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Abstract— An increasing number of real-world applications
are associated with streaming data drawn from drifting and
nonstationary distributions that change over time. These appli-
cations demand new algorithms that can learn and adapt to such
changes, also known as concept drift. Proper characterization of
such data with existing approaches typically requires substantial
amount of labeled instances, which may be difficult, expensive,
or even impractical to obtain. In this paper, we introduce
compacted object sample extraction (COMPOSE), a computa-
tional geometry-based framework to learn from nonstationary
streaming data, where labels are unavailable (or presented very
sporadically) after initialization. We introduce the algorithm in
detail, and discuss its results and performances on several syn-
thetic and real-world data sets, which demonstrate the ability of
the algorithm to learn under several different scenarios of initially
labeled streaming environments. On carefully designed synthetic
data sets, we compare the performance of COMPOSE against
the optimal Bayes classifier, as well as the arbitrary subpopula-
tion tracker algorithm, which addresses a similar environment
referred to as extreme verification latency. Furthermore, using
the real-world National Oceanic and Atmospheric Administration
weather data set, we demonstrate that COMPOSE is competitive
even with a well-established and fully supervised nonstationary
learning algorithm that receives labeled data in every batch.

Index Terms— Alpha shape, concept drift, nonstationary
environment, semisupervised learning (SSL), verification latency.

I. INTRODUCTION

THE fundamental assumption made by most of the learn-
ing algorithms generating a computational model is that

the data are drawn from a fixed but unknown distribution.
This assumption implies that future field (or test) data on
which the model will be used come from the same distribution
as the training data on which the model was developed in
the first place. In many real-world applications, the fixed
distribution assumption simply does not hold, rendering vast
majority of traditional machine learning algorithms ineffective.
As a result, new approaches, generally known as domain
adaptation approaches, have been developed specifically to
address the scenarios where training and test data come
from different distributions, called source and target domains,
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respectively. Domain adaptation approaches, however, make
other assumptions, such as having abundant labeled data from
source domain, the supports of source and target domain
being the same, and most importantly, limiting the problem
to only one source and one target domain. Therefore, domain
adaptation approaches are not suited for the so-called concept
drift problem, created by nonstationary environments that
continuously generate (streaming) data whose distributions
may change over time.

Such nonstationary environments are increasingly common
in real-world applications: network intrusion, web usage and
user interest analysis, natural language processing, speech
and speaker identification, spam detection, anomaly detec-
tion, analysis of financial, climate, medical, energy demand,
and pricing data, as well as the analysis of signals from
autonomous robots and devices are just a few examples. On the
other hand, the vast majority of concept drift research on learn-
ing from nonstationary environments—including our prior
efforts—have focused on supervised approaches [1]–[12].
The heavy reliance of supervised approaches on labeled data
creates a significant limitation as streaming data are usually
unlabeled and unstructured. This limitation is particularly
acute if obtaining labeled data require expert annotation,
which can be a very costly and time-consuming process.
Algorithms that can learn using fewer labeled instances have
therefore gained attention in related fields of semisupervised
learning (SSL) and active learning (AL). In a nonstationary
environment setting, SSL and AL approaches typically assume
that, in addition to unlabeled data, some limited amount of
labeled data are either readily available (for SSL algorithms),
or may be requested (for AL algorithms), at each time step a
new batch of data is received. Such regularly provided labeled
data then allow classifiers to track the changes in class priors,
class distributions, posterior distributions of class membership,
or the number of target classes.

More recent research, typically referenced as verification
latency, however, adds an important constraint: labeled data
are not available at every time step, nor even in regular
intervals, which significantly complicates the learning process.
Verification latency, as denoted in [13], describes a scenario
where true class labels are not made available until sometime
after the classifier has made a prediction on the current state of
the environment. The duration of this lag may not be known
a priori, and may vary with time; yet, classifiers must propa-
gate information forward until the model can be verified.

The motivation of this paper is to explore the extreme
verification latency case, where the lag duration is set to
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infinity—meaning no labeled data are ever received after
initialization. We refer to this scenario as initially labeled
streaming environment (ILSE), and propose a framework for
learning in such an environment. This scenario removes many
of the limitations and restrictions made in domain adaptation,
SSL or AL. A theoretically justified solution to this extreme
learning environment can then provide effective algorithms
when labeled data are not available for extended periods,
whether that period is finite or otherwise. Real-world examples
of such an extreme learning setting are perhaps only a few
today, but are rapidly growing because of massive automated
and autonomous acquisition of sensor, web user, weather,
financial transaction, energy usage, and other data. Further-
more, such applications can be extremely important: network
intrusion with malicious software (malware) attacks—where
malware programmers are able to modify the malware faster
than network security can identify and neutralize it, is a major
current day challenge. Creating a labeled database for this
scenario is difficult and expensive, because the data—which
arrive continuously (i.e., streaming)—need to be isolated on a
virtual machine, features need to be extracted from the header
data, and then evaluated by a human expert. Many automation
applications provide other examples, such as robots, drones,
and autonomous vehicles encountering surrounding environ-
ment changing at a pace too quick for a human to verify all the
actions.

In this paper, we introduce the COMPacted Object Sample
Extraction (COMPOSE) framework to address the extreme
verification latency in an ILSE setting: learn drifting concepts
from a streaming nonstationary environment that provides only
unlabeled data after initialization. COMPOSE follows three
steps to do so: 1) combine initial labels with new unlabeled
data to train an SSL classifier and label the current unlabeled
data; 2) for each class, construct α shapes (a generalization
of convex hull), providing a tight envelope around the data
that represent the current class conditional distribution; and
3) compact (i.e., shrink) the α shape and extract instances—
called core supports—from the compacted α shape, which
now represents the geometric center (core support region) of
each class distribution. The process is repeated iteratively as
new unlabeled data arrive, where the core supports from the
previous iteration serve as the labeled instances for the current
iteration.

We compare the ability of COMPOSE in tracking such
an environment to that of: 1) Bayes classifier that is con-
tinuously updated with full access to the true distribution;
2) an ensemble-based nonstationary learning algorithm,
Learn++.NSE that is also trained in a fully supervised manner;
and 3) Krempl’s arbitrary subpopulation tracker (APT) algo-
rithm that is recently proposed to address a similar extreme
verification latency scenario.

In the following section, we provide an overview of
domain adaptation, SSL, and AL algorithms followed by
recent efforts using SSL and AL algorithms in nonstation-
ary learning, specifically with regards to verification latency.
A detailed description of the APT algorithm is also included.
In Section III, we introduce and discuss the COMPOSE
algorithm in detail, including the computational complexity

of each of its components. In Section IV, we describe the
preliminary experiments designed to determine the behav-
ior of this proof-of-concept algorithm, and obtain a general
understanding of its capabilities and limitations in learning an
initially labeled nonstationary and streaming environment. We
draw our conclusions, and discuss the strengths and current
weaknesses of the algorithm, along with our future work in
Section V.

II. LITERATURE SURVEY

A. Domain Adaptation

The goal of domain adaptation approaches is to use ample
labeled data obtained from one domain (source) and ample
unlabeled data obtained from another domain (target) to
develop a computational model that can predict well on the
target domain, whose underlying distribution differs from that
of the source domain. These approaches appear under various
titles, such as domain adaptation [14], [15], inductive and
transductive transfer learning [16], covariate shift [17], or
multitask learning [18], all of which are related to sample
selection bias, a concept that has been well known in the
statistics community for some time [19]. In domain adaptation
or transductive transfer learning, for example, it is assumed
that the source and target domain joint data distributions are
different (but related), i.e., pS(x,y) �= pT(x,y), where x and y
are the instance and class labels, respectively. In inductive
transfer learning, the source and target domain distributions
are assumed the same, but the learning tasks represented in
these domains are different (but related). In covariate shift,
the most common form of domain adaptation, pS(y|x) =
pT(y|x) with pS(x) �= pT(x) is assumed, which may result—
as in sample selection bias—when the training data may have
been sampled more heavily from some regions of the feature
space. Such cases are usually handled by instance weight-
ing approaches, where likelihood function maximized by the
learning algorithm is first weighted by a term proportional
to pT(x)/pS(x), called importance [17], [20], [21]. Another
family of approaches is the so-called change of representation
or feature representation approaches, where a transformation is
made to source domain data for making its distribution similar
to that of the target domain [15], [22]. Several assumptions
have to be made, however, for any of these approaches to
work. First, it is assumed that there are ample labeled data
from the source domain, whereas the target domain provides
ample unlabeled data, but little or no labeled data. Second,
while the source and target distributions are different, it is
assumed that they are not entirely independent, but are related.
For example, for covariate shift, in addition to pS(y|x) =
pT(y|x), it is also assumed that the support of pT(x), i.e.,
{x : pT(X = x) > 0} is contained in the support of pS(x).
A thorough theoretical analysis of exactly how far the two
distributions can be from each other is studied in [23] in terms
of a new divergence metric. Once the conditions on how source
and target distributions may differ from each other are met,
domain adaptation approaches can often provide theoretical
guarantees and bounds on performance, computational com-
plexity, or the number of labeled instances required. A good
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review of the domain adaptation approaches can be found in
[7] and [24].

B. Semisupervised Learning

SSL uses limited labeled data to transfer their class informa-
tion to unlabeled data following one or more of four general
assumptions [25], [26]: 1) the smoothness or local consistency
assumption: nearby instances must belong to the same class;
2) the cluster or global consistency assumption: instances in
the same cluster must belong to the same class; 3) the low-
density separation assumption: decision boundaries must lie
in low-density regions; and 4) the manifold assumption: high-
dimensional data reside on a lower dimensional manifold. All
SSL algorithms use some variation of a common iterative
recipe: train a classifier from available labeled data, classify
the remaining unlabeled data, add instances whose confidence
exceeds a threshold to the permanently labeled training set, and
remove instances that did not meet this threshold. Note that
SSL can be considered as a special case of domain adaptation,
where labeled and unlabeled data represent source and target
domains, respectively, with the difference in the underlying
distributions limited to the noise in both data sets.

Several SSL algorithms are now well established, though
primarily for use in static environments, and they typi-
cally fall into one of three general categories: 1) generative
algorithms, such as [27] and [28], which assume that the
data are provided by a fixed yet unknown distribution, and
that the decision boundaries can be represented based on
class posteriors; 2) low-density separation algorithms, such
as [29] and [30], which use density information from unla-
beled instances to modify a decision boundary created using
only labeled data; and 3) graph-based algorithms, such as
[31] and [32], which construct a graph, G = (V , E) with
vertices, V , representing instances and edges, E , representing
relationships between vertices. Class information is transferred
from labeled instances to neighboring unlabeled instances
based on the relationship defined by the connecting edges.
Some SSL algorithms have recently been modified or included
in a wrapper-based approach enabling them to work in a
nonstationary environment; these approaches are discussed in
Section II-D.

C. Active Learning

The goal of AL [33]–[36] is to reduce the training cost
by selecting key instances, whose labels—if available—
would provide the most benefit for learning the underlying
distribution. In stationary environments, such instances usually
lie along the class boundaries; however, as demonstrated in this
effort, instances selected from the core region of a distribution
may be more advantageous in a nonstationary environment.
The most restrictive limitation of AL, however, is the implicit
requirement that the label must always be provided—at some
cost—for any instance requested by the algorithm; this is not
always a realistic assumption. In an ILSE, no labeled data are
available—nor can be requested—after initialization, so AL
approaches cannot be readily used in this setting. Therefore,
COMPOSE is not an AL algorithm, though it does follow a

conceptually similar approach of selecting those key instances
(labeled by the SSL learner) to retain and merge with new
incoming unlabeled data to be used in the next iterative step.

D. Concept Drift and Nonstationary Environments

Unlike domain adaptation problems where the goal is to
learn from one domain to predict on another, concept drift
algorithms deal with continuously drifting data distributions.
In addition, the strict limitations on how pS(x) and pT(x),
or pS(y|x) and pT(y|x) must be related to each other may
not always be realistic in continuously drifting environments.
Learning concept drift in a nonstationary environment is a
challenging problem precisely because the rate and nature
of the drift are not known a priori. The changes in the
underlying distributions can be gradual or abrupt, cyclical or
otherwise, though are often assumed to be limited in nature,
where the changes follow some structures. Completely random
fluctuations, of course, cannot be learned [21], [23], [37]. Lack
of a standardized metric, however, leaves the definition of
limited drift up to each researcher [11], [17], [21], [23], [38].

Adapting SSL algorithms to nonstationary environments
is possible, but has received relatively little attention, and
therefore is an area open for exploration. Of the recent SSL
work that focus on nonstationary learning, most of the studies
embrace the aforementioned assumption that some labeled
data from the drifting distribution are available at every time
step. As a result, much of the work in this field borrow
ideas from supervised online learning paired with an SSL
algorithm. Goldberg et al. [39], for example, combine online
convex programming with SSL regularization (with a focus
on manifold regularization), providing a framework for other
SSL methods, including regularization of multiview learning
and low-density separation techniques. They also add an
optional AL component to select which instances to label [34].
Li et al. [40] combine a decision tree that grows as new data
arrive with a clustering approach, where deviations between
the clusters are used to identify a new or reoccurring concept at
the tree leaves. In [41], we evaluated Gaussian mixture models
(GMMs) trained on both labeled and unlabeled data, and
matched the components of each GMM to determine labels in
a transductive learning setting. The Masud et al. [42] approach
creates microclusters for each batch of data by combining a
cluster impurity-based SSL with the expectation–maximization
algorithm. In their work, instances from new data are classified
by choosing the class with the highest cumulative normalized
frequency from the k-nearest neighboring microclusters in the
ensemble. Zhang et al. [43], on the other hand, identify four
types of streaming data: 1) labeled; 2) unlabeled data from
the same distribution as the previous batch (where instances
that arrive early in the new batch are assumed to be from
the same distribution as those that arrived last in the previous
batch); 3) labeled; and 4) unlabeled data from a similar but
a similar but drifted distribution. A relational k-means and
semisupervised support vector machine (S3VM) are paired to
classify unlabeled instances from the stream. Another recent
work—though not limited to SSL—is proposed in [44], which
uses conceptual representation models to map concepts of
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the current distribution to a previously experienced concept
for accommodating reoccurring concepts. Classifiers retained
from previous steps (that experienced the mapped concept) are
used for aiding classification.

E. Nonstationary Environments with Verification Latency

Addressing verification latency (where labeled data are not
immediately available at every time step) in a nonstationary
environment requires a different framework to propagate class
information forward through several time steps of solely
unlabeled data. Zhang et al. [45] have proposed combining
ensemble of classifiers and clusters, an approach that works
when labeled data are available at least intermittently. Batches
that contain labeled data are used to create a classifier,
whereas purely unlabeled batches are used to form clusters.
The ensemble classifies new instances by a majority vote that
includes label mapping between the classifiers and clusters of
the ensemble.

More recent approaches have been proposed for data that
can be represented as mixtures of particular parametric dis-
tributions. In these approaches, each class is represented as a
mixture of subpopulations, and distributions of the unlabeled
data from subpopulations are tracked and matched to those
known subpopulations based on initial labeled data. Special
cases where subpopulations are mixtures of fixed number of
Gaussians is described in [46], and for cases, when drift is
only due to the changes in priors of the subpopulations is
addressed in [47] and [48]. Another example of this group
of algorithms is Krempl’s APT algorithm [49]. The APT
algorithm makes the following assumptions: 1) the drift must
be gradual and systematic that can be represented as a piece-
wise linear function; 2) each subpopulation to be tracked
must be present at initialization, where a subpopulation is
defined as a mode in the class conditional distribution (i.e.,
a bimodal class distribution would consist of two separate
subpopulations to be tracked for that class); 3) the covariance
of each subpopulation remains constant; and 4) the rate of drift
remains constant. Observing these assumptions, incoming data
are classified through a two-step procedure: 1) use expectation
maximization to determine the optimal one-to-one assignment
between the unlabeled data and the drift-adjusted labeled
data, and 2) update the classifier to reflect the population
parameters of newly received data and the drift parameters
relating the previous time step to the current one. Establishing
a one-to-one relationship while identifying drift requires an
impractical assumption that the number of instances remains
constant throughout all the time steps. Krempl rectifies this
by establishing a relationship in a batch method—matching
a random subset of the exemplars to random subset of
new instances, where the new instances are sampled without
replacement. Krempl suggests a bootstrap method that can
make the one-to-one assignments more robust but at additional
computational cost. In addition, because of assumption (b),
which is common to all subpopulation-based approaches, APT
cannot track a scenario that introduces a new class, or a new
subpopulation, even when an existing population splits into
subpopulations.

In [50], we introduced the original COMPOSE framework
COMpacted POlytope Sample Extraction (COMPOSE) and
demonstrated its ability to learn in a 2-D binary class ILSE,
using a set of graphical methods that is well known in
computer graphics, visualization, and animation, but surpris-
ingly and largely missing from machine learning literature.
It became clear, however, that some of the steps in the
original version of this algorithm cannot be readily extended
to higher dimensional and multiclass data. In this paper, we
present the revised COMPOSE algorithm, which is com-
putationally more efficient than its predecessor, but also is
capable of handling higher dimensional and multiclass data.
Most importantly, other than the aforementioned limited drift
assumption made by all algorithms, COMPOSE removes other
assumptions regarding the distributions, nature of drift, and
the availability of labeled data. We should also emphasize
that while COMPOSE is designed for the extreme ILSE
scenarios (i.e., verification latency of infinity), COMPOSE
is quite versatile and can readily and naturally accommodate
environments that present labeled data at regular or intermit-
tent intervals. The additional labeled data—when available—
can be used for model verification, increasing robustness, and
most importantly, greatly relaxing the algorithm’s sole limited
drift assumption, as discussed in the following.

III. COMPOSE

A. Central Premise of the Algorithm

COMPOSE is intended for nonstationary environments that
face incremental or gradual (limited) drift, rather than abrupt
drift. Gradual drift is often considered more challenging to
detect than abrupt change, as the data distribution pt (x) at time
t and pt+1(x) at time t+1 may have significant overlap, which
makes distinguishing (detecting change between) the two diffi-
cult. COMPOSE turns this difficulty into an opportunity, and
takes advantage for the overlapping nature of incrementally
changing distributions at consecutive time steps. The entire
COMPOSE process is presented in a block diagram with
accompanying illustrations in Fig. 1. At t = 0, COMPOSE
is provided with (possibly very few) labeled data, depicted by
opposing classes of (red) squares and (blue) circles [Fig. 1(a)],
and relatively abundant unlabeled data, represented by (black)
diamonds [Fig. 1(b)]. At all other time steps t , COMPOSE
receives only unlabeled data. An SSL algorithm is trained with
the labeled and unlabeled data, to label the currently unlabeled
instances, as indicated with the change of color and shape
in Fig. 1(c). COMPOSE creates an α-shape boundary object
from the current data, defining a tight envelope representing
the distribution of each class. Class boundaries are represented
by solid outlines, enveloping shaded regions in Fig. 1(d). The
boundary object for each class is compacted (i.e., shrunk)
by a specified percentage, the compaction percentage (CP),
to determine the core support region of each distribution, as
shown by the darker shaded region with dashed outline in
Fig. 1(e). Instances drawn from the core support region of
the current distribution pt (x) are the most likely candidates to
represent data drawn from the next distribution pt+1(x) that
may have experienced translational, rotational, or volumetric
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Fig. 1. Block diagram and graphical representations of corresponding stages of COMPOSE. (a) Receive initial labeled data. (b) Receive new unlabeled data
(black diamonds). (c) Classify unlabeled data using SSL algorithm. (d) Construct alpha shape (boundary object, represented as shaded region enveloping the
data) for each class. (e) Shrink the boundary object to obtain core support region for each class (dark shaded regions). (f) Extract labeled data - the core
supports - from the core support region.

(i.e., expansion/contraction) drift. The final step of one itera-
tion of COMPOSE extracts (now labeled) instances from the
core support region(s) to be used as labeled data in the near
future—these instances are referred to as core supports of that
class [Fig. 1(f)]. It is possible to have multiple core support
regions for any class. When new unlabeled data are received,
they are combined with the core supports to retrain an SSL
algorithm to adapt the drifting (nonstationary) environment,
as COMPOSE iteratively updates itself. The progression of a
single class over a series of time steps is shown in Fig. 2,
experiencing (a) translation, (b) rotation, and (c) compaction.
In each case, the core region from the previous time step
(whose boundaries are shown with dashed lines) provides
labeled instances for the current time step. It is important to
emphasize that—unlike traditional SSL or AL algorithms used
in nonstationary settings—all future labeled data are earned
(generated) by COMPOSE (through core support extraction),
and not paid for, purchased or requested from the user.

B. Algorithm Description

Conventional SSL algorithms used in stationary environ-
ments require sufficient amount of labeled as well as unlabeled
data. In a nonstationary ILSE, not only future labeled data are
rare or nonexistent, data also drift, preventing conventional
SSL algorithms from learning in such a setting. COMPOSE
is designed to address this limitation by extracting relevant
data, labeled by the SSL learner in the current time step,
to be combined with the next batch of unlabeled data. This
important modification allows SSL algorithms to be used in
nonstationary environments.

The distribution pt (x) providing the unlabeled data at time
t may have drifted from the distribution pt−1(x) at time t −1.
Consistent with other nonstationary environment algorithms,
we assume limited (gradual) drift, such that the extracted

Fig. 2. Progression of a single class experiencing (a) translational,
(b) rotational, and (c) volumetric drift.

labeled data overlap the newly received unlabeled data.
Therefore, the distribution pt (x) must overlap with the dis-
tribution pt−1(x), as shown in Fig. 2. This requirement is
much less restrictive than the pS(y|x) = pT(y|x) requirement
in covariate shift, or the support of pT(x) must be contained in
the support of pS(x) requirement in general domain adaptation.
As the amount of overlap between distributions of subsequent
time steps increase, so does the ability and performance of
COMPOSE in tracking the nonstationary distribution. The
remainder of this section explains in detail how COMPOSE:
1) creates α shapes from the data; 2) compacts (shrinks) the
α-shapes to create core regions; and 3) extracts core supports
from the compacted α shapes to serve as labeled data for future
time steps. The outline of the algorithm is listed in Fig. 3.

The algorithm has three inputs: 1) BaseClassifier, which
can be any SSL algorithm, for classifying unlabeled data
at each time step, t ; 2) α, specifying the level of detail of
the α-shape boundary object; and 3) CP. The algorithm is
initialized at t = 0 with a set of labeled data, L0 = {

xt
l ∈ X

}
,

and corresponding labels, Y0 = {
yt

l ∈ Y = {1, . . . , C}},
l = 1, . . . , M where M is the total number of labeled
instances, and C is the total number of classes (step 1 in
Fig. 3). At each subsequent time step t , new unlabeled data
U t = {

xt
u ∈ X

}
are received, u = 1, . . . N where N is the
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Fig. 3. COMPOSE psuedocode.

total number of unlabeled instances (step 2). Both labeled and
unlabeled data are passed to BaseClassifier for generating a
hypothesis ht : X→Y . A combined data set Dt is constructed
by merging Lt and U t , where the class labels for U t are
provided by ht (step 3). With labels for all the instances of
Dt now available, COMPOSE then extracts core supports for
each class, selected from the core support region of the current
distribution (steps 4–7). The underlying premise here is that
the core support region of the data at the current time step—
compared with any other time step—is most likely to have
maximum overlap with the drifted distribution in the next
time step, regardless of the nature of drift. Therefore, these
core supports can be used to serve as labeled data for the
next time step’s SSL classifier. Specifically, the labeled data
set for the next time step (Lt+1,Y t+1) is first initialized as an
empty set (step 4). For each class, c = 1, . . . ,C identified by ht

an α-shape class boundary object Bc is constructed using the
method described in Section III-C (denoted as function f (�)
in step 5). The class boundary object Bc is then compacted
using the method described in Section III-D to produce the
core support region B′

c (denoted as function g(�) in step 6)
such that desired core supports specified by CP are obtained.
Then, all the instances that reside in the compacted region B′

c
are core supports and are retained to serve as labeled data for
the next time step. Core supports obtained from each class are
appended to finalize the labeled data (Lt+1,Y t+1) in step 7.

C. α-Shape Construction Function

We first introduce the basic terminology used within the
context of constructing α shapes. A d-simplex, or simply
a simplex, is the convex hull of d + 1 vertices connected
via edges, where d is the dimensionality of the data (e.g.,
a 2-simplex is a triangle defined by three vertices and a

3-simplex is a tetrahedron defined by four vertices). In graph-
based methods, each vertex represents a data point, an instance
with d features. Each d-simplex is constructed from multiple
(d − 1)-simplexes, called faces (e.g., each face of a trian-
gle is a line and each face of a tetrahedron is a triangle).
The circumsphere of a simplex is the hypersphere uniquely
defined by the vertices of a simplex (e.g., a circle is defined
by the three vertices of the triangle it circumscribes; and a
sphere is defined by the four vertices of the tetrahedron it
circumscribes).

An α shape is a set of connected faces creating a hull that
describes a finite set of points at a specified level of detail,
defined by the free parameter α > 0. For a sufficiently large
α, the resultant α shape is the convex hull of the points. As α
decreases, the α shape may become concave, form holes, or
include completely disconnected regions. These three aspects
of α shapes make them attractive for machine learning as
they can properly represent voids and nested classes that many
algorithms using convex hulls or other simpler methods (such
as calculating the centroid of a distribution) cannot. Fig. 4
shows how α changes the representation of a data set in an
α shape. Fig. 4(a) shows a large α resulting in the convex
hull of the (blue) diamonds including a large region void
of data, as well as an opposing class of (red) circles. As α
decreases in Fig. 4(b)–(d), the true feature space from which
the set of diamonds was sampled becomes more apparent—
the letter P. If α is, however, chosen too small, as in Fig. 4(e),
the α shape becomes a group of disconnected regions, which
is undesirable. The α parameter can be chosen heuristically,
based on prior knowledge or experience, or based on sample
density as proposed in [51].

The pseudocode of the α-shape construction function is
shown in Fig. 5, whose inputs are: 1) single-class data D (as
labeled by the SSL in the previous step of the algorithm) and
2) the α parameter specifying the desired level of detail.
α-shape construction begins with a Delaunay tessellation of
D (step 1 in Fig. 5). Delaunay tessellations are an extension
of Delaunay triangulations into higher dimensions. Delaunay
tessellations nest simplexes such that no point in the set may
lie inside the circumsphere of any simplex in the tessellation.
The union of all the simplexes in the tessellation produces
the convex hull of the set. There are several algorithms
that accomplish Delaunay tessellations; we have used the
Quickhull algorithm [52], denoted as Q(�) in step 1, for its
speed and relative lower complexity whose upper bound is
O(n�(d+1)/2�), where n is the number of points in the set, d
is the dimensionality, and ��� is the floor function.

The α-shape B is initially set to be equal to convex hull
defined by the Delaunay tessellation (step 2). Each face F is
subsequently analyzed, categorized and, if necessary, certain
simplexes containing that face are removed to produce the final
α shape (steps 3–5). To do so, we first iterate through every
face, and identify the two simplexes, s1 and s2, that share F
(step 3 and Fig. 6). The radii of the circumspheres of each
simplex are then calculated by passing the simplex’s vertices
to the circumsphere radius function [denoted r (�) in step 4,
and described in the following]—the smaller radius is labeled
μ1 and the larger as μ2 (Fig. 6). If F is located at the edge of
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Fig. 4. Shaded region demonstrates α-shape on set of blue diamonds at different levels of detail specified by α. (a) α = ∞. (b) α = 0.5. (c) α = 0.25.
(d) α = 0.1. (e) α = 0.05.

Fig. 5. α-shape compaction function.

the tessellation (i.e., it is not shared by a second simplex), the
radius of the (nonexistent) second simplex is set to infinity,
μ2 = ∞.

The simplex passed to the circumsphere radius function
is defined by its d + 1 noncoplanar vertices (instances) xp,
p = 1, . . . , d + 1, each vertex defined by d coordinates
(features)

xp = {
x p1, x p2, . . . , x pd

}
. (1)

From the equation for circumcircle of a triangle [53], extended
to higher dimensions, the equation of the circumsphere is as
follows:

∣
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∣
∣
∣
∣
∣∣
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d x2
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∣
∣
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∣
∣
∣
∣
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∣
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= 0 (2)

where x� is used to represent any point (instance) on the
hypersphere and x�d is its dth feature. Cofactor expansion of
the first row, valid for any point residing on the hypersphere,
produces the equation of a hypersphere in general form

Fig. 6. Face (centered in red) to be classified is shared by simplex with
smaller radius on left (blue) and simplex with larger radius on right (green).

Fig. 7. Sample α shape showing simplexes in Delaunay tessellation and how
faces are classified in relation placement in α shape.

∑

d
x2

�d
M11+

[∑

d
(−1)d (x�d

)M1(d+1)

]
+ M1(d+2) = 0

(3)

where Mij is a matrix minor—the determinant of the matrix
after removing row i and column j . The result after completing
the square and rearranging the terms is the standard form of
a hypersphere ∑

d

(
x�d −x0d

)2 = r2 (4)

where

x0q = (−1)q+1 0.5
M1(q+1)

M11
, q = 1, . . . , d (5)

r2 =
∑

d
x0d −

M1(d+2)

M11
(6)

with x0 and r are the center and radius of the hypersphere,
respectively.

Once computed, the radii of the simplexes are compared
to α to determine if the face is interior, regular, or singular
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Fig. 8. Graphical representation of compaction method. Layers are removed
in numerical order starting with (red) one and ending with (blue) six until
cores supports remain, which are represented by (white) stars. CP used for
this figure was 85%.

(step 5 in Fig. 5). An interior face, where α > μ2, is
completely encapsulated by the final α shape resulting in both
simplexes that share this face to remain within the α shape.
A regular face, where μ1 < α < μ2, defines the boundary
of the α shape (dark black faces in Fig. 7). As a result, the
simplex with the larger radius circumsphere (shown by the
red regions and exterior of dark black faces in Fig. 7) is
removed from the α shape, while the simplex with the smaller
radius circumsphere remains. A singular face, where α < μ1,
as described in [54], traditionally has two subcategories:
1) attached and 2) unattached. In either case, both simplexes
are removed; however, the shared edge remains protruding
from the α shape as a spoke in the attached subcategory. The
use of α shapes in COMPOSE does not require differentiation
between these two subcategories, as the singular attached case
always disappears during the α-shape compaction function
described in Section III-D. Hence, all singular faces and both
simplexes that share the singular face are removed from the
final α shape. Examples of each type of edge and the resultant
α shape after simplexes have been removed are shown in
Fig. 7. While an α shape is traditionally defined as the union
of all regular faces, it suffices for COMPOSE to define an α
shape to be the union of all simplexes not removed from the
Delaunay tessellation, as described in Section III-D.

Timing tests confirmed that the computational complex-
ity of this step of COMPOSE increases exponentially with
dimensionality, and hence is the most expensive module of
the algorithm. We discuss methods to reduce complexity in
Section V.

D. α-Shape Compaction Function

Compaction of the α-shape boundary object is achieved by
iteratively removing a layer of simplexes from the edges of
the α shape, as if unwrapping an onion, until the desired CP
is achieved. The compaction threshold is found by multiplying
the number of instances in the initial α shape by (1-CP),
yielding the target number of instances to remove. Each time
a layer of simplexes is peeled off, the number of instances
in the compacted α shape is reduced. Compaction is complete

Fig. 9. Performance of updated COMPOSE (denoted by *) compared with
the original COMPOSE on the unimodal Gaussian experiment. Parameters:
α = 0.4 and CP = 0.70. For a video illustrating the nonstationary environment
for this experiment, see http://users.rowan.edu/~polikar/research/TNNLS/.

when the number of remaining core supports is fewer than the
compaction threshold.

This method is illustrated in Fig. 8, where each removed
layer of simplex is numbered in the order it is removed. The
first (outermost) layer removed is stated by one and shaded
in red; the last layer is in light blue and contains six. The
data remaining after the compaction become the core supports,
shown by white stars clustered at the center of the α shape.

Identifying which simplexes reside at the edge of an α
shape is a simple task, as boundary simplexes have one or
more faces that are not shared with another simplex. By
creating a list of all faces and identifying to which simplex
each belongs, a simple sort can identify unmatched faces. The
simplex identifier associated with the unmatched faces are the
simplexes located at the edge of the α shape. The complexity
of this method is O(s2), where s is the total number of
simplexes in the α shape, which is linearly related to the total
number of instances. This compaction function, unlike the
original skeleton-based compaction algorithm mentioned in
[50], is independent of dimensionality, and hence significantly
reduces the complexity of the overall approach.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup and Results on Synthetic Data Sets

We designed two new experiments and repeated two experi-
ments from [50], using nonstationary Gaussian data, to demon-
strate that the new COMPOSE framework: 1) performs just as
well, if not better, than the initially proposed framework; 2) is
able to extend to higher dimensions; and 3) can adapt to the
introduction of a new class (see video links in figure captions).
In addition to COMPOSE, we have repeated each experiment
with the APT algorithm (the only other algorithm currently
available for the extreme verification latency problem), and
the optimal Bayes classifier to provide an upper bound per-
formance. The results are shown in Figs. 9–12. The Bayes
classifier was trained in a fully supervised manner, having full
access to correct labels for all instances at all time steps. This
is a scenario that is deliberately designed to be unfair against
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Fig. 10. Performance of updated COMPOSE (denoted by *) com-
pared with the original COMPOSE on the multimodal Gaussian exper-
iment. Parameters: α = 0.43 and CP = 0.70. For a video
illustrating the nonstationary environment for this experiment, see
http://users.rowan.edu/~polikar/research/TNNLS/.

Fig. 11. Performance of COMPOSE in 2-D unimodal Gaussian experiment
where a third class is added at time step 40. Parameters: α = 0.6 and
CP = 0.60. For a video illustrating the nonstationary environment for this
experiment, see http://users.rowan.edu/~polikar/research/TNNLS/.

COMPOSE and APT, as these algorithms maintained the ILSE
assumption where labels were provided only for a subset of
the data and only during the initial time step. All comparisons
with Bayes classifier should be interpreted within this context.

In this group of experiments, we used Gaussian distrib-
utions starting at some initial state at some arbitrary time
t = 0. COMPOSE was initialized using only 5% of randomly
selected data labeled, though we ensured each class is repre-
sented by at least one labeled instance; APT, however, was
initialized with a full set of labeled data. At each subsequent
step t , the distributions drift according to some parametric
equations (shown in Tables I and II, and Figs. 13 and 14
for the new experiments), with 100 new unlabeled instances
presented per Gaussian distribution. The experiments end after
100 steps, at some arbitrary time, t = 1.

All experiments were repeated 50 times for COMPOSE and
five times for APT, providing the 95% confidence intervals
shown with the shaded regions around the performance curves.
APT was run only five times because of its significantly longer
computation time as discussed in the following section. APT

Fig. 12. Performance of COMPOSE in 3-D unimodal Gaussian
experiment. Parameters: α = 3.1 and CP = 0.60. For a video
illustrating the nonstationary environment for this experiment, see
http://users.rowan.edu/~polikar/research/TNNLS/.

was run with a maximum of five expectation–maximization
iterations per time step and no initial drift information pro-
vided at initialization (providing drift rates known a priori is
an option of APT) to keep the comparison with COMPOSE
fair. COMPOSE’s independence of SSL algorithm used as
the BaseClasifier was demonstrated in [50], therefore, new
experiments in this paper are presented with cluster-and-label
chosen as the SSL algorithm. This algorithm was selected
because of minimal free parameters it needs, and its ability to
easily adapt a multiclass problem—unlike, e.g., S3VM, which
does not readily work in multiclass problems.

There are several variations of cluster-and-label; we used
k-means to perform the clustering, and majority vote of labeled
instance in the clusters for labeling the clusters. The algorithm
begins with k = 5, the number of clusters to find, which
iteratively reduces itself by one if it is unable to find a
solution where every cluster contains at least one labeled
point. COMPOSE free parameters (α and CP) were selected
heuristically (shown within figures), were not optimized, and
remained fixed throughout the experiments.

1) Repeated Unimodal and Multimodal Gaussians: The two
experiments repeated from [50] serve as a benchmark, com-
paring the original COMPOSE (skeleton-based compaction,
limited to 2-D) to the updated framework presented here. The
experiments were governed by parametric equations, similar
to those of Tables I and II for new experiments shown below.
As shown in Figs. 9 and 10, the modified COMPOSE frame-
work (denoted by solid red line) performs better in both
experiments when compared with its earlier counterpart (using
cluster-and-label as the SSL). Performance of the original
COMPOSE algorithm with other SSL algorithms is also shown
for comparison.

During the periods of increased class overlap, time
steps 60–70 in Fig. 9, COMPOSE outperforms APT with
statistical significance. During the other steps, both algorithms
have similar performances, closely tracking Bayes classifier
(black curve).

The primary weakness of APT—the assumption that all
subpopulations must be present at initialization—is most
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TABLE I

PARAMETRIC EQUATIONS GOVERNING DRIFT OF (NEW) 2-D GAUSSIAN EXPERIMENT WITH ADDED CLASS

TABLE II

PARAMETRIC EQUATIONS GOVERNING DRIFT OF 3-D GAUSSAIN EXPERIMENT

Fig. 13. Snapshots of Gaussian added-class experiment at intervals where parametric equations governing drift change. Note that the new (third) class appears
at t = 0.4, and then spreads into the feature space. See video illustrating the experiment at http://users.rowan.edu/~polikar/research/tnnls.

vividly seen in the second experiment that featured a sce-
nario that splits a unimodal distribution into a multimodal
distribution, which have then merged to return to a uni-
modal distribution later (see link in Fig. 10 caption for
visualization of this scenario). APT failed to track these
diverging distributions, as shown in Fig. 10, because the
diverging distribution created a new subpopulation that APT

did not know at initialization. COMPOSE, however, was
able to track the distributions before the split, throughout
the split, as well as after their merge. Furthermore, COM-
POSE was able to follow the performance of Bayes closely.
This is a quite noteworthy, considering the unfair circum-
stances under which COMPOSE operates against the Bayes
classifier.
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Fig. 14. Snapshots of 3-D data sampled from a Gaussian distribution shown at time steps where parametric equations governing drift change. See video
illustrating the experiment at http://users.rowan.edu/~polikar/research/tnnls.

2) Unimodal Gaussian With Added Class: This new
experiment initializes two Gaussian distributions at t = 0, and
then adds a third class at time step 40, as governed by the
parametric equations of Table I, and as shown in Fig. 13. The
third class was added with only 5% of its data labeled—with
labels provided only at this time step—which constitutes the
initialization of the new class for COMPOSE. In contrast,
the full training set (i.e., all instances labeled) for the new
class was provided to APT. We also note that the labeled data
provided at this time step came only from the new class to
comply with ILSE requirements. Fig. 11 compares COMPOSE
performance against that of APT and Bayes classifier.
COMPOSE outperforms APT with statistical significance
during certain time intervals (time steps 20–60). During other
times, the differences in performances were not statistically
significant. All classifiers experience a performance drop
when the new class is added, which is expected.

3) Unimodal Gaussians in 3-D: This new experiment, gov-
erned by equations of Table II and illustrated in Fig. 14,
extends the feature space to 3-D to demonstrate (and graphi-
cally illustrate) that revised COMPOSE can actually scale to
higher dimensions (also see 8-D real-world data set below).
Fig. 12 compares COMPOSE’s generalization performance to
that of Bayes classifier and APT. The important observation
here is that COMPOSE can still follow Bayes extremely
well, despite the unfair nature of the experimental setup, and
outperforms APT with statistical significance during the more
difficult periods of high overlap, and performing similarly
during other time steps.

B. Experimental Setup and Results of Real-World Data

We have also tested COMPOSE using the National Oceanic
and Atmospheric Administration (NOAA) weather data set
collected over a 50-year span from Offutt Air Force Base in

Bellevue, Nebraska. Eight features (temperature, dew point,
sea-level pressure, visibility, average wind speed, max sus-
tained wind speed, and minimum and maximum temperature)
are used to determine whether each day experienced rain or
no rain. The data set contains 18 154 daily readings of which
5693 are rain and the remaining 12 461 are no rain. Data were
grouped into 49 batches of one-year intervals, containing 365
instances (days) each; the remaining data were placed into the
fiftieth batch as a partial year.

This experiment was initialized with 5% of the 365
instances labeled. Every subsequent time step received the
full set of additional 365—all unlabeled—instances. Since
this is real-world data (and not drawn from a distribution),
and since all the available data are presented at each time
step, only one trial is possible. Repeating trials would result
in the same performance each time so a confidence interval
cannot be obtained. In [4], this data set was used to test
an ensemble of supervised learners (Learn++.NSE—for non
stationary environments) receiving labeled data with every
time step in a seasonal fashion—batches of 90 instances.
We compare yearly batch performance of COMPOSE and
APT with that of Learn++.NSE (with SVM as well as naïve
Bayes used as BaseClassifier) in Fig. 15. COMPOSE greatly
outperforms APT, but the most compelling demonstration of
COMPOSE’s performance comes from comparing COMPOSE
with Learn++.NSE. COMPOSE trained in an ILSE setting
(and with only 18 labeled instances), is quite competitive
with an ensemble of classifiers that are trained in an entirely
supervised manner, receiving fully labeled data at every
time step.

C. Computation Time Tests

As the experiments have shown, COMPOSE can learn in
an initially labeled streaming nonstationary environment, and



DYER et al.: COMPOSE: SSL FRAMEWORK 23

Fig. 15. Performance of COMPOSE on the NOAA weather data set
plotted against Learn++.NSE and the APT algorithm. COMPOSE parameters:
α = 14 and CP = 0.65.

Fig. 16. Computation time of experiments.

successfully track the changing environment using unlabeled
data only. The ability of COMPOSE learning in such a setting
comes at a cost: COMPOSE is a relatively computationally
expensive algorithm, though not as expensive as APT, at least
for the data sets used in our experiments.

The complexity of COMPOSE has been reduced from
its original version, where the skeleton algorithm used for
compaction was its computationally most expensive module.
With the onion-peeling compaction described here, the com-
paction function is no longer a computational bottle neck—
in fact, it is no longer dependent on dimensionality. The
most expensive module in COMPOSE is now the α-shape
generation, which runs in exponential time with respect to
the number of dimensions. We have run some timing exper-
iments, described in the following, to better understand the
behavior of the algorithm with respect to its computational
complexity.

Fig. 16 shows the computation time, averaged over 50
trials for COMPOSE and five trials for APT, conducted on
a modest 2.4-GHz processor (with 6-GB RAM) for each
synthetic experiment described in the previous section. In each
case, the timing diagrams follow a similar trend: the initial
few time steps are computed relatively quickly while a basis
of core supports is built up; then, within a few time steps, the

TABLE III

COMPOSE AND APT COMPUTATION COMPARISON

Fig. 17. Typical family of curves with α value (α = 0.40 shown) held
constant and CP allowed to vary.

algorithm reaches a steady state and maintains approximately
the same processing time (per time step) for the remainder of
the experiment, unless new classes are added, which then adds
a modest additional cost (see change in unimodal Gaussian
added-class experiment steady-state computation time at time
step 40).

Comparing the unimodal Gaussian experiment (with 100
unlabeled instances added per class, resulting in 200 new
instances per time step) and its 2.5 s per time step steady-state
processing time with the multimodal Gaussian experiment
(with 100 unlabeled instances added for each of the bimodal
classes, resulting in 400 new instances per time step) and its
5 s per time step steady-state processing time further shows
that COMPOSE runs in nearly linear time with respect to the
cardinality of the data.

Comparing the unimodal Gaussian experiment, CP = 0.70,
with the unimodal added-class experiment, CP = 0.60, sug-
gests the greater the CP the faster the algorithm runs, as there
are fewer core supports to maintain.

Comparing any of the 2-D experiments to the 3-D experi-
ment shows that the computation time increases greatly with
higher dimensional data. This increase in computational com-
plexity with respect to the dimensionality is the primary cost of
the current algorithm. We believe the cost is, however, justified
given the difficulty of the task the algorithm seeks to solve.
We should note that even with the 8-D data, where processing
for each time step takes 20–30 min (on a modestly configured
computer), COMPOSE is still well within useable limits for
many applications that generate data no faster than every 30
min. Any application, for example, that generates hourly or
daily data can be easily used with current version of COM-
POSE even with higher dimensions. Furthermore, we should
reemphasize that the primary bottle neck in COMPOSE is not
the data cardinality but rather its dimensionality. Therefore,
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Fig. 18. Family of curves with C P held constant and α value allowed to vary. (a) When C P is too high, e.g., 0.8, or (c) too low, e.g., 0.6, the algorithm is
sensitive to variations in α. (b) When C P is selected close to optimal value, e.g., 0.68, the performance variation and the sensitivity to α decrease dramatically.

the algorithm can easily handle large databases with modest
dimensionality.

It is also worth noting that all the computation times
mentioned above were obtained using a modestly config-
ured computer running an interpreted language (MATLAB).
Optimizing the algorithm (many of its steps can be run in
parallel), implementing it in a compiled language and running
it in a parallel computing setting can further improve its
computational efficiency, which is included in our future work.

Comparing computation times of COMPOSE and APT,
Table III shows a significant difference. As expensive as
COMPOSE is, it completed the synthetic dataset experiments
significantly faster than APT on the same computer in the
same MATLAB environment.

Finally, because the most expensive module in COMPOSE
is the α-shape generation—essentially a density estimation
algorithm—alternative density estimation approaches such as
GMMs may further improve the computational efficiency.
Evaluating such alternative density estimation approaches is
also within the scope of our current and future work.

D. Choice of Free Parameters and Their Effects

To better understand the impact of COMPOSE’s free para-
meters, the α value and CP, we have repeated the synthetic data
experiments varying each parameter independently. We first
looked at the effect of CP, keeping α constant using a family
of curves. A sample of these (using the multimodal Gaussian
data) is shown in Fig. 17, which shows that a proper choice
of CP is necessary. We also plotted performance keeping CP
constant and allowing α value to vary—whose sample plots
are shown in Fig. 18 for three different values of CP. These
results show that when the CP is chosen incorrectly, too high
as in Fig. 18(a) or too low as in Fig. 18(c)—the performance
varies greatly with respect to α. If CP is, however, chosen
properly, as in Fig. 18(b), the algorithm performance becomes
less sensitive to the α parameter.

From this preliminary sensitivity analysis, we conclude
that CP has a bigger impact on COMPOSE performance.
There may be a logical explanation for this: if α shapes
are compacted too much, core supports relevant to the future
distribution are lost. If compacted too little, core supports may
overlap with a rival class misleading the algorithm’s direction.

V. CONCLUSION

We described a new framework, called COMPOSE, for
semi-supervised learning of a nonstationary (drifting) envi-
ronment experiencing extreme verification latency. In this
environment, the data arrive in a streaming manner, and
beyond an initial batch, the entire data stream is assumed
unlabeled. We refer to such an environment as ILSE, where
the verification latency is infinite. Our initial results have
been quite promising, demonstrating that COMPOSE can
indeed learn and track the drifting distributions in such an
environment.

COMPOSE can track any drifting environment as long as
the class conditional distributions overlap at subsequent time
steps. We refer to this condition as limited drift. This is a rea-
sonable assumption, as in most natural phenomena—perhaps
with the exception of catastrophic or abrupt failures—changes
to the data distribution are usually gradual. One particularly
pathological scenario is worth mentioning as an extreme case
that violates the limited drift assumption: a sudden change
(or switch) of class labels while overall data distribution
remains constant. In such a case, there will be no overlap
between pt (x|y) and pt+1(x|y). COMPOSE cannot track such
a change, because it receives no future labeled data. Toy
examples of this scenario include the shifting hyperplane as
used in [9], and rotating checkerboard as used in [4] and [55].
On the other hand, COMPOSE can naturally work in the more
relaxed environment, where labeled data are provided regularly
or intermittently. In such a case, COMPOSE simply employs
the provided labeled data as new core supports to be used
in future time steps. COMPOSE can then accommodate the
aforementioned change to class membership scenarios, as well
as abrupt change scenarios. The experiment that introduced a
new class is an example of such a scenario, where COMPOSE
was provided with a one-time set of labeled data (only at
the time the new class was introduced), and it was able
to learn this abrupt change introduced by the new concept
(class).

Under the ILSE setting, the focus of this paper, preliminary
results show that COMPOSE can closely track the optimal
Bayes classifier, while outperforming APT in the regions of
class overlap, as well as in scenarios where data distributions
diverge into multiple modes. APT requires all the modes to
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be presented at initialization and further assumes that any
drift in data distribution must be structured or systematic.
Such an assumption is not made by COMPOSE. Finally,
while COMPOSE is a computationally intensive algorithm,
it appears to be more efficient than APT.

Nevertheless, the α-shape construction used by COMPOSE
is indeed a computationally expensive process, one that is
exponential in dimensionality. Our current and future work
includes exploring more efficient ways of constructing α
shapes, or using alternate density estimation techniques, such
as GMMs or kernel density estimation. While such changes
may require modifications to the compaction method, the
foundational concepts of COMPOSE remain the same—select
instances from the geometric center (core region) of high-
density regions of each class to be used as labeled data, and
combine them with the unlabeled data of subsequent time step.
This is why we refer to COMPOSE more as a framework,
rather than just an algorithm. COMPOSE can be a modular
family of algorithms, depending on how the core supports are
determined, what SSL algorithm is used as a BaseClassifier,
or how the compaction is applied.

There is much room for improvement: articulating a
more rigorous definition of limited drift (e.g., defining lim-
ited drift with respect to Kullback–Leibler divergence or
Hellinger distance between two subsequent distributions),
optimizing or automating selection of algorithm parameters,
and expanding the experimental work to other real-world
and even higher dimensional data, all constitute our future
work.

Despite its limitations and the aforementioned room for
improvement, we believe that the COMPOSE shows a sig-
nificant promise in addressing extreme verification latency
problem, performing quite well against other approaches.
It is worth mentioning that COMPOSE’s limited drift assump-
tion is much less restrictive than those of other algorithms
(including of domain adaptation, even though COMPOSE
tackles a more difficult problem). Perhaps most remarkable
is the performance comparison of COMPOSE against the
Bayes classifier and Learn++.NSE (an ensemble of supervised
learners). In these experiments, the experimental conditions for
comparison were deliberately set to be grossly unfair against
COMPOSE, where the competing algorithms were run in a
fully supervised mode.

Finally, we should mention that COMPOSE introduces
tools from computational geometry that are not often used
in machine learning research but may have applications to
other machine learning problem domains. We hope that this
paper will stimulate new discussions and new efforts, and
perhaps open computational geometry-based approaches to
other machine learning problems, where such approaches have
been mostly underexplored.
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