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1 Introduction 

Honeycomb meshes are well known structures that are 
used to model cellular networks. Using a regular mesh, as 
explained by the theoretical cellular concepts (Walke, 
2002), is the common representation of a cellular network. 
In Créput et al. (2005), it is proposed to dimension a 
network with possibly distorted hexagonal cells that cover 
the heterogeneous distribution of traffic load. Here, we 
extend and complete their results. Dimensioning is 
modelled using a geometric balanced clustering problem, 
called Balanced Honeycomb Clustering Problem (BHCP) 
in this paper, and referred as the Adaptive Meshing (AM) 
problem in earlier approach. A maximum capacity is fixed 
and characterised by a target traffic cost w*, related to the 
maximum amount of simultaneous calls a Base Station 
(BS), represented by a single hexagonal cell, can handle. 

To cover the heterogeneous distribution of traffic load, 
hexagonal cells have to adapt their shapes with the main 
objectives of covering a traffic amount closest to the target 
cost and minimising the number of cells. Hence, 
geometrical constraints have to be satisfied to keep in mind 
the need for network regularity as explained by the 
theoretical cellular concepts. 

While in other approaches (Calegari et al., 1997; 
Hurley, 2001; Vasquez and Hao, 2001; Zimmermann  
et al., 2003) of cellular planning, a graph formulation for 
the radio coverage problem is mentioned and related to a 
set covering problem (Eidenbenz et al., 1998; Feige, 
1996), here we relate cell positioning to a geometric 
clustering problem in the plane. Analogous to Euclidean 
versions of standard problems, like k-median or TSP 
which have PTAS (Arora, 1998), we think that it leads to a 
more compact network representation and allows one to 
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expect more rapid and efficient heuristics for it. 
Pragmatically, BHCP could be used as a first and rapid 
approximation step in order to help with the initial 
generation of candidate cells, avoiding the need for a wave 
propagation model in the initial step. In Walke (2002) the 
question of traffic load management is solved according to 
recursive decomposition of regular hexagonal structures. 
Here, the advantage is to allow the planner to design non-
overlapping smooth transitions from low traffic density to 
high traffic density areas. 

Cellular planning problems are generally NP-hard.  
We conjecture that BHCP is NP-hard. We think that the 
balanced clustering problem in the plane Planar X3C may 
be reduced to BHCP, using the same type of reduction as 
specified accordingly to Dyer and Frieze (1986), 
Lichtenstein (1982), Pferschy et al. (1994). Thus, to deal 
with large size problems, the use of meta-heuristic 
methods is encouraged. For example, evolutionary 
algorithms or tabu search were applied on the applications 
mentioned above. In Créput et al. (2005), BHCP is solved 
using an hybrid evolutionary algorithm. While local search 
quickly finds solutions in a small region of the search 
space, evolutionary operators determine interesting regions 
of the search space. It is a memetic algorithm (Moscato, 
1999), often presented as a population-based algorithm 
incorporating a neighbourhood search heuristic, also called 
genetic local search (Mühlenbein, 1991). Here, we study 
local search, removing all other operators and working on 
a single solution. We take the benefit of problem 
knowledge issued from user experimenting interactive 
visual meshing. We show that, applying probabilistic 
fitness landscape penalties dynamically during local search 
process leads in a shorter time algorithm, which generates 
possibly superior quality results than the ones given by the 
hybrid evolutionary approach. 

The paper is organised as follows. Section 2 presents 
the BHCP. Objectives and constraints are given. Section 3 
presents the local search algorithm. Section 4 describes 
experiments with local search and Section 5 presents 
comparison with evolutionary approach. Finally, the last 
section is devoted to the conclusion and further research. 

2 Problem statement 

It is well known that there are three possible tessellations 
of a plane with regular polygons of the same kind: square, 
triangular and hexagonal, corresponding to dividing a 
plane into regular squares, triangles and hexagons, 
respectively (Bern and Eppstein, 1995). The hexagonal 
tessellation is called a honeycomb mesh (Stojmenovic, 
1997; Zhang and Wang, 2002). 

One way to define a honeycomb mesh is to build it 
from basic hexagons inside a rectangle as in Figure 1(a) 
yielding to a 5 × 4 honeycomb rectangular mesh. The unit 
hexagon with radius 1 is shown in Figure 1(b). It is a 
perfect, or regular, hexagon encoded necessarily as 
algebraic number coordinates. A perfect, or regular, mesh 
is constituted of perfect hexagons. The size of a perfect 
hexagon is either the length of an edge or the radius of the 
circle, which embeds vertices. Figure 1(c) shows 

approximate hexagons embedded into a finite precision 
grid. Following the cellular network metaphor, hexagons 
are cells and clusters are covering cells where to install 
Bases Stations. Given a point p in the plane, we say that an 
hexagon covers p if the point lies on the interior of the 
hexagon. Here, it is assumed that a value, called a weight, 
is associated to a point p, representing mobile traffic 
demand at this point, for example given in Erlang.  
We define the load of a cell, or its weight, as the sum of 
the weights of its covered points. 

Figure 1 (a) A rectangular honeycomb mesh, (b) a single 
perfect hexagon defined by its 6 vertex coordinates 
and (c) approximate hexagons into a finite grid 

 

2.1 Balanced honeycomb clustering problem 

Given a finite set P of weighted points in the plane, a 
maximum capacity value w* of a cell, and given the size  
N × M of a honeycomb rectangular mesh, the problem 
consists in finding hexagon vertex coordinates so that the 
following objectives are minimised: 

1 Nvis: number of visible cells, that is, those covering 
some traffic 

2 Dev: adaptation of visible cells, defined by 
Nvis *
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where wi is the cell weight. 

3 Geom: geometry measurement of visible cells 
(distortion measure), defined by 
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where ijα  (respectively, ijd ) denote an angle in 

degrees (respectively, an edge size), 1 ≤ j ≤ 6, and id  

is the mean of the hexagon edge lengths. 

4 Nov: number of overloaded cells, that is, those 
exceeding capacity w*. 

5 Dov: adaptation of overloaded cells, defined by 
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6 Max: maximum traffic coverage for a single cell 
exceeding capacity w*. 

The goal is to generate an adapted mesh. Starting from a 
perfect honeycomb rectangular mesh, cells are subject to 
deformations in such a way that each cell has to cover a 
target of traffic load defined by the target weight w*, with 
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respect to geometric constraints on shape and topology.  
On a radio system, w* is the target capacity of a BS. Here, 
we assume that w* is an input, it is fixed and remains 
constant. In practice, the point set P, called traffic map, is 
bit-mapped on a fine-grained map of size m × n, delimiting 
some geographic area. Thus, each traffic point, called a 
pixel, has integer coordinates into the underlying map.  
A pixel colouring algorithm, as Bresenham algorithm, is 
used to determine which traffic points are covered by a cell 
and to compute cell load. 

The traffic map is composed either of regions 
containing traffic or regions without traffic. We then 
distinguish a set of visible or useful cells that cover some 
traffic (non-null load), and a set of invisible cells that do 
not cover traffic (null load). Invisible cells are not 
involved in the resulting mesh, as none BS will be 
associated to them. But these cells are necessary in the 
optimisation process while any cell may move from null 
load to non-null load status and vice versa. The size N × M 
of the honeycomb mesh is an input. Thus, starting with a 
uniform mesh and due to the fact that traffic is 
heterogeneous, the number of visible cells will be slightly 
increased or decreased. We don’t specify an upper 
physical limit for a given cell. Its size is only constrained 
by traffic adaptation and by its surrounding cells inside the 
enclosing fine-grained map delimiting the geographic area. 

We can note that modelling network dimensioning by 
BHCP has some disadvantages since cells may not map to 
site candidate transmission site locations and since 
geographic particularities of the terrain are not considered 
using a wave propagation model. Generally, BS 
parameters settings on real environment never lead to 
regular honeycomb architecture. Real cell coverage is 
always self-adapted to mobile traffic heterogeneity and to 
propagation variation, ending to different sizes and shapes 
of cells. Then, there is always a high gap between the cost 
and the quality of regular theoretical networks and 
irregular real networks. Here, we place the emphasis on 
reducing such a gap by generation of irregular cells 
adapted to traffic heterogeneity, at an initial step in 
network design. 

The main difference with other approaches of cellular 
planning, such as the ones presented in Calegari et al. 
(1997), Hurley (2001), Vasquez and Hao (2001), 
Zimmermann et al. (2003), is that in our approach antenna 
location is modelled using geometric entities in plane 
rather than using graphs. According to decomposition of 
the overall planning process, we take the assumption that 
this preliminary step has to be as short as possible, with 
relatively low computational cost and no need for a 
detailed wave propagation model. We think that BHCP has 
to be used as a model that encompasses implicitly some 
real world issues, in a complementary way to the ones 
developed for the design step. For example, frequency 
reuse is supposed to be achieved subsequently with 
standard algorithms on honeycomb cells as soon as the 
hexagonal topology is preserved. Overlapping between 
cells is not considered since there are no overlapping cells 
in the honeycomb mesh by definition. There is no territory 
shading since it is supposed to be flat and hence the 
propagation uniform. Robustness under traffic growth  

will be achieved by adaptation of covering areas, get from 
antenna parameters settings. 

The goal of experiments will be to eliminate 
overloaded cells completely, transforming last three 
objectives: Nov, Dov, Max into the constraint Nov = 0, 
Dov = 0 or Max ≤ w*. The Dev and Dov traffic adaptation 
criteria are normalised mean deviation to w* rather than 
squared deviation. It is because mean deviation has a more 
natural meaning. Whereas, we will see that traffic 
adaptation addresses a compromise between reduction of 
variance and mean deviation. The Geom criterion 
evaluates a normalised distortion between cells and a 
regular hexagon. 

3 Local search algorithm 

3.1 Algorithm 

The local search is an adaptive process that applies 
mutations on isolated vertices with a basic selection 
mechanism that make an individual, which is a single 
solution, evolves to a local minimum. The mutation 
operator, called micro-mutation, performs a little move of 
some randomly chosen vertex inside an inner area as 
illustrated in Figure 2. The size of the area defines the 
mutation intensity. This local perturbation authorises a fast 
incremental fitness computation. The local search 
algorithm with its default parameters is given in Figure 3. 
The selection validates the move depending if it improves 
or not the fitness. 

Figure 2 Local search mutation 

 

Figure 3 Local search algorithm 

 

3.2 Fitness function 

The fitness function is a scalar function. It evaluates the 
quality of solutions during the search process. The fitness 
function is constructed so as to deal efficiently with the 
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objectives. Three important terms are summed using 
different weighting coefficients. They correspond, 
respectively, to traffic adaptation between cells, respect of 
geometrical constraints and minimisation of the number of 
visible cells. Elimination of overloaded cells is expressed 
into the first aggregating term. The fitness function is thus 
defined as in 

A A G G N NF k f k f k f= + +  (4) 

where fA is the evaluation of resource adaptation, fG is the 
evaluation of geometrical constraints, fN the evaluation of 
visible cells number and kA, kG, kN the weighting 
coefficients. 

Adaptation of the whole mesh is defined as the sum of 
individual cell adaptation values divided, for normalisation 
purposes, by the total number of cells. It is given by 

1== ∑
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where N is the total number of cells in the rectangular 
honeycomb mesh. 

To locally adapt border of cells to traffic frontier, the 
fitness aggregates penalties depending on the proportion zi 
of surface of a cell i outside a traffic region, that is, the 
number of pixels with zero value divided by the total 
number of pixels covered by the cell. As illustrated in 
Figure 4(a), four cases are relevant for a cell i with  
weight wi: 

1 The cell is completely outside the traffic area R as is 
m0 where zi = 1. It is an invisible cell and no BS is 
associated too. Its adaptation value ia is then 

0ia =  (6) 

2 The cell is almost completely inside or totally inside a 
traffic region, that is, zi < 0.1, m3 and m4 alike. The 
adaptation value is stated in 
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where h is a filtering function that controls and 
penalises deviation of a single cell. 

3 The cell is almost outside the traffic area, that is,  
zi > 0.5 and wi/w* < 0.5, as is m2. It is the case shown  
in Figure 4(b). The cell is also an invisible cell and  
it has to exit from the traffic region with a  
penalising term, as in 

( )2
10 1i ia z= × −  (8) 

4 The cell is into an intermediate state, that is, zi ≥ 0.1, 
like m1. It is the case illustrated in Figure 4(c).  
In this case, the cell is made to enter the traffic  
region by adding a specific weight to its deviation 
value. This is described in 
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Figure 4 Different cases of cell covering 

 

The geometrical constraint imposes a cell to have a  
shape closest to a regular hexagon. The function takes into 
account the angles of the hexagon, which must 
approximate 120°, and sizes of its edges, which should be 
of equal length. The fG function is as follows: 
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where the geometrical evaluation gi of a single cell is given 
by 
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where αj denotes angle j in degrees of cell i, dj denotes the 
size of edge j of cell i and d  is the mean size of edges of 
cell i. 

The term fN of the objective function is the number of 
visible cells divided by the total number of cells in the 
whole mesh. It is defined by 

v
N

N
f

N
=  (12) 

where Nv the number of visible cells. 
The different fitness sub-terms fA, fG, fN are normalised 

according to, respectively, the ideal weight w*, an ideal 
regular hexagon and the total number of cells. Then, 
metric of fitness is defined by these ideal values that put 
sub-term values in comparable ranges. An important 
parameter is the filtering function h of the deviation 
between weight w and capacity w*. Experiments will study 
its impact on solution quality. 

4 Local search study 

4.1 Filtering functions and goal of experiments 

An important term of the fitness function (4) is the traffic 
adaptation term (5) which incorporates a filtering function 
h, used in (7) and (9). Since one expects to reduce 
deviation and variance to the ideal cost w*, and eliminate 
overloaded cells, choice of function h has to be  
made carefully. The filtering function h can be specified so 
as to penalise more or less deviation between the weight w 

and the capacity w*. Depending on its shape, it will 
penalise outliers and overloaded cells and favour 
emergence of non-overloaded cells with the weight closest 
to the target cost w*. In the following experiments, 
function h will be instantiated in different ways and their 
impact evaluated separately. Then, a probabilistic fitness 
combination mechanism will be applied, using the best 
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performing instantiation cases, to improve solution quality 
by dynamically exiting local minima. 

To reduce deviation to the ideal cost w*, natural 
choices of function h would be the absolute value function 
h0(x) = x or the quadratic function h1(x) = x2. Considering 
population of cells and as it is known in statistics, function 
h0 has a natural meaning as a mean deviation, however 
function h1 addresses reduction of variance rather than 
mean deviation. Since function h1 is more sensitive to 
outliers, it follows that it could be more efficient into the 
local search process. Function h1 could lead to better 
compromises between reduction of variance together with 
reduction of mean deviation to w*. Mean deviation to w* 
is regarded, however, as an easy to interpret objective  
of the problem. Function h is instantiated with two  
types of shapes. The first type of instantiation uses  
symmetric functions. The second type of instantiation uses 
asymmetric functions that penalise overloaded cells with 
the goal to eliminate them from the mesh. Six different 
filtering functions are used. They are visualised in Figure 5 
and defined by 

0 ( ) | |h x x=  (13) 

2
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4.2 Filtering functions in local search algorithm 

The impact of the filtering function choice was evaluated 
by running 3 runs, with 1000 generations by run, in each 
case and selecting the best result. Coefficients of fitness 
function sub-terms kA, kN, presented in (4), were set to 

value 1, and kG to values 1, 2 and 3 to modulate importance 
of geometry. The test case is the data distribution presented 
in Figure 8(a). It presents an elliptic field, with low traffic 
values, inside of which an A shape is written with density 
values five times greater. Results are summarised in  
Table 1 and two typical results are drawn in Figure 6 to 
illustrate opposite effects induced by filtering function.  
In the first case (a) with function h1, the mesh falls into a 
local minima with distorted cells, but showing a good 
compromise between objectives. In the second case (b), 
using asymmetric function h4 leads to a curious effect 
where overloaded cells growth and reduce their number, 
living the designer free to refine again the delimitated 
zones. 

Table 1 Comparative results using different filtering 
functions 

Filtering 
function 

k
G

Dev Geom Nvis Nov Dov Max 

h
0
 1 32.66 12.57 451 121 47.42 8980 

h
0
 3 34.90 7.34 451 116 52.19 8680 

h
0
 6 37.97 5.01 451 121 55.32 9320 

h
1
 1 10.56 11.73 451 125 7.49 3920 

h
1
 3 18.97 7.47 451 159 15.12 4540 

h
1
 6 27.18 5.40 451 172 24.01 5280 

h
2
 1 18.48 9.12 451 158 15.18 4120 

h
2
 3 28.84 5.57 451 170 26.58 4660 

h
2
 6 35.18 4.00 451 169 34.81 4800 

h
3
 1 19.61 18.11 451 127 22.27 5460 

h
3
 3 21.34 9.66 451 142 21.30 5340 

h
3
 6 24.88 7.10 451 152 24.58 6000 

h
4
 1 31.97 17.02 451 11 563.80 40,180

h
4
 3 46.35 9.88 450 24 378.62 38,100

h
4
 6 49.91 6.22 451 31 311.15 27,020

h
5
 1 21.04 18.81 451 63 53.91 5980 

h
5
 3 19.07 15.26 451 71 35.91 5100 

h
5
 6 29.12 11.98 451 94 48.68 5560 

Figure 5 Filtering functions h
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Figure 6 (a) With filtering function h
1
 and (b) with  

asymmetric filtering function h
4
 

 

4.3 Probabilistic aggregative fitness function 

To exit local minima and try to eliminate overloaded cells, 
one way is to introduce new operators and build an 
evolutionary approach as in Créput et al. (2005). Here, we 
maintain on local search with a single individual and 
simply modify fitness landscape dynamically using a 
probabilistic application of one of the filtering functions  
h0–5, at each generation. This mechanism is similar to 
probabilistic fitness combination in multi-objective 
methods (Coello Coello, 1999). Following preliminary 
tests, the probabilities chosen were 0.45, 0.40, 0.10, 0.05 
for functions h1, h2, h3 and h4, respectively. We call it 
probabilistic fitness g(x). Fitness function coefficients  
kA, kN, kG, presented in (4), were set to value 1. Typical 
results obtained within a single run are given in Table 2, 
and one of the meshes obtained is drawn in Figure 7. The 
result can be compared to the h1 case of Figure 6(a). For 
the same number of cells and same iteration number, it 
shows a clear improvement on the main objectives  
of mesh adaptation and overloaded cell elimination, while 
maintaining geometry in quite a better regularity. 

Table 2 Simulation results using probabilistic aggregative 
fitness function 

Fitness Dev Geom Nvis Nov Dov Max 

g(x) 6.33 11.75 451 20 1.29 3020 

g(x) 5.99 11.28 451 32 1.40 3000 

g(x) 6.23 11.09 451 42 2.25 3108 

g(x) 7.04 10.72 451 66 3.41 3164 

Figure 7 Mesh obtained using probabilistic aggregative  
fitness g(x) 

 

5 Comparison with evolutionary approach 

Here, we use a probabilistic fitness, g’(x), with asymmetric 
filtering function h5, with a threshold, rather than h4, to 
completely eliminate overloaded cells and try to 
outperform results from evolutionary approach of Créput 
et al. (2005). After a first round of experiments, 
probabilities of filter function application were chosen as 
0.45, 0.05, 0.15, 0.40 for functions h1, h2, h3 and h5, 
respectively, at each generation. The parameters defining a 
simulation are given in Table 3. The size N × M of the 
honeycomb mesh and the size of the underlying traffic 
demand map n × m are chosen prior to optimisation to be 
closest to the ideal number of cells N* = S/w*, where S is 
the total sum of traffic in the map. The parameter h is the 
probabilistic function g’(x) in local search approach, or the 
single h5 in the evolutionary approach. Other input 
parameters are the coefficients kA, kG and kN of the 
aggregative fitness function, the population size Pop, 
which is 1 in local search, and the number of generations 
Gen that is fixed to 1000. 

Table 3 Simulation parameters 

Parameter Significance ‘A’ test case ‘France’ 
test case 

w* Ideal traffic 
covering cost 

2900 80,000 

S Sum of traffic 
in the map 

119.106 116.107 

N* Ideal number 
of cells  
N* = S/w* 

412 145 

n × m Size of the 
traffic map 

600 × 600 600 × 600 

N × M Size of the 
honeycomb 
mesh 

30 × 30,  
31 × 30, 31 × 31 

23 × 24,  
24 × 24 

k
A
 Fitness 

adaptation 
coefficient 

6 6 

k
G
 Fitness 

geometry 
coefficient 

1;3 1;3 

k
N
 Fitness 

visible cells 
coefficient 

1 1 

h Deviation 
function  
h

5
 or g 

g’(0.45, 0.05, 
0.15, 0.40) 

g’(0.45, 
0.05, 0.15, 
0.40) 

Gen Number of 
generations 

1000 1000 

Pop Population 
size 

1 1 

Two input instances, ‘A’ and ‘France’ test cases, were 
considered with varying characteristics of size and traffic 
as given in Table 3, and drawn in Figures 8(a) and 9(a) 
through sample points extracted from density map using a 
roulette wheel mechanism. Simulations were done three 
times per case using parameters in Table 3. Since we took 
1000 generations as in the evolutionary approach, local 
search simulation time was, proportionally to population 
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size, around 30 or 40 times shorter. Local search took 
approximately 20 min on a Sun Workstation 750 MHz. 

Figure 8 (a) Density sampling, (b) and meshing for ‘A’ test 
case, without and (c) with surrounding invisible  
cells  

 

Figure 9 (a) Density sampling, (b) and meshing for ‘France’ 
test case, without and (c) with invisible cells 

 

Best results are reported in Table 4, together with the  
ones obtained by the evolutionary approach. Typical 
results are drawn in Figures 8 and 9 with (c) without (b) 
surrounding cells. They illustrate the ability of the 
approach to produce a well contoured mesh on a map 
while eliminating overloaded cells. As given in Table 4 for 
the two test cases, the constraint on overloaded cells being 
satisfied, local search with probabilistic fitness is able to 
generate better solutions than evolutionary approach does, 
considering the three objectives Dev, Geom and Nvis 
simultaneously. 

Table 4 Comparison of local search with evolutionary 
approach (CKLC05) 

Method Instance
-kA-kG-
kN-h-Pop 

Dev Geom Nvis Nov Dov Max 

Local search 
(probabilistic 
fitness) 

A-6-3-1-
g’-1 

11.59 9.44 482 0 0 2896 

 A-6-3-1-
g’-1 

9.10 9.89 467 0 0 2900 

Evolutionary 
approach 
(CKLC05) 

A-6-3-1- 
h5-30 

14.77 9.63 499 0 0 2894 

 A-6-3-3- 
h5-30 

13.58 10.40 494 0 0 2896 

 A-6-3-6- 
h5-30 

10.63 11.35 473 1 4.14 3020 

 A-6-3-9- 
h5-30 

11.77 10.30 478 1 0.24 2907 

Local search 
(probabilistic 
fitness) 

France-6-
3-1-g’-1 

11.87 7.52 169 0 0 79,995 

 France-6-
3-1-g’-1 

7.74 8.40 161 0 0 79,979 

Evolutionary 
approach 
(CKLC05) 

France-6-
3-1-h5-40 

12.09 7.65 169 0 0 79,899 

Generally, it is admitted that evolutionary algorithms are 
relatively slow, but that higher global optima may be 
attainable over a much longer time period. This point is 
illustrated here considering number of visible cells (with 
non-null load). For example, the number of visible cells 
slightly increases or decreases during evolutionary search, 
by introducing new cells on traffic regions and leading to a 
wider search space exploration. Using local search, the 
number of visible cells remains constant during the search 
and depends on the initial mesh size N × M, thus reducing 
the search space. Nevertheless, probabilistic fitness 
mechanism significantly improves local search 
performance, working with a constant number of useful 
cells with relatively short computation time. 

6 Conclusion 

This paper addressed a local search approach to the mobile 
network dimensioning problem. It transferred the 
dimensioning problem to a geometric meshing generation 
problem that encompasses traffic requirements, 
minimisation of number of cells and preservation of 
structured hexagonal topology. This problem is closely 
related to usual balanced clustering problems in the plane. 
We presented a solution to this new optimisation problem 
through a local search heuristic, using probabilistic fitness 
aggregation with variable and dynamic penalties to help 
exit from local minima. Experiments illustrate the 
potentiality of the method at reaching better solutions than 
existing evolutionary approach does for the same problem. 
The improvement leads to a reduction of the number of 
transmitters and the production of irregular cell respecting 
hexagonal and neighbourhood constraints from theoretical 
cellular concepts. The next step will consist in relating 
ideal meshes found by the approach to the physical 
antennae parameters and using a wave propagation model. 
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