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Abstract—A highly compressed image is usually not only
of low resolution, but also suffers from compression artifacts
(blocking artifact is treated as an example in this paper). Directly
performing image super-resolution (SR) to a highly compressed
image would also simultaneously magnify the blocking artifacts,
resulting in an unpleasing visual experience. In this paper, we
propose a novel learning-based framework to achieve joint
single-image SR and deblocking for a highly-compressed image.
We argue that individually performing deblocking and SR (i.e.,
deblocking followed by SR, or SR followed by deblocking) on a
highly compressed image usually cannot achieve a satisfactory
visual quality. In our method, we propose to learn image sparse
representations for modeling the relationship between low- and
high-resolution image patches in terms of the learned dictionaries
for image patches with andwithout blocking artifacts, respectively.
As a result, image SR and deblocking can be simultaneously
achieved via sparse representation and morphological component
analysis (MCA)-based image decomposition. Experimental results
demonstrate the efficacy of the proposed algorithm.
Index Terms—Dictionary learning, image decomposition, image

super-resolution, morphological component analysis (MCA), self-
learning, sparse representation.

I. INTRODUCTION

W ITH the rapid development of multimedia and network
technologies, delivering and sharing multimedia con-

tents over the Internet and heterogeneous devices has become
more and more popular. However, due to limited channel band-

Manuscript received March 25, 2014; revised November 10, 2014 and Feb-
ruary 17, 2015; accepted May 10, 2015. Date of publication May 15, 2015;
date of current version June 13, 2015. This work was supported in part by the
Taiwan Ministry of Science and Technology under Grant MOST 101-2221-E-
007-121-MY3, Grant 103-2221-E-007-046-MY3, and Grant MOST 103-2221-
E-224-034-MY2. The associate editor coordinating the review of this manu-
script and approving it for publication was Dr. Shahram Shirani.
L.-W. Kang is with the Graduate School of Engineering Science and Tech-

nology-Doctoral Program and the Department of Computer Science and Infor-
mation Engineering, National Yunlin University of Science and Technology,
Yunlin 64002, Taiwan.
C.-C. Hsu is with the Department of Electrical Engineering, National Tsing

Hua University, Hsinchu 30013, Taiwan.
B. Zhuang is with the Altek Corporation, Hsinchu 30078, Taiwan.
C.-W. Lin is with the Department of Electrical Engineering and the Insti-

tute of Communications Engineering, National Tsing Hua University, Hsinchu
30013, Taiwan, and with the Department of Computer Science and Information
Engineering, Asia University, Taichung 41354, Taiwan (e-mail: cwlin@ee.nthu.
edu.tw).
C.-H. Yeh is with the Department of Electrical Engineering, National Sun

Yat-Sen University, Kaohsiung 80424, Taiwan.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2015.2434216

width and storage capability, most images distributed over the
Internet exist in low-quality versions degraded from the sources.
The most common image degradations come from downscaling
and compression. Downscaling reduces the spatial resolution in
an image, whereas compression further reduces the redundancy
in the spatial and temporal domains. Although downscaling to-
gether with compression can greatly reduce the required band-
width and storage for images, they would also lead to signifi-
cant information loss and unpleasing visual artifacts, including
blocking, ringing, or blurring [1].

A. Image Super-Resolution
There has been a great demand for improving the perceptual

quality of images in terms of the spatial resolution enhancement
of an image, also known as image super-resolution (SR). The
goal of image SR is to recover a high-resolution (HR) image
from one or multiple low-resolution (LR) input images, which
is essentially an ill-posed inverse problem [2]. There are mainly
two categories of approaches for image SR: (i) traditional
approaches and (ii) exemplar/learning-based approaches. In
the traditional approaches, one sub-category is reconstruc-
tion-based schemes, where a set of LR images of the same scene
are aligned with sub-pixel accuracy to generate a HR image [3].
Such kind of approaches mainly rely on multi-frame alignment,
which is usually time-consuming and inaccurate, and cannot
be used for single-image SR since it requires multiple input
LR images. The other sub-category is frame interpolation [4],
which has been shown to generate overly smooth images with
ringing and jaggy artifacts.
The exemplar/learning-based methods [5]–[14] halluci-

nate the high frequency details of a LR image based on the
co-occurrence prior between LR and HR image patches in a
training set, which has proven to provide much finer details
compared to the traditional approaches. More specifically, for
a LR input, exemplar-based methods [5]–[8] search for similar
image patches from a pre-collected training LR image dataset
or the same image itself based on self-examples, and use their
corresponding HR versions to produce the final SR output.
Nevertheless, the fine details reconstructed by such exem-
plar-based methods, though looking visually similar, cannot
be guaranteed to provide the true missing HR details. Hence,
the performance of this approach highly relies on the similarity
between the training set and test set or the self-similarity in the
image itself.
Moreover, learning-based SR approaches [9]–[14] focus on

modeling the relationship between different resolutions of im-
ages. For example, Yang et al. [9] proposed to apply sparse
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coding techniques to learn a compact representation for HR/LR
patch pairs for SR based on pre-collected HR/LR image pairs.
Then, Yang et al. [10] advances [9] to propose a coupled dic-
tionary training approach for SR based on patch-wise sparse re-
covery, where the learned couple dictionaries relate the HR/LR
image patch spaces via sparse representations. It is guaranteed
that the sparse representation of a LR image patch can well re-
construct its underlying HR image patch, which cannot be guar-
anteed in [9]. Moreover, a sparse representation based frame-
work was proposed in [11] for image deblurring and SR based
on adaptive sparse domain selection and adaptive regulariza-
tion, where two adaptive regularization terms are introduced. In
addition, Ren et al. [12] proposed to utilize context-aware spar-
sity prior to enhance the performance of sparsity-based restora-
tion approach for image denoising and SR. This method miti-
gates the artifacts in the produced HR images based on incorpo-
rating the structural correlations of dictionary atoms into the em-
ployed sparse coding algorithm. On the other hand, self-learning
frameworks based on self-similarity of an image were intro-
duced for SR in [13] and [14].

B. Motivation of SR for a Highly Compressed Image

The above-mentioned SR approaches, however, only con-
sider that an input LR image is only degraded by down-scaling
or at most an additional blurring operation (with a known or
well-estimated blurring kernel). It is not always practical in
a network environment, where image compression is usually
adopted, which yields additional compression artifacts such as
blocking and ringing. For image search engines, compression
helps reduce the image size by up to 50% without obvious
perceptual quality loss presented in the LR form of an image.
Nevertheless, if SR is directly performed on the compressed LR
image, compression artifacts will be simultaneously magnified
and therefore the perceptual quality of resulting HR image
would be poor [15]. Hence, a high-performance SR scheme
for highly-compressed images is desirable for enhancing the
resolution of image/video degraded by both down-scaling and
compression. In [15], a unified framework was proposed to
simultaneously improve the resolution and perceptual quality
of low-quality web image/video degraded by down-scaling and
compression. This approach combines adaptive regularization
and learning-based SR, where the regularization strength is
determined by the JPEG compression quality factor (QF) of an
input image. QF is an integer ranging from 0 and 100, which
controls the degree of compression for JPEG images. The larger
the QF is, the lower the compression ratio and the higher the
image quality are [24].
On the other hand, an exemplar-based SR algorithm of com-

pressed videos in DCT (discrete cosine transform) domain was
proposed in [16]. The inputs to the system include a compressed
LR video together with a HR still image of similar content which
is assumed to be available in advance. In addition, a unified
framework achieving simultaneous denoising and SR for noisy
video was proposed in [17]. This approach assesses the visual
quality with respect to fidelity preservation, detail preservation,
and spatio-temporal smoothness. More works for low-quality
video SR can be found in [18] and [19].

Fig. 1. SR methods for a highly compressed image: (a) cascading structure I:
SR followed by denoising; (b) cascading structure II: denoising followed by SR;
and (c) joint SR and denoising.

Existing SR approaches for low-quality images/videos
[15]–[19], however, are all designed for some special purposes.
For example, the SR framework proposed in [15] is mainly
designed for JPEG compressed web images with known QFs.
Moreover, most other related approaches are designed for video
[16]–[19]. In addition, strictly speaking, most existing SR
methods for low-quality images usually rely on two cascading
structures: 1) SR followed by a denoising operation [cascading
structure I in Fig. 1(a), and Fig. 2] denoising followed by
SR [cascading structure II in Fig. 1(b)]. In the first cascading
structure, the SR operation would significantly magnify the
compression artifacts [e.g., the magnified blocking artifacts
in Fig. 2(c)], making it difficult to eliminate the magnified
artifacts using the next denoising operation. On the other hand,
the second cascading structure (i.e., denoising followed by SR),
would inevitably lose some image details caused by denoising
(e.g., deblocking), thereby degrading the performance of SR,
as exemplified in Fig. 2(d). Therefore, a joint SR and denoising
structure [see Fig. 1(c)] is desirable as it not only avoids mag-
nifying compression artifact but also reconstructs finer image
details so as to achieve good-quality SR even the input image
is highly compressed.
To achieve joint SR and deblocking, we proposed in the pre-

liminary conference version [23] of this paper a self-learning-
based SR framework to achieve joint SR and blocking artifact
removal for a single LR image. The proposedmethod self-learns
from the input image itself the sparse representations for mod-
eling the relationship between LR and HR image patches based
on the dictionaries learned from image patches with and without
blocking artifacts, respectively. Based on the learned sparse rep-
resentations, MCA (morphological component analysis)-based
image decomposition [27], [28] is then applied to decompose
and remove blocking artifacts so as to achieve image SR and
deblocking simultaneously.

C. Contribution of Proposed Method
It should be noted that most research works on pure SR usu-

ally simulate the production of an input LR image as two degra-
dation steps. For example, in [9], [10], it is assumed that an ob-
served LR image is a blurred and down-sampled version of its
HR version. In addition, the work proposed in [11] considers a
more general image restoration problem, where an observed LR
image is a blurred and down-sampled version of its HR version
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Fig. 2. Example illustrating the main problems caused by existing SR approaches for a highly compressed image: (a) the original HR image; (b) a LR and highly
compressed version of (a);the SR version of (a) obtained by (c) directly applying the bicubic interpolation; and (d) applying image deblocking first, followed by
SR (the Cascading-based approach used for comparison with the proposed method, described in Section IV). It can be observed from (c) that the blocking artifacts
are significantly magnified by SR, while from (d) that some details are blurred by deblocking, resulting in poor SR result.

with additional additive noise. Moreover, the context-aware ap-
proach in [12] was proposed for LR images with Gaussian noise
of known standard deviation. However, the image artifacts (e.g.,
additive Gaussian noise or blurring effect) considered in these
works are significantly different from blocking artifact consid-
ered in this paper.
In our SR framework, we focus on a single input LR

image/video frame being highly compressed by a block-based
image/video compression algorithm (e.g., JPEG [24],
H.264/AVC [25], or HEVC [26]), which has been widely used
in current multimedia applications (e.g., images from WWW
or video frames from YouTube1). To this end, we propose a
learning-based sparse representation framework to achieve
joint single-image SR and deblocking for a highly compressed
image. Blocking artifact is one of the major visually unpleasing
artifacts introduced by transform block-based compression and
hence, deblocking has been extensively studied in the literature
[1], [20]–[22]. The main contribution of this paper is three-fold:
i) to the best of our knowledge, we are among the first to
propose a unified framework for joint blocking artifact removal
and single-image SR via sparse coding-based image decompo-
sition; ii) the proposed framework can be adapted to any block
transform-based compressed image/video without the need of
any prior knowledge about the data source, coding bitrates,
and compression algorithms; and iii) the proposed framework
can be easily integrated into existing self-learning-based SR
approaches [13], [14], where no extra training samples are re-
quired, or non-self-learning-based ones [5]–[12], which require
additional training samples collected offline.
Compared with the preliminary conference version [23], this

paper has been significantly extended in the following aspects:
(i) In this paper, we further extend the proposed framework
to non-self-learning-based SR approaches which was not dis-
cussed in [23]. (ii) We conduct subjective quality evaluations
based on paired comparisons for different SR and deblocking
schemes. (iii) This paper provides in-depth analyses and in-
terpretations about the experimental results and computational
complexity to offer good insights about the proposed method.

1[Online]. Available: http://www.youtube.com/

The rest of this paper is organized as follows. Section II re-
views some related works. Section III presents the proposed SR
framework for highly compressed images. In Section IV, exper-
imental results are demonstrated. Finally, Section V concludes
this paper.

II. PRELIMINARIES

In this section, we briefly review the concept of the general
MCA-based framework for image decomposition and the uti-
lized sparse representation and dictionary learning techniques.
The major idea of MCA is to utilize the morphological diver-
sity of different features contained in the data to be decomposed
and to associate each morphological component to a dictionary
of atoms. The MCA-based image decomposition technique de-
scribed below will be integrated in the proposed SR framework
mainly for image deblocking.

A. MCA-Based Image Decomposition
Suppose an image of pixels is a superposition of layers

(called morphological components), denoted by ,
where denotes the -th component, such as the geometric or
textural component of . To decompose image into ,
the MCA algorithms [22], [27]–[30] iteratively minimize the
following energy function:

(1)
where denotes the sparse coefficients corresponding to
with respect to dictionary , is a regularization parameter,
and is the energy function defined according to the type of

(global or local dictionary). For convenience, the symbols
used in this paper are listed in Table I.

B. Sparse Representation and Dictionary Learning
Sparse coding [31], [32] is a technique of finding a sparse rep-

resentation for a signal with a small number of nonzero or sig-
nificant coefficients corresponding to the atoms in a dictionary.
To construct a dictionary to sparsely represent each patch
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TABLE I
NOTATION

extracted from component of image , we may use a set of
available training exemplars , to learn dic-
tionary sparsifying by solving the following optimization
problem:

(2)

where denotes the sparse coefficient vector of with respect
to and is a regularization parameter.

III. PROPOSED JOINT SR AND DEBLOCKING FRAMEWORK

In this section, we first explain the proposed framework for
self-learning-based SR. Then, in Section III-E, we will show
how to extend the proposed framework to non-self-learning-
based SR schemes. Fig. 3 depicts the proposed framework for
self-learning-based joint SR and deblocking for enhancing a
downscaled and highly compressed image. Our method is to
formulate the image enhancement problem as an MCA-based
image decomposition problem via sparse representation.
As illustrated in Fig. 3, an input LR image with blocking

artifacts [Fig. 3(a)] and its downscaled version [Fig. 3(b)]
are first roughly decomposed into their corresponding low-fre-
quency (LF) parts, and , and high-frequency (HF)
parts, and , respectively, via a filter. As a result, the
respective essential visual information will be retained in the
LF parts [Figs. 3(c) and 3(d)], while the blocking artifacts
and edge/texture details will be included in the HF parts [see
Figs. 3(e) and 3(f)] of the images. Then, we classify all patches
in together with their corresponding patches in into
two clusters: the “blocking” and “non-blocking” HR/LR patch
pairs, respectively. Based on the two training sets of patch
pairs extracted from the input image itself, we learn two sets

of coupled dictionaries, and , used for the SR of
blocking and non-blocking patches, respectively, as illustrated
in Figs. 3(g)–Figs. 3(i).
To achieve the SR of , we perform patch-wise sparse re-

construction with the coupled dictionary set [Fig. 3(i)] for
each patch without blocking artifacts in . For each patch
with blocking artifacts in , we perform SR reconstruction
based on (which consisits of two sub-dictionaries of HR
and LR atoms, respectively), and MCA-based image decompo-
sition to obtain the deblocked HR patch. As a result, the HF
part can be simultaneously upscaled and decomposed into
HR non-blocking and HR blocking components [Figs. 3(j) and
3(k)]. We then add the HR non-blocking component of to
the bicubic-interpolated [Fig. 3(l)] to obtain the final SR re-
sult of , as illustrated in Fig. 3(m). The detailed method will be
elaborated below.

A. Preprocessing and Problem Formulation

Without the need of pre-collecting enormous additional
training patches for SR (e.g., in [9], [10], collection of ad-
ditional training patches is required), the proposed method
intends to extract training patches from an input LR image
itself. Moreover, to achieve joint SR and deblocking, we con-
vert the problem into the high-frequency domain of the input
image and conduct the following preprocessing tasks. To model
the relationship between LR and HR image patches, for an
input LR image with blocking artifacts, we first down-scale
to obtain its down-scaled version , and then apply the

BM3D (block-matching and 3D filtering) algorithm [33] to
decompose into the LF part ( ) and HF part ( ), and
decompose into and , that is , and

. Then, we identify two sets of HR/LR patch
pairs as the training samples for learning the dictionaries used
for SR and deblocking, where we extract each patch ( )
in the higher scale ( ) and its corresponding patch ( )
in the lower scale ( ) with a certain magnification factor to
form a coupled training patch pair. Then, we perform blocking
artifact detection [20] on the HR part of each coupled patch
pair (i.e., a patch from ) and classify all coupled patch pairs
into two sets of “blocking” and “non-blocking” patch pairs:

and .
Based on the two sets of training samples, we propose to learn

two sets of dictionaries, respectively, for SR of non-blocking
patches and joint SR and deblocking of blocking patches, as
detailed in Section III-B and Section III-C. Then, we formulate
the SR of each input LR non-blocking patch (in ) as the
following sparse representation problem:

(3)

where denotes the learned LR dictionary of non-blocking
atoms, is the sparse presentation of with respect to ,

is the solution of for minimizing (3), and is a parameter
controlling the sparsity penalty and representation fidelity. As a
result, the SR result of can be obtained as follows:

(4)
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Fig. 3. Flowchart of the proposed self-learning-based super-resolution framework for a highly compressed image.

where is the learned HR dictionary of non-blocking atoms,
which leads to the same sparse representation for an HR
patch as that for its corresponding LR patch with respect to

.
Moreover, we formulate the joint SR and deblocking for each

input LR blocking patch (in ) as an MCA-based image
decomposition problem via sparse representation

(5)

where the definitions of and are similar to those in (3),
and is the learned LR dictionary based
on the training samples with blocking artifacts, which can be
further partitioned into and , consisting of the non-
blocking and blocking atoms, respectively. As a result, the joint
SR and deblocking result of can be obtained by

(6)

where is obtained from the partition of the learned HR
dictionary based on the training samples with blocking
artifacts, which can be further partitioned into and ,
including the non-blocking and blocking atoms, respectively,
and is the sparse representation of obtained by solving
(5) with the coefficients corresponding to the atoms in ,
being set to zero.

B. Dictionary Learning for Single Image SR

Based on the extracted HR/LR training patch pairs without
blocking artifacts ( ) from itself, we intend to
learn a couple of dictionaries ( and ) to model the re-
lationships between HR and LR image patches. Similar to the
coupled dictionary training method proposed in [10], we treat

the set of LR training patches as the observation space, and
the set of HR training patches as the latent space, where the
patches have sparse representations with respect to certain dic-
tionaries. Patches (LR) in are observations, while patches
(HR) in are what we want to recover. The problem is to find
a coupled dictionary pair and for spaces and ,
respectively, such that given an input LR patch , we
can use its sparse representation with respect to to recon-
struct the corresponding latent HR patch with respect
to . Hence, for each coupled patch pair , a desired
pair of coupled dictionaries and should satisfy

(7)

(8)

where is the sparse representation of with respect to ,
and also the sparse representation of for recovering with
respect to .
Given input , to learn a coupled dictionary pair and

for reconstructing with respect to , the problem
can be formulated as [10]

(9)

s.t. , ,
where is the number of training patch pairs, and repre-
sents a cost function for ensuring a good representation of
with respect to , and minimizing the reconstruction error
of with respect to , defined as follows:

(10)
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where is used to balance the two reconstruction
errors. The objective function in (9) can be minimized by al-
ternatively optimizing over and , while keeping the
other fixed. More details about the coupled dictionary learning
can be found in [10]. The main difference between the pro-
posed method and the approach proposed in [10] is that all of
the training patches are extracted from an input LR image itself
in our approach while enormous additional training patches are
required in [10].

C. Dictionary Learning for Image Decomposition
For the extracted HR/LR training patch pairs with blocking

artifacts, we need to not only learn a coupled dictionary
pair and for SR purpose, but also identify the
“blocking/non-blocking atoms” in the two dictionaries
for achieving MCA-based deblocking. Similar to the em-
ployed coupled dictionary learning technique described in
Section III-B, we first learn and by solving (9),
where the parameters are replaced accordingly. Then, we
analyze the atoms constituting , and find that these atoms
can be roughly divided into two clusters (sub-dictionaries)
for representing the non-blocking and blocking components
of , respectively. That is, even if the training patches
extracted from are classified into blocking patches based
on [20], two different kinds of atoms in terms of blocking and
non-blocking artifacts can still be analyzed after the dictionary
learning process.
Based on our previous work in [22], we modify the HOG

(histograms of oriented gradients) descriptor [34] to describe
each atom in (the HOG features of the atoms in the
dictionary learned from HR patches should be more signif-
icant than those from LR patches). Since blocking artifacts
are visually noticeable changes in pixel values along block
boundaries, it is only required to consider the horizontal and
vertical gradients in each dictionary atom. Hence, we modify
the original HOG to calculate only the histogram over the
intervals of angles around 0 , 180 , 90 , and 270 . After
extracting the HOG feature for each atom in , we first
apply the -means algorithm to classify all of the atoms in

into two clusters, and , based on their horizontal
HOG feature descriptors. Then, we calculate the variance of
gradient directions for each atom in cluster , as ,

. We subsequently calculate the mean of for
each cluster as . Based on the fact that the edge
directions of the samples of an atom with horizontal (or ver-
tical) blocking artifacts should be consistent, i.e., the variance
of gradient directions for a “horizontal (or vertical) blocking”
atom should be generally smaller than those of the other atoms
with no remarkably dominating edge direction, we identify
the cluster with the smaller as horizontal blocking
sub-dictionary. Then, similarly the other cluster can be further
classified to obtain the “vertical blocking” sub-dictionary and
non-blocking sub-dictionary . In addition, the identified
horizontal and vertical blocking sub-dictionaries constitute the
blocking sub-dictionary . That is, = .
Meanwhile, the atoms in can also be classified into two
clusters according to their corresponding atoms in to form
the blocking and non-blocking dictionaries, and ,

Fig. 4. Highlight of the two learned dictionary pairs based on the extracted
HR/LR training patch pairs with blocking artifacts from Fig. 3(a): (a) the dic-
tionary of HR atoms with blocking artifacts ( ); (b) the dictionary of LR
atoms with blocking artifacts ( ); (c) the dictionary of HR atoms without
blocking artifacts ( ), i.e., non-blocking partition of ; and (d) the dic-
tionary of LR atoms without blocking artifacts ( ), non-blocking partition
of .

of LR atoms, i.e., . As an example high-
lighting Figs. 3(g) and Fig. 3(h), Fig. 4 shows the two learned
dictionary pairs based on the extracted HR/LR training patch
pairs with blocking artifacts from Fig. 3(a). To summarize the
training patch extraction and dictionary learning processes in
our framework, the red dotted line region in Fig. 3 is highlighted
and illustrated in Fig. 5.

D. Image SR and Deblocking via Sparse Reconstruction
After learning the six dictionaries, , , ,

, , and , based on the training patches
extracted from , joint SR and deblocking of can be
efficiently achieved via patch-wise sparse recovery as follows.
1) SR for non-blocking patches: In this case, only SR is re-

quired to be performed for each patch. For each input LR
non-blocking patch in , we first calculate its sparse
representation with respect to via (3). Based on
the employed coupled dictionary learning algorithm de-
scribed in Section III-B, the spare representation can also
be used to recover its HR version with respect to
via (4).

2) Joint SR and deblocking for blocking patches: In this case,
both SR and deblocking are jointly performed for each
patch, For each input LR blocking patch in , we
first perform MCA-based image decomposition via sparse
representation with respect to to
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Fig. 5. Illustration of the proposed training patch extraction and dictionary learning processes in the proposed framework (highlight and illustration of the red
dotted line region in Fig. 3).

find the atoms which actually contribute for representing
the non-blocking part of via (5). We then set the co-
efficients corresponding to the atoms in in (the
solved sparse representation of ) to zero to obtain
(the estimated sparse representation of the non-blocking
component of ). As a result, the joint SR and deblocking
of can be achieved by using the sparse representation

with respect to via (6).
Then, the recovered and deblocked HR patches are tiled to-

gether to reconstruct the HR version of , where the av-
erage of multiple reconstructs is taken for each pixel in the over-
lapping region as its final recovery. Finally, we add the HR de-
tails to the bicubic-interpolated to obtain the final SR
result of . To briefly summarize the proposed framework and
the relationship between it and the six learned dictionaries, the
proposed joint SR and deblocking algorithm is summarized in
Table II.

E. Extension to Non-Self-Learning-Based SR

Besides the self-learning-based scheme mentioned above,
the proposed framework can also be easily integrated into other
non-self-learning SR methods as illustrated in Fig. 6. Note that
the main difference is that the dictionary used in self-learning
SR is learned from the input LR image itself, whereas the
non-self-learning SR algorithms (e.g., the sparse-coding SR in
[9]) needs to learn a dictionary from a pre-collected training
image set. In the extension shown in Fig. 6, each HR image in
the training set is first downscaled and compressed to obtain
its LR version with blocking artifacts, which are then localized
by the following blocking artifact detection, so as to form a
HR/LR training pair. Subsequently, the training patch extrac-
tion and dictionary learning processes described in Fig. 5 and
Section III-C are performed on the blocking and non-blocking

TABLE II
PROPOSED JOINT SR AND DEBLOCKING ALGORITHM

BASED ON SIX LEARNED DICTIONARIES

patch pairs extracted from the training HR/LR image pairs
to learn and partition the blocking and non-blocking HR/LR
sub-dictionaries. Consequently, based on the learned sub-dic-
tionaries, joint SR and deblocking can be achieved by the
proposed image decomposition method described in Fig. 3 and
Section III-D. Based on the method shown in Fig. 6, we inte-
grate our framework with the sparse-coding SR (SCSR) in [9],
which is a state-of-the-art non-self-learning SR scheme, and
will report the results in the following section.
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Fig. 6. Extension of the proposed framework to other non-self-learning-based SR methods.

IV. EXPERIMENTAL RESULTS

A. Visual Quality Evaluation

Several LR JPEG images and YouTube videos with blocking
artifacts were used to evaluate the performance of the proposed
method. All the test dataset and results can be downloaded from
our project web site.2 In our experiments, all of the test LR im-
ages were compressed by JPEGwith quality factor (QF) ranging
from 15 to 25. Different from [15], where the JPEG compres-
sion QF is required to be known in advance, our approach does
not require any prior knowledge (including QF) about an input
LR image. The parameter settings of the proposed method are
described as follows. For each test LR image of size ranging
from to , the upscaling factor, HR/LR patch
sizes, the number of training iterations for dictionary learning,
and the size (number of atoms) of each learned dictionary (in-
cluding , , , and ) are set to 2, ,
100, and 1024, respectively. Our framework learns two pairs of
dictionaries, respectively, for training patches with and without
blocking artifacts, where each dictionary pair contains 512 pairs
of HR/LR atoms, resulting in the total dictionary size of 1024.
Besides, the regularization parameter used in the dictionary
learning step in (9) is empirically set to 0.15, and the number of
non-zero coefficients to be solved in each sparse reconstruction
step in our method is set to 20.
To highlight the advantage of the proposed joint self-learning

SR and deblocking approach for a single image, we compare
our method with four upscaling methods, including the bicubic
interpolation [4], coupled dictionary training-based SR with
extra training samples (denoted by coupled-training-based)
[10], self-learning SR (denoted by SelfSR, similar to [14]),
and a cascading approach including the BM3D deblocking
method [34], followed by the SelfSR method (denoted by
Cascading-based), where the latter three methods are all based
on dictionary learning and their respective dictionary sizes are
all set to 1024 for fair comparisons with our method. Note that
based on our experiments for all of the compared methods,
reducing the dictionary size to some extent (smaller than 1024)

2“NTHU Image/Video SR+Denoising Project,” [Online]. Available: http://
www.ee.nthu.edu.tw/cwlin/SR_Denoising/index.html

will significantly degrade SR results, whereas increasing the
dictionary size (larger than 1024) will increase the compu-
tational complexity without significant improvement on SR
visual quality. Moreover, the number of non-zero coefficients
to be solved in each sparse reconstruction step in the three com-
pared methods is also set to 20. Here, the SelfSR method used
for comparison is based on our framework without performing
blocking artifact removal, which mainly relies on the dictionary
learning based on HR/LR training patch pairs proposed in [9],
[10] and the employed self-similarity characteristic of an input
LR image proposed in [14].
Fig. 7 and Fig. 8 show some SR results obtained by the pro-

posed method and the compared methods. The enlarged images
in Fig. 7 and Fig. 8 illustrate that the visual qualities of our SR
results are visually superior to the results obtained by the pure
SR approaches, which show significantly magnified blocking
artifacts. Moreover, our method also outperforms the cascading
approach based on the fact that the application of deblocking
prior to SR would inevitably lead to loss of some image details,
which is usually hard to be recovered in the following SR stage.
We then further evaluate the performance of the proposed

self-learning-based method on some real-world low-quality LR
images/video frames with significant blocking artifacts, down-
loaded from the Internet (e.g., from YouTube ). These testing
data might be downscaled by any down-sampling operations
and highly compressed via any block-based compression al-
gorithm. Fig. 9 shows some snapshots of the SR results ob-
tained by the proposed method and the bicubic interpolation
method [4] for a YouTube video. It can be similarly observed
from Fig. 9 that the visual quality of our SR results is signifi-
cantly better than the results obtained by the bicubic interpola-
tion, especially for very low-quality image/video frames. More
test results on some videos downloaded from YouTube can be
found in our project web site , where all the source inks are pro-
vided. Due to the space limit, we do not show the results of the
non-self-learning-based schemes.
We also conduct a subjective user study to evaluate the per-

formances of various SR schemes (with/without deblocking) for
9 test images . In the subjective paired comparisons test [37],
20 subjects are shown with two side-by-side upscaled images
obtained using different SR methods (in a random order) at a
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Fig. 7. SR results: (a) the original HR image; and the SR versions of the input LR image (LR and compressed version of (a), ) via the: (b) 7nbsp;bicubic
[4]; (c) coupled-training-based [10]; (d) local highlight of (a); (e) local highlight of (b); (f) local highlight of (c); (g) SelfSR [14]; (h) cascading-based; (i) proposed
method; (j) local highlight of (g); (k) local highlight of (h); and (l) local highlight of (i).

time, and are asked to choose their preference from the two
compared images. The subjects include 15 males and 5 females,
whose ages range from 25 to 30. The test device is a full-HD
24-inch LCD display with color temperature 6500 K. In the
subjective test, we compare the proposed method with the orig-
inal SR method [self-learning SR (SelfSR) or sparse-coding SR
(SCSR)] without deblocking, Cascade type I (SR followed by
deblocking), Cascade type II (deblocking followed by SR) for
9 test images. Each SR method is pairwisely compared with the
others by totally times, meaning that 180
comparisons are made between two methods for the 9 test im-
ages. The ratio between the preference vote for one method and

that for another method is used to compare the performances be-
tween the two methods. For example, if one method is preferred
80% of the time, the SR versions of all test images obtained
by this method receive 80% of the preference vote, indicating
that the method is visually preferred to the compared method in
general.
Table III and Table IV show the winning frequency matrices

[37] of the 20 subjects’ preferences in subjective paired compar-
isons on the SR results obtained using the four different schemes
based on the SelfSR and SCSR, respectively, where the numbers
in each row indicate the times of the method preferred than the
compared in the column. Both tables indicate that, compared
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Fig. 8. SR results: (a) the original HR image; and the SR versions of the input LR image (LR and compressed version of (a), ) via the: (b) bicubic [4];
(c) coupled-training-based [10]; (d) local highlight of (a); (e) local highlight of (b); (f) local highlight of (c); (g) self-learning-based [14]; (h) cascading-based;
(i) proposed method; (j) local highlight of (g); (k) local highlight of (h); and (l) local highlight of (i).

to the other schemes, our method achieves better subjective vi-
sual quality in and of the paired
comparisons based on the two different SR frameworks, respec-
tively. Moreover, Table V lists the subjective paired comparison
results of the SelfSR, SCSR, Proposed SelfSR (

), and Proposed SCSR ( )
methods. the results shows that, the proposed SelfSR is pre-
ferred to the proposed SCSR subjectively in 64% of paired com-
parisons, and significantly outperforms the original SelfSR and
SCSR methods in terms of subjective visual quality.
Based on our experimental results for individual test images,

the performances of the proposed methods are dependent on the
content characteristics (edges, textures, and smooth regions) of
input LR image, summarized as follows.

1) Compared to SR without deblocking (i.e., the original
SCSR and SelfSR), our methods are significantly more
effective for images with strong edges, textures, and
smoothing regions.

2) Compared to SR with deblocking, our methods achieve
significant visual quality improvement for image regions
with strong edges and textures. As for smooth regions,
since blocking artifacts in such regions can be effectively
mitigated using the deblocking part of the cascading-based
approaches as well, our methods achieve comparable vi-
sual quality with the cascading-based approaches.

3) In general, our methods achieve overall visual quality im-
provement over existing SR methods with or without de-
blocking.
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Fig. 9. SR results: (a) the original low-quality video frame obtained from the
Internet; the SR versions of (a) via (b) bicubic [4]; and (c) the proposed method.

TABLE III
WINNING FREQUENCY MATRIX OF SUBJECTIVE PAIRED COMPARISONS

BETWEEN SELF-LEARNING SR (SELFSR), D ,
D AND THE PROPOSED JOINT

B. Limitations
In our SR framework, we focus on performing SR for a

highly compressed image while removing the visible blocking
artifacts of the image. Nevertheless, the ringing artifact, not
considered in this work, also usually occurs in a compressed
image. Note, de-ringing can also be incorporated into the
proposed MCA-based framework by using ringing artifact
detection (e.g., [36]) to localize the ringing artifacts to learn
the HOG characteristics of ringing artifacts and then use the

TABLE IV
WINNING FREQUENCY MATRIX OF SUBJECTIVE PAIRED COMPARISONS

BETWEEN SPARSE CODING SR (SCSR), D ,
D AND THE PROPOSED JOINT

TABLE V
WINNING FREQUENCY MATRIX OF SUBJECTIVE PAIRED COMPARISONS

BETWEEN SCSR, SELFSR, THE PROPOSED JOINT
, AND JOINT

learned characteristics to further partition an additional ringing
sub-dictionary in the structure shown in Fig. 3(g). However,
our experimental results show that, although the proposed
framework can still mitigate ringing artifacts to some extent, the
de-ringing performance is not satisfactory. Fig. 10 illustrates
an example of ringing artifacts removal based on the proposed
framework where Fig. 10(a) shows an image after joint SR
and deblocking (without de-ringing) and Fig. 10(b) shows the
version after joint SR, deblocking and de-ringing using the
proposed framework. We can observe from Fig. 10(b) that
the ringing artifacts, although being less severe compared to
Fig. 10(a), are still clearly visible. One of the main reasons is
that the structure of ringing artifact is usually irregular. Hence,
it is not easy to well capture the characteristics of ringing
artifact by the HoG features and automatically self-learn a pair
of dictionaries of ringing atoms. Besides, ringing detection
is not accurate enough, making it difficult to extract enough
good exemplar patches for learning. To achieve better visual
quality of a reconstructed image, performing a post-processing
step to remove the ringing artifacts might be a choice, which
would, however, also blur some image details, as exemplified
in Fig. 10(c). For future work, integrating de-ringing into our
SR framework to achieve satisfactory de-ringing performance
still needs further study.

C. Computational Complexity
The proposed method was implemented in 32-bit MATLAB

on a personal computer equipped with Intel Core i7-4470 pro-
cessor and 32 GB memory. Table VI lists the run-time of indi-
vidual steps, including the dictionary learning and sparse recon-
struction, for the test image shown in Fig. 7 based on the SelfSR
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Fig. 10. SR results obtained by (a) the proposed method without de-ringing;
(b) the method; and (c) the proposed
SR+Deblocking method followed by BM3D filtering [33] to remove ringing
artifacts (with some details blurred).

TABLE VI
RUN-TIME (IN SECONDS) OF THE DICTIONARY LEARNING AND
SPARSE RECONSTRUCTION PHASES IN THE SELFSR METHOD

AND THE PROPOSED SELFSR METHOD

approach and the proposed SelfSR method, respectively. In the
dictionary learning, our method learns an additional pair of dic-
tionaries (either for training patches with or without blocking ar-
tifacts separately), whereas the SelfSR method learns only one
pair of dictionaries. In our implementation, the size of each dic-
tionary pair is set to 512 (total 1024 in size of two pairs of dictio-
nary). The computational complexity for learning each dictio-

TABLE VII
RUN-TIME (IN SECONDS) OF THE DICTIONARY LEARNING
AND SPARSE RECONSTRUCTION PHASES IN THE SCSR

METHOD AND THE PROPOSED SCSR METHOD

nary pair of size, 512, is significantly lower than that for learning
a dictionary pair of size, 1024, used in the SelfSRmethod. Based
on Table VI, the complexity of sequentially learning two pairs
of dictionaries in our method is still lower than that for learning
a single dictionary pair of size 1024 used in the SelfSR method.
Moreover, the complexity of our method can be further reduced
by learning two pairs of dictionaries in parallel should a multi-
core processor be used.
On the other hand, the complexity of sparse reconstruction

phase mainly relies on the dictionary size and the number of
non-zero coefficients to be solved which is set to be the same
for all evaluated dictionary learning-based methods. Similarly,
the complexity of the sparse reconstruction required for the two
pairs of learned dictionaries of size 512 for each in our method
is lower than that of the SelfSR method with a dictionary size
of 1024. The sparse reconstruction operations with respect to
the two dictionary pairs in our method can be also performed in
parallel to further reduce the complexity.
Table VII compares the run-time complexities of the SCSR

and the proposed methods. Both the two
methods need to train dictionaries from an external training
dataset. Therefore, their dictionary leaning is an offline process
which consumes significantly higher complexity than that of
SelfSR-based schemes, whereas the sparse reconstruction is
performed on-line. Table VII shows that our method is still of
lower time complexity, compared to the original SCSR.
The other overheads in the learning phase of our methods in-

clude the blocking artifact detection and dictionary partitioning,
whose complexities are usually insignificant. By properly fusing
the cores of the SR and deblocking operations into a unified
MCA-based framework, the proposed framework can simulta-
neously achieve both SR and deblocking while reducing com-
putational complexity, compared with a pure learning-based SR
scheme.Moreover, the computational complexity of ourmethod
is obviously lower than that of cascading-based approach, if a
similar SR scheme is used.

V. CONCLUSION
In this paper, we proposed a learning-based SR framework

to achieve joint single-image SR and deblocking for image
sparse representation for modeling the relationship between
LR and HR image patches in terms of the learned dictionaries,
respectively, for image patches with and without blocking
artifacts. As a result, image SR and deblocking can be simul-
taneously achieved via sparse representation and MCA-based
image decomposition. Our experimental results demonstrate
the efficacy of the proposed algorithm on self-learning SR and
sparse-coding SR. Furthermore, our method can be naturally
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extended to remove other types of noise or structured patterns
while performing SR for images.
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