260 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.2, APRIL-JUNE 2012

Semantics-Based Automated
Service Discovery

Aabhas V. Paliwal, Student Member, IEEE, Basit Shafiq, Member, IEEE,
Jaideep Vaidya, Member, IEEE, Hui Xiong, Senior Member, IEEE, and
Nabil Adam, Senior Member, IEEE

Abstract—A vast majority of web services exist without explicit associated semantic descriptions. As a result many services that are
relevant to a specific user service request may not be considered during service discovery. In this paper, we address the issue of web
service discovery given nonexplicit service description semantics that match a specific service request. Our approach to semantic-
based web service discovery involves semantic-based service categorization and semantic enhancement of the service request. We
propose a solution for achieving functional level service categorization based on an ontology framework. Additionally, we utilize
clustering for accurately classifying the web services based on service functionality. The semantic-based categorization is performed
offline at the universal description discovery and integration (UDDI). The semantic enhancement of the service request achieves a
better matching with relevant services. The service request enhancement involves expansion of additional terms (retrieved from
ontology) that are deemed relevant for the requested functionality. An efficient matching of the enhanced service request with the
retrieved service descriptions is achieved utilizing Latent Semantic Indexing (LSI). Our experimental results validate the effectiveness

and feasibility of the proposed approach.

Index Terms—Web services publishing, web services discovery, services discovery process and methodology.

1 INTRODUCTION

large number of web services structure a service-
oriented architecture and facilitate the creation of
distributed applications over the web. These web services
offer various functionalities in the areas of communications,
data enhancement e-commerce, marketing, utilities among
others. Some of the web services are published and invoked
in-house by various organizations. These web services may
be used for business applications, or in government and
military. However, this requires careful selection and
composition of appropriate web services. The web services
within the service registry (UDDI) [16] have predefined
categories that are specified by the service providers. As a
result, similar services may be listed under different
categories. Given the large number of web services and the
distribution of similar services in multiple categories in the
existing UDDI infrastructure, it is difficult to find services
that satisfy the desired functionality. Such service discovery
may involve searching a large number of categories to find
appropriate services. Therefore, there is a need to categorize
web services based on their functional semantics rather than
based on the classifications of service providers.
Semantic categorization of web services will facilitate

service discovery by organizing similar services together.

o A.V. Paliwal is with CIMIC, Rutgers University, 1110 Stony Brook Way,
North Brunswick, NJ 08902. E-mail: aabhas@cimic.rutgers.edu.

e B. Shafig,]. Vaidya, H. Xiong, and N. Adam are with the MSIS
Department and CIMIC, Rutgers University, 1 Washington Park, Newark,
NJ 07102. E-mail: basit@cimic.rutgers.edu, jsvaidya@business.rutgers.edu,
hxiong@rutgers.edu, adam@adam.rutgers.edu.

Manuscript received 26 July 2008; revised 4 Nov. 2008; accepted 11 Feb. 2010;
published online 3 Aug. 2011.

For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2008-07-0068.
Digital Object Identifier no. 10.1109/TSC.2011.19.

1939-1374/12/$31.00 © 2012 IEEE

However, this is not sufficient to improve the selection and
matching process. Most service descriptions that exist to
date are syntactic in nature. Existing service discovery
approaches often adopt keyword-matching technologies to
locate the published web services. This syntax-based
matchmaking returns discovery results that may not
accurately match the given service request. As a result,
only a few services that are an exact syntactical match of the
service request may be considered for selection. Thus, the
discovery process is also constrained by its dependence on
human intervention for choosing the appropriate service
based on its semantics.

Semantic web technology is a promising approach for
automated service discovery and selection [23]. A majority
of the current approaches for web service discovery call for
semantic web services that have semantic tagged descrip-
tions through various approaches, e.g., OWL-S5, Web
Services Description Language (WSDL)-S [24], [22]. How-
ever, these approaches have several limitations. First, it is
impractical to expect all new services to have semantic
tagged descriptions. Second, descriptions of the vast
majority of already existing web services are specified
using WSDL and do not have associated semantics. Also,
from the service requestor’s perspective, the requestor may
not be aware of all the knowledge that constitutes the
domain. Specifically, the service requestor may not be
aware of all the terms related to the service request. As a
result of which many services relevant to the request may
not be considered in the service discovery process.

In order to address the limitations of existing ap-
proaches, an integrated approach needs to be developed
for addressing the two major issues related to automated
service discovery: 1) semantic-based categorization of web

Published by the IEEE Computer Society

PALIWAL ET AL.: SEMANTICS-BASED AUTOMATED SERVICE DISCOVERY

Provider

Specified Input
Service P J
Descriptions ;
‘ - Enhanced
> Web
Semantic Parameters based Service
Tiered Categorization |:> Service Refinement Request
Ontology of Web Services
Framework (UDDI) Semantic Similarity
Matching <:]
Selected C:D
Ranked Web
Services | Dervices Qutput

Fig. 1. Semantics-based automated service discovery.

services; and 2) selection of services based on semantic
service description rather than syntactic keyword matching.
Moreover, the approach needs to be generic and should not
be tied to a specific description language. Thus, any given
web service could be described using WSDL, OWL-S, or
through other means.

Furthermore, the approach should make no assumptions
about the kinds of web services. In specific, we do not make
any assumption about whether the web services are
developed in-house or offered to users by third party
service providers.

In this paper, we present a novel approach for semantic-
based automated service discovery. Specifically, the pro-
posed approach focuses on semantic-based service categor-
ization and selection as depicted in Fig. 1. In our proposed
approach, semantic-based categorization of web services is
performed at the UDDI that involves semantics augmented
classification of web services into functional categories. The
semantically related web services are grouped together
even though they may be published under different
categories within the UDDI. Service selection then consists
of two key steps: 1) parameters-based service refinement;
and 2) semantic similarity-based matching. The web service
input and output parameters contain the underlying
functional knowledge that is extracted for improving
service discovery. Parameter-based service refinement
exploits a combination of service descriptions and input
and output to narrow the set of appropriate services
matching the service request, by combining semantics with
syntactic characteristic of a WSDL document. The refined
set of web services is then matched against an enhanced
service request as part of Semantic Similarity-based Match-
ing. The service request is enhanced by adding relevant
ontology concepts, which improves the matching of the
service request with the web services. We now present a
brief running example that is used throughout the paper to
better explain the proposed approach.

Example 1. Consider a user who requires information about
the amount of rainfall in a particular region to estimate
groundwater recharge for planning sustainable ground-
water development. The user considers searching for an
appropriate web service by specifying a keyword-based
service request. Within the UDDI, service providers may
use different terminology for the specification of web
service categories. For example, the user requested web
service (WS1) may be published by a service provider

261

within the UDDI (public/organizational) under a
“weather” category that provides weather information
or yet another service provider publishes a city informa-
tion web service (WS2), listed under the “utilities”
category that outputs information about the amount of
rainfall received. Thus, a standard text-based service
discovery of the requested service will include WSI1
within the predefined “weather” category; however it
will not include a potentially appropriate service WS2
within the “utilities” category. The service description
for WS1 is “This web service returns historical weather
information for a given US postal code, date, and time.” with
inputs as PostalCode, Date, Time, and outputs as Tempera-
ture, Humidity, Pressure, Precipitation. WS2 is described as
“Describes city information for a specific US city and state.”
with its input parameters City, State, and output
parameters as Population, Temperature, Wind, Precipitation.
In addition, the user formed service request may not
include all the relevant keywords for discovering all the
appropriate services within the UDDI. For example,
the user may search for a web service stating “Find the
temperature and rainfall based on zip code.” However,
there may be services published that provide relevant
information based on regions, city names, addresses.
These services could be combined with other locator
services to yield better results. Also, some of the
published web services may provide relevant informa-
tion grouped under the term “weather” or the user may
not be aware of other parameters, e.g., precipitation,
utilized by other web services providing the same
resultant information.

Based on the above example it is evident that for an
efficient web service discovery 1) the user must be able to
discover all appropriate web services within the UDDI
irrespective of the predefined categories, and 2) all
appropriate web services must be successfully discovered
even if the user is not aware of all the relevant terms that
include all appropriate web services.

The rest of the paper is organized as follows: Section 2
provides background material and Section 3 presents an
overview of the proposed approach. Section 4 provides a
detailed discussion on semantic categorization of web
services in UDDI. The detailed description for parameters-
based service refinement is presented in Section 5. Section 6
includes a discussion on semantic similarity-based match-
ing. The implementation details of the proposed approach
and our evaluations are presented in Section 7. We present
the related work in Section 8. Finally, conclusion and future
work are presented in Section 9.

2 BACKGROUND

In this section, we provide a brief background of the
methodologies utilized for semantic categorization of web
services, parameters-based service refinement, and seman-
tic similarity-based matching. We briefly discuss the
parameters for ranking semantic relationships in the context
of semantic-based service categorization. We also briefly
discuss the hyperclique pattern discovery technique used

262 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.2, APRIL-JUNE 2012

for service refinement. Finally, we provide an overview of
LSI in the context of semantic similarity-based matching.

2.1 Ranking of Semantic Relationships

Semantic relationship among ontology concepts is generally
ranked based on three parameters including relevance,
specificity, and the span of the relationship [5]. Below, we
describe these parameters.

Relevance (Rel). Concepts may be associated with each
other with reference to multiple domains that are specific to
user applications. The associated domain for a particular
concept may be expressed as a high-level concept in an
upper ontology. For example, the concepts temperature
and pressure are associated in the atmospheric domain as
well as in the chemical reactivity domain. These domains
may be represented by the weather and chemical concepts
in an upper ontology, respectively. Relevance comprises the
associated domain concept specified by the user and is
indicative of the contextual relationship between the
concepts.

We use the predicate Rel to specify the relevance
between any two concepts t; and t¢;. The predicate
Rel(t;, t;) evaluates true if the concepts ¢; and t; are linked
to a common concept in the upper ontology.

Specificity (Sp). The concepts are classified based on
their position in the concept hierarchy. Concepts in the
lower level of the hierarchy are specific concepts where as
the higher level concepts are termed as generic concepts.
For example, the entity location may be conveyed through
concepts address and postal code. Address is a generic
concept whereas postal code is a specific concept.

We use the predicate Sp to specify the specificity
relationship between any two concepts ¢; and t;. The
predicate Sp(t;,t;) evaluates true if there is a downward
path (indicating specialization) from ¢; to ¢; in the ontology.

Span (S). The span of the relationships expressing the
semantic association conveys the strength of linkage among
concepts. The span, specified to restrict the scope of the user
request, includes the coverage and the depth of the
associated concepts. Coverage includes the concepts at the
peer level of the considered concept where as the depth
includes level of descendants to be included. If the concepts
are linked within the specified span, the value of Span
S(t;,t;) is equal to 1, else it is set to 0.

Ranking of the semantic association includes relevance,
specificity, and span. For a given web service, that includes
{t1,t2,...,t,} concepts describing the service, the overall
rank is expressed as: R(t;,1;),

R(ti,tj) =k X Rel(ti, tj) + kz X Sp(ti7t]~) + k3 X S(t{,, tj)7

where 0 < ki, ko, k3 < 1 and ky + ks + k3 = 1.

ki, ko, ks are user-specified weights associated with
relevance, specificity, and span, respectively, to obtain the
overall rank of the semantic association.

2.2 Hyperclique Patterns Discovery

In this paper, we apply hyperclique patterns [34] for web
service discovery. Hyperclique patterns are based on the
concepts of frequent item sets [2]. Next, we first briefly
review the concepts of frequent item sets and then describe
the basic concepts of hyperclique patterns.

TABLE 1
Example Hyperclique Patterns

Hyperclique Patterns Support J H-Confidence

{temperature, pressure} 9.52% | 50.00%

4.76%

4.76% \

66.67%

100%

{mapurl distanceunits time,routeoptions}

{countrycode,countryname,region ispname,domainname}

Let I = {iy,i2,...,%,} be a set of distinct items and let
T represent the set of vectors with elements corresponding
to input/output parameters and service description terms.
Each vector in T is a subset of I. We call X C I an item
set. An item set with k items is called a k-item set. The
support of X, supp(X), is the fraction of vectors containing
X. If supp(X) is no less than a user-specified minimum
support, X is called a frequent item set. The confidence of
association rule X; — X, is defined as conf(X; — X5) =
supp(X; U Xy)/supp(X;). It estimates the likelihood that
the presence of a subset X; C X implies the presence of
the other item set X, = X — X;j. [10].

A hyperclique pattern [34] is a new type of association
pattern that contains items that are highly affiliated with each
other. Specifically, the presence of an item in one service
description vector strongly implies the presence of every
other item that belongs to the same hyperclique pattern. The
h-confidence measure captures the strength of this associa-
tion and, for an item set P = {41,149, ...,,}, is defined as the
minimum confidence of all association rules of the item set
with a left hand side of one item, i.e.,

heonf(P) = min{conf{i1 — i2,...,im},

conf{ia — i1,13, .. lm}y ..., conf{im, — i1,..

. 7im71}}}7

where conf follows the classic definition of association rule
confidence [2]. An item set P is a hyperclique pattern if
heonf(P) > h., where h, is the minimum h-confidence
threshold.

For example, consider an item set P={A, B, C}. Assume
that supp({A})=0.1, supp({B})=0.1, supp({C})=0.06, and
supp({A, B,C}) = 0.06, where supp is the item set support.
Then, conf{A — B,C} = supp({4, B,C})/supp({A}) = 0.6,
conf{B — A,C} = 0.6, and conf{C — A, B} = 1. Hence,

heonf(P) = min{conf{A — B,C},conf{B — A,C},
conf{C — A, B}} = 0.6.

Table 1 shows some example hyperclique patterns
identified from a real-world web services data set, which
includes web service descriptions from various service
categories, e.g., “weather,” “financial,” “graphics,” “busi-
ness,” “communication,” and “location.” For example, the
hyperclique pattern {mapurl, distanceunits, time, routeop-

tions} is from the “location” category.

2.3 LSl

As part of our approach, we utilize LSI over a set of WSDL
documents and the terms in the service description and
parameters. LSI, after analyzing a base set of web service
documents, finds relations between web service terms
including service description and parameters. Given a term

PALIWAL ET AL.: SEMANTICS-BASED AUTOMATED SERVICE DISCOVERY

Semantic Categorization of]
Web Services

Parameters based Service Refinement

'WSDL Parameter Association Rule|
(WSi;_s... WS:0:)

—
‘Web Service
Descriptions
UDDI

Pre-Processor
—= Stopword & _
ing
2
WSDL Dataset
(WSis.o.. WS:0,.0)

(WSmis.n--- WSi0:.0)

[

Pre-Processor
Stopword &
Stemming

5'9

Association S i =
: 3 WSRequest
P.anems = Relahor.\shnp U Vector
- S 110 aty..t)

T T
Semantic Similarity based Matching

ls L

=P

Tiered
Ontology
Framework

Fig. 2. Automated service discovery components. The service categor-
ization is performed offline on a regular basis and is independent of the
service request. Service selection is executed online and in real time on
a per request basis.

query, LSI translates it into concepts, and finds matching
documents and corresponding web services.

LSI is a statistical approach used to capture term
relationships and underlying domain semantics [9]. LSI
extends the Vector Space Model (VSM) in accounting for the
order and association between terms. The association
between terms and documents are calculated and utilized
in LSI to reveal an underlying structure or pattern of word
usage across service descriptions. The LSI involving
Singular Value Decomposition (SVD) is an important
factorization of a rectangular real or complex matrix. The
original matrix is approximated by a linear combination of a
decomposition set of term to text-object association data.
For example, at matrix X, of terms and objects can be
decomposed into the product of three matrices.

X=17,-S,-0,, such that T, and O, have orthonormal
columns and S, is a diagonal matrix. This is an SVD of X.
Keeping only the £ largest singular values of S, with their
corresponding columns in matrices 7, and O, results in the
matrix X', where X’ is a unique matrix of rank k& that is
closest to X such that: X =X'=T-5-0.

One of the main challenges identified by LSI is related to
the cost of computing and storing SVD. Local LSI is an
approach for dealing with this computationally intensive
task which only considers the top-ranked service descrip-
tions relevant to the service request. The results obtained
are applicable to our domain as it shares several common-
alities with their domain, as follows: 1) the set of services
relevant to the service request—in our case it is the set of
web service descriptions based on a common category that
provide functionality for service requests; 2) low LSI
dimensions, in their case one or two—this is important
since in our case web service descriptions are short passages
that result in low dimension vectors.

3 OVERVIEW OF THE PROPOSED APPROACH

Fig. 1 illustrates the key steps of the proposed approach for
semantic-based service discovery. The first step of the
proposed approach involves semantic categorization of the

263

web services published in the UDDI. The next step deals
with selection of web services for a given service request.
This step involves two tasks: 1) refinement of the set of web
services based on the input, output, and description
parameters of the service. The purpose of this refinement
is to select a set of services from the service categorization
module representing the desired functionality in terms of
the input and output service parameters, 2) enhancement of
the web service request with relevant ontology terms, and
the matching of this enhanced service request with the set of
candidate web services for selecting appropriate service.
Fig. 2 illustrates the main components of the overall system
that performs the two key steps related to automated service
discovery. The Service Categorization module serves as the
back end of the system and is executed once independently
of individual service request. On the other hand, the Service
Selection process is executed for each service request and
serves as the front end of the overall system.

The ontology guided web services categorization, as
illustrated in Steps 1 to 5 of Fig. 2, takes advantage of
clustering. In our approach, as illustrated in Steps 1 and 2,
individual web services are represented as a vector that
comprises of the terms of the service description and of the
service’s input and output parameters. We refer to this
vector as the Service Description Vector (SDV). The initial
task for service categorization involves improving the
semantic content of the SDV. We achieve this by extending
the service description vector with relevant ontology
concepts and terms. The improvement of the semantic
content is followed by the process of grouping of services
with similar service functionality and published under
different service categories. For the grouping of web
services, we apply clustering to this web service data set,
as illustrated in Step 3. The next step of our approach, i.e.,
Step 4 involves the proper labeling of each group of the
clustered web services. The labeling of web service groups
involves 1) determining the semantic category to which the
member services belong based on the service functionality,
and 2) the actual semantic categorization of the web services
within the UDDI. We achieve this by associating an ontology
concept for each cluster. Following this, we retrieve the web
service entries to represent the semantic information in the
UDDI by creating tModels in the registry. The tModel
corresponds to concepts from the upper ontology, SUMO
[15], representing functionality of the service in a relevant
domain. The ontology is linked with the respective tModel
using the overviewURL: tag of the tModels.

The categorization of web services is followed by service
selection from the relevant group of services. This is
achieved by parameter-based service refinement as illu-
strated in Steps 5 to 7 of Fig. 2. Parameter-based service
refinement includes narrowing the set of appropriate
services matching the service request based on service
parameters, i.e., input, output, and description. The refined
set of web services is then matched against an enhanced
service request as part of Semantic Similarity-based Match-
ing, as illustrated in Steps 8 to 13 of Fig. 2. Parameter-based
refinement of web services begins with a representation of
the web service parameters as a vector in which each entry
records the terms of the operations’ input and output. The

264 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.2, APRIL-JUNE 2012

set of related web services is represented by a collection of
such vectors, as illustrated in Step 5. Next we mine this web
service collection to find the frequent patterns that satisfy a
given support level and confidence level [34], as illustrated
in Step 6. The frequent patterns represent the combination
of input and output service parameters related to the
service request. The terms in the patterns discovered by
mining the input/output term vectors may not be semanti-
cally related. Therefore, the set of discovered patterns is
pruned based on the ranking of semantic relationships
among the terms. Then for each remaining pattern we
retrieve the web services that have the pattern expressed as
part of the service description. The pruning of discovered
patterns followed by retrieval of associated web services is
illustrated in Step 7.

The refined set of web services is then matched against
an enhanced service request as part of Semantic Similarity-
based Matching, as illustrated in Steps 8 to 13 of Fig. 2. A
key part of this process involves enhancing the service
request. Step 9 demonstrates the initial processing of the
service request and its transformation to a service request
vector. Our approach for semantic similarity-based match-
ing utilizes ontology linking to enhance the service request
with relevant ontology terms. In Steps 10 and 11 we
compute the semantic rank of the relevant terms from
the ontology and utilize the semantic ranking to determine
the inclusion of the ontology concept in the original service
request. Step 12 indicates the formation of the enhanced
service request based on certain techniques described in the
latter part of this paper. For matching the enhanced service
request with the refined set of web service description
vector, we employ Latent Semantic Indexing (LSI) techni-
que. Step 8 involves the conversion of the refined set of web
services into the term document matrix for LSL

In the proposed approach, both semantic-based service
categorization and parameter-based service refinement
depend on the service description in the WSDL file.
Additionally, we consider keyword-based search for service
discovery. The brief textual descriptions of web service
functionality and little documentation on how to invoke
them makes keyword-based searches vulnerable to return-
ing irrelevant search results and therefore serves as a
primitive means for effectively discovering web services.
Semantic annotation and matching of web services has been
proposed to address the drawbacks of syntactic web service
descriptions. However, existing web services on the web
usually are not equipped with semantic descriptions [21]. A
focused search for semantic service descriptions conducted
by [20] with a specialized metasearch engine Sousuo found
not more than about 100 semantic service descriptions in
prominent formats like OWL-S, WSML, WSDL-S, and
SAWSDL on the web. Klusch and Zhing [20] state that this
quantity appears tiny compared to more than half million
RDF sources indexed by the semantic web search engine
Swoogle, and several hundreds of validated web service
descriptions in WSDL found by Sousuo on the web.
Semantic annotations aim to provide for richer specifica-
tions of web services. As a result, supplementing web
services with a semantic description of their functionality
will further improve their discovery and integration based
on the proposed approach. With the goal of supporting

efficient service discovery and a view to simplify our
approach we, however, currently validate our approach
utilizing web services described with WSDL. However, our
approach is not specific to a single approach to describing
web services and can be applied to syntactic web services,
Semantic web services as well as a combined set of semantic
and syntactic web services.

4 SEMANTIC CATEGORIZATION OF WEB SERVICES

In our approach we begin with the semantic categorization of
UDDI wherein we combine ontologies with an established
hierarchical clustering methodology, following the service
description vector building process. For each term in the
service description vector, a corresponding concept is
located in the relevant ontology. If there is a match, the
concept is added to the description vector. Additional
concepts are added and irrelevant terms are deleted based
on semantic relationships between the concepts. The result-
ing set of service descriptions is clustered based on the
relationship between the ontology concepts and service
description terms. Finally, the relevant semantic information
is added to the UDDI for effective service categorization.
With respect to our running example, additional concepts
from weather ontology are added to the description vectors
for WS1 and WS2. Following this, both WS1 and WS2
are grouped together utilizing hierarchical clustering. All the
services within this cluster (including WS1 and WS2) are
then associated with an upper ontology concept “weather”
as a category. Below is an outline of the key steps of our
approach as illustrated in Steps 1 to 4 of Fig. 2,

1. Build the web service description vectors.

2. Append relevant ontology concepts and delete
irrelevant terms based on the ranking of semantic
relationships among the terms.

3. Mine web service collection utilizing hierarchical
clustering and associate an upper ontology concept
for each cluster and the relevant ontology concept
for the corresponding subcluster.

The details of each of the steps for the semantic categoriza-
tion of UDDI is included in Sections 4.1 to 4.4.

4.1 Web Service Vector Formation

The WSDL file forms part of the initial WSDL set and its
corresponding description and associated parameters are
parsed as follows: the WSDL document processing
includes the extraction of the associated operation para-
meters by extracting all terms under the <element name> and
<documentation> tag. The next step in the WSDL processing
involves removal of markups and index entries, removal of
punctuation, and using white space as term delimiters. A
collection of individual web service vectors represents the
entire data set denoted as WS = {(ws1,t))...(ws;,t})},
where ¢’ = {t; ...t;} for all ws € WS, the set of web services
and t € T, set of all different terms in WS. Web service vector
formation is included in Step 1 of Fig. 2.

4.2 Web Service Vector Modification

Enhancing the service vectors with concepts from the core
ontology resolves issues related to synonyms and induces

PALIWAL ET AL.: SEMANTICS-BASED AUTOMATED SERVICE DISCOVERY

domain related concepts that provide the context. To
achieve semantic enhancement we utilize an approach that
augments the WordNet noun database with SUMO map-
pings [25], [15]. These mappings provide a natural language
index to the ontology concepts, mediate between the
structured concepts and free text and validate ontology
content. This facilitates modeling of domain elements with
relevant ontology concepts by associating SUMO concepts
with input nouns via WordNet synsets. Thus, for our
running example, the service vector for WS1 is formed as
“weather information US postal code date time temperature
pressure humidity hour minute seconds zipcode rain address
street city state month year snow wind precipitation.” The WS2
service vector is “city information US state address latitude
population male female longitude region description temperature
wind precipitation weather pressure humidity rain snow wind.”

The first step in this phase of our approach involves
adding relevant ontology concepts to the initial service
vector. Our approach considers all concepts for enhancing
the web service description. The add step extends each
service vector by additional WordNet elements. This is
followed by the retrieval of corresponding mapped SUMO
concepts represented by the set C. The modified web
service vector is the union of ¢, and ¢; where ¢; € C.

The next step of this phase involves deleting irrelevant
terms based on the ranking of semantic relationships among
the terms. The complex relationships are based on property
sequences that link the two concepts in the semantic
association. Two concepts e; and e; are semantically
associated with each other if there exists one or more
relationship Rel;;, between the concepts e; and e;, where
1<i<nand1<j<mn,and n is the number of terms in a
web service. Next for each of these concepts we find the
relevance, specificity, and the user specified span. The user
assigns weights (ki, k2, and k3) for each of the parameters
(Rel, S,,S) as a threshold for concept selection. This also
makes the ranking process more flexible. Our current
approach assigns binary values to the ranking parameters.
Assigning a range of specific values to these parameters is
part of our future work.

To illustrate our approach consider the following terms
within the web service vector, {temperature, pressure,
postal code}. ki, ks, ks, as explained in Section 2.1, are
user-specified weights associated with relevance, specifi-
city, and span, respectively, to obtain the overall rank of the
semantic association between the web service vector terms.
The selection of the weight coefficients is a key challenge for
relevant research. It is heuristics based and subjective to
some extent presently. The aim is to put forward the
optimal selection of weights used in the equation to
minimize the variation bias. To overcome this difficulty, a
range of weights were computed with reasonable assump-
tions given for the observed results and analyzed results.
The objective weight coefficients were obtained in the
minimum variance of the difference between the analyzed
field and ideal field. For this phase of our approach we
consider equal user-specified weights, ie., ki = 0.33,ky =
0.33 and k3 = 0.33, coverage = 2, and depth = 2. The three
concepts are linked to the concept weather specified in the
upper ontology. Thus Rel = 1. The concepts are located in

265

Algorithm: modifyServiceVector

Input: Web Service Vector (ws)

User assigned weights {ki,k2,ks,coverage,depth, Scoresemrank(cv)},
Output: Modified Web Service Vector (wsm)

1: begin

2: for each Web Service vector wsi € WS do

3: foreachtermte ti && tj € T do

4: Extract WordNet element e;
5: Map ej to SUMO concept cje C
6: ife=gq

7 append ¢ U fi
8: Traverse H. for upper ontology concept C
9: ifgcC

10: assign Relj=1

11: Calculate [depth{cj| C}]

12: if depth{c} >5

13: assign Spj=1

14: Calculate coveragej(ti,cj)

15: Calculate depthj(t;, c)

16: if coveragej < coverage && depth; < depth
17: assign §j=1

18: Scoresemrank(j) = ki*Rel; + k2*Sj + k3*Spj

19: if ScoresemRank(j) < Scoresemrank(t)

20: delete

21: end for

Fig. 3. modifyServiceVector Algorithm.

the lower part of the concept hierarchy, this is indicative of
greater specificity and as a result Sp = 1. Since the concepts
fall within the specified span of weather domain in
the SUMO ontology, S = 1. The semantic rank score of the
association pattern is calculated to an integer rounded value
as 0.33 x 1+0.33 x 1 4 0.33 x 1 = 1. The associated seman-
tic rank is utilized to determine the inclusion or deletion of
the concept to the service description vector. The modify-
ServiceVector algorithm (Fig. 3) gives the details. Step 2 of
Fig. 2 executes the modification of the web service vector.

4.3 Clustering and Ontology Concept Association
After enhancing the service description vector with relevant
ontology concept, clustering of service vectors is performed
to group functionally similar services together. Hierarchical
clustering facilitates classification of all the services, such
that each subcluster and the combinations of subclusters
create a hierarchy—a structure that is more informative
than the unstructured set of clusters. This is the primary
reason that we adopt hierarchical, group-average agglom-
erative clustering to group web services, since we want to
have informative clusters of the web services descriptions.
Also, the approach of Heb and Kushmerick [11], of using
the information contained in the service description to
dynamically create the categories for service classification,
illustrates that hierarchical clustering is the best clustering
approach for service classification.

The step following the formation of clusters includes
associating relevant SUMO ontology concepts. The associa-
tion of concepts to each cluster facilitates web service
discovery by mapping to functional categories. A cluster ¢;
is defined as ¢; = c; where, ¢; is the corresponding ontology
concept. The ontology concepts render semantic for web

266 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.2, APRIL-JUNE 2012

Algorithm: associateOntologyCluster
Input: Web Service Descriptions clusters set ¢ = {}1, ¢2,..., dn},
Min. Term Frequency Threshold &
Output: Modified UDDI tModels
: begin
: for each Web Service cluster set ¢i do
: Retrieve modified Web Service vector wsme ¢i do
: Calculate term frequencies (tj, xj) where tj < ¢
if xj<d
delete t
Map tj= g
Traverse Hc for upper ontology concept C
if the term concept is subsumed by the upper concept ¢j C
Co=C
10: else
10: Co=g
11: Map Co to ¢i
12: for each Web Service wke ¢i
13: Update tModelm to include Co
14: end for
15: end

RS B A

Fig. 4. associateOntologyCluster Algorithm.

service categorization. Our approach utilizes the mapping of
WordNet elements to SUMO concepts. We build a set which
contains all concepts that exist in at least one service
description and eliminate duplicate concepts. This is
followed by locating the position of the remaining concepts
in the concept hierarchy H.. Each concept is checked for
subsumes or subsumed relationship with the elements of the
set. The resultant superconcept is then mapped to the cluster.
The mapping of the ontology concept to the cluster extends
semantic information in UDDI. This is executed by the
creation of tModels for the associated web services of the
cluster in the registry. The associateOntologyCluster algorithm
as shown in Fig. 4 provides the details of our approach.

4.4 Web Service Registry—Reliance on UDDI

One question that may arise is the extent to which our
approach is reliant on UDDI. UDDI is a platform-
independent, open industry initiative, XML-based registry
enabling service providers to publish service listings and
discover each other and define how the services interact
over the Internet. There are several UDDI business
registries (UBRs) that provide the ability to locate the
services matching the search criteria in an efficient manner.
Some of these UBRs include Microsoft, SAP, and National
Biological Information Infrastructure (NBII) among others.
In addition, various web service search portals (e.g.,
RemoteMethods, Xmethods), search engines, e.g., Google,
Yahoo, and Baidu and web service crawler engines (e.g., Al-
masri [3]) have originated that are being used for service
discovery. These portals and crawlers may not necessarily
comply with the original and established web service
standards such as UDDI. However, they also incorporate
the storage of web services collected from various sources
into a central data repository which can be queried by users.
In this sense, our service discovery approach can be applied
on all web services retrieved through, search engines,
portals, crawlers, and UBRs. In addition, there also exists

the approach of publishing and discovering web services
across multiple registries grouped into registry federations,
e.g., [32] for enhancing the discovery process.

In our approach, the use of UDDI is only as a base to be
compliant with the universally adopted standard for service
discovery. Our proposed approach can, however, be
extended to the various approaches mentioned above for
discovering web services. For supporting semantic-based
service discovery, the proposed approach adds semantic-
based service categorization and service request enhance-
ment as separate layers on top of the UDDI. Addition of
these layers affects the performance of the discovery
process in terms of increased timing delays. Given the fact
that service categorization is performed offline and only
service request enhancement is performed during runtime,
therefore the increase in the timing delay will not be
significant. While we do not directly measure this delay due
to service request enhancement in our experiments, it can
indirectly be measured based on the size of the original
service request and the enhanced service request. Typically,
a service request vector includes a maximum of 25 elements
and searching the ontology for an additional few tens of
elements will not have a significant overhead given the
efficient ontology search mechanisms (a search only
requires log(n) time where n is the size of the ontology).

5 PARAMETERS-BASED SERVICE REFINEMENT

The next step is service selection from the relevant category
of services using parameter-based service refinement. Web
service parameters, i.e., input, output, and description, aid
service refinement through narrowing the set of appropriate
services matching the service request.

The relationship between web service input and output
parameters may be represented as statistical associations.
These associations relay information about the operation
parameters that are frequently associated with each other.
To group web service input and output parameters into
meaningful associations, we apply a hyperclique pattern
discovery approach [10]. These associations combined with
the semantic relevance are then leveraged to discover and
rank web services.

For the running example, the first step of our approach
for parameters-based service refinement is to build the
service parameters association pattern item set for all
services within the “weather” cluster (including WS1 and
WS2) [28]. The next step involves pruning the association
pattern based on concepts extracted from domain ontology
and a confidence threshold. This provides a set of ranked
web services matching service functionality. Below is an
outline of the key steps of our approach as illustrated in
Steps 5 to 8 of Fig. 2,

1. Retrieve associated parameters forming the associa-
tion pattern item set.

2. Perform Hyperclique pattern discoveries on the
association pattern item set.

3. Rank the semantic associations between the terms.

4. Prune the association patterns collection.

Sections 5.1 to 5.4 provide a detailed discussion of each of
the steps for parameters-based service refinement.

PALIWAL ET AL.: SEMANTICS-BASED AUTOMATED SERVICE DISCOVERY

5.1 Service Parameters Retrieval

As discussed earlier, the web service description is
provided in the WSDL document. For retrieving the
relevant service parameters, the corresponding WSDL
document is processed to extract the associated operation
parameters by retrieving all terms under the <element
name> tag. The WSDL processing also includes stoplist
removal and stemming to strip word endings.

5.2 Hyperclique Pattern Discovery

The process of searching hyperclique patterns can be
viewed as the generation of a level-wise pattern tree. Every
level of the tree contains patterns with the same number of
nodes. If the level is increased by one, the pattern size
(number of objects in the pattern) is also increased by one.
Every pattern has a branch (subtree) which contains all the
supersets of this pattern. Our algorithm for finding
hyperclique patterns is breadth-first. We first check all the
patterns at the first level. If a pattern is not satisfied with
the user-specified support and h-confidence thresholds, the
whole branch corresponding to this pattern can be pruned
without further checking. This is due to the antimonotone
property of support and h-confidence measures. Consider
the h-confidence measure, the antimonotone property
guarantees that the h-confidence value of a pattern is
greater than or equal to that of any superset of this pattern.
Following this manner, the pattern tree grows level-by-
level until all the patterns have been generated. In
accordance, for our example the input and output
parameters for WS1 are “postalcode date time temperature
humidity pressure precipitation” and for WS2 are “city state
population temperature wind precipitation.” The hyperclique
patterns, along with support and h-confidence {hyperclique
pattern (support, h-confidence)} generated are {temperature,
pressure (9.52, 50 percent)}, {temperature, pressure, precipitation
(14.29, 75 percent)} and ({temperature, pressure, city (6.4,
50 percent)}. This algorithm is very efficient for handling
large-scale data sets [34]. These patterns indicate the
support and the h-confidence levels of association. The
patterns are selected on the basis of the h-confidence
thresholds. For our approach, we set the h-confidence
threshold to 50 percent.

5.3 Ranking Semantic Associations

The complex relationships are based on property sequences
that link the two entities in the semantic association. The
rankSemanticAssociations algorithm as shown in Fig. 5
provides the details of our approach.

Two entities e; and e; are semantically associated with
each other if there exists one or more relationship Rel;;
where 1 <i<nand1<j<n.

Next for each of these entities we find the relevance,
specificity and the user-specified span. The user assigns
weights for each of the parameters to refine the request.
This also makes the ranking process more flexible. Our
current approach assigns binary values to the ranking
parameters. Assigning a range of specific values to these
parameters is part of our future work. To illustrate our
approach consider the following association pattern {tem-
perature, pressure, postal code}. The user-specified weights
are k1 =03, ks =04 and k3 =0.3, coverage =2, and

267

Algorithm: rankSemanticAssociations
Input: Association Pattern Collection (P) formed in
Hyperclique pattern mining phase

User assigned weights {ki,k2,ks,coverage,depth},
Output: Semantic rank score Scoresemrank

1: begin

3: for each association pattern p(x,y) € P do

4: Traverse Hc for upper ontology concept C
5. if pxy)c C

6 assign Reli =1

7: Calculate [depth{p(x,y) | C}]

8: if depth{p(x,y)} >5

9 assign Spi=1

10: For each term in p(x,y)

11: calculate coveragei(p(x,y))

12: calculate depthi(p(x,y)

13: if coveragei < coverage && depthi < depth
14: assign Si=1

15: Scoresemrank = k1*Reli + k2*Si + k3*Spi

16: end for

17: return Scoresemrank

18: end

Fig. 5. rankSemanticAssociations Algorithm.

depth = 2. The three concepts are linked to the concept
weather specified in the upper ontology. Thus, Rel = 1. The
concepts are located in the lower part of the concept
hierarchy, this is indicative of greater specificity and as a
result Sp = 1. Next we determine if the concepts fall within
the specified span within the weather domain. As illu-
strated by the WeatherConcepts ontology, the concepts are
included in the specified span thus S = 1. The semantic
rank score of the association pattern is calculated as 0.3 x
1+ 04x1+0.3x1=1. The associated semantic rank is
utilized to sort the association pattern collection.

5.4 Association Pattern Collection Pruning

A large number of association patterns are generated in the
association pattern mining phase. Patterns containing
irrelevant information that will negatively influence the
service discovery process need to be discarded. The
pruning of the association pattern collection is based on
[4]: 1) eliminate the association patterns that have a low
semantic relationship ranking between its terms; 2) retain
the generic patterns with high confidence. This is illustrated
in the pruneAssociationPatterns algorithm in Fig. 6. Func-
tions 1 and 2 are listed in Fig. 6.

Function 1. Given two patterns. X1 = Y1 and X2 = Y2,
the first pattern is eliminated if Scoregempani{p(X1,Y1)} <
Scoregemprank{p(X2,Y2)}.

Function 2. Given two patterns X; and X», X is ranked
higher than X, 1) if X; has higher confidence than X,
conf(X1)> conf(X3), 2) if the confidences are equal, support
for X; must exceed that for X5, supp(X1) > supp(Xs).

6 SEMANTIC SIMILARITY-BASED MATCHING

The parameter-based refined set of web services is then
matched against an enhanced service request as part of
Semantic Similarity-based Matching. A key part of this
process involves enhancing the service request. Our

268 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.2, APRIL-JUNE 2012

Algorithm: pruneAssociationPatterns

Input: Association Pattern Collection (P) formed in
Hyperclique pattern mining phase

Web Service Descriptions set W = {W1, W, ..., Wh}
Output: relevant WSDL set WS = {WS1, WSy, ..., WSn}
1: begin

2: sort the patterns according to Func. 1

3: for each association pattern p(x,y) € P do

4: sort more specific patterns according to Func. 2
5: end for

6: prune patterns with lower confidence level

7: [* anew set of patterns P’ is created */

8: for each association pattern p(x,y) € P’ do

9: Search in W for parameters p(x,y)

10: if p(x,y) covers parameters

11: select WSi

12: end for

13: return WS

14: end

Fig. 6. pruneAssociationPatterns Algorithm.

approach for web semantic similarity-based service selec-
tion employs ontology-based request enhancement and LSI-
based service matching.

The basic idea of the proposed approach is to enhance
the service request with relevant ontology terms and then
find the similarity measure of the semantically enhanced
service request with the web service description vectors
generated in the service refinement phase [27]. For evaluat-
ing this similarity, we employ LSI-based technique that uses
cosine measure as the similarity metric.

A key issue in discovery of web services refers to the
query language utilized to form the web service request.
The web service request can be formed in two ways, i.e., a
syntactic web service request and a semantic web service
request. The syntactic web service request, in its most basic
form, utilizes simple text to form a web service request.
Syntactic web query languages such as XQuery, XSLT,
GQL, and Lucene among others, which have been tailored
specifically for declarative and efficient access and proces-
sing of web data, may also be utilized to form the web
service request. The web service request may also be
formed of a set of semantics-based XML languages, such as
RDF and OWL, that rely on ontologies to explicitly specify
the content of the tags to annotate the service request. Most
of the RDF query languages today are relational based,
such as SPARQL, RQL, and TRIPLE among others.
Compared with formal queries, keyword-based queries
have the following advantages: 1) a simple syntax in terms
of a list of keyword phrases, 2) Open vocabularies wherein
the users can use their own words to express their
information requirement, and 3) the familiarity of the user
with these interfaces due to their widespread usage.
However, the fundamental disadvantages of a keyword-
based web service request are the lack of precision and the
lack of verifiability.

A new, semantics-based approach is necessary not only
to reduce this information overload problem, but also to
enable more effective and productive services over the web.
Our research validates the limitations of keyword-based
searching and provides an approach in which semantics

enhanced web service request overcome these limitations.
In this paper, we report on the experiment in which we
evaluate the benefits and drawbacks of the added value and
pitfalls of semantic enhancement of web service request
over pure keyword matching technique. Thus, though
keyword-based web service discovery has proven its
usefulness, applying semantics-based web service request
strategies should greatly increase the resulting precision of
searches and enable new types of web service requests to be
formed. For our running example, we use the weather web
service request:

Service Request (SR). Find the temperature and rainfall based
on zip code.

Below is an outline of the key steps of our approach (as
illustrated in Steps 9 to 13 of Fig. 2), followed by a detailed
discussion of each of the steps.

1. Preprocess service request and determine the overall
search category of web services for the search.

2. Index the web service description collection and
retrieve relevant service descriptions.

3. Preprocess the service descriptions set and retrieve
associated concepts related to the initial service
request from the ontology framework.

4. Acquire the associated concepts related to the initial
service request to expand the request. Transform the
service description set into a term-document matrix.

5. Perform SVD on this matrix.

6. Project the description vectors and the request
vector and utilize the cosine measure to determine
similarity.

We now go into the details of each step.

6.1 Service Request Preprocessing

The service request is parsed and preprocessed. Preproces-
sing includes: the removal of markups, translation of upper
case characters into lower case, punctuation removal, and
white space used as a term delimiters, stoplist removal, and
stemming to strip word endings. The outcome of this
preprocessing is in a term vector yielding term frequency.
In our weather service example, the SR is transformed to
{temperature, rain fall, zip code}. The SR terms are then
searched in the upper ontology to extract the related upper
concepts. These concepts are utilized to determine the
category of the web services to be searched for discovering
the most appropriate web service satisfying the requested
functionality. The upper concepts are retrieved by extract-
ing the root concepts of the concept hierarchy that have the
SR terms as its leaf nodes. In our example, this results in
{weather}.

6.2 Service Description Retrieval

The corresponding relevant service collection forms the
categorized WSDL set. As shown in Fig. 2, Step 5 involves
the selection of web service descriptions (WSDL files) that
are categorized as weather services in the UDDI. categor-
yBag that is an optional element of tModels is used for
service categorization. A service can specify its position
within the general classification scheme by, for example, an
optional list of name-value pairs that are used to give
taxonomy information, like industry, product, or geo-
graphic codes. These documents are then parsed and

PALIWAL ET AL.: SEMANTICS-BASED AUTOMATED SERVICE DISCOVERY

Algorithm: generateEnhancedRequest

Input: Web Service Request,

Ontology framework T = {Ty, ..., Tn}, ontology concept c;
To: upper merged ontology

Output: Enhanced Service Request SRe

1: begin

: for Web Service request SR do

RN

3: [* Preprocess service request SR */

4: apply stop words to remove regular words

5: stemming to eliminate morphological variants
6: end for

7: SR := {srty,..., srtn}

8

9

:SRe :=SR
: for each Web Service request vector term srti € SR do
10: Tx:=To
11: whileTx!= do
12: if srti = ¢ then
13: for each ontology concept hierarchy do
14: SRe := SRe U cH
15: end for
16: if there exists a c.ontology then
17: Tx := c.ontology
18: else
19: Tx:=
20: end if
21: end if
21: {end while}
22: end for
23: return SRe
24: end

Fig. 7. generateEnhancedRequest Algorithm.

processed to form the term-document matrix. The WSDL
document processing includes the extraction of the text
under the <documentation> tag. The extracted text forms
the service description. Additionally, we consider the
associated operation parameters by extracting all terms
under the <element name> tag.

6.3 Ontology Concept Acquisition

The initial web service discovery process is not explicit as
most of the users are not entirely aware of document
collection as well as the domain information. It is, therefore,
difficult to formulate a precise SR. This guides us toward
iterative SR formulation. This part of our approach is based
on the introduction of relevance feedback for information
retrieval [30]. Our approach builds on the manual process to
provide a semiautomated technique to expand the SR based
on the existing terms that make up the SR. The primary
objective is to extract associated concepts from the domain
ontologies that are determined as relevant and enhance the
existing SR. We developed and reused ontologies to form a
domain ontology framework. The ontology concepts were
extracted by ontology linking based on ontology-to-ontol-

ogy mapping.

6.4 Service Request Expansion and
Term-Document Matrix Formation

One of the assumptions in our experiments is related to

simplification in modeling of the ontology framework.
Currently, our approach for linking ontologies is based on

269

Algorithm: obtainReducedDimensionForm

Input: Web Service Descriptions set WS = {WSi1, WS,..., WSn},
WS consists of documents with category ¢

Output: Reduced Dimension Form A«

1: begin

2: for each Web Service description set WS: € WS do

3: for each Web Service description WS« € WS do

4: /* Preprocess document WS */

5: apply stop words to remove regular words

6: stemming to eliminate morphological variants
7: end for

8: end for

9: /* Setup initial VSM */

10: apply TF*IDF to setup VSM matrix A

11: SVD convert A into three matrices T, S, D
12: keep k largest singular values, thus Ax=A
13: end

Fig. 8. obtainReducedDimensionForm Algorithm.

retrieval of concepts traversing two links expressing an
association [18]. This restricts us in gathering concepts
across a single ontology at the same level. However,
multiple iterations of the concept gathering function enable
us to traverse one ontology at each step across the three
broad levels. For example, corresponding to our request,
our initial ontology modeled a weather forecast as having a
set of features with a specific feature having a set of
characteristics. This, however, requires querying across
two associations, e.g., weatherforecastWF hasParameter
featureF—featureF is temperatureT—temperatureT has
unitU. Since this is not feasible, we currently list the
feature (sky, station, temperature, visibility, wind) without
modeling the details of the feature. Therefore, the
associated concepts are represented as {weatherforecast | sky,
station, temperature, visibility, wind}. The expanded request
is thus a union of the original terms and the ontology
concept along with their concept hierarchies as mentioned
above. The enhanced service request is represented as;

Enhanced Service Request (ESR): “windchill heat humidity
dewpoint wind pressure conditions visibility sunrise sunset state
moonrise moonset precipitation temperature rainfall zip code
region address city state latitude longitude postal code”

generateEnhancedRequest Algorithm (Fig. 7) shows the
main steps involved in the generation of the expanded SR.
Currently, service request expansion is implemented by
using windowing and information display. Specifically, the
retrieved relevant terms are graphically displayed for the
user. The terms chosen by the user are then included to
reformulate the expanded service request.

The WSDL file forms part of the categorized WSDL set
and its corresponding description and associated para-
meters are parsed as explained above. The next step in the
WSDL processing involves removal of markups and index
entries, removal of punctuation and using white space as
term delimiters. WSDL processing also includes stoplist
removal and stemming to strip word endings. obtainRedu-
cedDimensionForm Algorithm (Fig. 8), describes the proce-
dures of establishing the term-document matrix. WSDL
processing results in a term-document matrix wherein each
cell entry indicates the frequency with which a term appears

270 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.2, APRIL-JUNE 2012

Algorithm: MappingRequest

Input: Enhanced Service Request SRe,

Reduced Dimension Form Ax

Output: Mapped Request Vector SRm, associated WSDL
1: begin

2: project enhanced service request SReto reduced k-space
3: calculate proximity using cosine measure for similarity
4: return SRm

5: retrieve associated WSDLs

6: end

Fig. 9. MappingRequest Algorithm.

in a document. Consequently, the term-document items are
transformed using an “ltc” weighting: normalization of the
document length following the calculation of the log values
of individual cell items, multiplying each item for a term by
the IDF weight of the term.

6.5 SVD Transformation

The SVD program calculates the best reduced dimension
approximation for the transformed term-document matrix.
A reduced dimension vector for each term and each
document and a vector of the singular values form the
outcome of the SVD analysis. This reduced dimensional
representation is used for determining the appropriate web
services. The cosine similarity between the term-term,
request-description is used as a measure of similarity for
further analysis of this representation.

6.6 Service Request Projection

This step involves projecting the description vectors and the
request vector and utilizing the cosine measure to deter-
mine similarity. This is followed by ranking the correspond-
ing web services as most appropriate based on a higher
similarity measure. See MappingRequest algorithm (Fig. 9)
for details.

7 EXPERIMENTAL EVALUATION

The effectiveness of our approach is shown by conducting
three set of experiments: 1) Semantic categorization of the
web services in the UDDI; we evaluate the effectiveness of
our results by utilizing f-measure. F-measure [6] is based on
precision and recall of each cluster C from a set of services
with service categories preassigned by users manually.
2) Semantic similarity-based matching; we compute scores
to rate the matching that are the average of a 10-pt precision-
recall curve. The average of the precision is evaluated at 6, 10,
18 service descriptions retained and the average of recall
evaluated at 50-100 service descriptions retrieved, and 3) the
overall time taken, measured in seconds, for service
discovery. To be able to evaluate, we developed a prototype
of our approach. The implementation and deployment
details of our approach are described in [27].

7.1 Semantic Categorization of Web Services in

uDDI
A total of 25 service requests and 800 service descriptions
formed the collection of web services. The collection
included web services compiled by the project described

in [17]. We have also added additional WSDL files from
xmethods [14] and from individual file search using search
engines, e.g., Google. Data Set (D,) comprises unlabeled
web services and additional web services downloaded
across various domains. In the data set D,, service
categories were preassigned by users manually. Data Set
(D) represents the categorized services from [17]. Data Set
(Da+s) represents the combined set of web services. This
collection of web services is classified into 30 categories. The
classified service descriptions support a large number of
varied requests and provide a sufficient testbed for service
discovery. For the experimental evaluation of semantic
categorization of UDDI, the data set is represented into four
versions, i.e., where in the maximum number of services in
a category is restricted to 5, 10, and 15, respectively. The
categories that contain excess documents are not excluded,
however, only the maximum number of documents in the
particular version is considered. The min-3 max-5 version,
however, disregards all categories that contain less than
three web service instances.

For evaluating the proposed approach for semantic
categorization of web services, we structure four preclus-
tering techniques. The process of data analysis and
clusters” formation is preceded by a preprocessing step
that includes stopword removal, stemming, and pruning to
reduce the noise in the data. Additionally we also consider
addition of related concepts to the data using ontology,
deletion of irrelevant terms with and without adding new
concepts. In particular, we consider the following data
setup for clustering,

1. Orig.—the initial setup is utilized to serve as a
baseline for further comparisons. This setup includes
all initial preprocessing techniques, i.e., stoplist,
stemming, and pruning.

2. Add—this setup includes related concepts from the
core ontology. This expansion of service vector
builds on the mapping of the WordNet lexical
database to the SUMO ontology.

3. Delete—this involves the removal of the irrelevant
terms from the service vectors. Irrelevant terms are
determined based on the frequency of their occur-
rence. In particular, we delete all terms that appear a
lesser number of times as compared to a preset
threshold.

4. Add and Delete—this technique is a combination of
add and delete.

Clustering is performed on each of the above cases. The
clustering results are derived from a preassigned set of
categorized web services. We present our results for each of
the web service data sets in combination with the four
techniques. Figs. 10a, 10b, 10c, and 10d plot the cluster size
versus the average f-measure over all the data sets for each
technique. For experiment test runs higher f-measure values
indicate higher quality of the clusters formed.

7.1.1 Experiment 1—Orig. Setup

Fig. 10a depicts the results for the original setup. As
observed in all the experiments the f-measure values are far
from 1. The experimental results in Fig. 10a serve as a
baseline for comparing the results with other data setups.

PALIWAL ET AL.: SEMANTICS-BASED AUTOMATED SERVICE DISCOVERY

0.50
0.40
s 030 [] [] .
= A
H 0.20 i
g 0101 mDb
< 0.00 - . T ; : oot
orig-all orig3-5 origs orig-10 orig1s
(a)
0.80
0.50]
0.40 4]
e 030 —
7 020 -
?8 . =]}
§ 0.10 A — |Db
< 0.00 4 . . ; . ElEE
add-all add-3-5 add-5 add-10 add-15
(b)
0.50
0.40 [—
g 030 -
2 020
R] 1 @hs
g 010 4 — — mDb
* 0.00 4 - - - - ODs+*b
del-all del-3-5 del-5 del-10 del-15
(©
0.60
0.50]]
0.40
g 0.30 -
® 020 1 BDhs
g 010 - B0b
= 0.00 - ; ODs+b

add+delall add+del-3-5 add+del5 add+del10 add+del15
(d)

Fig. 10. (a) Experiment 1—Orig. Setup. (b) Experiment 2—Add. Setup
(addition of ontology concepts to relevant terms of the service description
vector). (¢) Experiment 3—Delete Setup. (d) Experiment 4—Add and
Delete Setup (addition of ontology concepts to all terms of the service
description vector).

7.1.2 Experiment 2—Add Setup

Fig. 10b shows the results for the Add setup. We observe
that adding relevant terms from ontology yields an
improvement over experiments conducted with the original
data sets as illustrated in Fig. 10b. This leads us to a
conclusion that adding relevant domain knowledge for all
the terms is not all that helpful. The lack of high returns in
results is on account of the generic nature of the SUMO
ontology that does not focus on a specific domain. This may
be due to the fact that a large number of web service
descriptions have overlapping categories. The addition of
terms related to these overlapping domains creates addi-
tional noise which is not resolved by the clustering
algorithm. A possible approach to overcome this effect
would be to consider addition of concepts from the
ontology to only the relevant terms, accounting for context.
The ontology serves as a guide for clustering that
incorporates domain knowledge and more focused infor-
mation. We consider two criteria viz., span and depth, to
determine the coverage of the ontology concepts. The exact
parameters determining the coverage aim to achieve the
smallest set of additional ontology concepts while main-
taining the best overall coverage within the smallest set.

271

7.1.3 Experiment 3—Delete Setup

Better results for cluster quality were observed with term
reduction from the service description vectors as illustrated
in Fig. 10c. The term reduction involved pruning individual
term vectors of irrelevant and low frequency terms which
increases the specificity of the services.

7.1.4 Experiment 4—Add and Delete Setup

This setup aims to maintain a balance between the
generality and the specificity of terms in web service
descriptions. This is achieved by expansion of the term
vectors with relevant ontology concepts and subsequent
reduction of terms from the web service descriptions. The
results follow those observed in the add set of experiments.
The technique, where in ontology concepts are added to all
terms of web service descriptions followed by pruning,
results in increased generality. The best results (illustrated
in Fig. 10d) compared to all techniques were observed in the
technique, where in ontology concepts are added to
relevant terms of web service descriptions followed by
pruning. This results in an increase in specificity and
reduction of generality of the terms in web service
description. The improved results may be explained on
account of the generality-specificity balance achieved by
added semantic providing a good representative set for
better categorization and the overall reduction of noise
added to the vector representations.

7.1.5 Summary of Results

We can see in all four data setups that the results improve
(in terms of F-measure) with an increase in the number of
clusters. These results validate the scalability of our
approach. Also, it can be noted in Figs. 10a, 10b, 10c, and
10d that the graphs clusters formed with all available
service descriptions yield lower f-measures as compared to
those formed in experiments with controlled cluster size.
This may be explained by an increase in the purity of
clusters with lesser number of service descriptions in
comparison to that of a cluster with maximum number of
service descriptions for individual categories.

Another aspect of our evaluation deals with the
frequency of service categorization for the entire UDDL
We perform service categorization on an incremental basis.
We assume that the ontology is not perfect and that the
ontology is updated to represent additional domain objects
and their interrelationships. Then the categorization must
be performed every time a newer service is added to the
UDDI. However, periodic categorizations may be required
if the service additions are frequent, as can be expected in
real-life situations with large user and provider commu-
nities. However, we can update the service category by
isolating the upper ontology concept that remains un-
changed and then recategorizing all the services that fall in
its child concepts. When evaluating the efficiency of our
approach, there are a number of factors that affect the
timings obtained viz., the size of the underlying ontology
and the number of service to be categorized. We found that
the total processing time for the service categorization was
259 seconds for our test set of 800 web services with an
approximate 1,000 concepts of the ontology data.

272 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.2, APRIL-JUNE 2012

TABLE 2
Service Scores for Individual Weather Services

Web Service(WS) | Enhanced Service Request | Service Request
Identification Score Score
WS1 4.8496 432311
W52 1.3798 1.0426
WS3 9.0672 29231
WS4 1.8802 0.9957
WS5 3.2128 1.0405
WS6 9.9376 3.5060

For evaluating the analytical complexity of the proposed
service categorization approach, let n represents the total
number of concepts that form the ontology and m
represents the total number of web services. For searching
a specific concept in the ontology, O(log n) search
operations need to be performed. The add operation for
including the relevant concepts for each web service occurs
in constant time. For this reason the standard representation
of our approach for service categorization would be
O[m(logn + n)].

7.2 Semantic Similarity-Based Matching

For evaluating our approach for semantic similarity-based
service discovery we set out to discover relevant services for
an average of ten service requests. For the purpose of this
paper we report our results for the request “Find the
temperature and rainfall based on a given zip code.”

The initial discovery is based on a smaller number of
WSDL files with a focus on precision. The next discovery
experiment examines a larger section of WSDL files with a
focus on maximizing recall. In order to assess the impact of
service request expansion with relevant terms from ontol-
ogy concepts on service discovery, we compare the cosine
measure-based similarity scores of the two different service
selection methods; with enhanced service request and
original service request. Table 2 shows LSI-based service
selection scores for the six weather web services obtained
from calculating the cosine measure-based similarity results
between the service descriptions and the service request.
web services {W3 and W6} are the most appropriate
matches for our example service request. With an expanded
service request over categorized services we notice an
improved result over the original service request. However,
this is not observed when we exclude the related concepts
derived from the ontology. Services {W3 and W6} have
higher scores from a similar web service {W1} for ESR in
comparison to SR. The higher scores are indicative of the
appropriateness of the service in terms of the requested
functionality. The expanded service requests, thus, facilitate
improved differentiation between the appropriate services
and the rest of the services on account of the higher score
differences indicating a better match to the service request.

Further, the performance of LSI and expanded service
request is measured by observing the precision and recall
levels at 6, 10, and 18 services. The expanded service
request has greater overall precision indicating it returns a
higher percentage of relevant services over the three levels
of services retained. Comparing the two methods for service

discovery the service request expansion method is better as
indicated by the recall.

The experiments were conducted using categorized
services that included 1) 50 web services that have news,
financial, location, and graphics as their service category.
2) 100 web services that have news, financial, location,
graphics, games, business, flights, web, and music as their
service category. The ranking of the services change as more
dimensions are added to the service collection under
consideration. However, we notice that all the relevant
services are retrieved in the top 20 percent of the number of
services being considered. The experimental results also
indicate that the categorization of services yields signifi-
cantly better results in terms of the specific web services
being returned for a particular service request.

7.3 Performance

We have compared the time taken to match a Service
Request with a web service description (for D,;;) within
service sets that include 1) predefined categories, 2) semantic
categorization, and 3) entire service set or the set of
uncategorized services. The basis of this experiment is to
validate our approach for an ontology guided web service
Categorization. It was observed that the time taken for
service matching within pre-defined categories, semanti-
cally categorized (our approach) and uncategorized services
was 2.58, 3.65, and 406.8 seconds, respectively. We observe
that our approach provides a balance in terms of quality of
the service selected and also the time taken for matching of
an appropriate service.

The observed time for service discovery seems accep-
table, especially given that most of the time users will
submit more incremental, and hence less time consuming
requests. The time it takes to load the system though could
be improved. In the future, we plan to further evaluate the
scalability of our approach, along with detailed experimen-
tation with actual users to fine tune the way in which our
integrated functionality is presented and to eventually
evaluate the full benefits of our approach from a perfor-
mance and solution quality standpoint.

7.4 Deployment

In the existing architecture, the service provider/requestor
accesses the UDDI through an application server. To deploy
our approach, we need to enhance this by incorporating a
semantic application server as well as an ontology
repository. The Application Server now executes our
approach to select the most suitable services based on
semantics processed by the Semantic Application Server in
conjunction with the ontology repository. The Semantic
Application Server should include an ontology reasoner
(e.g., Racer) that utilizes description logics to load and
query ontologies to extract the relevant concepts for
semantic categorization of web service descriptions and
enhancement of service requests.

Since our proposed work considers semantic function-
ality of web services for service discovery and ranking, we
do not explicitly address other QoS measures such as trust
and reputation. However, this can be easily incorporated as
follows: for example, a trust and reputation registry could
be integrated with the UDDI server. Now, the selection of

PALIWAL ET AL.: SEMANTICS-BASED AUTOMATED SERVICE DISCOVERY

appropriate web services needs to incorporate the calcula-
tion of a weighted average of the functionality and the trust
and reputation of a web service.

Depending upon the number of web services and service
requests, we may need to use XML gateway devices to
offload the work of parsing and transformation of XML to
reduce the computational burden. Another issue with
deployment is that of reflecting, cascading, and manage-
ment of updates in ontologies within the associated web
services’ concepts. Ontology updates must be carefully
managed. There are three key tasks associated with this:
first, the revised ontology needs to be assessed and
evaluated to ensure logical consistency and check the level
of axiomatization. The metadata of the linked web services
may also need to be updated. This is particularly important
if the ontology is a domain specific ontology as the updates
to the concepts may result in a changed categorization of
the associated web services. The frequency and scale
of these changes will impact the execution and performance
of our approach. Note however, that both assessment and
recategorization can be done offline, while the existing
ontology is still being utilized. The revised ontology can
then serve as a drop-in replacement. Alternatively, the
UDDI server may decide to adopt and maintain different
versions of the ontology. In this case, the web service
requestors need to be notified, in an intuitive manner, of the
version changes to ontologies and web services. While these
challenges must be considered, good design can ensure
robust deployment of our approach in terms of computa-
tional complexities and overheads.

8 RELATED WORK

The challenges pertaining to automatic classification of web
services have been addressed in prior work [7], [11], [8],
[26]. In [11], Heb and Kushmerick propose an approach of
using the information contained in the service description
to dynamically create the categories for service classifica-
tion, comparing five clustering algorithms. The classifica-
tion process has similarities to our approach in terms of
construction of term vectors with relevant words and
utilizing a hierarchical clustering approach for achieving
the best results. Our approach builds on this by 1) including
relevant semantic concepts based on semantic relationship
ranking for expanding the domain coverage, 2) deletion of
nonrelevant terms resulting in the reduction of noise and
increase in the purity of the clusters.

Bruno et al. [7] propose a classification approach
utilizing Support Vector Machines (SVM) to classify the
term vectors. Bruno et al. [7] also make use of concept lattice
created using Formal Lattice Analysis to identify concepts
for a specific domain as well as the relationships between
services belonging to a class. This approach is the closest to
our approach. Our approach, however, is based on gleaning
of semantic utilizing a domain ontology hierarchy. Ad-
ditionally, from our point of view, this approach does not
address the issue of SVM mapping training data to higher
dimensional space, and then finding the maximal marginal
hyperplane to separate the data.

One of the approaches for enhancing the training time of
SVM, specifically when dealing with large data sets,
recommends hierarchical clustering analysis. Also ontolo-
gies can be used to improve Formal Concept Analysis (FCA)

273

applications. In standard FCA, the set of attributes does not
carry any structure. By considering this set as a set of
ontology concepts, we can model relations and dependencies
between the attributes. Although this does not increase the
complexity of the resulting lattices (as concept lattices cover,
up to isomorphism, the whole class of complete lattices), it
enriches the conceptual structure and provides new means of
interaction and analysis. FCA may also complement our
approach by facilitating ontology merge and linking to
provide a better depth and span in terms of the domain
concepts coverage.

In [26], Oldham et al. propose a framework to semi-
automate the semantic annotation of web services for
classification-based on matching web service data types
and domain ontology concepts making use of schema
matching. The main drawback of this is that it is not simple
to find similarities with domain ontology concepts as no
single domain concept contains the complete structure of a
complex schema containing all service parameters.

Existing approaches to web service matching address
either syntactic and/or semantic matching, e.g., Sajjanhar
et al. [29] have studied LSI to acquire the semantic
associations between short textual web service descrip-
tions, Corella et al. [8] describe a heuristic approach for
semiautomated web services’ classification based on a
previously classified services corpus. These approaches
utilize the initial web services’ descriptions advertised by
service provider and functionality request specified by the
service requestor. These initial descriptions do not include
any semantic augmentation. Our approach extends this
work by adding semantics to the service request. As
validated by the experimental results, this helps us achieve
improved results for appropriate service discovery. The
most widely used IR technique constitutes the Vector-
Space Model [31]. VSM, however, considers the syntactic
aspect of term association and does not account for the
underlying semantic structure. Kokash et al. [12] address
the inadequacy of VSM approach by expanding both the
service query and the WSDL descriptions. A Hybrid
matching approach is proposed that may combine various
matching methods (e.g., syntactic and semantic) into a
composite algorithm. This enables ad hoc composition of
several (pre-existing) matching approaches based on
predefined criteria. In principle, this is similar to our
work. However, although it may provide flexibility, it also
increases the human intervention for selection of a
composite algorithm applicable to a set of services for
specific application.

The usage of synonyms does not capture the overall
semantics of the domain and application functionality.
However, our approach utilizes concepts extracted from
domain ontology. These extracted concepts account for
relationships between the domain objects and provide a
comprehensive coverage for the underlying semantics for
both the domain and the application functionality. Our
approach appends the syntactic service description with
relevant semantic terms. This enables uniform combination
of syntactic and semantic matching rendering our approach
more generalizable for overall service matching and
requiring minimal human interaction.

274 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.2, APRIL-JUNE 2012

Our approach has similarities to existing approaches
[33], [1], [2], [19] of natural language processing techniques
that address the text part of the challenge in content-based
image retrieval (CBIR). These approaches, however, were
used in isolation to one another. Our approach, on the other
hand, combines both these techniques using concept lists,
distance within an ontological structure and latent semantic
indexing.

In [13], Sassen et al. describe the SeCSE approach for
architecture time service discovery that is based on
ontologies that are validated, easy to use, complete, and
widely accepted in domains. In contrast to this, our
approach begins with the description of an ontology
framework that includes upper ontologies, e.g.,, SUMO
and more descriptive domain and application related
ontologies. We propose a linked ontology structure for a
wide-ranging description of domain semantics. Our ap-
proach for service discovery initiates service request
enhancement with concepts extracted from related domain
ontologies and reduces the space of service request and
WSDL specification term vectors utilizing LSI to reduce the
dimensions to be considered.

9 CONCLUSION AND FUTURE WORK

In this paper, we present an integrated approach for
automated service discovery. Specifically, the approach
addresses two major aspects related to semantic-based
service discovery: semantic-based service categorization
and semantic-based service selection. For semantic-based
service categorization, we propose an ontology guided
categorization of web services into functional categories for
service discovery. This leads to better service discovery by
matching the service request with an appropriate service
description. For semantic-based service selection, we
employ ontology linking (semantic web) and LSI thus
extending the indexing procedure from solely syntactical
information to a semantic level. Our experiments show that
this leads to increased precision levels, recall levels, and the
relevance scores of the retrieved services.

In the future, we will extend our approach to allow
service requests that are formed using specialized query
languages. We can then match these requests to semianno-
tated services that are described using formats such as
SAWSDL, OWL-S among others. We can also extend our
work for web service composition. Typically, multiple
services have to be discovered so that they together match
a service request. It should be possible to utilize ontologies,
and explicitly return the sequence of individual service
invocations to be performed in order to achieve the desired
composite service. When no full match is possible, a flexible
matching approach could be created to return partial
matches and/or suggest additional inputs that would
produce a full match by capturing the dependencies among
the matched services. This has several interesting research
issues. Another avenue for future work is to create an
interactive, intelligent service composer that is semantically
guided to locate the target service components step by step.

We also intend to extend our ontology framework and
investigate additional mapping tools to better express a
service request to search for relevant concepts. Finally, as
part of the service discovery process we will explore

associating semantic weights to the retrieved set of web
services for effective semantic ranking of the results.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under grant IIS-0306838 and SAP Labs, LLC.

REFERENCES

[1] J. Adcock, A. Girgensohn, M. Cooper, T. Liu, L. Wilcox, and E. Rie,
“FXPAL Experiments for TRECVID,” Proc. TRECVID, 2004.

[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association
Rules Between Sets of Items in Large Databases,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, 1993.

[3] E. Al-Masri and Q.H. Mahmoud, “Investigating Web Services on
the World Wide Web,” Proc. 17th Int'l Conf. World Wide Web
(WWW “08), Apr. 2008.

[4] M.-L. Antonie and O.R. Zaane, “Text Document Categorization by
Term Association,” Proc. IEEE Int’l Conf. Data Mining (ICDM "02),
2002.

[5] K. Anyanwu, A. Maduko, and A. Sheth, “SemRank: Ranking
Complex Relationship Search Results on the Semantic Web,” Proc.
14th Int’l Conf. World Wide Web (WWW “05), 2005.

[6] P.Baldi, P. Frasconi, and P. Smyth, “Modeling the Internet and the
Web,” Probabilistic Methods and Algorithms, Wiley, 2003.

[717 M. Bruno, G. Canfora, M.D. Penta, and R. Scognamiglio, “An
Approach to Support Web Service Classification and Annota-
tion,” Proc. IEEE Int’l Conf. E-Technology, E-Commerce and E-Service
(EEE ’05), 2005.

[8] M.A. Corella and P. Castells, “Semi-Automatic Semantic-Based
Web Service Classification,” Proc. Int’l Conf. Business Process
Management Workshops (BPM '06), 2006.

[9] P.W. Foltz and S.T. Dumais, “Personalized Information Delivery:
An Analysis of Information Filtering Methods,” Comm. ACM,
vol. 35, no. 12, pp. 51-60, 1992.

[10] E.Han, G. Karypis, and V. Kumar, “Scalable Parallel Data Mining
for Association Rules,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data (SIGMOD ’97), 1997.

[11] A. Heb and N. Kushmerick, “Automatically Attaching Semantic
Metadata to Web Services,” Proc. IJCAI Workshop Information
Integration on the Web, 2003.

[12] http://dit.unitn.it/~kokash/documents/WS_matching-hybrid.

pdf, 2012.

] http://idcrue.dit.upm.es/biblioteca/mostrar.php?id=2154, 2012.

] XMethods, http://www.xmethods.net, 2012.

[15] http://reliant.teknowledge.com/DAML/SUMO.owl, 2008.

] http://www.uddi.org/specification.html, 2012.

] http://www.few.vu.nl/~andreas/projects/annotator/ws2003.

html, 2012.

[18] H.L. Johnson, K.B. Cohen, W.A. Baumgartner Jr., Z. Lu, M. Bada,
T. Kester, H. Kim, and L. Hunter, “Evaluation of Lexical Methods
for Detecting Relationships Between Concepts from Multiple
Ontologies,” Proc. Pacific Symp. Biocomputing, 2006.

[19] M. Kher, D. Brahmi, and D. Ziou, “Combining Visual Features
with Semantics for a More Efficient Image Retrieval,” Proc. 17th
Int’l Conf. Pattern Recognition (ICPR '04), 2004.

[20] M. Klusch and X. Zhing, “Deployed Semantic Services for the
Common User of the Web: A Reality Check,” Proc. IEEE Int’l Conf.
Semantic Computing (ICSC), 2008.

[21] J. Lu, Y. Yu, D. Roy, and D. Saha, “Web Service Composition: A
Reality Check,” Proc. Eighth Int'l Conf. Web Information Systems
Eng. (WISE "07) Dec. 2007.

[22] D. Martin, M. Paolucci, S. Mcllraith, M. Burstein, D. McDermott,
D. McGunneess, B. Barsia, T. Payne, M. Sabou, M. Solanki, N.
Srinivasan, and K. Sycara, “Bringing Semantics to Web Services:
The OWL-S Approach,” Proc. First Int'l Workshop Semantic Web
Services and Web Process Composition, July 2004.

[23] S. Mcllraith, T. Son, and H. Zeng, “Semantic Web Services,” IEEE
Intelligent Systems, vol. 16, no. 2, pp. 46-53, Mar. 2001.

[24] S. Mcllraith and D. Martin, “Bringing Semantics to Web Services,”
IEEE Intelligent Systems, vol. 18, no. 1, pp. 90-93, Jan. 2003.

[25] L Niles and A. Pease, “Linking Lexicons and Ontologies: Mapping
WordNet to the Suggested Upper Merged Ontology,” Proc. IEEE
Int’l Conf. Information and Knowledge Eng. (IKE '03), 2003.

PALIWAL ET AL.: SEMANTICS-BASED AUTOMATED SERVICE DISCOVERY

[26] N. Oldham, C. Thomas, A. Sheth, and K. Verma, “METEOR-S
Web Service Annotation Framework with Machine Learning
Classification,” Semantic Web Services and Web Process Composition,
vol. 3387, pp. 137-146, Jan. 2005.

[27] A.V. Paliwal, N. Adam, and C. Bornhoevd, “Adding Semantics
through Service Request Expansion and Latent Semantic Index-
ing,” Proc. IEEE Int’l Conf. Services Computing (SCC), July 2007.

[28] A.V. Paliwal, N. Adam, H. Xiong, and C. Bornhoevd, “Web
Service Discovery via Semantic Association Ranking and Hyper-
clique Pattern Discovery,” Proc. IEEE/WIC/ACM Int’l Conf. Web
Intelligence, 2006.

[29] A. Sajjanhar, J. Hou, and Y. Zhang, “Algorithm for Web Services
Matching,” Proc. Asia-Pacific Web Conference (APWeb), pp. 665-670,
2004.

[30] G. Salton and C. Buckley, “Improving Retrieval Performance by
Relevance Feedback,”]. Am. Soc. for Information Science, vol. 41,
no. 4, pp. 288-297, 1990.

[31] G. Salton, A. Wong, and C.S. Yang, “A Vector Space Model for
Automatic Indexing,” Comm. ACM, vol. 18, pp. 613-620, Nov.
1975.

[32] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar,
and J. Miller, “METEOR-S WSDI: A Scalable P2P Infrastructure of
Registries for Semantic Publication and Discovery of Web
Services,” Information Technology and Management |., vol. 6,
pp 17-39, 2005.

[33] http://www.musclenoe.org/research/sci_deliv_pub/D5.1_WP5_
SoA_RevisedVersion_sept05.pdf, 2012.

[34] H. Xiong, P. Tan, and V. Kumar, “Mining Strong Affinity
Association Patterns in Data Sets with Skewed Support Distribu-
tion,” Proc. IEEE Third Int’l Conf. Data Mining (ICDM), 2003.

Aabhas V. Paliwal received the bachelor of
engineering degree in electronics and telecom-
munications from Mumbai University, India, the
MS degree in computer engineering degree from
Rutgers University, and the PhD degree in
management, information technology from Rut-
gers University. He is currently a senior technical
consultant at Mindlance LifeSciences. He is a
coholder of a European issued patent and has
two pending patent applications submitted to the
US Patent and Trademark Office all related to web services. His
research interests include service-oriented architecture, semantic web,
semantic web services, and business process management. He is a
student member of the IEEE.

=

¥

Basit Shafiq received the BS degree in electro-
nic engineering from Ghulam Ishag Khan In-
stitute of Engineering Sciences and Technology,
Pakistan, the MS degree in electrical and
computer engineering from Purdue University,
{ v and the PhD degree in computer engineering
‘ ‘_:, i from the School of Electrical and Computer
\ . ‘ Engineering at Purdue University. He is currently

‘ a research assistant professor at the Center for
Information Management, Integration and Con-
nectivity (CIMIC), Rutgers University. His research interests include
semantic web, web services, information systems security, and multi-
media systems. He is a member of the IEEE.

275

Jaideep Vaidya received the BE degree in
computer engineering from the University of
Mumbai, India, and the MS and PhD degrees in
computer science from Purdue University. He is
currently an associate professor in the Manage-
ment Science and Information Systems Depart-
ment at Rutgers University. His research
interests include data mining, data manage-
ment, security, and privacy. He has published

A more than 60 technical papers in peer-reviewed
journals and conference proceedings, and has received two best paper
awards from the premier conferences in data mining and databases. He
is also the recipient of a US National Science Foundation Career Award
and is a member of the ACM and the IEEE.

Hui Xiong received the BE degree from the
University of Science and Technology of China,
the MS degree from the National University of
Singapore, and the PhD degree from the
University of Minnesota. He is currently an
associate professor in the Management Science
and Information Systems Department at Rutgers
University. His research interests include data
and knowledge engineering, with a focus on
developing effective and efficient data analysis
techniques for emerging data intensive applications. He has published
more than 70 technical papers in peer-reviewed journals and conference
proceedings. He is a coeditor of Clustering and Information Retrieval
(Kluwer Academic, 2003) and a coeditor-in-chief of Encyclopedia of GIS
(Springer, 2008). He is an associate editor of the Knowledge and
Information Systems journal and has served regularly on the organiza-
tion committees and the program committees of a number of interna-
tional conferences and workshops. He is a senior member of the IEEE
and a member of the ACM.

Nabil Adam is currently serving as a fellow at
the Science and Technology Directorate of the
US Department of Homeland Security. He is a
professor of computers and information sys-
tems, the founding director of the Rutgers
University Center for Information Management,
Integration, and Connectivity (CIMIC), and co-
founder and the past director of the Meadow-
lands Environmental Research Institute. He has
published more than 100 technical papers
covering such topics as information management, information security
and privacy, data mining, web services, and modeling and simulation.
He has coauthored/coedited 10 books. He is the cofounder and the
executive-editor-in-chief of the International Journal on Digital Libraries
and serves on the editorial board of a number of journals including the
Journal of Management Information Systems and the Journal of
Electronic Commerce. He is also the cofounder and the past chair of
the IEEE Technical Committee on Digital Libraries. He is a senior
member of the IEEE.

