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A Fuzzy Clustering Neural Networks (FCNs) System Design Methodology
David Zhang and Sankar K. Pal

Abstract—A system design methodology for fuzzy clustering sidering the special features and aspects of the fuzzy clustering
neural networks (FCNs) is presented. This methodology empha- technology, designing their special-purpose architectures, and

sizes coordination between FCN model definition, architectural -y 555ing the neural networks onto the corresponding systolic
description, and systolic implementation. Two mapping strategies arrays (see Fig. 1)

both from FCN model to system architecture and from the given
architecture to systolic arrays are described. The effectiveness of
the methodology is illustrated by: 1) applying the design to an Il. FCN MODEL

effective FCN model; 2) developing the corresponding parallel

architecture with special feedforward and feedback paths; and A basic FCN model using clustering competitive network

3) building the systolic array (SA) suitable for very large scale s illustrated in Fig. 2. Each node represents a fuzzy cluster

integration (VLSI) implementation. and the connecting weights from the inputs to a node represent
Index Terms—Neuro-fuzzy clustering, systolic array, very large the exemplar of that fuzzy cluster. The square of the Euclidean
scale integration (VLSI). distance between the input pattern and the exemplar is passed

through a Gaussian nonlinearity. The output of the node, there-

fore, represents the closeness of the input pattern to the exem-

plar. The degree of possibility that each input pattern belongs

T HERE have been a number of approaches for designigggifferent fuzzy clusters is calculated in the final membership
fuzzy clustering neural networks (FCNs) have been copsygl.

sidered. Simpson [1] discussed on fuzzy min-max neural net-a fuzzy cluster criterion, called quality of fit ap, is defined

works in fuzzy clustering. Palt al.[2] developed a fuzzy clus- a5 the sum of all output values of the nodes over all input

tering network based on the Kohonen network. Mitra and Pgtterns. That i€) = Z{::l Qrn = Z{::l Zi\il Chi, Where

[3], [4] described a self-organizing neural network, whichis g and A7 are the respective numbers of input patterns and

pable of handling fuzzy input and of providing fuzzy classificanodes, and’;; is the output of nodé when the input pattern is

I. INTRODUCTION

tion. All these approaches are concerned with algorithms; thelr  — () 20, 2n), G = exp(—((dri)?/202)).
behaviors and characteristics are primarily investigated by siffhe weight vector connecting the inputs to nodeis
ulation on general-purpose computers. The fundamental drayy-  — (4, w;5,...,w;x). The Euclidean distance be-

-

back of such simulators is that the spatiotemporal parallelism it’(}veenwi andx;, is defined agdy;)? = Z/J'\;l(xkj _ wij)Q-
herent in the processing of information using neural networks,e weight vectorsw; (i = 1,2,..., M), cf':l_n also be viewed
lost entirely or partly. Moreover the computing time of the Simuss the parameters of the Gaussian functions that determine
lated ngtw_ork, especially for large associations of nodes taul_orﬁgeir locations in the input space. Since the fuzzy clusters are
to application-relevant tasks, grows to such orders of magnitugigh concentrations of the input patterns in the input space,
that a speedy acquisition of neural *know-how" is hindered ggcating the weight vectors at or close to the centers of these
made impossible. This makes the actual fuzzy clustering applncentrations will insure a maximum for the quality of fit
cations difficult to implement in real time. Therefore, it is esseRyiterion.
tial to implement FCN in a very large scale integration (VLSI) Thjs is clearly an optimization problem where the objective
medium. function is the quality of fit and the variables are the coordinates
However, it cannot be assumed that FCN models develope@ithe centers of the Gaussian functions, i.e., the weight vectors.
computational neuroscience, at a high level, are directly implepe change in the weight on the objective functiomis;; =
mentable in silicon. This is because the technology, the ph 2Q/0w;;) = U(a/awz‘j){zf . EMl Cri}. This is equal
ical devices and the circuits severely limit the performance o P ‘ e -
integrated FCN. Systolic array (SA) can offer flexibility, pro- J\Alw” = 71 24—1 9Cki/Owij, where the second summation,

. ' L . . ;—1» was dropped since;; appears only in one term. Note
grammability, and precision in computation, coupled with t AL IC [Ows; = (9Chs /D) (Oddyi [ Owiy ), i [Oddns =
advantages of large pipelined throughput and local interconnec-, oy o/ T T
. . . . . — /2Ji )CM andad;”/aww = _2($kj — w“) This means
tions in VLS| implementation [5]-[7]. In the present article, we P 5 .

: . . Aw;j =1 1-1(1/07)Cri(zr; — wij), wheren is a constant
describe how an efficient FCN system can be realized by con- : : N . )
of proportionality ands= is the variance of the function of the
node. It is clear that this formulation utilizes local information
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Fig. 2. Fuzzy clustering neural network (FCN) model. Fig. 4. Mapping strategies from FCN architecture to systolic implementation.

To introduce a fuzzy competition mechanism between Ill. PARALLEL ARCHITECTURE
the nodes, a membership function for fuzzy clustering is
required. In other words, a partition of the input patterA. Mapping Strategies

o .
spacg,): = {x1.x2.....xp} C §Rd, |r_1trc1) fﬁzzy cluztersr,]_ An FCN architecture is specified by its network topology and
fZi (= 1’_2""’M)' IS associate W'tf _the membershig,,qe characteristics. The network topology defines how each
unctionsuz;: X — [0, 1]. Assignment of input patterns 0 hode is connected to other nodes. The node characteristics de-

different clusters can be given in terms of a fuzzy Clustgf,e the function which combines the various inputs and weights
membership matrid/ = [ux], where the elementy, de-

i . into a single quantity as well as the function that then maps this
notes the degree of belonging of the input pattérto the 4,6 1o an output. Considering parallel network topology, some
fuzzy clusters, ju; = pz,(xx) = Cii/Qr. Itis evident onning strategies from an FCN model to the architecture are
that thi elements o/ are subject taP > 7,y > 0 defined as follows (See Fig. 3):
and} ;_; pxi = 1, wherel < i < Mandl < k < P. 1) Model Structure Mapping:n the FCN model, each func-
Using the fuzzy cluster membership elemeqt to participate tjon, |ike competitive and membership function, is mapped as
in the corresponding weight change, a fuzzy competitivg, independent processing layer and their connection patterns
learning update rule which moves the weight vectors towaj@ihin and between layers are defined.
their respective fuzzy cluster centers can be representeq) Processing Phase Mappingdften two processing
as Aw;; = 030 (1/6)Cri(azr; — wij)pi. We can - : ven i

\Wij M 2k=1\ T ) ki Tk ij ) ki ! phases, searching and learning, are given in the FCN model.
obtain a variation of this learning algorithm by lettingrhey are able to be performed in architecture design by special
Apwij = 1(0Qr/Owiz). Note that the direction of the gra-contro| paths, i.e., feedforward and feedback path, respectively.
dient only guarantees a locally increasing direction. To avoid 3) Computing Unit Mapping:Depending on different func-
instability of the algorithm, the step taken in the directiofiong) arithmetic types in each processing layer, such as weight
is usually chosen to be very small by the control parametgbmputing and pattern summing, their processing cells can be

. . . . r
1. Thus, if 7 is sufficiently small, Aw;; ~ 32, _) Axwij-  puilt to achieve the given input—output functions.
This means the change in weights will be approximately

equal to Aw;; if the weights are updated after the error i
computed corresponding to an input pattern, unlike the batch
mode learning. Considering the approximation, we can obtainThe FCN architecture comprises three kinds of processing
Ajwiy = (10 Cri(Try — wij) - cells, including weight, node, and output, plus adtfey. We

FCN Architecture: Processing Cells
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have embedded all functions from the FCN model in this archi- TABLE |

tecture so that on-line learning and parallel implementation aFé)MPARISON OF THEPROCESSINGELEMENTS BETWEEN FCN ARCHITECTURE
AND FCM ARCHITECTURE

feasible.
Both node cell and add€®:) can be achieved by many cur- FCN FCM
re_nt approaches[5], [8]. '_rhe output processing ceI_I isusedtoo g% =(xy —w,)?
tain both the membership elemepi,, and the partial product  weigh Cell 8o =0y —w,)’ iy =13 () -
for the fuzzy competitive learning update rule (Section Il). The M x N) Aw,; =158,85 a ”ki]
two inputs,Cy; andQy, come from the outputs of nodeand BB -D7 - p)lgu
the adder(3) when the input pattern ig,. The output of the ; .
partial product isSy; = ACy;pni, WhereA is a control param-  Node Cell | :exp{_z g% /202} () =225
eter for the operator. The output cell can be built using mul ™ J= -

tiplier and divider operators. A weight cell is used to store an

change weight value as well as implement the related arithmeti 1

' ] ! . Qutput Cell Cu 1 Hig ===
It is mainly composed of four different memory elements, i.e. gy Hy =0, Sy =?Ck,uk, (dk, )28
. . . k N
accumulation memoryXA,w;;), weight memory(w;;), dif- D,
ference memoryg; ;) and its square memo@fjk), and five Adder M M 5
operators (two adders, one subtractor, one multiplier and o1 (1) o =§Ck, (D) =;(dk,)

unit that generates square of number). In the feedforward prs-
cessing, an inputg;, is given and the outputs of the cell are

represented 3£§21k = (wr; —wi;)*. Inthe feedback processing,identical structure and the same number of building elements,
the input S, is to come from the output cell and its correyyt they do differ in the complexities of the three kinds of cells.
sponding arithmetic to implement the update rul@igw;; = The node cell for the FCM architecture is characterized by the
BSiigiji, whereB is the control parameter of the multipliergclidean distancgi,, )? rather than the Gaussian nonlinearity
in the cell, andy;; is obtained in the previous processing ang, . The function characterizing each output cell is given by
stored in the difference memo(y;;..). We use the update rule ,, . — (1/(d,,;/D;)%¥~1)), where(D;,)? is the output of the

in batch modeAwi; = 3=, _, Apwy;. In this way, we canim- adder(s) and is defined agDy)? = 3 2L (dyi)2. The def-
plement the Euclidean distance between weight veetoand jnitions of the cells in the two architectures, discussed above,
Input pattern;, in the FCN architecture rewritten 461:)° =  are summarized in Table I. Here the number of the elements re-
> i1 951 Whereg?;, is as aninput from the weight cell;;, 1o quired is indicated in parentheses.

the node cell. The weights in the FCN architecture are changed

in terms of the following functionsw;; = wf]l + Aw,; and

Aw;; = B E;I::l Skigijx = B E;I::l ACwi ki Gij wherewﬁj IV. SysToLIC ARRAY DESIGN

andwzj_1 are the weights at timeand timet — 1, respectively. A. Mapping Strategies

It is clear that the complexity of the FCN stems not from the
C. Performance Analysis complexity of its nodes, but from the multitude of ways in which
a large collection of these nodes can interact. Therefore, an im-
Based on the FCN architecture, hardware complexity can pertant task is to build highly parallel, regular, and modular SA's
represented allrony = M (N Hyeight + Hourput + Huode) +  that are attractive for VLSI techniques. Mapping from the FCN
Hsx,, whereN andM are the dimensions of the input and outpudrchitecture to SA implementation can be achieved as follows.
spaces, respectivelyys is the complexity of the addei); 1) Processing Mode MappingtHere we partition a fuzzy
Hoeight, Houtput, aNd Hyoqe are the complexities of three dif- clustering neural network into some basic subnets, each capable
ferent cells, respectively. Note thAtrcn is independent of?,  of performing an independent function. Often a subnet repre-
the number of the input patterns, afl; has a linear com- sents a layer in the neural networks. The subnets are imple-
plexity in the number of connections of the nod&$, There- mented by a corresponding SA, which are then cascaded ac-
fore the attached cost of direct competition in the FCN architecerding to the architectural definition.
ture, Hx,, can be compared with the other competitive architec- 2) Computing Property MappingEach basic subnet func-
tures, such as the MAXNET [9] with the connective complexitytion is reduced to a recursive form which is implemented by the
M (M —1)/2. This means that the connective cost of direct coneorresponding pipeline matrix in terms of the systolic rules. In
petition in the FCN is reduced by a factor(@/ — 1)/2. practice, this mapping transforms spatial parallelism to temporal
In order to analyze the effectiveness of the FCN architectuggarallelism.
we take the architecture of fuzzy c-means (FCM) as our compar-3) Arithmetic Module Mapping:A basic operation in recur-
ative target. The objective function for the FCM is given by [10kive arithmetic is implemented by a building element. A node
J = (1/2) Zfil ZL]]\(uki)f"(dki)?, where its membership can be divided into two parts: forming a weighted sunivoiin-
function ispx; = (1/ 111 (dyi/dp)?/P—1)). Thus, the fuzzy puts and passing the result through a nonlinearity. The weighted
competitive learning update rule can be obtained\as;; = sum can easily be integrated by a two-dimensional (2-D) recur-
nvs(xn; —wij), whereyg = (ui)P[L— B(B—1)"1(1— )],  Sive matrix using weight processing elements. To form the non-
with 3 € [1,00). It has shown that these two architectures havmearity, a special element is defined which may be cascaded
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with the recursive matrix as a bound node of its output. Mappimipelined throughput and local interconnections. Two mapping
strategies from the FCN architecture to systolic implementatistrategies from FCN model to architecture and from architec-

are shown in Fig 4. ture to SA implementation are described. The effectiveness of
the methodology is illustrated by applying the design to an ef-
B. FCN Systolic Arrays fective FCN model, developing the corresponding parallel ar-

] ) ) . chitecture, comparing with FCM architecture, and building the

Based on the given mapping strategies, the FCN archﬂ@A,S suitable for VLS| implementation.
ture can be systematically implemented by the corresponding
SA's, where two kinds of data flow paths, viz., feedforward and
feedback exist. Each processing layer in the FCN architecture[ ] | ) |
; : : ) ; ; _Ai _[1] P. Simpson, “Fuzzy min-max neural networks—Part 2: Clustering,”
is achieved by t,he different SA's. Since two simple one- d|mgn IEEE Trans. Fuzzy Syskol. 1. pp. 3245, 1993,
sional (1-D) SA's, output SA and node SA, can be easily built, 2] N.R.Pal, J.C. Bezdek, and E. C. Tsao, “Generalized clustering networks
we will concentrate here only on the discussion of 2-D SA. and Kohonen's self-organizing schemiEEE Trans. Neural Networks

; ; ; vol. 4, pp. 549-557, 1993.

Arranging properly the Input data TIOVX’ the correspondlng [3] S. Mitraand S. K. Pal, “Self-organizing neural network as a fuzzy clas-
output of the nodesy;, can be obtained by a feedforward SA sifier,” IEEE Trans. Syst., Man, Cyberwol. 24, pp. 385-389, 1994.
with M x N weight PE’s andM node PE’s. The other 2-D  [4] S. K. Pal and S. MitraNeuro-Fuzzy Pattern Recognition: Methods in

: : : : ) Soft Computing New York: Wiley, 1999.

SA is to |mpleme_nt the _mangle SA with/ adder PE S an,d [5] G. A. Jullien, W. C. Miller, R. Grondin, L. Del Pup, and D. Zhang,
MI[M — 1]/2 shifting registers, where an adder PE is defined “Dynamic computational blocks for bit-level systolic arrayt2EE J.
asS =r + s and»’ = r. When the data flowfCy; } enters this Solid-State Circuitsvol. 29, pp. 14-22, 1994.

array, each adder can accumulate its corresporigifig. Note ~ [6] J- Chung, H. Yoon, and S. R. Maeng, *A systalic array exploiting the in-
herent parallelisms of artificial neural network#ficroprocessing Mi-
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