ei}
v ::= . . . | k w

Γ ` case kj w of {ki xi → ei} → [w/xj ]ej CASE

The notation [ ] should here be read as a vector of expressions of
which one is a hole. The actual order in which constructor argu-
ments are evaluated can of course be fixed, but it is not impor-
tant. Notice that constructor values k w accept weak values as argu-
ments; this is the technical detail that allows cyclic datatype values
to be constructed.

Record construction and selection is added in a similar way,
assuming an enumerable set of label identifiers ranged over by l.

e ::= . . . | {li = ei} | e.l
E ::= . . . | {li = [ ]i} | [ ].l
v ::= . . . | {li = wi}

Γ ` {li = wi}.lj → wj SEL

Once more we abuse notation and let {li = [ ]i} stand for a record
term with a hole in one of its labeled fields, and again it is the

presence of weak values in the syntax for record values that allow
cyclic record structures to be defined.

Primitive types and operations can be added as follows:

e ::= . . . | n | e⊕ e′
E ::= . . . | [ ]⊕ e | n⊕ [ ]
v ::= . . . | n

n1 + n2 = v

Γ ` n1 ⊕ n2 → v
PRIM

Here n ranges over all kinds of primitive values, whereas⊕ acts as
a syntactic placeholder for all possible binary operations on these,
with + being the corresponding semantic operation. The shown
inclusion of primitive values among the full values v makes them
boxed; i.e., storable in the heap. This is not always desirable in
a call-by-value language, so an alternative approach would be to
only include them among the weak values instead. That would of
course also rule out the possibility of defining primitive values
by recursion, but one can argue that such definitions would not
be particularly meaningful anyway, at least not for the common
numeric types.

A few more evaluation examples illustrate the construction and
use of cyclic data structures. To save space we use cyclic records
here, but the same patterns apply to algebraic datatypes as well. The
labels lh and lt can preferably be read as head and tail, respectively.

Γ, x = {lh =1, lt =x} ` x.lt.lh →
{lh =1, lt =x}.lt.lh → x.lh →
{lh =1, lt =x}.lh → 1 (10)

Γ, f = λy.λz.{lh =y, lt =z} ` letx = f 1x in e →∗

letx = {lh =1, lt =x} in e (11)

Γ ` letx = {lh =1, lt =y}, y = {lh =x.lh, lt =x} in e →∗

letx = {lh =1, lt =y}, y = {lh =1, lt =x} in e (12)

Γ ` letx = {lh =y.lh, lt =y}, y = {lh =2, lt =x} in e 9 (13)

Example (10) shows the unfolding of a cyclic data structure,
whereas example (11) illustrates how the right-hand side of a cyclic
binding can be abstracted out as a function. These reductions are
data structure analogs of examples (4) and (5) of the previous sec-
tion.

The reduction steps in example (12) demonstrate that field se-
lection from a recursively bound variable is acceptable as long as
the variable is a backward reference. An attempt to select from a
forward reference results in a stuck term, as shown in example (13).
The asymmetry between these two cases is further illustrated in
Figure 5, where thick arrows depict the kind of references that are
well-defined, and the dotted one marks the failed attempt to extract
a subterm from a yet undefined data structure.

A framework for circumventing this problem by rewriting the
failed programs will be discussed in Section 8.

5. Implementation
One of our foremost goals has been to be able to implement un-
restricted call-by-value recursion without imposing any additional
run-time penalties on either function calls or data structure ac-
cesses. That goal has immediately outruled many implementation
techniques for value recursion that have been suggested elsewhere,
such as representing recursively defined values via pointer indi-
rections (Boudol and Zimmer 2002), or making selective use of
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Figure 5. Mutually recursive data structures

lazy evaluation in the right-hand sides of recursive bindings (Syme
2006).

Our implementation is instead based upon the use of illegal
pointers as the run-time representation of recursive values that are
yet undefined, and a substitution mechanism that replaces those
illegal pointers with the corresponding valid heap addresses as they
become available. But before we go into detail about this technique,
let us set the scene by a brief description on how the various
other pieces of our operational semantics map onto a concrete
implementation.

A value binding Γ corresponds to a heap, either implemented as
statically initialized memory if that is possible, or dynamically cre-
ated and garbage collected in the general case. The bound variables
of a value binding correspond to heap addresses. Lambda-bound
variables do not map to pointers, though; they are instead realized
as locations within the stack frames and register files that lazily
implement the argument/parameter substitutions prescribed by the
BETA rule.

A VAR step is the equivalent of pointer dereferencing. The free-
dom to take or not take VAR steps before BETA reduction corre-
sponds to the freedom the implementor of a referentially transpar-
ent language has when it comes to passing function parameters by
value or by reference. Likewise, the presence of weak values in
the syntax for record and constructor values imply a corresponding
freedom to inline subterms of data structures. It should be noted,
though, that the possibility of cycles in heap-allocated data makes
it necessary to apply a more conservative inlining strategy than ea-
gerly inlining everywhere. Moreover, inlining of arguments and
subterms is only possible in cases where the compiler can prove
that a variable actually stands for real data and not some heap value
that is currently being constructed. The simplest strategy for inlin-
ing is thus to avoid it wherever a weak value is sufficient, and only
dereference pointers where the semantics actually demands a value.

Heap allocation is the run-time equivalent of evaluating the
bindings of a let-expression. The semantics actually suggests that
each let-expression defines its own local heap fragment, that tem-
porarily extends the global environment in rule NEST, and then gets
merged with heap fragments of any surrounding contexts by means
of MERGE steps. Uniqueness of the allocated pointers is implic-
itly guaranteed by the syntactic constraints on binding composition,
and facilitated by the ability to alpha-rename local bindings in case
of name clashes.

A real implementation will of course only maintain one global
heap, that offers allocation of memory blocks whose addresses are
unique by construction. The primary reason our semantics does not
model this global heap directly – by viewing evaluation as a rela-
tion between heap/expression pairs, for example – is that such an
approach would render the calculus less compositional. Moreover,

[[letx1 = e1, . . . , xn = en in en+1]] =

τ1 x1 = ξ1;
. . .
τn xn = ξn;
x1 = [[e1]]; subst(θ1, x1);
. . .
xn = [[en]]; subst(θn, x1, . . . , xn);
return [[en+1]];

where ξ1 . . . ξn are unique illegal addresses
and θi = [x1/ξ1, . . . , xi/ξi]

Figure 6. Implementing evaluation of recursive bindings

a call-by-value semantics would also have to make inner bindings
appear in the global heap before any outer bindings do, and thus
require rather involved scoping rules for heap/expression pairs in
order to capture the evaluation of nested let-bindings correctly.

Now, consider the let expression

letx1 = e1, . . . , xn = en in en+1

If it were not for the complications of recursion, this expression
could be represented in some C-like implementation language as
follows (using τi to stand for the run-time representation type of
xi, and the notation [[ei]] to denote the translated code for ei):

τ1 x1 = [[e1]];
. . .
τn xn = [[en]];
return [[en+1]];

However, because of recursion, each of the ei may refer to any of
the xi. Some of these references will be backward references (i.e.,
an ei referring to some xj with j < i), which are acceptable as they
stand. But we also need to be able to provide adequate values for
the variables that are not backward references. Here is where our
technique of using illegal addresses as initial pointer values comes
into play.

An illegal address can be passed around as an argument and
stored in data structures just like a regular pointer; although any
attempt to dereference it – i.e., to read from the memory it points
to – will result in a hardware-detected exception. We will use such
an exception as the run-time equivalent of getting stuck due to ill-
defined recursion. Of course, this is only going to be possible on
architectures with a sufficiently large address space to allow for
some addresses to be invalid (the odd ones, for example, or sim-
ply addresses outside the allocated virtual memory space), but we
will blatantly ignore the perspective of really resource-constrained
computing systems in the scope of this current paper.

Now, assuming that we can obtain a set of distinct illegal ad-
dresses ξ1, . . . , ξn, we propose to implement the evaluation of
generic let-expressions according to Figure 6.

That is, we first initialize each let-bound variable with its corre-
sponding illegal address before we compute the actual right-hand
values in sequence, with each computation step followed by a sub-
stitution operation that replaces the illegal addresses it finds with
the corresponding pointer into the heap.

The specification of function subst(θ, x1, . . . , xk) is to destruc-
tively apply substitution θ to the data structures reachable from
each of the roots x1 . . . xk. It must thus be able to traverse arbi-
trary heap-allocated structures and find all contained pointers, just
like a garbage collector does. Fortunately, because we are assum-
ing a garbage collected heap implementation, the infrastructure for
doing so (pointer/scalar distinction, node layout information) must
already be in place.



Dynamic state in the form of one visited bit per node must
also be available to subst, in order to ensure terminating traversals
of the possibly cyclic heap structures. However, because garbage-
collection activities may possibly interrupt recursive binding evalu-
ations – and thus intersperse the calls to subst – this bit must be dis-
tinct from any dynamic state used by the garbage collector proper.

Let-expressions may be semantically nested, thus subst might
encounter illegal addresses that actually belong to some other let-
expression already under evaluation (i.e., illegal addresses not in
the domain of the given θ). To make sure even the illegal addresses
are unique, a global counter pointing out the next free illegal ad-
dress should be used, that gets incremented and decremented in a
stack-like fashion.

In principle, the visited bits should also be reset after each call to
subst, in order to not confuse subsequent calls, or ongoing binding
evaluations on an outer level. That work can be limited to just
one final traversal of only those structures that are visited an odd
number of times by subst, though, if both the memory allocator
and subst are set up to toggle the logic interpretation of the visited
bit between each call.

Several optimizations to this implementation scheme are possi-
ble. Dependency analysis should of course be applied prior to com-
pilation to ensure that binding groups are really recursive and as
small as possible. Ordinary function bindings may be lambda-lifted
to the top level and need not participate in this kind of value recur-
sion. Bindings that are record- or datatype constructions only ref-
erenced from weak value contexts can be allocated before any ini-
tializations, thus removing the need to do any substitutions on their
addresses. And many subst calls can furthermore be safely skipped
if the calls are guided by the following statically computable con-
ditions:

skipsubsti = fragilei\substitutedi = ∅
fragilei =

S
{ fwrefsj ∩ uptoi |xj ∈ bwrefsi+1}

bwrefsi = fv(ei) ∩ {x1, . . . , xi−1}
fwrefsi = fv(ei) ∩ {xi, . . . , xn}
uptoi = {x1, . . . , xi}
substitutedi =

S
{uptoj | 1 ≤ j < i,¬skipsubstj}

The fragile variables at position i are the forward referencing vari-
ables potentially reachable from the next right-hand side to be eval-
uated (position i+ 1), but which according to the semantics can be
assumed to be fully evaluated at that point (i.e., should no longer
be represented by illegal pointers). If this set – which typically is
smaller than the complete set of variables defined up to point i – is
fully contained in the set of variables already updated by previous
subst calls, the call at point i can be safely skipped.

It can be noted that purity of expression evaluation plays an im-
portant role in the described implementation scheme. If evaluation
of right-hand sides could cause arbitrary mutations, it would not in
general be possible to limit the search for illegal addresses to the
structures defined in the current recursive binding – in the worst
case the whole live heap would have to be scanned by subst, just
like a full garbage collection.

It should furthermore be observed that the concurrent execution
of threads, that each may evaluate recursive bindings according to
our scheme, offers no new complications, even though they might
be sharing the same heap. This is because any data sharing between
threads in a purely functional language must be handled by the
primitives of a monadic extension to the language, and the eval-
uation of our recursive bindings involves just pure expressions. We
might even use separate instances of the ”unique-illegal-address-
pointer” for each thread, simply because any two threads will only
be able to exchange cyclic data once their bindings have been fully
evaluated.

6. Performance
Giving quantitative performance measurements of our technique
using real programs as examples is hard, because our proposal is
fundamentally about extending the set of programs that can be com-
piled under call-by-value. In short, common benchmarks that em-
phasize the performance of value recursion techniques are simply
not present. Moreover, even if both benchmarks and alternative im-
plementations were readily available, isolating the impact of other
code generation aspects would still be a daunting task, simply be-
cause the whole point of supporting unrestricted recursion is to al-
low cyclic memory allocation to be intertwined with general com-
putations.

What we can do at this point, however, is to provide a qualitative
assessment of the performance of our implementation technique.
We can note the following:

• The use of illegal pointers and computer hardware to trap ill-
founded recursion allows data inspection to be compiled with-
out any additional cost whatsoever compared to implementa-
tions that offer no value recursion support. In particular, the C
code for a field selection x.l can be x->l, a case expression
casex of . . . can be compiled as switch (x->tag) ..., and
the translation of a function call x arg can be (*x)(arg). This
holds irrespective of whether the compiled code may be invoked
during the initialization of a recursive binding or not.

• A subst call traverses the given roots in much the same way as
the scan phase (or mark phase) of a garbage collector does. The
cost of those two run-time operations should thus be closely
comparable. Furthermore, assuming the skipsubst optimiza-
tions described in the previous section, subst will only be called
once for every cycle in the dependency graph between let-
bound variables. Specifically, no cycles implies no additional
cost because of subst.

• The cost for creating cyclic data – i.e., the cost for subst calls –
must be added to the cost for accessing the cyclic data later
on. Because of our zero cost accesses, our implementation
technique can always be shown to outperform techniques based
on indirections etc, simply by requiring the data to be accessed
a sufficiently large number of times. And in our experience,
cyclic data structures are created to be used extensively.

• The cost for a subst call should also be put against the number of
times a cyclic data structure is expected to be garbage-collected.
That is, each time a cyclic structure survives a garbage collec-
tion (of the whole heap), the relative cost of one additional scan
of that structure (i.e., the cost of an initial subst call) will drop
towards zero.

The above assessment is based on two successful implementa-
tions of our ideas, of which one is a model compiler to a small
FAM-like abstract machine (Cardelli 1984), and the other one be-
ing our full-scale compiler for the Timber language (Nordlander
et al. 2008). Timber is a strict purely functional language that al-
lows programs to be structured as graphs of concurrent reactive
objects that encapsulate monadic state, and our original motivation
for the work in this paper was actually to make it possible to define
these constant structures in a declarative manner, rather than having
to resort to imperative methods where mutation is not desired.

However, space does not permit us to include any elaboration
on the Timber language in this paper. In the next section we will
instead study the expressiveness of our proposal in the terms of an
application area more well-known to Haskell programmers: parsing
combinators.



7. A combinator parser example
Combinator parsers are widely popular in Haskell, but not so much
in strict functional languages.

In particular, parsing combinators that are designed using ap-
plicative functors (McBride and Paterson 2008) allows us to write
Haskell parsers in a very concise style. Can this style be carried
over to a call-by-value language extended according to our pro-
posal? In this section we will see that the answer is yes.

In the following example, we will use the type P a to denote
parsers of a; i.e., parsers that return semantic values of type a upon
a successful parse. The key combinators are

• accept :: [Char]→ P Char: accepts one character from a given
set,

• return :: a→ P a: succeeds without consuming any input,
• ($$) :: P (a → b) → P a → P b: sequentially composes two

parsers, and
• ($+) :: P a → P a → P a: expresses an alternative of two

parsers.

Using these combinators, and the derived combinator parens for
building parenthesizing parsers, we can express the parser alluded
to in the introduction section as follows, complete with semantic
actions for building an abstract syntax tree:

data Exp = EOp Var Op Exp
| EVar

data Var = Var Char

data Op = Op Char

pExp = return EOp $$ pVar $$ pOp $$ pExp
$+ return EVar $$ pVar
$+ parens pExp

pVar = return Var $$ accept [ ’A’ .. ’z’]
pOp = return Op $$ accept [ ’+’, ’-’, ’*’, ’/’]

Note that pExp is a recursive definition that is not on value form;
hence the definition would be invalid in both OCaml and SML.
One could try to work around this limitation by explicitly parame-
terizing every parser over the input token stream, thus turning every
parser into a function value. However, this solution would break the
abstraction barrier provided by P. Moreover, there are useful parser
implementations that are not functions over the input token stream.

One prominent example of such parsers is Swierstra’s and
Duponcheel’s self-optimizing parsing combinators (Swierstra and
Duponcheel 1996). The structure of these parsers typically includes
a static part that can be computed before applying the parser on any
input, just by analyzing the grammar. The representation of a self-
optimizing parser must therefore be a data structure; in general a
recursive data structure not unlike the NFAs that were discussed in
Section 2.

Here is an implementation of the abstract parser type P a that
supports a simple form of self-optimization.

type P a = (Maybe a, [(Char, String→ (String,Maybe a))])

The first component of such a parser is of the form Just a if the
parser can accept the empty string, and the second component is
a mapping from the first characters of the non-empty strings the
parser can accept to functions for parsing the rest of the input.
These functions return unconsumed input and a semantic value
upon success. Both the empty-string case and the mapping for the
non-empty case can be computed statically, before applying the
parser to any input.

It should now be clear how we can implement return and accept:

return a = (Just a, [])
accept cs = (Nothing, [(c, λs.(s, Just c)) | c← cs])

The combinators for sequential and parallel composition are a little
more involved, so we just outline the sequential case, which is the
interesting one from the point of recursive values. The reason can
be seen in the definition of pExp above: here we have a variable
defined in terms of itself (as pExp also appears as the second
argument to $$). This means that when we implement $$ we have
to be a little careful about what we do with our second argument.
Here is the suggested implementation:

fp $$ ap = (empty, nonempty) where
empty = case fst fp of

Nothing→ Nothing
Just f → case fst ap of

Nothing→ Nothing
Just a→ Just (f a)

nonempty = combineSeq fp ap

The termination subtleties are reflected in the Just branch in the
definition of empty: we must only inspect argument ap if the first
parser can accept the empty string! The nonempty case is handled
by the auxiliary combineSeq, in which similar considerations apply.

As an illustration to the issues that must be mastered even
when writing combinator parsers in Haskell, consider the following
example:

p = return (1:) $$ p
What this definition actually says is ”in order to parse a p, parse
a p, and then prepend 1 to the result”. That is, p is a parser that
will always diverge, but we accept this behavior even in Haskell
because a top-down parser implementing a left-recursive grammar
is not expected to work anyway.

However, the observant Haskell programmer might have no-
ticed by now that the local definition of empty above could have
been written more concisely as

empty = fst fp $$Maybe fst ap

where

$$Maybe :: Maybe (a→ b)→ Maybe a→ Maybe b

is the applicative functor for the Maybe type. Unfortunately, this
shortened version of empty now always forces inspection of the
second argument to $$, since function arguments are evaluated
eagerly in a strict language. That is, our definition of empty has
become too strict to be used in $$, which in turn has become too
strict to be used in even right-recursive parsers!

The fundamental programming difficulty encountered here can-
not be ignored by any user of a call-by-value language. Call-by-
value evaluation allows abstraction over values only, not general
computations, so the occasional need to circumvent this limitation
by means of less than ideal encodings should come as no surprise.
Avoiding abstraction by inlining a function definition at its call site
is of course a very natural solution, as it effectively delays the com-
putation of problematic argument expressions in a call-by-name
like manner (this is in fact exactly how we constructed our first
definition of empty above).

However, from the point of view of a trained call-by-value pro-
grammer, the problematic computations to look out for when ap-
plying abstractions are those that might fail to terminate, or may
cause exceptions like division-by-zero – i.e., expressions with un-
desirable but still well-known computational effects. What our shift
into the realm of unrestricted call-by-value recursion is causing is
actually a new form of computations that might be at odds with
abstraction: plain inspection of data denoted by innocent-looking



variables. It is therefore reasonable to ask to what extent program-
mers in such an extended language should be expected to take
the possibility of ill-founded recursion into account. For example,
should the implementor of a non-recursive function really have to
foresee all possible uses for it inside future recursive bindings?

A Haskell programmer would probably answer this question
negatively, but at the same time implicitly argue that lazy evalu-
ation is the logical step forward. For an ML programer, to whom
the predicatibity and efficiency of call-by-value evaluation is a fun-
damental requirement, the answer must become less clear-cut. Ide-
ally, a type system or some other static analysis method should
be available to catch all uses of ill-founded recursion at compile-
time (and as should be evident from the discussion on left-recursive
grammars above, such a tool would be of benefit in a Haskell con-
text as well). But even so, it seems like the particular combination
of unrestricted recursion and call-by-value evaluation has its own
ramifications, and a better understanding of both the sources of ill-
foundedness as well as ways to avoid it would be of great practical
importance.

In the next section we will present one investigation of this
topic.

8. Delayed selection
In the basic calculus extended with records and algebraic datatypes,
it is only when a variable appears as the right-hand side of a
binding, or as the head of an application, field selection, or case
analysis expression, that a VAR step is absolutely necessary in
order to avoid a stuck evaluation state. Consequently, an expression
that is stuck because of an attempt to dereference a yet undefined
variable must be a let-expression encapsulating a term of one of
these forms.

If we ignore the first alternative for a moment, we can succinctly
capture the form of a stuck expression as

let Γ, x = E∗[S[y]], b in e

where E∗ means the composition of zero or more evaluation con-
texts, y ∈ {x} ∪ bv(b), and S is a selection context defined as

S ::= [ ] e | case [ ] of {ki xi → ei} | [ ].l

A concrete example of a stuck expression can be found in
Section 4, example (13):

letx = {lh = y.lh, lt =y}, y = {lh =2, lt =x} in e

Here x can not be evaluated further because the sub-expression
y.lh needs to reduce to a value and y is a forward reference. Note
especially that y.lh matches the third alternative in the definition
of S above, and that the E∗ instance in this case is just the simple
evaluation context {lh = [ ], lt = y}.

Now, an interesting aspect about terms of the above form is
that they can always be rewritten so that the immediate reason
behind the stuck condition is removed! To see this, notice that the
following example actually works, even though it is equal to the
previous one except for the introduction of an intermediate binding.

Γ ` letx = {lh = z, lt =y}, y = {lh =2, lt =x}, z = y.lh in e →∗

letx = {lh =z, lt =y}, y = {lh =2, lt =x}, z = 2 in e
This expression is not stuck anymore because the previous selection
expression y.lh has been replaced with the variable z, which in turn
has turned the right-hand side of x into a value. And since y is a
value as well, the evaluator can go on and reduce the old selection
expression y.lh – that is, the right-hand of z – to 2.

What we see here is the beginning of a systematic approach to
resolving problematic recursive dependencies: when selection from
a forward reference is required, put the selection computation in a
binding that is even more forward, and move on with a reference

x y z

Figure 7. Delayed selection in mutually recursive data structures

to that binding instead. Figure 7 illustrates the general form of
the resulting cyclic data structure. Note especially how this graph
relates to the one in Figure 5.

We can go further and formalize the idea above as a hypothetical
rewrite rule, and we will see that it can be used to transform
programs that otherwise would be stuck.

y ∈ ({x} ∪ bv(b))\ bv(E∗) z fresh

let Γ, x = E∗[S[y]], b in e 
let Γ, x = E∗[z], b, z = S[y] in e

DELAY1

The remaining form of a stuck expression – a forward reference
appearing directly as the right-hand side of a let-binding – can also
be addressed by means of a hypthetical rewrite rule. We first define
the context of a right-hand side in focus as follows:

R ::= [ ] | E∗[let Γ, x = [ ], b in e]

The suggested rewrite step can then be formulated as a simple
reordering of bindings.

y ∈ ({x} ∪ bv(b))\ bv(R)

let Γ, x = R[y], b in e let Γ, b, x = R[y] in e
DELAY2

We call these rewrite rules DELAY1 and DELAY2, because what
they achieve is actually a delay of the problematic dereferencing of
a yet undefined variable. In fact, DELAY1 and DELAY2 capture
all forms of expressions in our calculus that are stuck due to
ill-founded definitions. They do not, however, offer a means to
eliminate ill-founded recursion altogether, as rule DELAY2 might
actually introduce one problematic forward reference for each one
it removes. In particular, the case where y is identical to x is
matched by rule DELAY2, but obviously not improved by it.

Moreover, it should be noted that these rewrite rules only apply
to terms that are stuck as they are, not to terms that might evaluate
into a stuck state. To some extent this could be addressed by just
generalizing the rules a bit, for example by replacing the Γ com-
ponent in both rules with some unevaluated binding b′. In general,
though, the effects of evaluation cannot be captured by simple syn-
tactic means, primarily due to the drastic effect evaluation steps
BETA and VAR might have on the structure of terms. For example,
recall the parser combinator from Section 7:

let pExp = . . . $$ pExp in . . .

This term is obviously not of a form matched by any of the delay
rules above, although we know that if we define $$ using the
applicative functor $$Maybe internally, evaluation of the recursive
binding of pExp will get stuck.



However, after a few evaluation steps, the term will indeed be
of the form expected by DELAY1:

let pExp = let empty = . . . $$Maybe
(case pExp of (x, )→ x)

nonempty = . . .
in (empty, nonempty)

in . . .

Note especially that evaluation is now stuck because of the at-
tempted case analysis of pExp, and that this sub-expression matches
the second form of S contexts previously defined. Had only the
pExp combinator looked like this originally, we could have rewrit-
ten it using rule DELAY1 and obtained the following unproblematic
term:

let pExp = let empty = . . . $$Maybe z
nonempty = . . .

in (empty, nonempty)
z = case pExp of (x, )→ x

in . . .

So what this example really illustrates is that in order to be as
applicable as possible, the hypothetical rewrite rules we have de-
fined should ideally be promoted to fully-fledged evaluation rules.
Such a move would of course alter the semantics of our calculus in
a non-trivial way, leading to a less predictable evaluation order, but
also to greater flexibility in the use of abstractions inside recursive
bindings. Moreover, the ability to execute the DELAY rules dynam-
ically would render our calculus insensitive to the order in which
bindings appear inside let-expressions, in a way quite reminiscent
of lazy evaluation.

Still, extending our calculus with the DELAY rules would not
mean reinventing the notion of lazy evaluation on the whole. All
function arguments would still be evaluated eventually, thus keep-
ing infinite computations and functions like enumFrom discussed
in Section 2 as incompatible with the extended calculus as with any
call-by-value regime. And variables would still denote just values,
not arbitrary computations, thereby preserving the predictability of
expression evaluation in all contexts except for the initialization of
recursive bindings.

Even so, implementing the DELAY rules efficiently in a com-
piled setting seems to pose some very specific challenges not cov-
ered by the techniques we have developed in this paper. We there-
fore believe that a calculus with dynamic delay rules constitutes a
unique and interesting point of its own in the design space between
call-by-value and lazy evaluation. Although we do have an imple-
mentation completed even for the extended calculus, we are not in
a position to report on its properties within the scope of the current
work. Instead we hope to be able to do so within the near future.

9. Related work
The earliest example of call-by-value recursion with relaxed right-
hand sides is Scheme (Kelsey et al. 1998). Scheme’s letrec con-
struct is implemented using reference cells initialized to a void
value, that get implicitly dereferenced wherever they occur in a
context that is not a lambda abstraction. This means that cyclic data
bindings like x = k (λy.x) are accepted, whereas a definition like
x = k x leads to a run-time error because x must be dereferenced
during evaluation of the right-hand side.

Boudol and Zimmer describe an abstract machine for a call-
by-value calculus with letrec, that also uses reference cells for
tying the recursive knot, but where the dereferencing operation is
postponed until the value of a variable is actually needed (Boudol
and Zimmer 2002). Their calculus thus allows unrestricted use
of function calls in the right-hand sides of recursive definitions,
but the price is an extra level of indirection for variable accesses.

Our implementation method achieves the same effect without the
indirections, by using illegal addresses instead of empty reference
cells. The data traversals we use for tying the knot are obviously
more costly than simply updating reference cells, but it is a once-
only cost compared to the recurring burden of having to access
variables through indirections.

The work closest in spirit to ours is the compilation method for
extended recursion developed by Hirschowitz et al. and partially
made available in the Objective Caml compiler (OCaml). The basis
of their work is also a call-by-value calculus where evaluated re-
cursive let-bindings take on the role of a dynamic heap, where sub-
sequent bindings in a recursive group can see the result of previous
ones, and where variables count as values (although not distinc-
tively weak ones) (Hirschowitz et al. 2003). Like us they are also
able to avoid indirections. Our semantics has a considerably sim-
pler formulation and comes with a referential transparency prop-
erty, although they provide a formal correctness proof of their trans-
lation into an intermediate language with explicit pointers. How-
ever, their implementation method for recursive bindings is signif-
icantly different from ours. In principle, Hirschowitz et al. resolve
forward pointers by allocating the topmost node of the correspond-
ing right-hand sides before any bindings are evaluated. When the
real value of such a binding eventually becomes available, its top-
most node is copied over to the pre-allocated block, which then
takes over the role of the ”real” value of the binding. Because
run-time accesses to an uninitialized dummy block cannot be dis-
tinguished from valid ones, compile-time restrictions must be im-
posed on the right-hand sides of bindings with forward references
to them; in (Hirschowitz et al. 2003) this is assumed to be taken care
of by a static analysis similar to the one reported in (Hirschowitz
and Leroy 2002). The pre-allocation method also requires the sizes
of objects to be statically known, which can be a severe restriction
if one intends to define dynamic arrays, records coerced by sub-
typing, or function closures in recursive bindings. The system we
propose shares none of these limitations. On the other hand, copy-
ing of the topmost node only is likely to be faster in general than the
substitution traversals we use, although it is certainly also possible
to imagine cases where the opposite is true.

Syme presents an approach to initializing relaxed recursive
bindings in ML (Syme 2006), that essentially amounts to delaying
the right-hand sides and forcing the left-hand variables wherever
they appear, relying on lambda abstractions to break what would
otherwise be ill-founded cyclic dependies. Thus, Syme’s system
does not directly support recursive data structures as in x = k x,
nor does it allow abstraction over yet unevaluated names as in
x = f x (in both these cases, Syme’s technique will result in ea-
ger evaluation of the right-hand sides before x is bound). What it
does provide, however, is order independence between bindings in
a recursive group, which Syme puts to good use in his exposition
of programming patterns that become enabled just because of the
ability to do computations in the right-hand sides. We do not have
independence of binding order in our basic calculus, although our
tentative extension with the DELAY rules appears to achieve a sim-
ilar effect. A thorough comparison between this extension and the
delaying and forcing primitives of ML is indeed an important topic
for future work.

Several researchers have proposed type-based approaches for
capturing ill-founded recursion at compile-time. Boudol and Zim-
mer’s calculus comes with a type system that decorates the func-
tion type with a boolean flag indicating whether the function body
is strict in its argument (Boudol and Zimmer 2002). Hirschowitz
and Leroy provide a slightly generalized typing logic, where the
free variables of a term are associated with integers indicating the
number of lambda abstractions preventing the value of the variable
from being demanded (Hirschowitz and Leroy 2002). Dreyer goes



even further and annotates the function type with a set of names that
must be fully evaluated if a call to a function of that type is going
to succeed (Dreyer 2004). In work more specifically aimed at im-
perative programming in object-oriented languages, Fähndrich and
Xia introduce a subtyping system where the earliest time a vari-
able can be dereferenced is captured in its type (Fahndrich and Xia
2007). These systems are all able to guarantee the absence of ill-
founded recursion at run-time, using varying degrees of conserva-
tive approximation. Our work does not yet offer any static means
for outruling ill-founded recursion, but it could quite possibly be
extended with the type systems proposed in any of the cited works.

Our operational semantics for call-by-value recursion is influ-
enced by the work by Ariola and Blom on various lambda cal-
culi with a letrec construct (Ariola and Blom 2002), especially in
the use of variables as values and the treatment of value bindings
floating outwards in rule MERGE. The system defined by Ariola
and Blom is much more complex than our semantics, primarily be-
cause their interest is to study general equational theories of cyclic
lambda terms, and partly because they are essentially working in
a generic framework which they instantiate to different kinds of
lambda calculi (of which the call-by-value calculus is just one ex-
ample). Our confluence result is probably related to their conflu-
ence up to information content, but we have not yet been able to
work out any details.

The technique we use to prohibit dereferencing of variables that
are in the process of being defined is a loan from Launchbury’s
seminal paper on natural semantics for lazy evaluation (Launchbury
1993). That paper also provided the idea to treat lambda- and let-
bound variables in fundamentally different ways in the reduction
axioms. We believe that a closer comparison between our respec-
tive systems is likely to reveal many useful insights, especially re-
garding the system obtained when we introduced the DELAY rules
in Section 8.

10. Conclusion and further work
In this paper we have introduced an operational semantics for a
call-by-value language that allows recursive bindings to (1) define
non-functional data and (2) freely use functional computations in
their right-hand sides. We have shown that the semantics is ref-
erentially transparent and that it has an efficient implementation,
where recursively bound variables in the process of being defined
are represented as illegal addresses. The key to efficient data ac-
cess lies in our reliance on the computer hardware to detect eager
dereferencing of such data. Our implementation technique implies
taking the cost of recursive knot-tying at definition time instead, by
making a substitution traversal of the created memory structures.

We have shown that Haskell-style programming which cru-
cially depends on unrestricted recursion can be straightforwardly
expressed under call-by-value, in particular an implementation of a
non-trivial combinator library for parsing. We have also identified
the need for program rewrites that delays overly eager selections in
some special cases, and the generality of our proposed solution has
pointed us towards a tentative extension to our semantics that would
achieve the effect of these rewrites automatically at run-time.

Avenues for further work include exploiting the implications of
the DELAY extension in more depth, especially its implementation
consequences and its relation to full-blown lazy evaluation. We
would also like to study the denotational aspects of call-by-value
recursion in more depth, with the hope of finding a succinct model
of the infinite, yet highly regular forms of data our language allows
us to compute.
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