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Abstract. We propose the usage of M6bius transformations, defined in
the context of Clifford algebras, for geometrically manipulating a point
cloud data lying in a vector space of arbitrary dimension. We present
this method as an application to signal classification in a dimensionality
reduction framework. We first discuss a general situation where data
analysis problems arise in signal processing. In this context, we introduce
the construction of special M&bius transformations on vector spaces R™,
customized for a classification setting. A computational experiment is
presented indicating the potential and shortcomings of this framework.
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1. Introduction and General Framework

In the field of signal processing, a fundamental strategy is the usage of Fourier
transforms or wavelet analysis for detecting and filtering particular compo-
nents of a signal. These concepts provide a powerful framework used in mul-
tiple theoretical and application fields. But the ever increasing complexity
of signal data requires more sophisticated analysis tools. In the last decade,
significant progress has been made in the field of data analysis and dimen-
sionality reduction inspired by geometrical and topological concepts, see [5].
Some algorithms based on concepts from differential geometry are Whitney
embedding based methods, isomap, LTSA, Laplacian eigenmaps, Riemannian
normal coordinates, to mention but a few. In parallel developments, proba-
bilistic conditions and numerical algorithms (e.g. persistent homology) have
provided new tools for reconstructing the homology of a submanifold M C R"
from a finite dataset X = {z;}™; C M. Inspired by these developments, we
propose a framework based on Clifford geometry for signal classification, as
an addition to the manifold learning and dimensionality reduction toolbox.
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For describing the basic ingredients of our framework, we consider data-
sets X, and X}, as subsets of R™. Modern clustering techniques (support
vector machines, kernel methods, spectral clustering, etc.) can identify clus-
ters X, and X} by constructing features that geometrically separate these
sets. The difficulty lies in the complex nonlinear geometrical properties of the
datasets, as they might present challenging scenarios for clustering methods.
Classification methods can be seen as a further step, where, given an unknown
point € R™, we want to decide to which cluster it belongs. Our proposal is
to use the powerful concept of geometric Clifford algebras to manipulate the
geometry of X, and X, in order to simplify their geometric properties and to
improve classification methods. As a step towards this goal, we propose the
usage of Mobius transforms in R™ as defined in [1]. In our contribution, we
show how to use nonlinear (hyperbolic) Mobius transforms to design maps
that “shrink” a particular region centered around an (attractor) point in
R™. The resulting transform would then, under the right conditions, simplify
the classification task of deciding whether or not a point belongs to a given
cluster.

To explain the application of this framework to signal processing, we
consider datasets Xy = X, U X}, = {2;}; C R", constructed from a signal
f = g+ h by taking consecutive (windowed) chunks z; of f (as classically
performed in short term Fourier analysis or wavelet theory). We use a trans-
form T (e.g. power spectrum or wavelet transforms) applied to each element
z;, and obtain T(Xy) := {T'(z;)},. The general objective is to explore the
geometry and topology of T'(X ) to obtain information about f,g and h.

An important tool in the analysis of T'(X y) is a dimensionality reduction
map R that meaningfully projects T(Xy) into a lower dimensional Euclidean
space R?, d < n. This dimensionality reduction step is expected to improve
computational tasks for the analysis of T'(Xy). In a typical scenario, Xy is
embedded in a high-dimensional space R™, although its intrinsic dimension
might be small An important assumption is to consider T'(X ) as a sampling
of M, T(Xy) C M, where M is a submanifold of R". More generally, M
can be seen as a topological space constructed as the geometric realization
in R™ of a simplicial complex or a CW-complex. In this setting, a suitable
dimensionality reduction map R : M C R® — Mpz C R? outputs by Mp a
low-dimensional diffeomorphic (or homeomorphic) copy of M.

In our contribution, the set R(T'(Xy)) is further manipulated with a
Mébius map § : R? — R? that modifies the geometry of the clusters R(T(X4))
and R(T'(X,))). The objective is to use the modified geometrical properties
of the resulting sets f(R(T(X,))) and f(R(T(X4n))), as these can be useful
in the subsequent classification algorithms. This is in analogy to the treat-
ment of nonlinear clustering problems, e.g., by using kernel methods and
support vector machines. However, the novelty in our ideas is the usage of
Clifford algebras for manipulating point clouds and construct meaningful
Mobius transforms in higher dimensions.
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2. Dimensionality Reduction

A standard way for representing experimental information is given by the
concept of point cloud data (PCD), defined as a finite set of vectors X =
{zr}7, C R"™. The dimensional reduction problem considers the case when
much of the information described by X is redundant and can be discarded
by constructing a low dimensional representation Y = {y;}7, C R%, with
d < n. The main objective is to construct a dataset Y such that certain
characteristics of X are conserved. For instance, the objective in Multidi-
mensional Scaling (MDS) is to find Y satisfying |y; — y;|| = ||z; — ;|| for
all 4,5 € {1,...,m}. Another example is the case when the dataset X lies in
the vicinity of an hyperplane in R™: for this situation the goal of Principal
Component Analysis (PCA) is to construct Y by projecting the set X in this
hyperplane. The low-dimensional dataset Y can then be used for analysis or
classification purposes.

In manifold learning, it is assumed that the elements x; are points lying
in (or close to) a manifold M. We consider the case X C M, namely, X
is sampled from M, a p-dimensional smooth compact submanifold of R".
Assuming the existence of a manifold is a reasonable hypothesis being fulfilled
in relevant applications. As in dimensionality reduction, the objective is also
to construct a low dimensional representation Y = {y1,...,ym} C R% d < n,
that conserves some characteristics of the dataset X. Now, the geometrical
structure introduced by M will play a crucial role in the algorithm design.
Due to the Whitney embedding theorem (which states that any connected
smooth p-dimensional manifold can smoothly be embedded in R?P*1) we
require some conditions for the dimensions in this formulation, namely, 2p +
1 < d < n. Our problem can also be formulated as the search for an adequate
embedding E of the p-dimensional submanifold M C R” in R?, with E :
MCR" 5 QCRYL XM, Y CQ,Q a p-dimensional submanifold, and
2p+1<d<n.

For some applications, assuming the existence of a manifold M might
be too restrictive. In this case the strategy would be to construct a finite
metric space from X, and analyze its properties using topological construc-
tions, as Cech complexes, Vietoris-Rips complexes, etc (see [2]). An important
additional topic in this field are density conditions on the finite dataset X
(with respect to M) in order to guarantee a meaningful usage of M and
its structure. For the case of manifolds, recent results ensuring the correct
computation of the homology of M using X have been presented in [6]. For
more general topological spaces, the framework of persistent homology offers
robust tools for computing homological information of M using as input the
finite samples {x }7, [7].

2.1. Nonlinear Dimensionality Reduction

In order to handle point cloud data with a more complex geometry, a rich
variety of algorithms have been proposed in the last few years. We describe
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here, as a representative example, the isomap algorithm. The isomap algo-
rithm computes geodesic distances by considering the shortest path between
groups of neighboring points. This procedure first identifies neighbor points
using a k-nearest neighbors or € radius criteria. Once the neighboring points
are identified, the geodesic distance between two given points is computed by
finding minimum connecting paths. As soon as the geodesic distances for the
given dataset are obtained, the MDS algorithm can be applied: by solving
an optimization problem, we construct a configuration of points Y in a lower
dimensional space that matches the distances in the original dataset X. The
main points are summarized in the following list of steps.

1 Neighborhood graph construction: Define a graph where each vertex is
a datapoint, and each edge connects two points if they fulfill an e-radius
or k-nearest neighbors criterium.

2 Geodesic distance construction: Compute the geodesic distance between
each pair of point using the graph by finding the shortest paths between
the points.

3 d-dimensional embedding: Use the geodesic distance in a MDS algo-
rithm for computing a d-dimensional embedding.

By using the geodesic distances we can construct a configuration of
points representing a more accurate representation of the point cloud data.

2.2. Interactions between Signal Processing and Dimensionality Reduction

It is desirable to work with analysis techniques that combine signal processing
transforms with dimensionality reduction methods. In this case, the basic
objects are the manifold M, the data samples X = {z;}/2; taken from
M, and a diffeomorphism A : Q@ — M, where Q is the low-dimensional
copy of M to be reconstructed via dimensionality reduction. Here, the only
algorithmic input is the dataset X, but with the assumption that we can
reconstruct topological information of M with X (see for instance [6]). The
other basic object in our scheme is a signal processing map T : M — M,
which may be based on Fourier analysis, wavelet transforms, or convolution
filters, together with the resulting set Mq := {T'(p),p € M} of transformed
data. The following diagram shows the basic situation.

A

QcCRY XCcMCcCR®

T

l

Q’CRdTT(X)CMTCR"

The main objective is to find an approximation of €, denoted €' =
R(Mr), by using a suitable dimensionality reduction map R. Some proper-
ties of Q and Q' may differ depending on the dimensionality reduction tech-
nique, but the target is to construct ', so that geometrical and topological
properties of § are recovered.
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3. The Clifford Algebra Toolbox

The basic ingredient in our framework is a mechanism for manipulating the
geometry of a point cloud data. For this purpose we shortly recall the in-
terplay between Clifford algebras, exterior algebras, and geometric algebras.
These tools can be particularly important in the design of signal separation
and classification algorithms, as they provide efficient algebraic methods for
manipulating geometrical data. Here, we focus on the construction of a fun-
damental nonlinear map, the Mdbius transformation in R™.

A Clifford algebra is a generalization of the complex numbers defining
a product in the vector space V = R"™ with similar properties as the com-
plex multiplication. More precisely, let g, be the standard Euclidean inner
product in R™. Then, the Clifford algebra Cl, = CI(R",¢,) is an associa-
tive algebra generated by the elements of R™ subject (only) to the relation
v? = —gn(v,v)1,v € R™. More general bilinear forms ¢, are of relevance in
many fields (e.g. differential geometry or noncommutative geometry [4]), but
here we restrict ourselves to the case of the standard inner product. We re-
mark that the notation Cl,, refers to what is know in the standard literature
as Cl,, 0, where the subscript refers to the way the nondegenerate quadratic
form in the definition of a Clifford algebra is written in diagonal form. Here,
our notation then differs, and we use Cl,, to denote Cly,. An explicit con-
struction of a Clifford algebra is given by considering Cl,, to be the associative
algebra over the real numbers generated by elements eq, ..., e, subject to the
relations e? = —1, e;e; = —eje;, i # j (anti-commutativity). Every element
a € Cl,, can be represented as

a= Za!]e‘], €] i=¢€j ...C5, with a; € R,
J
where the sum ranges over all multi-indices J = {j;}*_, C {1,...,n} for all
0 < j1 < -+ < jr < n. We will occasionally abuse the notation, and we

will use ey = eg = 1 for the unit of the algebra Cl,, but it is important not
to confuse the unit of Cl,, eg = 1, with the unit of the field R. With this
construction it is clear that dim(Cl,) = 2". We follow the (non standard)
selection of Ahlfors [1], by identifying the wvectors of R™ with the elements
spanned by ey, ..., e,_1. There are three important involutions in Cl,, similar
to the complex conjugation. The main involution defined as a — a’ which
replaces each e; by —e; (so that €/, = (—1)l'le;) the reversion a — a*,
which reverses the order of each multi-index in ey, and their combination,
the Clifford conjugation, a — a := a’* = a*. An important subgroup of
the Clifford algebra is 'y, the Clifford group, which is the set of invertible
elements in Cl,, that can be represented as products of non-zero vectors in
R™.

With our particular identification of vectors R™ in Cl,,, the Clifford
product xy between two vectors z,y € R*, z = 22;01 Ties, Yy = Z?;ol yi€;,
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can be written as

n—1 n—1
zy Z(xoyo - Z xiyi)eo + Z(ﬂﬁoyi + ziyo)e;
i=1 i=1
n—1
+ Y (g —ayie.
i=1i<j

Remark 3.1. (Geometric Algebra) An algebraic structure closely related to
the Clifford algebra is the exterior algebra (or Grassmann algebra), A(V),
generated by the elements eq, . .., e, with the wedge product (or exterior prod-
uct) defined by the relations e; Ae; = 0 and e; Ae; = —ej Ae;,i # j. Basic
building blocks are the exterior products of k-vectors {v;}¥_,, also referred
to as k-blades v1 A --- A vg, and linear combinations of blades, called multi-
vectors. A useful property of the exterior product is the efficient algebraic
representation of basic geometrical entities. More precisely, if we have a k-
dimensional homogeneous subspace W spanned by k vectors {w;}%_;, the
k-blade w = wy A -+ Awy can be used to represent W as

zeW <— xzAw=0.

For instance, if z is an element of the line spanned by v € V, we have
x = Av, and this property can be related to the equality z A v = 0. Addi-
tionally, a vector x lies in a plane spanned by v and u iff x Av Au = 0.
But this framework is not only restricted to homogeneous subspaces: further
generalizations can be considered with the same algebraic efficiency for more
elaborate geometrical objects [3]. Particularly important tools in this field
are efficient algorithms (the join and meet operations) for constructing the
intersection and union of subspaces.

3.1. Mo6bius Transforms in R™

Mobius transformations, and the general concept of conformal maps, have ap-
peared in a wide range of theoretical and practical applications, ranging from
airfoil design in aerodynamics to modern problems in brain surface conformal
mapping. In the context of this work, we are interested in their flexible geome-
trical properties for designing invertible nonlinear maps with computationally
efficient algebraic characteristics. Recall that a Md&bius transformation is a
function §: C — C, with C = C U {00}, of the form

az+b

z) = —,

&)=
where (‘Z Z) € Mat(2,C), with ad — bc # 0. During the last century, Mobius

transforms were generalized by Vahlen, Maass, and Ahlfors to arbitrary vector
spaces using Clifford algebras and Clifford groups [1]:

Definition 3.1. For the vector space V.= R"™, a Mdbius transform § : R" —
R”, with R™ := R" U {oo}, is defined as §f(v) = (av + b)/(cv + d), where the
Clifford matriz H; := (‘Z Z) € Mat(2, Cl,) is required to satisfy the following
three conditions.
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1) a,b,c,d €T, U{0},
2) ab*,cd* € R™,
3) A(f) := ad* — bc* € R*.

Remark 3.2. (The Vahlen-Maass Theorem) The Vahlen-Maass Theorem states
that the set of Clifford matrices, denoted by SLy(T',,), forms a group under
the matrix multiplication. Moreover, the product H;Hy corresponds to com-
position of Mobius transforms § o g. The Vahlen-Maass Theorem also relates
Clifford matrices with the concept of M6bius maps as composition of similar-
ities and inversions over the unit sphere). The expression A(f) is sometimes
denominated pseudo determinant.

3.2. An Explicit Construction

In this section, we provide a simple and explicit construction of a Md6bius
transform in R"™, satisfying the three conditions in Definition 3.1. This yields
an algorithm for designing Mobius transformations matching our specific
needs, as for instance, the construction of hyperbolic transformations from
two given fixed points.

Remark 3.3. (Constructing Mobius transforms in @) For designing a Mobius
transform in C such that f(z) = u, f(y) = v, f(z) = w we can use the following
standard construction which consist of first mapping the points x,y, z to 0,1
and oo using f1(x) =0, f1(y) =1, and f1(z) = oo, with (for z € C)

R s (Vi ( Y-z x((z—g;; )

(z—2)(y—=x) y—z z(x—
If we consider also a second map fy with fa2(u) = 0,f, U) 1, fa(w) = oo,
we can now construct f := f5 ' o f; with f(z) = u, f(y) = v, f(2) = w, using
Hy:= H;'Hj, .

The general idea of this construction can be extended to R™, but some
constraints need to be considered. The following is a particular strategy that
can be used in our framework.

Lemma 3.1. Given a vector x € R™, n > 1, we can construct a Mdbius
transform § such that f(z) =0, f(y) =1 and §(2) = oo, fory,z € R™ provided
that the following three conditions are satisfied.

1) zi=kxy, i=1,...,n—1, for some k€ R*,

2) y=ax+ Pz, forsome «o,fLER, a+p=1,

3) B(wo — 20)% = Y1y (w1 — 21)2.

Proof: Using the ideas of Remark 3.3, we analyze the three conditions
in Definition 3.1. Recall that with our particular identification of R™ in Cl,,
we have x = Z?:_Ol Ti€i, Y = Zzl o Yi€i, and z = Y1 01 z;e;. For an triple
x,y, z fulfilling the conditions 1) and 2), the coefficients

a=Y—z, b:I(ny),
C=Yy—x, d:Z(x_y)a
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fulfill the first requirement in Definition 3.1. As for the second condition in
Definition 3.1, we have

ab* = (y — 2)(z —y)*a* = —(y — 2)%a,

cd” = (y —a)(z —y)"2"= —(y — 2)°z,
and the pseudo determinant is given by
A(f) = ad” —bc” = (y — 2)(z —y)(z — x).
Now, (y — 2)%xz € R" and (y — x)%?z € R", if
(y —2z)>Ax =0,
(y —x)*Az =0,

. . —1 ..
where x is the non-real part of z, i.e., x = Zz;l x;e;. These two conditions

can be fulfilled, if we require (as described in Remark 3.1) the vector y — z
to be an element of the line spanned by x, and the vector y — x to be an
element spanned by z. Therefore we have z = kx, k € R. If we select a vector
y=axr+ Pz, a+ B =1, we have

ad* —bc* = (y —2)(x —y)(z — 2) = af(z — x)>.

-1
Now, for a vector v = Y"1 v;e; € R" we have

n—1
3 3 n—1 9 2 n—1_92 o
v’ = (”0 —3v0 )i Ui)eo + E (3% — o1 Ui)”JeJ'
Jj=1

Therefore, v3 € R iff 3v = Z?;ll v?, which implies that (2 — x)3 € R if and
only if 3(zg — 20)? = Z?;ll (z; — 2;)?. We finally notice that by combining
these conditions we also need z = kx, for k € R*. |

Note that the we can relax our above conditions on y—z (resp. y—z). But
the statement on Lemma 3.1 is sufficient for our next objective. In particular,
we can now construct a variety of useful linear or nonlinear maps in R as
hyperbolic M6bius transforms based on the next proposition.

Proposition 3.1. For a pair u,v € R™, n > 1, and two vectors w; = a;u+ p;v,
1= 1,2, with a; + B; = 1, ay,6; € R, there exists a Mdbius transform
f: R™ = R™ satisfying f(u) = u, f(v) = v, and f(w) = ws.

Proof: This follows as a straightforward consequence from Lemma 3.1
and the Vahlen-Maass theorem which relates the group structure of SLa(T';,)
with the composition of Mdbius transforms in R™ (see Remark 3.2). More pre-
cisely, following along the lines of Remark 3.3, we first consider the translation
t, with t((u 4+ v)/2) = 0, followed by a rotation t, such that the third condi-
tion of Lemma 3.1 is fullfilled. Now we can use Lemma 3.1 for constructing
two Mébius maps fi, f2 with o (¢(t(u))) = 0, Fu (¢(t(w1))) = 1, 1 (¢((v))) = ox,
and fa2(t(t(w))) = 0, f2(t(t(w2))) = 1, f2(¢(t(v))) = co. Using now the Vahlen-
Maass Theorem the composition § := t’lt’lfglfltt is a Mobius transform
and its Clifford matrix is given by Hj = H;lHt_lengthHf. |
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F1GURE 1. Hyperbolic Mdébius transform with two fixed
points (one attractive and one repulsive).

By Proposition 3.1, we can now construct hyperbolic Mobius transforms
by calibrating its vector field (see Fig. 1) with the vectors wy and ws. These
kind of maps have useful properties for shrinking or separating clusters. In
general, with Lemma 3.1 we can also design other maps, as rotations in R”,
with alternative constructions to more classical strategies such as the well
known Procrustes problem.

4. Computational Experiment

-0.02

0.04 '0.02 0 002 004 002’
(a) (b)

FIGURE 2. (a) Spectrogram of speech signal (b) PCA pro-
jection with consonants (red) vs vocals (blue).

As a basic application of our tools, we present the problem of improving
the classification and detection of consonants in a speech signal. We use a
speech signal f = g + h, where g corresponds to the harmonic components
(vocals), and h corresponds to the non-harmonic components (consonants).
We construct the spectrogram T'(Xy) = {T'(z;)}; of f, depicted in Fig. 2a,
where T is the power spectrum (using the Fourier transform) applied to each
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FIGURE 3. (a) Isomap projection and consonants (red) vs
vocal (blue) components (b) Mdbius transformation of (a).

segment x;. The vectors x; are constructed as a sequence of small consecutive
chunks of the signal f (as performed in short term Fourier analysis). We use
dimensionality reduction methods (principal component analysis (PCA) and
isomap), represented as maps R : R" — R?. The resulting projections in
R?, d = 3, are depicted in Fig. 2b, and Fig. 3a, where the consonant and vocal
elements are depicted with red and blue clusters (R(T(X,)) and R(T(X3))).

We can see that isomap in Fig. 3a provides a better cluster separation
in comparison to PCA as depicted in Fig. 2b. Indeed, the corresponding
consonant cluster (in red) is not as spread as in the case of the PCA projection
of Fig. 2b. However, our design of a Mobius map with an attractive fixed
point in the center of the consonant cluster further improves the geometric
separation between the two clusters: in Fig. 3b one can observe how the
consonant patch in red is shrinked to a smaller region, providing a better
scenario for classification routines.

In order to provide a quantitative evaluation of these results, we esti-
mate the success rate achieved when using a classification routine with these
different datasets (Isomap point cloud R;(T'(Xy)) vs Isomap-Mobius point
cloud R,,(T(Xy)), see Fig. 3. We use a standard support vector machine
(svm) algorithm for differentiating the consonants from the vocal compo-
nents of the signal. In Fig.4 we display a plot with the corresponding success
rate when using svm with a polynomial kernel. The z-axis of the plot repre-
sents the amount of samples from the datasets R;(T(Xy), R, (T(Xy) used for
training the svm algorithm. The y-axis represents the corresponding success
rate when svm attempts to estimate if a point belongs either to the conso-
nant or vocal cluster. The dotted curve of Fig.4 indicates the success rate of
svm with a polynomical kernel when using the Isomap dataset R;(T(Xy)),
see Fig. 3a. The solid curve of Fig.4 represents the success rate of svm with
a polynomial kernel for the Mobius-Isomap dataset R,,,(T'(Xy)), see Fig. 3b.
As can be seen in the plot of Fig.4, the M&bius-Isomap dataset R,,(T'(Xy))
provides a better success rate (higher than 88%) when differentiating between
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consonant and vocal components. The Isomap dataset R;(T(Xy)) achieves
a success rate of approximately 82% in average. Obtaining these particular
results displayed in Fig.3, and the corresponding svm classification evalua-
tion Fig.4, requires a careful tuning when selecting the Mobius transform for
the algorithm. Future work should investigate a more adequate automatic se-
lection of parameters for the Mobius transformation. Here, we only indicate
the possibilities and potentials of our machinery. The corresponding code for
these numerical experiments is available in the homepage of the first author
http://www.math.tu-berlin.de/7110812.

~ / /
LSRN , \ =" -~

500 1000 1500 2000 2500 3000

FIGURE 4. SVM succcess rate of Mobius-Isomap vs Isomap projections
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