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Abstract— This work presents an integrated fault detection
and fault-tolerant control architecture for spatially-distributed
systems described by highly-dissipative systems of nonlinear
partial differential equations with actuator faults and sam-
pled measurements. The architecture consists of a family of
nonlinear feedback controllers, observer-based fault detection
filters that account for the discrete measurement sampling,
and a switching law that reconfigures the control actuators
following fault detection. An approximate model that captures
the dominant dynamics of the infinite-dimensional system is
embedded in the control system to provide the controller and
fault detection filter with estimates of the measured output
between sampling instances. The model state is then updated
using the actual measurements whenever they become avail-
able from the sensors. A sufficient condition for stability of the
sampled-data nonlinear closed-loop system is derived in terms
of the sampling rate, the model accuracy, the controller design
parameters and the spatial placement of the control actuators.
This characterization is used to derive rules for fault detection
and actuator reconfiguration. The results are demonstrated
through an application to the problem of stabilizing the zero
solution of the Kuramoto-Sivashinsky equation.

I. INTRODUCTION

Compared with the extensive body of literature on fault

diagnosis and fault-tolerant control for lumped parameter

systems described by ordinary differential equations (e.g.,

see [1], [2], [3]), results for spatially-distributed systems

have been limited (e.g., see [4], [5], [6]). Major bottlenecks

in the design of fault-tolerant control systems for distributed

parameter systems include the infinite-dimensional nature

of these systems, as well as their complex dynamics char-

acterized by nonlinearities and uncertainties. Recently, we

developed in [7], [8], [9], [10] a framework for the integra-

tion of model-based fault detection, isolation and control

system reconfiguration for distributed processes modeled

by nonlinear parabolic PDEs with control constraints and

actuator faults. The framework brings together tools from

infinite-dimensional systems, model reduction, nonlinear

and robust control, as well as hybrid system theory.

Beyond the problems of uncertainty and constraints, one

of the key issues that needs to be accounted for in the design

of monitoring and fault-tolerant control systems is the issue

of measurement sampling. In practice, measurements of the

process outputs are typically available from the sensors at

discrete times and not continuously. The limitations on the

frequency of measurement availability imposes restrictions
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on the implementation of the feedback controller and can

also erode the diagnostic and fault-tolerance capabilities

of the control system if not explicitly accounted for at

the design stage. An effort to address this problem was

initiated in [11] where a fault detection and fault-tolerant

control architecture for distributed processes modeled by

linear systems of parabolic PDEs with a limited number

of measurements that are sampled at discrete times was

developed. A key idea – inspired by the results in [12]

and [13] on model-based control of networked systems

– is to embed within the fault-tolerant control system

an approximate model of the dominant process modes to

provide the observer with estimates of the outputs between

sampling instances. By exploiting the linear structure of the

process and the controllers, both necessary and sufficient

conditions for closed-loop stability were obtained. Since

many transport-reaction processes and fluid dynamic sys-

tems are characterized by strong nonlinear dynamics and

need to be operated over wide regions of the operating

space, it is important to develop sampled-data fault-tolerant

control systems that account explicitly for the nonlinearities

– both in the design of control laws and the development

of fault diagnosis and reconfiguration schemes.

Motivated by these considerations, we develop in this

work an integrated fault detection and fault-tolerant control

architecture for spatially-distributed systems described by

highly-dissipative nonlinear PDEs with sampled measure-

ments and actuator faults. The rest of the paper is organized

as follows. Following some preliminaries, an approximate

finite-dimensional model that captures the dominant dynam-

ics is obtained and used in Section III to design a stabilizing

feedback controller. The sampled-data closed-loop system is

then formulated as a discrete jump system, and an explicit

characterization of the minimum allowable sampling rate

that guarantees closed-loop stability in the absence of faults

is obtained. This characterization is then used in Section IV

to derive fault detection and actuator reconfiguration laws

for a given sampling rate. Finally, the proposed method-

ology is applied in Section V to the problem of actuator

fault-tolerant stabilization of the spatially-uniform unstable

steady-state of the Kuramoto-Sivashinsky equation.

II. PRELIMINARIES

A. Mathematical description

As an example of highly-dissipative nonlinear PDEs that

will be used to demonstrate the design and implementation

2010 American Control Conference
Marriott Waterfront, Baltimore, MD, USA
June 30-July 02, 2010

FrB06.2

978-1-4244-7425-7/10/$26.00 ©2010 AACC 5668



of the proposed fault detection and reconfiguration method-

ology, we consider the one-dimensional KSE equation with

distributed control and actuator faults:

∂U

∂t
= −ν

∂4U

∂z4
−

∂2U

∂z2
− cU

∂U

∂z

+

l∑

i=1

bk
i (z)[uk

i (t) + fk
a,i(t)], k ∈ C = {1, 2, · · · , N}

(1)

yκ(t) =

∫ π

−π

qκ(z)U(z, t)dz, κ = 1, . . . , m (2)

subject to the boundary and initial conditions:
∂jU

∂zj
(−π, t) =

∂jU

∂zj
(π, t) , j = 0, . . . , 3, U(z, 0) = U0(z) (3)

where U(z, t) is the state of the system, z ∈ [−π, π] is
the spatial coordinate, t is the time, ν > 0 is the instability

parameter, c > 0 is a positive real constant, uk
i (t) ∈ IR is

the i-th manipulated input associated with the k-th control

configuration, fk
a,i(t) is a fault in the i-th actuator of the k-th

control configuration, l is the total number of manipulated

inputs, bk
i (z) is the i-th actuator distribution function which

determines how the control action computed by the i-th
control actuator is distributed (e.g., point or distributed

actuation) in the spatial interval [−π, π]), k is a discrete

index that takes values in a finite set C and represents

the active control configuration, yκ ∈ IR denotes the κ-

th measured output, and qκ(z) is the sensor distribution

function which determines the location and type of the

measurement sensors (e.g., point or distributed sensing).

Remark 1: The KSE represents a simple model that

describes incipient instabilities in a variety of physical and

chemical systems, including falling liquid films, unstable

flame fronts, Belouzov-Zabotinskii reaction patterns and

interfacial instabilities between two viscous fluids. Com-

pared with the significant research work on the dynamics

and control of the KSE with periodic boundary conditions

(e.g., [14], [15], [16], [17]), results on fault diagnosis and

handling in the KSE are limited at present [5].

B. Formulation of the infinite-dimensional system

Using standard techniques from operator theory, the PDE

of Eqs.1-3 can be formulated as an infinite-dimensional-

system of the following form:

ẋ = Ax + Bk[uk(t) + fk
a (t)] + f(x), x(0) = x0

y = Qx
(4)

where A is the differential operator, Bk is the input op-

erator, f(x) is a smooth nonlinear function and Q is the

measurement operator.For A, the eigenvalue problem can

be formulated as:

Aφn = −ν
∂4φn

∂z4
−

∂2φn

∂z2
= λnφn, n = 1, . . . ,∞ (5)

subject to:

∂jφn

∂zj
(−π) =

∂jφn

∂zj
(+π), j = 0, . . . , 3 (6)

where λn denotes an eigenvalue and φn denotes an eigen-

function. It can be shown by a direct computation of the

solution of the above eigenvalue problem that, for a fixed

value of ν, A has a real pure point spectrum, the number

of unstable eigenvalues of A is finite and the distance

between two consecutive eigenvalues (i.e., λn and λn+1)

increases as n increases. Furthermore, for a fixed value

of ν > 0, the spectrum can be partitioned as σ(A) =
σ1(A)

⋃
σ2(A), where σ1(A) contains the first m (for some

finite m) “slow” eigenvalues (i.e., σ1(A) = {λ1, . . . , λm})

and σ2(A) contains the remaining “fast” eigenvalues (i.e.,

σ2(A) = {λm+1, . . .} where λm+1 < 0), and the separation

between the “slow” and “fast” eigenvalues is characterized

by the parameter ǫ = |λ1|/|λm+1|. The separation between

the “slow” and “fast” eigenvalues suggests that the dom-

inant dynamics of the KSE can be described by a finite-

dimensional system and motivates applying model reduction

techniques to the system of Eq.4 to derive an approximate

finite-dimensional system.

C. Modal decomposition

Let Hs, Hf be modal subspaces of A, defined as Hs =
span{φ1, . . . , φm} and Hf = span{φm+1, φm+2, . . .}.

Defining the orthogonal projection operators, Ps and Pf ,

such that xs = Psx, xf = Pfx, the state of the system of

Eq.4 can be decomposed as x = xs +xf . Applying Ps and

Pf to the system of Eq.4 and using the decomposition of

x, the system of Eq.4 can be decomposed as:

ẋs = Asxs +Bk
s [uk +fk

a ]+fs(xs, xf ), xs(0) = Psx0 (7)

ẋf = Afxf +Bk
f [uk+fk

a ]+ff(xs, xf ), xf (0) = Pfx0 (8)

y = Qxs + Qxf (9)

where As = PsA is an m × m diagonal matrix of the

form As = diag{λj}, Bk
s = PsB

k, Af = PfA is an un-

bounded differential operator which is exponentially stable

(following from the fact that λm+1 < 0 and the selection

of Hs and Hf ), Bk
f = PfB

k. Neglecting the fast and

stable xf -subsystem of Eq.8, the following approximate,

m-dimensional slow system is obtained:

˙̄xs = Asx̄s + Bk
s [uk + fk

a ] + fs(x̄s, 0), ȳ = Qx̄s (10)

where the bar symbols denote that these variables are

associated with a finite-dimensional system. To facilitate the

controller synthesis and simplify closed-loop analysis, we

will consider in the remainder of the paper that the inverse

(or pseudo-inverse in the case of a non-square system) of

the operator Q exists. This requirement, which can be met

by appropriate choice of the locations of the measurement

sensors, allows obtaining estimates of the state of the finite-

dimensional system of Eq.10 from the measurements.

III. DESIGN AND ANALYSIS OF FINITE-DIMENSIONAL

SAMPLED-DATA CONTROL SYSTEM

A. Model-based controller synthesis

To realize the desired sampled-data control structure, we

will first synthesize in this part a nonlinear controller that

stabilizes the finite-dimensional system in the absence of

sampling constraints (i.e., when the sensors transmit their

data continuously to the controller). To facilitate controller

synthesis, we consider the following representation of the

5669



approximate finite-dimensional system which describes ex-

plicitly the evolution of the amplitudes of the dominant

(slow) eigenmodes:

ȧs = Fas +Ḡk(za)[uk +fk
a ]+h(as), ȳ = Qs(zs)as (11)

where as(t) = [a1(t) · · · am(t)]′ ∈ IRm, ai(t) is the

amplitude of the i-th eigenmode, x̄s(t) =
∑m

j=1aj(t)φj(z),
(x̄s(t), φj) = aj(t)(φj , φj), F is an m×m diagonal matrix

of the form F = diag{λj}, Ḡk(za) is an m×l matrix whose

(i, j)-th element is given by Gk
ij = (bk

j (z), φi(z)) which

is parameterized by the location of the control actuators,

h(·) = [h1(·) h2(·) · · · hm(·)]′, hj = (fs(x̄s, 0), φj) is

a smooth nonlinear function of its argument, and Qs is an

m×m invertible matrix whose (i, j)-th element is given by

Qij = (qi(z), φj(z)) and is parameterized by the locations

of the measurement sensors. Note from the definition of as

that stabilization of the system of Eq.11 implies stabilization

of the system of Eq.10.

To proceed with controller synthesis, we will consider

that an uncertain finite-dimensional model of the fault-free

system of Eq.11 is available:

ẇ = F̂w + Ĝk(za)uk + ĥ(w), ŷ(t) = Qs(zs)w(t) (12)

where w is the state of a model that generates an estimate

of as, and F̂ , Ĝk(·), ĥ(·) are models of F , Gk(·) and h(·),
respectively. Notice that in general F̂ 6= F , Ĝk 6= Gk and

ĥ 6= h to allow for possible plant-model mismatch.

Assumption 1: For each k ∈ C, there exists a nonlinear

feedback control law of the general form:

uk = pk(w) (13)

such that the origin of the closed-loop model of Eqs.12-13

satisfies:

‖w(t) ‖ ≤ αk‖w(t0) ‖e
−βk(t−t0) (14)

for some αk ≥ 1, βk > 0, for all w(t0) ∈ Ωk, for some

compact neighborhood Ωk ⊂ IRm containing the origin in

its interior.

B. Controller implementation under sampling

To deal with the unavailability of continuous measure-

ments, the dynamic model of Eq.12 is embedded in the

control system to provide the controller with an estimate

of the state measurements in between sampling times. The

state of the model is then updated using the actual measure-

ments whenever they become available from the sensors.

The model-based controller is implemented as follows:

uk(t) = pk(w(t)), t ∈ (tj , tj+1)

ẇ(t) = F̂w(t) + Ĝk(za)uk(t) + ĥ(w(t))
ŷ(tj) = ȳ(tj), j = 0, 1, 2, · · ·

(15)

where ŷ is an estimate of ȳ, w is an estimate of as, and

∆ := tj+1−tj is the sampling period. Note that since Qs is

invertible (or pseudo-invertible in the case of a non-square

system), re-setting the output of the model to match the

output of the finite-dimensional slow system is equivalent

to re-setting the state of the model since w(tj) = Q−1
s ȳ(tj).

C. Closed-loop stability analysis

To characterize the maximum allowable sampling period

(equivalently, the minimum sampling rate) between the

sensors and the controller, we define the model estimation

error as es(t) = as(t)−w(t), where es ∈ IRm. The overall

fault-free closed-loop system can then be formulated as

a combined discrete-continuous system and written in the

following form:

ȧs(t) = Fas(t) + Gk(za)pk(w(t)) + h(as(t))

ẇ(t) = F̂w(t) + Ĝk(za)pk(w(t)) + h(w(t)) + Θ(w(t))
ŷs(t) = Qsw(t), t ∈ (tj + tj+1)

es(tj) = 0, j = 0, 1, 2, · · · , ∆ = tj+1 − tj (16)

where Θ(w) = ĥ(w) − h(w). Note that while the state of

the slow subsystem, as evolves continuously in time, the

error es is reset to zero at each transmission instance since

the state of the model is updated every ∆ seconds using

the output measurement. Referring to Eq.16, it is clear that

the right hand-side depends on the slow system dynamics,

the model and the control law. Since the functions ĥ(·),
h(·) and pk(·) are assumed to be sufficiently smooth, it

follows that there exist positive real constants Lh, Lδ and

Lp such that the following estimates hold for all x, y ∈ Ω
(see Assumption 1):

‖ h(x) − h(y) ‖ ≤ Lh‖ x − y ‖
‖Θ(x) − Θ(y) ‖ ≤ LΘ‖ x − y ‖
‖ pk(x) − pk(y) ‖ ≤ Lk

p‖ x − y ‖
(17)

Note that if the model is accurate, LΘ will be small.

The following theorem provides a sufficient condition for

the stability of the sampled-data finite-dimensional closed-

loop system in terms of the sampling period, the model

uncertainty, the controller design parameters and the control

actuator locations. The proof can be sketched along the lines

of the proof of the Theorem 1 in [18] and is omitted for

brevity.

Theorem 1: Consider the closed-loop system of Eq.11 with

fk
a ≡ 0 subject to the control and update laws of Eq.15,

and the compensated model of Eq.12 for which Assumption

1 holds, with as(t0) = w(t0) ∈ Ω. Then, if

F k
1 (∆) := 1 − αk

(
e−βk∆ + (eLe∆ − e−βk∆)

Lk
w

βk + Le

)
> 0

(18)

the states of the sampled-data closed-loop system are

bounded and satisfy:

‖ as(t
−
j+1) ‖ < ‖ as(tj) ‖ for all ‖ as(tj) ‖ > rk(∆) (19)

for j = 0, 1, 2, · · ·, where rk(∆) = F k
2 (∆)/F k

1 (∆),

F k
2 (∆) =

Lk
0

Le

(eLe∆ − 1) (20)

and Le = (Lh + ‖ F̂ ‖ + ‖ F̃ ‖), F̃ = F − F̂ ,

Lk
w = LΘ + ‖ F̃ ‖ + ‖ G̃k ‖Lk

p, G̃k = Gk − Ĝk,

and Lk
0 = (‖ G̃k ‖‖ pk(0) ‖ + ‖Θ(0) ‖). Furthermore,

lim
t→∞

‖as(t)‖ ≤ γk
1 rk(∆) + γk

2 , where γk
1 =

max
t−tj∈[0,h]

1 − F k
1 (t − tj) and γk

2 = max
t−tj∈[0,h]

F k
2 (t − tj).
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Remark 2: Theorem 1 establishes that if the sampling

period is chosen such that Eq.18 is satisfied, the norm of the

state of the closed-loop finite-dimensional slow system is

guaranteed to decrease at successive sampling times as long

as the sampled state is outside some terminal neighborhood

of the origin rk(∆) (the size of which is fixed by the choice

of the sampling period). This implies that the sampled

closed-loop state is guaranteed to converge in finite time

to the terminal set where it remains confined for all future

times. Note that between consecutive updates the state is

always bounded and can grow only a certain amount (since

t − tj < ∆) and this growth is independent of j.

Remark 3: In the particular case when the origin is an

equilibrium point of both the slow system and the model

(i.e., the model uncertainty is vanishing), it can be shown

that the closed-loop state is not only bounded but is also

guaranteed to converge to the origin as time tends to infinity,

i.e., the sampled-data closed-loop system is asymptotically

stable at the origin. Specifically, when the model uncertainty

is vanishing, we have Θ(0) = 0 and pk(0) = 0 which

implies that Lk
0 = 0 and, consequently, F k

2 (∆) = 0 and

rk(∆) = 0. The terminal set thus collapses to the origin

in this case and lim
t→∞

‖as(t)‖ = 0 (see Section V for an

example).

Remark 4: It can be seen from the expressions in Eq.18

and Eq.20 that the given bound on the minimum stabilizing

sampling rate is dependent on the degree of mismatch

between the dynamics of the approximate system and the

model used to describe it. Given bounds on the size of the

uncertainty, the stability criterion of Theorem 1 can be used

to estimate the range of stabilizing sampling periods. Alter-

natively, if ∆ is fixed by the characteristics of the sensing

device, it is possible to use the stability condition to obtain a

bound on the maximum tolerable process-model mismatch.

In addition to model uncertainty, the stabilizing sampling

period depends on the controller design parameters (whose

effect is reflected in αk and βk) as well as on the locations

of the control actuators (due to the parametrization of Gk

by the actuator location).

IV. FAULT-TOLERANT CONTROL SYSTEM DESIGN

A. Observer-based fault detection

The main idea here is to design a state observer for the
fault-free finite-dimensional system and use it as a fault
detection filter by comparing its output with the actual
output of the system to determine the fault or health status
of the control actuators. To this end, and based on the finite-
dimensional model of Eq.12, we consider a fault detection
filter of the form:

η̇(t) = F̂ η(t) + Ĝk
suk(t) + ĥ(η(t)) + L(ŷ(t) − Qsη(t)) (21)

where ŷ(t) = Qsw(t), ŷ(tj) = ȳ(tj), for j = 0, 1, 2, · · ·,

and L is an observer gain chosen such that F̂ − LQs

is Hurwitz. The residual, which captures the discrepancy

between the output of the slow system and the output of

the observer, is defined as:

rs(t) = ‖ȳ(t) − Qη(t)‖ (22)

To generate an estimate of the state, the above fault

detection filter uses the output of the model of Eq.12

when measurements of the actual output are not available.

The model output (and state) is then re-set based on the

measurements when they become available. The following

proposition characterizes the expected fault-free evolution

of the residual which is then used for fault detection.

Proposition 1: Consider the closed-loop system of Eq.11

and Eq.15 with fk
a ≡ 0 for a fixed k ∈ C, where

the sampling period ∆ is chosen such that Eq.18 holds.

Consider also the fault detection filter of Eq.21 for a fixed

k ∈ C. Then, there exist a class KL function, β0(·, ·), a

class K function, γ0(·), and a positive constant k1 such

that the residual defined by Eq.22 satisfies a time-varying

bound of the form:

‖rs(t)‖ ≤ β0(‖rs(t0)‖, t − t0) + γ0

(
sup

t0≤τ≤t

‖Γk(ξk(τ))‖

)

(23)
for all t ≥ t0 and for all ‖rs‖ ≤ k1, where ξ = [as w]′ and

Γk(ξ) = (F̃ + LQs)as − Θ(as) + G̃kpk(w) − LQsw.

Proof: From the definition of the residual, we have ṙs =
ȧs − η̇. Substituting for ȧs and η̇ from Eq.11 and Eq.21,

respectively, and using the definitions of ξ and Γ(ξ) given

in the statement of the theorem yields:

ṙs = F̂ors + ĥ(as) − ĥ(η) + Γk(ξ) (24)

From the fact that F̂o := F̂−LQs is Hurwitz, it follows that

for any positive-definite symmetric matrix M , there exists

a positive-definite symmetric solution P > 0 that satisfies

the matrix Lyapunov equation F̂T
o P + PF̂o = −M . Using

V = rT
s Prs as a Lyapunov function candidate, the time-

derivative of V (rs) along the trajectories of the system of

Eq.24 can be computed as follows:

V̇ (rs)=−rT
s Mrs+2rT

s P (ĥ(as)− ĥ(η))+2rT
s PΓk(ξ) (25)

From the properties of the function ĥ(·), it follows that there

exists a positive constant k1 such that ‖ĥ(as) − ĥ(η)‖ ≤
L̂h‖rs‖ for all ‖rs‖ ≤ k1. Substituting this estimate into

Eq.25, it can be shown after some manipulations that:

V̇ (rs) ≤ −c1‖rs‖
2 + c2‖rs‖‖Γ

k(ξ)‖

≤ − c1

2 ‖rs‖
2 ∀ ‖rs‖ ≥ 2c−1

1 c2‖Γ
k(ξ)‖

(26)

where c1 = λmin(M) + 2λmax(P )L̂h > 0, c2 =
2λmax(P ) > 0, λmin(M) is the minimum eigenvalue of M
and λmax(P ) is the maximum eigenvalue of P . Therefore,

the system of Eq.24 is input-to-state stable with respect to

Γk(ξ). Recall from Theorem 1 that when Eq.18 is satisfied,

both w and as are bounded and therefore Γk(ξ) is also

bounded. From the definition of input-to-state stability [19],

we finally conclude that there exist a class KL function

β0, a class K function γ0 such that Eq.23 is satisfied. This

completes the proof of the proposition.

Remark 5: Based on the result of Proposition 1, and for a

given sampling rate (chosen to be stabilizing in the absence

of faults), a fault can be declared if the residual breaches

the time-varying threshold of Eq.23 at some time. Note,

however, that even though η is available continuously, the

fact that ȳ is available only at the sampling times implies

5671



that the residual can be evaluated only at those times and

not continuously, i.e., fault detection can take place only

at tj , j = 0, 1, 2, · · · regardless of when the fault actually

occurs. Detection delays can be minimized by tightening

the bound on rs which can be achieved by proper selection

of the controller and observer design parameters.

B. Actuator reconfiguration logic

Once a fault is detected in the operating actuator con-

figuration, the supervisor needs to determine which fall-

back configuration to select and activate in order to preserve

closed-loop stability. The following theorem describes the

actuator reconfiguration logic. The proof follows directly

from the result of Theorem 1 and is omitted for brevity.

Theorem 2: Consider the closed-loop system of Eq.11 and

Eq.15, with k(t0) = i for some i ∈ K and a sampling

period ∆ chosen such that Eq.18 is satisfied. Let Tf be the

earliest time that f i
a(Tf ) 6= 0. Then the switching rule:

k(t) =

{
i, 0 ≤ t < Tf

ν 6= i, t ≥ Tf , F ν
1 (∆) > 0

}
(27)

guarantees that the states of the closed-loop system remain

bounded and lim
t→∞

‖as(t)‖ ≤ γν
1 r(∆) + γν

2 .

Remark 6: While the sampled-data fault-tolerant control

system developed in Sections III-IV is designed on the basis

of the finite-dimensional system of Eq.11, it can be shown

that this architecture continues to enforce stability and fault-

tolerance when implemented on the infinite-dimensional

system of Eqs.7-9 provided that the separation between the

slow and fast states is sufficiently large (i.e., for ǫ small

enough), and the fault detection threshold is appropriately

modified to account for the approximation errors resulting

from neglecting xf in the finite-dimensional system. This

argument can be justified using techniques from singular

perturbations for infinite-dimensional systems [20].

V. SIMULATION STUDY: APPLICATION TO THE

KURAMOTO-SIVASHINSKY EQUATION

In this section, we demonstrate the application of the

fault detection and fault-tolerant control methodology

described in the previous sections to the problem of

stabilizing the zero solution of the one-dimensional KSE

with periodic boundary conditions described by Eqs.1-3.

For simplicity, we consider the KSE in the space of

odd functions with spatial zero mean. The eigenvalue

problem for the differential operator in this space yields

λj = −νj4 + j2, φj(z) =
√

1
π

sin(jz), j = 1, . . . ,∞. It

can be verified that for ν = 0.2 the first two eigenvalues

are unstable and the spatially-uniform zero steady-state is

unstable. The control objective is to stabilize the system

at this unstable steady state using two point control

actuators (with finite support) and two point measurement

sensors. We consider the first two eigenvalues to be the

dominant ones and use standard Galerkin’s method to

derive the a second-order system of the form of Eq.11 that

describes the temporal evolution of the amplitudes of the

first two eigenmodes, where U(z, t) =
∑∞

i=1 ai(t)φi(z),

F = diag{λ1, λ2}, λ1 = λ2 = 0.8 and

G
k=

1

2µ

[
φ′

1(z1 − µ) − φ′
1(z1 + µ) φ′

1(z2 − µ) − φ′
1(z2 + µ)

φ′
2(z1 − µ) − φ′

2(z1 + µ) φ′
2(z2 − µ) − φ′

2(z2 + µ)

]

where z1 and z2 are the locations of the two point actuators

(with finite support) and φ′
i =

∫ zj+µ

zj−µ
φi(z)dz. The actuator

distribution functions are of the form bj(z) = 1/(2µ) for

z ∈ [zj −µ, zj +µ], where µ is a sufficiently small number,

and bj(z) = 0 elsewhere. The explicit form of the nonlinear

term h(a1, a2) is omitted for brevity.

Following the methodology presented in Section III,

we consider an uncertain model of the finite-dimensional

system for controller synthesis. The model is of the form

of Eq.12 where F̂ = F , the mismatch between ĥ(·)
and h(·) is due to parametric uncertainty in the constant

c (c = 1 in the model and c = 0.5 in the KSE),

and Ĝk =

[
φ1(z

k
1 ) φ1(z

k
2 )

φ2(z
k
1 ) φ2(z

k
2 )

]
. Note that the discrepancy

between Ĝk and Gk stems from approximating the ac-

tuator distribution functions used in the model by dirac

functions. Based on this model, a nonlinear controller that

exponentially stabilizes the origin of the closed-loop model

is designed using feedback linearization techniques. The

controller is designed to place the closed-loop eigenvalues

of the model at (−10,−10). Output measurements from two

sensors located at z = −0.25 and z = 0.5 are used to re-set

the model state at sampling times. In all simulation runs,

the controller is implemented on a 30-th order Galerkin

discretization of the KSE. Note that due to the structure

of the KSE, the origin is an equilibrium point of both the

finite-dimensional slow subsystem and the uncertain model,

and therefore we have from Theorem 1 that Lk
0 = 0,

F k
2 (∆) = 0, and the sampled-data closed-loop system is

expected to be asymptotically stable if F k
1 (∆) > 0.

We consider first the case when no faults are present

in the operating actuator configuration, and analyze the

dependence of closed-loop stability on the actuator locations

and the sampling period. Figs.1(a-c) are contour plots of

F k
1 in terms of the locations of the actuators for different

sampling periods (∆ = 0.25, 0.75 and 1, respectively).

The areas enclosed by the zero contour lines (i.e., the

regions where F k
1 (∆) > 0) represent the set of actua-

tor configurations that enforce asymptotic stability of the

closed-loop system. It can be observed from these plots

that the set of stabilizing actuator configurations shrinks as

the sampling period increases. Fig.1(d) is a contour plot

of F k
1 in terms of z1 and ∆ when the location of the

second actuator is fixed at z2 = 2. The areas enclosed by

the zero contour lines represent the stability regions of the

closed-loop system. This plot can be used to determine,

for a given sampling period, the range of feasible locations

where the first actuator can be placed. Also, for a fixed

actuator placement, the boundary point of the zero contour

area indicates the maximum stabilizing sampling period.

To illustrate the fault detection and handling capabilities

of the sampled-data control system, the system is initialized
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Fig. 1. Plots (a)-(c) depict the sets of stabilizing actuator configurations
for ∆ = 0.25, 0.75 1, respectively. Plot (d) shows the range of feasible
locations for actuator z1 on the sampling period for a fixed z2 = 2.

using the healthy actuators placed at z1 = −1, z2 = 2, and

the sampling period is set at ∆ = 0.25. To facilitate fault

detection, we design a fault-detection filter of the form of

Eq.21 based on the model of Eq.11 with L chosen such

that the poles of the observer are placed at (−10,−10).
Based on the evolution of the residual in the absence of

faults, we choose a threshold of ‖rs(t)‖ ≤ 0.1 to detect

faults for t ≥ Tb = 0.1. This allows sufficient time for

the fast modes to converge to zero and for the behavior

of the infinite-dimensional system to closely follow that of

the slow modes. At Tf = 0.3, a fault is introduced in the

first actuator (see the red line in Fig.2(d)) and the state of

the faulty closed-loop system deviates from the zero steady

state if no corrective action is taken (see Fig.2(a)). As can

be seen from the residual profile in Fig.2(c), the fault is

detected at Td = 0.75 when it causes the residual to breach

the threshold. The supervisor then needs to switch to a

backup actuator to maintain closed-loop stability. For the

given sampling period, it can be seen from Fig.1(a) that

the actuators placed at z1 = 1, z2 = 1.5 lie inside the zero

contour zone and are therefore expected to be stabilizing.

This prediction is confirmed by Fig.2(b) which shows

that the backup configuration successfully stabilizes the

system at the spatially-uniform steady-state when activated

after fault detection (the blue line in Fig.2(d) shows the

manipulated input profile of the backup actuator located at

z1 = 1, z2 = 1.5).
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