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Abstract—This paper deals with covariance matrix estimation
for radar detection in non-Gaussian noise modeled by Spherically
Invariant Random Vector (SIRV). In many applications, it is pos-
sible to assume a particular structure for the clutter covariance
matrix: this is the case for instance for active systems using a
symmetrically spaced linear array or pulse train. In this paper,
we propose to use the particular persymmetric structure of the
matrix to improve performance in term of detection.
In this context, we provide a new adaptive detector and derive
its statistical properties as well as its statistical distribution.
Moreover, the high improvement of its detection performance
is demonstrated on experimental ground clutter data.

Index Terms—Radar detection, Non-Gaussian clutter, SIRV

I. INTRODUCTION

One of the main problems in radar consists in detecting
a target embedded in clutter returns using a coherent pulse
train. In recent years, there has been an increasing interest for
non-Gaussian clutter models motivated by experimental radar
clutter measurements [1]. Based on this experimental evidence,
it has been shown that clutter returns are accurately modeled
as Spherically Invariant Random Vector (SIRV) consisting in
the product of a Gaussian vector - called speckle - with the
square root of a positive random variable - called texture [ 2],
[3]. In this context, the basic problem of detecting a known
signal p ∈ Cm corrupted by an additive SIRV clutter c can be
stated as the following binary hypothesis test:

{
H0 : y = c, yk = ck, for 1 ≤ k ≤ K ,
H1 : y = A p + c, yk = ck, for 1 ≤ k ≤ K ,

(1)

where y is the complex m-vector of the received signal, A is
an unknown complex target amplitude, p stands for the known
”steering vector” and c is a SIRV noise. More precisely, c is
the product of the square root of a positive random variable τ
(texture) and a m-dimensional independent complex Gaussian
vector g (speckle) with zero-mean and covariance matrix M
normalized according to Tr(M) = m:

c =
√

τ g . (2)

Under both hypotheses, it is assumed that K signal-free data
yk are available for clutter parameters estimation. The yk’s
are the so-called secondary data. They are independent and
identically distributed (i.i.d) with the same distribution as c.

In the sequel, the real (resp. complex) Gaussian distribution
with zero-mean and covariance matrix M is denoted by
N (0, M) (resp. CN (0, M)), E[.] stands for the expectation
operator, H denotes the transpose conjugate, ∗ the conjugate
and � the transpose operator, ‖ . ‖ is the usual L2-norm, Im

is the m-th order identity matrix and ∼ means ”distributed as”.

When M is known, this model has been widely studied and
allows to build a Generalized Likelihood Ratio Test - Linear
Quadratic (GLRT-LQ) [2, 3] defined by

Λ(M) =
|pHM−1y|2

(pHM−1p)(yHM−1y)

H1

≷
H0

λ , (3)

where λ is the detection threshold.

However, in most cases, the speckle covariance matrix M
is unknown and this test can not be used in this original
form. One solution is to substitute an estimate M̂ of M in
(2) resulting in an adaptive version of the GLRT:

Λ(M̂) =
|pHM̂

−1
y|2

(pHM̂
−1

p)(yHM̂
−1

y)

H1

≷
H0

λ. (4)

It is clear that the estimation accuracy of M̂ has an important
impact on the detection performance. Many applications result
in a speckle covariance matrix that exhibits some particular
structure. Such a situation is frequently met in radar systems
using a symmetrically spaced linear array for spatial domain
processing, or symmetrically spaced pulse train for temporal
domain processing [4]. In these systems, the clutter covariance
matrix M has the persymmetric property [5]:

M = Jm M∗ Jm , (5)



where Jm is the m-dimensional antidiagonal matrix having 1
as non-zero elements. The signal vector is also persymmetric,
i.e. it satisfies:

p = Jm p∗ . (6)

The purpose of this paper is to derive an estimate of the
speckle covariance matrix based on the secondary data and
taking into account its persymmetric structure: it will be
called the Persymmetric Fixed-Point estimate (M̂PFP ). The
statistical properties of M̂PFP are also established and allow
to investigate the distribution of the test statistic Λ(M̂PFP ).
In the last section, results obtained with non-Gaussian real
data demonstrate the interest of the proposed detection scheme
compared to existing detectors [6].

II. PROBLEM STATEMENT AND PRELIMINARIES

In the context of persymmetric M and p, the problem
defined by (1) will be first reformulated thanks to the following
theorem.

Theorem 1 Let T be the unitary matrix defined as:

T =



1√
2

(
Im/2 Jm/2

i Im/2 −i Jm/2

)
for m even

1√
2

 I(m−1)/2 0 J(m−1)/2

0
√

2 0
i I(m−1)/2 0 −i J(m−1)/2

 for m odd.

(7)
Persymmetric vectors and Hermitian matrices are
characterized by the following properties:

• p ∈ Cm is a persymmetric vector if and only if T p is a
real vector.
• M is a persymmetric Hermitian matrix if and only if

T M TH is a real symmetric matrix.

Proof: The proof is straightforward and involves elemen-
tary algebraic manipulations.

Using previous theorem, the original problem (1) can be
equivalently reformulated as follows. Let us introduce the
transformed primary data z, the transformed secondary data
zk, the transformed clutter vector n and speckle vector x, the
transformed signal vector s defined as:

• for the primary data: z = T y, s = T p, n = T c and
x = T g;

• for the secondary data: zk = T yk, nk = T ck,
xk = T gk.

The transformed speckle covariance matrix is therefore given
by R = E(x xH) = E(xk xH

k ) = T M TH .

From Theorem 1, the transformed signal vector s and the
transformed clutter covariance matrix are both real. Then, the
original problem (1) is equivalent to:{

H0 : z = n zk = nk, for 1 ≤ k ≤ K ,
H1 : z = A s + n zk = nk, for 1 ≤ k ≤ K ,

(8)

where z ∈ Cm, n ∼ CN (0, R), s is a known real vector,
R is an unknown real symmetric matrix. The K transformed
secondary data zk are i.i.d and share the same distribution as
n. They are given in terms of the texture and the transformed
speckle by:

n =
√

τ x and nk =
√

τk xk, (9)

where x ∼ CN (0, R), xk ∼ CN (0, R). From now on, the
problem under study is the problem defined by (8).

The main motivation for introducing the transformed data is
that the original persymmetric covariance matrix of the speckle
is transformed into a real matrix.

III. THE PERSYMMETRIC FIXED-POINT ESTIMATE AND THE

CORRESPONDING ADAPTIVE GLRT

A. The PFP estimate

Conte and Gini in [7], [8] have shown that an approximate
maximum likelihood estimate R̂ of R is a solution of the
following equation:

R̂ =
m

K

K∑
k=1

(
nk nH

k

nH
k R̂

−1
nk

)
. (10)

Existence and uniqueness of the above equation solution,
denoted R̂FP have already been investigated in [9]. This
equation implies that R̂FP is independent of the τk’s.

The statistical properties of R̂FP have been studied in [10].
Since the transformed speckle covariance matrix R is real,
its structure may be taken into account in the estimation
procedure by retaining only the real part of the fixed-point
estimate. This leads to the proposed covariance estimate called
the Persymmetric Fixed-Point since it results from the persym-
metric structure of the original speckle covariance matrix:

R̂PFP = Re(R̂FP ), (11)

where Re(.) denotes the real part of a complex element.

The statistical properties of R̂PFP are provided by the
following theorem:

Theorem 2 (Statistical performance of R̂PFP )

• R̂PFP is a consistent estimate of R when K tends to
infinity.

• R̂PFP is an unbiased estimate of R.
• Its asymptotic distribution is the same as the asymptotic

distribution of a real Wishart matrix with
(

m
m+1

)
2K

degrees of freedom.



Proof: Results of Theorem 2 are straightforwardly in-
volved by the statistical analysis of R̂FP provided by [7].

This theorem shows that the PFP estimate allows to virtually
double the number of secondary data, compared to the original
FP estimate.

B. The adaptive GLRT based on the PFP estimate

The adaptive GLRT for the transformed problem (8) and
based on the PFP estimate is:

Λ(R̂PFP ) =
|s� R̂

−1

PFP z|2
(s� R̂

−1

PFP s)(zH R̂
−1

PFP z)

H1

≷
H0

λ. (12)

In this section, the statistical properties of the test statistic
Λ(R̂) are investigated under the null hypothesis. Let us recall
some basic definitions:

• A test statistic is said to be texture-CFAR (Constant False
Alarm Rate) when its distribution is independent of the
texture distribution,

• A test statistic is said to be matrix-CFAR when its
distribution is independent of R,

• A test statistic is said to be SIRV-CFAR when it is both
texture-CFAR and matrix-CFAR.

Theorem 3 Λ(R̂PFP ) is SIRV-CFAR.

Proof: Since R̂PFP does not depend on the texture
and since the GLRT-LQ is homogeneous in terms of τ , this
leads to the texture-CFAR property of Λ(R̂PFP ). Hence,
in the sequel, all the statistical analysis (for example PDF
derivations) will be considered under Gaussian assumption.

Let us now investigate the matrix-CFAR property. Let
R

1
2 R

1
2 be a real factorization of R, and let Q be a real unitary

matrix such that:

Q R− 1
2 s = e1 = (1, 0, 0, . . . , 0)�. (13)

Then, the test statistic Λ(R̂PFP ) may be rewritten

Λ =
|e�1 Ŵ

−1
w|2

(e�1 Ŵ
−1

e1)(wHŴ
−1

w)
, (14)

where w = Q R− 1
2 c ∼ CN (0, I) and where

Ŵ = Q R− 1
2 R̂PFP R− 1

2 Q�

= Re (Q R− 1
2 R̂FP R− 1

2 Q�) . (15)

It has been shown in [11] that Q R− 1
2 R̂FP R− 1

2 Q� in (15)
is a fixed point estimate of the identity matrix and that its
distribution is therefore independent of R: thus, the same
conclusion holds for its real part Ŵ defined by (15) and the
matrix-CFAR property is proved.

The analytical expression for the Probability Density Function
of the test statistic Λ(R̂PFP ) has not been derived but the
following theorem gives some insight about its distribution.

Theorem 4 For large K , Λ(R̂PFP ) has the same distribution

as
F

F + 1
where

F =

(α1 u22 − α2 u21)2 +

(
1 +

(
β3

u33

)2
)

(a u22 − b u21)2

(α2 u11)2 +
(

t11 u22
β3

u33

)2

+ u2
11

(
1 +

(
β3

u33

)2
)

b2

(16)
and where all the following random variables are independent
and distributed according to:

a, b, α1, u21 ∼ N (0, 1),
α2

2 ∼ χ2
m−1,

β2
3 ∼ χ2

m−2,

u2
11 ∼ χ2

K′−m+1,

u2
22 ∼ χ2

K′−m+2,

u2
33 ∼ χ2

K′−m+3. (17)

with K ′ =
m

m + 1
2K .

Proof: Let us start from (14). Then

Λ(R̂PFP ) =
|e�1 Ŵ

−1
(
√

2 w)|2
(e�1 Ŵ

−1
e1)((

√
2 wH) Ŵ

−1
(
√

2 w))
, (18)

with w ∼ CN (0, I) where (
√

2 w) = w1 + i w2 with w1 and
w2 uncorrelated and N (0, I) distributed.
Thus

Λ(R̂PFP ) =
|e�1 Ŵ

−1
w1|2 + |e�1 Ŵ

−1
w2|2

(e�1 Ŵ
−1

e1)(w�
1 Ŵ

−1
w1 + w�

2 Ŵ
−1

w2)
.

From Theorem 2 and (15), for large K , Ŵ is real Wishart
distributed with K ′ =

m

m + 1
2K degrees of freedom. The

vectors w1 and w2 can be decomposed on an orthonormal
vectors triplet (e1, f2, f3):

w1 = α1 e1 + α2 f2
w2 = β1 e1 + β2 f2 + β3 f3.

where β1 and β2 are independent and N (0, 1) distributed.
Moreover α1, α2, β1, β2, β3, f2 and f3 are independent.

Let (e1, e2, . . . , em) be the canonical basis. Using an ap-
propriate rotation G such as G (e1, f2, f3) = (e1, e2, e3),
Λ(R̂PFP ) can be rewritten as

Λ(R̂PFP ) =
|e�1 Ẑ

−1
v1|2 + |e�1 Ẑ

−1
v2|2

(e�1 Ẑ
−1

e1)(v�1 Ẑ
−1

v1 + v�2 Ẑ
−1

v2)
,

where v1 = G w1, v2 = G w2 and G Ŵ
−1

G−1 = Ẑ
−1

.

Using Bartlett’s decomposition Z = U� U for Wishart
matrices [12] where U = (ui,j)1≤i≤j≤m is an upper triangular



matrix whose random elements are independent and distributed
as:

u2
i,i ∼ χ2

K′+i−m and ui,j ∼ N (0, 1) for i < j.

Moreover let u′
i,j be the elements of the matrix U−1. We

define:

α =
|e�1 Ẑ

−1
v1|2 + |e�1 Ẑ

−1
v2|2

(e�1 Ẑ
−1

e1)
,

= (α1 u′
11 + α2 u′

21)
2 + (β1 u′

11 + β2 u′
21 + β3 u′

31)
2 ,

and

β = v�1 Ẑ
−1

v1 + v�2 Ẑ
−1

v2 ,

= α + (u′
22 α2)2 + (u′

22 β2 + u′
32 β3)2 + (u′

33 β3)2.

We deduce that Λ =
α

α + β
=

α/β

1 + α/β
=

F

1 + F
with

F =
(α1 u′

11 + α2 u′
21)

2 + (β1 u′
11 + β2 u′

21 + β3 u′
31)

2

(u′
22 α2)2 + (u′

22 β2 + u′
32 β3)2 + (u′

33 β3)2
.

Bartlett’s decomposition gives the elements of U−1:

u′
11 =

1
u11

,

u′
22 =

1
u22

,

u′
21 = − u21

u11 u22
,

u′
33 =

1
u33

,

u′
32 = − u32

u22 u33
,

u′
31 = − 1

u11

(
u31

u33
− u32 u21

u22 u33

)
. (19)

After some basic manipulations, F can be expressed as (16)
which concludes the proof.

Theorem 4 may be used to obtain, through Montecarlo
simulations, the relation between the Probability of False
Alarm and the threshold λ for the GRLT-PFP (12).

IV. APPLICATION ON EXPERIMENTAL DATA

Based on experimental data, this section shows the improve-
ment in detection performance of the adaptive GLRT based
on the PFP estimate compared to the GLRT based on the
FP estimate. The ground clutter data used in this paper were
collected by an operational radar at Thales Air System. The
radar was 13 meters above ground and illuminating the ground
at low grazing angle. Ground clutter complex echoes were
collected in N = 868 range bins for 70 different azimuth
angles and for m = 8 pulses, which means that vectors
size is m = 8. Figure 1 displays the Ground clutter data
level (in dB) corresponding to the first pulse echo. Near the
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Fig. 1. Ground clutter data level (in dB) corresponding to the first pulse.

radar, echoes characterize non-Gaussian heterogeneous ground
clutter whereas beyond the radioelectric horizon of the radar
(around 15 kms) only Gaussian thermal noise (the blue part
of the map) is present.
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Fig. 2. Probability of false alarm for the three detectors with η = 1
(1−λ)m

(3 × 3 mask).

Figures 2 and 3 give the Probability of False Alarm (PFA)
as a function of the threshold, for different numbers K of
secondary data, for the following three detectors : GLRT-LQ,
GLRT-FP and GLRT-PFP. The GLRT-LQ is just used as a
benchmark for comparison: it can not be used in practice
since it assumes that the speckle covariance matrix is known.
The GLRT-FP and the GLRT-PFP use as secondary data the
K cells surrounding the cell under test. The experimental
detection threshold is determined by counting, moving the
CFAR-mask. Moreover, theoretical results based on the
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Fig. 3. Probability of false alarm for the three detectors with η = 1
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asymptotic Wishart distributions of R̂FP and R̂PFP (circle
lines) are displayed: it can be noticed that experimental
results are in very good agreement with the theory.
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10−2, m = 8, K = 8).

Figures 4, 5 and 6 show the experimental Probability of
Detection (PD) as a function of the Signal to Noise Ratio, for
different numbers K of secondary data, with PFA = 10−2

for the GLRT-FP and the GLRT-PFP. The first figure shows a
spectacular 12 dB improvement in detection performance of
the GLRT-PFP over the GLRT-FP for Pd = 0.5. Indeed, to
inverse the covariance matrix estimate, one needs to assume
that K ≥ m while for the PFP, this number is virtually
doubled. The second figure corresponds to the classical
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Fig. 5. Probability of detection for the GLRT-FP and GLRT-PFP (PFA =
10−2, m = 8, K = 16).
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Fig. 6. Probability of detection for the GLRT-FP and GLRT-PFP (PFA =
10−2, m = 8, K = 20).

choice K = 2 m which is the admitted limiting value for
acceptable performance degradation less than 3 dB. The last
figure shows a less clear improvement due to the higher
number of secondary data.

These results clearly demonstrate the interest of taking into
account the persymmetric structure of the speckle covariance
matrix in adaptive detection, especially for m ≤ K ≤ 2 m.
Indeed, classical adaptive detection schemes are well known
to yield poorer performance when K ≤ 2 m.

V. CONCLUSION

In this paper, an extended version of the Generalized
Likelihood Ratio Test - Linear Quadratic (GLRT-LQ ) has
been derived by exploiting the persymmetric structure of the



covariance matrix in the case of non-Gaussian clutter modeled
by Spherically Invariant Random Vectors. The persymmetry
assumption allows to transpose the classical problem into a
real context (especially for the covariance matrix and the
steering vector) and leads to an improved covariance matrix
estimation, called the Persymmetric Fixed Point (PFP). The
statistical analysis of this estimate has been derived: the PFP
estimate exhibits good performance. Replacing it in the GLRT-
LQ provides a new adaptive detector, called the GLRT-PFP,
whose detection performance are widely improved in compar-
ison to the GLRT-FP. This is explained by the fact that the PFP
estimate is virtually built with twice more data than the GLRT-
FP. These results have been validated by experimentations on
real data.

VI. ACKNOWLEDGEMENT

Authors would like to thank Thales Air System for the
analysis of their experimental data.

REFERENCES

[1] J.B. Billingsley, “Ground Clutter Measurement for Surface Sited Radar,”
MIT Technical report 780, February 1993.

[2] E. Conte, M. Lops, and G. Ricci, “Asymptotically Optimum Radar
Detection in Compound-Gaussian Clutter,” IEEE Trans. on Aerosp.
Electron. System, vol. 31, pp. 617–625, April 1995.

[3] F. Gini, “Sub-Optimum Coherent Radar Detection in a Mixture of K-
Distributed and Gaussian Clutter,” IEE Proc. on Radar, Sonar Navig.,
vol. 144, pp. 39–48, February 1997.

[4] L. Cai and H. Wang, “A Persymmetric Multiband GLR Algorithm,”
IEEE trans. on Aerosp. Electron. System, pp. 806–816, July 1992.

[5] E. Conte and A. De Maio, “Exploiting Persymmetry for CFAR Detection
in Compound-Gaussian Clutter,” IEEE trans. on Aerosp. Electron.
System, vol. 39, pp. 719–724, April 2003.

[6] M. Casillo, A. De Maio, S; Iomelli, and L. Landi, “A Persymmetric
GLRT for Adaptive Detection in Partially-Homogeneous Environment,”
IEEE Signal Processing Letters, vol. 17, pp. 1016–1019, December
2007.

[7] F. Gini and M. V Greco, “Covariance matrix estimation for CFAR
detection in correlated heavy tailed clutter,” Signal Processing, special
section on Signal Processing with Heavy Tailed Distributions,, vol. 82,
pp. 1847–1859, December 2002.

[8] E. Conte, A. De Maio, and G. Ricci, “Recursive estimation of the
covariance matrix of a compound-Gaussian process and its application
to adaptive CFAR detection,” IEEE Trans. on Sig. Proc., vol. 50, pp.
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