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Abstract. In this paper a system is presented able to reproduce the actions of
multiple moving objects into a 3D model. A multi-camera system is used for au-
tomatically detect, track and classify the objects. Data fusion from multiple sen-
sors allows to get a more precise estimation of the position of detected moving
objects and to solve occlusions problem. These data are then used to automati-
cally place and animate objects avatars in a 3D virtual model of the scene, thus
allowing users connected to this system to receive a 3D guide into the monitored
environment.

1 Introduction

Many algorithms have been studied during the last years for automatic 3D reconstruc-
tion [1, 2] from image analysis for application in different fields. In [3] a semi-automatic
system is described that is based on a 3D reconstruction of a museum environment, ob-
tained by a stereo vision sensor: proposed system is able to detect interesting events
and to guide the users into the museum. A visualization system for ambient intelligence
based on an augmented virtual environment that fuses dynamic imagery with 3D mod-
els in a real-time display to help observers comprehend multiple streams of temporal
data and imagery from arbitrary views of the scene is presented in [4].

One of the fundamental task for an ambient intelligence application is automatic
objects tracking and classification. Researchers developed many specific solutions [5]
but no optimal algorithm exists to solve the tracking problem in all real situations.
As the complexity of the scene increases and occlusions between static and non-static
objects occur [6], performances of standard tracking and classification algorithms typ-
ically decrease. Multi camera systems have been often used for overcoming the occlu-
sion problem. Collins at al. in [7] propose understanding algorithms to automatically
detect people and vehicles, seamlessly track them using a network of cooperating ac-
tive sensors, determine their three-dimensional locations with respect to a geospatial
site model, and present this information to a human operator who observes the system
through a graphical user interface.

In this paper a multi sensor system is described that is able to detect, track and clas-
sify multiple moving objects. A three-dimensional model of the observed area is auto-
matically updated by the tracking system and dynamic avatars are maintained within
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the model. Such a system can be effectively used also for virtual guidance of users be-
cause it allows to reproduce the entire ambient evolution of the scene and to compute
the path that users have to follow to reach their destination.

In section 2 processing modules for detecting and tracking moving objects are de-
scribed; section 3 shows specific modules for multi-camera supervision, while section
4 deals with proposed 3D viewer and guidance module. Finally results are showed in
section 5 and conclusions are drawn in section 6.

2 Detection and Tracking

In order to realistically reproduce a real environment and interactions between moving
objects and to re-create them into a 3D model, the ambient intelligence system needs
sophisticated modules for image analysis and object tracking and classification. Such
processing modules allow the automatic comprehension of semantic contents of the
image sequence. The primary objective of the system is the phase ofdetection, that
is the automatic identification of the moving objects in the scene (entities perceived
as different respect a reference background). Subsequently, the system has to evaluate
and follow their position in time (tracking), being able to extract suitable information
to describe the actions performed by the objects (classification) themselves. The last
phase, therefore, will consist into recognize behaviors (see Figure 1).

Fig. 1.Scheme of the principal modules of a tracking system.

The algorithms adopted by the system to pursue previous objectives can be subdi-
vided into several logical modules, on the basis of the task they have to complete: in
particular, it is possible to subdivide basic processing modules into three different main
categories:

– Low level modulesare responsible of extracting interesting data from acquired raw
images (image acquisition, change detection, morphological filter, background up-
dating, focus of attention);

– Middle level modulesare able to get contextual information previously extracted
from video sequence and to derive a semantic description of the observed world
(blobs matching, feature extraction);

– High level modulesare responsible to track objects features to keep the history
of the temporal evolution of each blob; through classification algorithms [8] these
modules are able to classify detected objects.
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3 Multi camera modules

In order to increase the area covered by a single sensor and to manage the situation
of occlusion between the blobs a multi camera approach is adopted. The structure of a
multi camera system is based on three steps [9]: Data alignment, Data association, State
Estimation.

Data Alignment is needed in order to make the data comparable: dealing with video
cameras, this step issues are related to:

– Temporal alignment: the sensors are synchronized to compare features referring to
the same instant using a NTP (Network Time Protocol) server.

– Spatial alignment: through a joint cameras calibration procedure it’s possible to
obtain the correspondences between each image plane and the absoluteworld co-
ordinates, exploiting geometric and optic features of each sensor. The calibration
procedure is based on the Tsai algorithm described in [10].

Data Association consists on them-ary decision process among the objects in the
fields of view of the used cameras. Many different features are extracted to let the sys-
tem autonomously adapt the association to different situation occurring in the scene.
The use of different features has the advantage to extract in every instant and among
the others the better discriminating feature, which will be responsible of the greater
separation among the classes we are trying to distinguish in the decision process.

In order to be able to manage such different data and obtain a coherent representa-
tion, we define independent similarity functions connected to the information obtaining
from each feature; each function provides an autonomous similarity coefficient yielding
continuous values distributed between 0 and 1. The feature functions are based on mea-
sures in the map reference system (in term of position and speed of the blobs) and in
the image plane (valuating the shape factor and chromatic characteristics). The results
provided by each function leads to define anObject Similarity Coefficient(OSC), cal-
culated as the mean value of the previous coefficients. To apply the criterion and choose
the correct associations we seek for the highest values for each object in a camera field
of view compared to all the objects in all the cameras image planes with a field of view
overlapped with the first.

Once data are aligned and objects associated, thestate estimationphase performs
the actual redundant information exploitation: when the single cameras positioning data
are available, they can be fused simply through the use of mean values. But when objects
are not well separated in the image plane, a little more care must be put in the estimation
phase.

In our system we consider 3 cases:

– if the objects to associate are well separated in both the fields of view, we use the
position mean value;

– if the objects result occluded in the field of view of one of the sensors, we use the
position computed by the other;

– if both the fields of view present occlusions, we apply the location data related to
the objects’ couple with thestrongestOSC value in the association phase.
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Fig. 2.3D vision of the scene.

4 3D Viewer and Guide

A visual 3D modality has been developed for the appliance of localization, detection
and navigation. The idea is to provide to the users entering into the monitored areas
a virtual ambient that reproduces in details the rooms and the ambient interested by
the system of ambient intelligence. This ambient has the aim to represent in real time
isolated zones of the areas where, for instance, the system detects the presence of other
users. This result is performed following the next steps:

1. Creation of a three-dimensional map of the ambient of interest;
2. Importation of the model into a 3D ambient engine;
3. Real time acquisition of the spatial coordinates of the objects and them classifica-

tion;
4. Implementation of virtual cameras;
5. Equipment the system of the required intelligence to evaluate the minimum path

from the current position to the destination.

Data provided by the modules of tracking and classification have to be filtered as
a consequence of the error’s propagation inherent to the image processing. Therefore,
these data are stabilized by using Kalman [11] and median filters [12]. Once the po-
sition, speed and class of each blob are filtered, it’s possible to send them to a server
machine which task is to acquire and elaborate data from the sensors and to forward
them to the 3D maker. At this time, the system is able to represent the virtual model:
figure 2 shows the virtual 3D representation of the scene.

In figure 3(a) is represented the 3DGuide interface where, under the buttons of con-
nection, selection of the destination and of the virtual camera, is presented the textual
guidance message. One of the most relevant benefit of the 3D virtual viewer is surely
the possibility to change the point of view (figure 3(b)): in this manner, the users can
use the 3D model itself placing virtual cameras into the model selecting the best point
of view to reach the destination or to see other users moving into the environment.

The three-dimensional vectorial model has been generated by using AutoDesk Au-
toCAD and 3D Studio Max [13] software using precise measurements of the environ-
ment; afterward, this model is imported into a 3D graphical engine. We adopted open-
source libraries: the library OpenSceneGraph [14] provides the rules to build the model;
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(a) 3D guide interface (b) Virtual point of view

Fig. 3.3DGuide interface and Virtual generated points of view of the scene.

with the library Cal3D [15] each object can perform a lot of movements as walk, run,
turn, stand, etc.; eventually the last library used by the proposed system, ReplicantBody
[16], allows to animate the human model by integrating [14] and [15].

5 Results

In this section we present the most significant results related to the multi-camera data
fusion process and the effects of tracking errors to 3D virtual reality rendering. In first
instance, we evaluate the goodness of the strategy of data association examining se-
quences with 4 mutually occluding moving objects, in the form of association rate con-
fusion matrices: in the principal diagonal cells the rate of correct association is reported
while the crossing values in the other cells define the wrong associations. Some associ-
ations were discarded defining the data belonging to the NC class.

(a) OSC ≡ f(P )

1i 2i 3i 4i NC
1j 90.0 3.3 0.0 0.0 6.7
2j 3.3 87.7 0.0 0.0 9.0
3j 0.0 0.0 85.5 4.5 10.0
4j 0.0 0.0 3.3 91.1 5.6
NC 6.7 9.0 11.2 4.5

(b) OSC ≡ f(P, V, S, C)

1i 2i 3i 4i NC
1j 97.7 0.0 0.0 0.0 2.3
2j 0.0 97.7 0.0 0.0 9.0
3j 0.0 0.0 93.3 1.1 5.6
4j 0.0 1.1 0.0 98.9 0.0
NC 2.3 1.2 6.7 0.0

Table 1.Association rate confusion matrix: 2 cameras, 4 objects sequences.
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(a) OSC ≡ f(P ). (b) OSC ≡ f(P, V, S, C).

Fig. 4.Histogram of wrong objects associations.

(a) x coordinate (b) y coordinate

Fig. 5. 3D coordinates of the same object observed by camera1 and camera2, fused and filtered
coordinate and ground truth.

Table 0(a) and table 0(b) contain the result matrix for the 4 objects sequences re-
spectively reporting results with the use of position feature and with the complete set of
the chosen 4 features.

Presented association results are referred to a sample of 4 objects sequence observed
along time: 90 frames contain two occlusion phases where association errors are much
more frequent due to the failing of the position and often of the color features. TheY
axis has discrete values∈ [0, 1/4, 2/4, 4/4] with the meaning of the number of erro-
neous associations on the total of four. It is easy to be convinced of the higher number
of errors presented in figure 4(a) where the sole position is used, comparing to figure
4(a), where the 4-feature set is exploited.

Another interesting result regards the evaluation of the position of the objects es-
timated in the 3D model and the true position of the objects in the real coordinates
(ground truth). As we can see in figure 5(a) and 5(b), the error between the coordi-
nates of the same object observed by camera 1 (in blue) and by camera2 (in red) vs. the
ground truth is major than the correspondingly error between fused filtered and filtered
position vs. the ground truth. Also in this case, the graphs show that the worst situation
for a single camera model happens in the situation of occlusion of the blobs (represented
by the azure lines in the pictures): instead, this error is smaller for the fused coordinates.
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Lastly, it’s possible to compare the computational cost of the 3D vision with the
video analysis of each cameras in term of bandwidth and CPU computational load.
The 3D model updating requires the reception of a packet composed by integer values:
three integers for the identifier label, three for position coordinates, three for speed
components and one for the class of the object. So, each object requires 13*32 bit
= 416 bit. For ambient intelligence applications we can consider a transmission of 3
packets/second, that implies a bandwidth of around 1248bps.

Instead, if we consider the transmission of the video sequences acquired by a single
camera, using colored images with size 720*480pixels, 24 frame/second and using an
MPEG2 coding, we need a rate from 4 to 6 Mbps. Obviously,n cameras require n*(4 -
6) Mbps.

Another result is evident in the comparison of the computational load of the CPU.
Using a pc configured with a Pentium 4 processor, 2.66 Ghz and 512 MB of RAM,
the 3D reconstruction of the scene requires the 35.3% of the CPU load; instead, single
camera and dual camera tracking demand 68.6 and 93.4 CPU load percentage.

bandwidth (Kbps) % CPU load
3D vision 1.5 35.3
Single camera 4000− 6000 68.6
Dual camera 8000− 12000 93.4

Table 2.Comparison of the bandwidth occupation and of the CPU load between 3D, single and
camera cameras vision.

The previous results imply that, while multi camera tracking is possible only using
pc with high performances, the 3D reconstruction of the scene is allowed also with less
capable devices as tablet pc, with the great advantage of portability.

6 Conclusions

In this paper algorithms able to process images from a multi-camera ambient intel-
ligence system and extract features of detected moving objects have been presented.
Semantic information extracted from the scene is used by the system for update a dy-
namic virtual 3D model of the guarded environment. Synthetic automatically-generated
3D scene can be used by an user to be guided into the environment by selecting an ar-
bitrary point of view of the considered area.
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