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Abstract—In this paper, an initial condition of strictly causal ra-
tional interpolative sigma–delta modulators (SDMs) is estimated
based on quantizer output bit streams and an input signal. A set
of initial conditions generating bounded trajectories is character-
ized. It is found that a set of initial conditions generating bounded
trajectories but not necessarily corresponding to quantizer output
bit streams is convex. Also, it is found that a set of initial conditions
corresponding to quantizer output bit streams but not necessarily
generating bounded trajectories is convex too. Moreover, it is found
that an initial condition both corresponding to quantizer output bit
streams and generating bounded trajectories is uniquely defined if
the loop filter is unstable (Here, an unstable loop filter refers to that
with at least one of its poles being strictly outside the unit circle). To
estimate that unique initial condition, a projection onto convex set
approach is employed. Numerical computer simulations show that
the employed method can estimate the initial condition effectively.

Index Terms—Admissibility, projection onto convex sets,
sigma–delta modulators (SDMs), stability.

I. INTRODUCTION

SINCE some interpolative sigma–delta modulators (SDMs)
consist of an unstable loop filter [1], [7], [8] and the

input–output relationship of a quantizer is characterized by a
discontinuous nonlinear function, a feedback connection of the
unstable loop filter and the quantizer would cause the dynamics
of these interpolative SDMs very complicated. Chaotic and
fractal behaviors may occur [4], [6], [12], [13]. As chaotic
behaviors are highly dependent on an initial condition, the
dynamics of an interpolative SDM would be very different if
there is a very small change in the initial condition. When there
is a sudden change of a supply voltage or a mechanical shaking,
the content in a register containing the initial condition of an
interpolative SDM may be corrupted. Since signals in inter-
polative SDMs are constructed based on the initial condition
and an input signal, in this case, the constructed signal will be
very different from the actual one and a serious construction
error would be encountered.

In order to minimize the construction error, it is necessary
to estimate the initial condition of an interpolative SDM based
on quantizer output bit streams and an input signal. However,
some fundamental questions have not been explored yet. For
examples, for a certain type of interpolative SDMs, such as in-
terpolative SDMs with unstable loop filter, does there exist a
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unique initial condition both corresponding to quantizer output
bit streams and generating bounded trajectories? If yes, how can
we find an initial condition which is closed to that unique initial
condition?

One of the most common methods for estimating the initial
condition of an interpolative SDM is to formulate the problem
as an optimization problem. In [7], constraints were imposed so
that the estimated initial condition is guaranteed to correspond
to quantizer output bit streams. However, the obtained solution
does not guarantee to generate bounded trajectories because sta-
bility condition was not exploited in the optimization problem in
[7]. The unbounded state responses shown in Section V of this
paper illustrate this phenomenon. In this paper, necessary and
sufficient bounded conditions on state variables are character-
ized and constraints based on these bounded conditions are im-
posed so that it is guaranteed to generate bounded trajectories.

The outline of this paper is as follows. In Section II, notations
used throughout this paper are introduced. In Section III, analyt-
ical results are presented. This paper is to estimate an initial con-
dition of strictly causal rational interpolative SDMs. To address
this problem, projection onto convex set approach is employed.
In order to apply this approach, two convex sets are needed to be
characterized. The set of initial conditions generating bounded
trajectories is characterized by Theorem 1 and the set of ini-
tial conditions corresponding to the given quantizer output bit
streams were given in [7]. It is shown in Theorems 3 and 4 that
these two sets are convex. Hence, the projection onto convex set
approach can be applied for estimating the initial condition. Be-
sides, it is shown in Theorem 2 that the initial condition both
corresponding to quantizer output bit streams and generating
bounded trajectories is uniquely defined if the loop filter is un-
stable, so it is guaranteed that the solution found by the proposed
algorithm based on the projection onto convex set approach is
the unique solution of the problem. In Section IV, the details of
the proposed algorithm based on the projection onto convex set
approach are discussed. In Section V, numerical computer sim-
ulation results are presented to illustrate the effectiveness of the
method. Finally, conclusions are summarized in Section VI.

II. NOTATIONS

The block diagram of an interpolative SDM is shown in
Fig. 1, in which the loop filter and the quantizer of the inter-
polative SDM are denoted as and , respectively.
Since an interpolative SDM with a single-input single-output
strictly causal rational loop filter and a single bit quantizer
having the decision boundary at zero are widely employed in
industries, an interpolative SDM with this type of loop filter
and quantizer is considered in this paper. The state space
matrices of the loop filter are denoted as , , and . Due
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Fig. 1. Block diagram of an interpolative SDM.

to the negative feedback configuration and the strictly causal
condition, . Denote an input of the interpolative SDM,
an output of the loop filter, the quantizer output bit streams
and the state vector of the loop filter as , , and

, respectively. Then the dynamics of the interpolative
SDM can be characterized by the following standard state
space equations:

(1a)

and

(1b)

where

(1c)

in which

(1d)

III. ANALYTICAL RESULTS

A. Necessary and Sufficient Bounded Conditions of State
Variables

In some circuits and systems, such as audio systems [3], some
eigenvalues of are strictly outside the unit circle. Hence, state
variables of these interpolative SDMs may not be bounded for
some bounded inputs and initial conditions. To guarantee that
the state variables are bounded, define as the set of initial
conditions such that is bounded . Denote
and as the -transforms of and , respectively.

Theorem 1: if and only if there exists a signal with
its -transform defined by

(2)

which is analytical at .
Proof: Since

for

is bounded if and only if the region of con-
vergence of each element in

includes the point .
Hence, the necessary and sufficient bounded conditions for any
bounded inputs become the existence of an initial condition
such that is analytical at . This completes the proof.

It is worth noting that is not the transfer function of the
interpolative SDMs because is nonlinear with respect to

and transfer functions usually refer to linear time-invariant
systems only. The nonlinearity of with respect to is
due to the term because .

The set of initial conditions generating bounded trajecto-
ries depends on the nonlinearity of the interpolative SDMs.
Although input, initial condition and system function of any
systems are independent (that is, for any linear or nonlinear
systems, we can have arbitrary input and initial condition.),
based on given input, initial condition and system function,
system characteristics (such as the boundedness of both state
responses and output response) are uniquely defined and these
characteristics depend on input, initial condition and system
function.

The importance of Theorem 1 is on the characterization of the
set of initial conditions generating bounded trajectories for any
bounded inputs.

Corollary 1: If contains some unstable eigenvalues,
then is analytical at if and only if

contains unstable zeros which cancel ex-
actly the unstable poles of and
has no unstable pole.

Proof: This result can be trivially derived from Theorem
1. Hence, the proof is omitted.

Corollary 1 is important as we have discussed before that
some eigenvalues of of some circuits and systems are strictly
outside the unit circle.

B. Uniqueness of an Initial Condition Corresponding to Given
Stable Admissible Quantizer Output Bit Streams

Denote an infinite length binary sequence with each element
in the sequence being either 1 or as .
Define and as the dimension
of the state vectors. Denote the mapping from to as
such that (1a) –(1d) are satisfied, that is . The set
of quantizer output bit streams is said to be admissible if
in the set of quantizer output bit streams, such
that . It is worth noting that may not be ad-
missible because it may exist such that
satisfying . Denote the admissible set of quan-
tizer output bit streams as , that is
(1a) –(1d) are satisfied.}. Define a mapping from to as

such that (1a)–(1d) are satisfied. Obviously, is surjective,
but it may not be injective. Even though it is injective, the cor-
responding trajectories may not be bounded. Denote the set of
stable admissible quantizer output bit streams as , that is

(1a) –(1d) are satisfied.}. Denote a map-
ping from to as such that (1a) –(1d) are satisfied.

Theorem 2: If is unstable, then is bijective.
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Proof: Suppose , and
such that , then

for

which implies that for
. Since , , and are bounded.

If is unstable, since , then will
be unbounded, which is a contradiction because a subtraction of
any two bounded sequences must be bounded. Hence,

and is injective. Since is the stable admissible
set of quantizer output bit streams, is surjective. Hence,
is bijective and this completes the proof.

The novelty of Theorem 2 is as follows. The initial con-
ditions generating bounded trajectories but not necessarily
corresponding to quantizer output bit streams are not uniquely
defined because if , then . Similarly,
the initial conditions corresponding to quantizer output bit
streams but not necessarily generating bounded trajectories
are not uniquely defined too. However, the initial condition
both corresponding to given quantizer output bit streams and
generating bounded trajectories is uniquely defined when the
loop filter is unstable.

Since Theorem 2 reveals that the initial condition both cor-
responding to given quantizer output bit streams and generating
bounded trajectories is uniquely defined when is unstable, the
importance of Theorem 2 is that if is unstable and an initial
condition satisfying these two properties is found, then that ini-
tial condition is the unique solution. Moreover, Theorem 2 ex-
plains why the initial condition is sensitive to the state responses
of the interpolative SDM. This result is useful for the further in-
vestigation of the occurrence of chaotic behaviors.

Corollary 2: If is unstable, and such
that is periodic with period , then .

Proof: If , then . Since is
unstable, is bijective. As is periodic with period , this
implies that . This completes the proof.

Although it was reported in [10] that periodicity of quantizer
output bit streams implies periodicity of state vectors, the anal-
ysis in [10] is based on the study of interpolative SDMs with DC
poles and without DC poles. For interpolative SDMs without
DC poles, it assumes that the null space of is .
In fact, this assumption is not true if is marginally stable or
strictly stable [1].

When is unstable, although Theorem 2 provides informa-
tion on the uniqueness of an initial condition both corresponding
to given quantizer output bit streams and generating bounded
trajectories, the method for finding that initial condition is not
addressed yet. In order to find that initial condition, these two
properties are considered separately. That is, the set of initial
conditions corresponding to given quantizer output bit streams
but not necessarily generating bounded trajectories, and the set

of initial conditions generating bounded trajectories but not nec-
essarily corresponding to given quantizer output bit streams, are
considered separately.

C. Convexity of Admissible Set of Initial Conditions

The admissible condition for quantizer output bit streams
were characterized in [7]. Here is a summary. For a given

, since if and if
, this implies that ,

that is, and

(3a)
for . For given quantizer output bit streams, denote the set
of initial conditions that satisfies (3a) as , that is
such that

...

... (3b)

for .
Theorem 3: is convex.

Proof: If , , then ,
, ,

and

for . Hence, and

for . This implies that and
it completes the proof.

It is worth noting that although and is bijective
when is unstable, there may exist such that

because .
The importance of Theorem 3 is to allow the estimation of an

initial condition based on projection onto convex set approach,
which will be discussed in Section IV.

D. Convexity of the Bounded Set of Initial Conditions

For any given , define such that
is

analytical at . It is worth noting that there may exist
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because . In other words, may
not satisfy (1a) –(1d).

Theorem 4: is convex.
Proof: For any given , suppose , ,

then there exist two signals with -transform and
denoted as

and

such that they are analytical at . Since ,

and is analytical at , this implies
that . This completes the proof.

Theorem 4 is useful because we can estimate via a pro-
jection onto convex set approach, which will be discussed in
Section IV.

IV. ALGORITHM FOR ESTIMATING AN INITIAL CONDITION

Projection onto convex set approach is widely used in the con-
struction of signals [2], [5], [9]. To estimate an initial condition,
a projection onto convex set approach is employed. The algo-
rithm is as follows:

Algorithm

Step 1: Initialize and .

Step 2: Solve the following optimization problem:

(4a)

This optimization problem is equivalent to the following
optimization problem:

(4b)

subject to

(4c)

By Corollary 1, if has unstable modes, denoted as for
, then .

Hence, the constraint of this optimization problem becomes

for
(4d)

and

(4e)

This problem is a standard quadratic programming problem
with linear matrix inequality (LMI) constraints and a linear

continuous constraint. This problem can be solved via the
dual parameterization method [8] and it has a unique solution.
Denote the solution as .

Step 3: Solve the following optimization problem:

(4f)

This optimization problem is equivalent to the following
optimization problem:

(4g)

subject to

...

... (4h)

for . This problem is also a standard quadratic
programming problem with LMI constraints. There are many
existing solvers for solving this problem and it has a unique
solution. Denote the solution as .

Step 4: Iterative Step 2 and Step 3 until
, where is a prescribed acceptable error.

Corollary 3: When is unstable, if , where
denotes the empty set, then the proposed Algorithm converges
to the actual initial condition.

Proof: Since both and are fixed for given quantizer
output bit streams, they are convex sets, and the initial condi-
tion both generating bounded trajectories and corresponding to
given quantizer output bit streams is uniquely defined when is
unstable, the result follows directly and it completes the proof.

The importance of Corollary 3 is to provide a condition for the
existence of an initial condition both generating bounded trajec-
tories and corresponding to given quantizer output bit streams.
When is unstable, if , then the projection onto
convex set approach can guarantee that the obtained solution is
closed to the actual one.

The computational complexity of the proposed algorithm de-
pends on that of solving the corresponding LMI problem and the
linear continuous constraint optimization problem. In general,
the computational complexity of solving LMI problem is much
lower than that of the linear continuous constraint optimization
problem. Hence, the analysis of the computational complexity
of the proposed algorithm can be simplified by just considering
that of the linear continuous constraint optimization problem.
The detail analysis of the computational complexity of solving
the linear continuous constraint optimization problem can be
found in [14]. In [14], the index set is constructed by adding only
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one of the most violated points in a refined set of grid points.
Hence, the computational complexity is much reduced.

V. NUMERICAL COMPUTER SIMULATION RESULTS

Since the interpolative SDM is nonlinear, the actual system
is quite complicated. In particular, it is hard to understand why
the state trajectories are bounded when the loop filter is unstable.
To understand this phenomenon, the following example is used
to illustrate and account for this phenomenon. Consider the fol-
lowing state space matrices, in which they are employed in audio
systems [3]

(5a)

(5b)

and

(5c)

where , and for are loop
filter coefficients, in which .

, denote

(6a)

and

(6b)

where and denotes as the set of complex num-
bers. Then, , where (6c), shown at the
bottom of the page, is true. Since the eigenvalues of are the
diagonal elements of the matrix , the unstable modes being
cancelled are the unstable diagonal elements of the matrix . By

expanding (2), we have the following necessary and sufficient
bounded conditions on state variables relating to
the initial condition:

is bounded if and only if such that

(7a)

is bounded if and only if there exists a signal
with -transform analytically defined at such that

(7b)

is bounded if and only if there exists a signal
with -transform analytically defined at such that

(7c)

is bounded if and only if there exists a signal with
-transform analytically defined at such that

(7d)

(6c)
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is bounded if and only if there exists a signal with
-transform analytically defined at such that

(7e)

where

(7f)

(7g)

(7h)

(7i)

(7j)

(7k)

(7l)

(7m), shown at the bottom of the page, and

(7n)

(7o), shown at the bottom of the page, and

(7p)

(7q)

(7r)

(7s)

(7t)

(7u)

(7v)

(7w)

(7x)

and (7y), shown at the bottom of the page are true. If
, then is bounded if and

only if there exist two zeros of located at
and , and is bounded if and only if both

and are bounded . If , then
is bounded if and only if there exist four zeros

of located at , , and ,
and is bounded if and only if both and

are bounded . It is worth noting that the zeros

(7m)

(7o)

(7y)
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Fig. 2. Plot of 20 log jU (z)� S (z)j against (a) z = re and (b) z =
r e , where ! 2 [� ; �].

of for bounded trajectories are in general not lo-
cated at , , and , and this is true when

. However, is bounded if and only
if the average value of quantizer output bit streams is equal to
that of the input signal, that is,

. This result does not directly de-
pend on . Fig. 2(a) and (b) plot
against and , respectively, where ,

, , , ,
, , ,
and being a normalized sum of sinu-

soidal signals within the signal band of the interpolative SDM.
Here, we select

in which for this interpolative SDM. A normalized sum
of sinusoidal signals within the signal band is used for an illus-
tration because it covers the whole signal band. 100 sinusoidal
signals, instead of a single sinusoidal signal, are employed for

an illustration because it can avoid the occurrence of limit cy-
cles. According to the numerical computer simulations, it can
be seen from Fig. 2 that there are two zeros located at and

.
If the input is a rational step signal, then can be denoted

as for , where , in which denotes the
set of rational numbers.

Corollary 4: For a rational step input signal and the inter-
polative SDM defined by (5a) –(5c), can only
be an integer multiple of the reciprocal of the denominator of
the input step size.

Proof: As for
, and such that

for , where and denote the sets of integers and
positive integers, respectively. This completes the proof.

Although it was reported in [11] that when , then
is periodic with the period being a multiple of the denominator
of the input step size, this result is different from that stated
in Corollary 4. This is because periodicity was studied in [11],
while magnitude is studied in Corollary 4. In fact,
may be aperiodic. Also, the quantizer output bit streams were
studied in [11], while the first state variable of the interpolative
SDM is studied in Corollary 4.

In order to verify the effectiveness of the algorithm, the same
filter ( , , ,

, , ,
) and the input signal

(in which ) employed above are used for an illustration
here. An initial condition is generated randomly with the first
state variable being uniformly distributed between and
0.1 and the other state variables being uniformly distributed be-
tween and 0.0001. The first state variable has a larger
variance than the others because it has larger stability margin.
In the algorithm, we choose because it is small
enough for most circuits and systems. Also, a random vector
with the same distribution as the initial condition is generated
and employed as the initialized vector for the algorithm. First, it
is tested to see if it satisfied (3b) or not. If it is not satisfied, a new
random vector is re-generated until (3b) is satisfied. Second, run
Steps 2 to 4 of the proposed algorithm. Fig. 3(a)–(e) plots the
actual state responses and Fig. 3(f) plots the actual quantizer
output bit streams. Fig. 4(a)–(e) plots the differences between
the actual and new state responses using the estimated initial
condition, while Fig. 4(f) plots the difference between the ac-
tual and new quantizer output bit streams. It can be seen from
Fig. 4(b) and (c) that the differences diverge transiently. This is
because as is unstable, the interpolative SDM is chaotic. Al-
though the 2-norm error between the actual and the estimated
initial condition is guaranteed to be bounded by , and
a small deviation from the actual initial condition would cause
very different state responses. However, the differences in the
steady-state responses are bounded because the constructed tra-
jectories are guaranteed to be bounded. Also, there is no dif-
ference between the actual and the constructed quantizer output
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Fig. 3. (a)-(e) Actual state responses. (f) Actual quantizer output bit streams.

Fig. 4. (a)-(e) Differences between the actual and new state responses using the estimated initial condition. (f) Difference between the actual and the new quantizer
output bit streams.

bit streams as shown in Fig. 4(f) because the quantizer output
bit streams is admissible. Fig. 5(a)–(e) plots the difference be-
tween the actual and new state responses using a random initial
condition with zero mean and variance 0.0001. It can be seen

from Fig. 5(a)–(e) that the transient differences are much more
than that of our estimated initial condition. Also, there is a great
difference between the actual and the new quantizer output bit
streams, as shown in Fig. 5(f).
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Fig. 5. (a)-(e) Differences between the actual and new state responses using a random initial condition. (f) Difference between the actual and the new quantizer
output bit streams.

The run-time complexity of the algorithm depends on the
solvers employed for solving the corresponding LMI problem
and the linear continuous constraint optimization problem.
In our numerical computer simulations, Matlab optimization
toolbox is employed for solving these problems. Based on a
PC with Pentium 1.2 GHz CPU and 256 M bytes DDRAM, the
numerical computer simulation time is about 13 seconds.

VI. CONCLUSION

In this paper, an initial condition of an interpolative SDM is
estimated based on projection onto convex set approach. The set
of initial conditions generating bounded trajectories is charac-
terized and it is shown that a set of initial conditions generating
bounded trajectories but not necessarily corresponding to quan-
tizer output bit streams is convex. Also, it is shown that a set of
initial conditions corresponding to quantizer output bit streams
but not necessarily generating bounded trajectories is convex
too. Moreover, an initial condition both generating bounded tra-
jectories and corresponding to quantizer output bit streams is
uniquely defined if the loop filter of an interpolative SDM is un-
stable. Hence, by using a projection onto convex set approach,
the initial condition can be estimated. One of the advantages
of the projection onto convex set approach is the guarantee of
the convergence to the actual solution if the intersection of the
above two convex sets is nonempty.
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