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Differential evolution is a novel evolutionary approach capable of handling non-differen-
tiable, nonlinear and multimodal objective functions. It has been consistently ranked as
one of the best search algorithm for solving global optimization problems in several case
studies. In the present study we propose five new mutation schemes for the basic DE algo-
rithm. The corresponding versions are termed as MDE1, MDE2, MDE3, MDE4 and MDE5.
These new schemes make use of the absolute weighted difference between the two points
and instead of using a fixed scaling factor F, use a scaling factor following the Laplace dis-
tribution. The performance of the proposed schemes is validated empirically on a suit of
ten benchmark problems having box constraints. Numerical analysis of results shows that
the proposed schemes improves the convergence rate of the DE algorithm and also main-
tains the quality of solution. Efficiency of the proposed schemes is further validated by
applying it to a real life electrical engineering problem dealing with the optimization of
directional over-current relay settings. It is a highly constrained nonlinear optimization
problem. A constraint handling mechanism based on repair methods is used for handling
the constraints. Once again the simulation results show the compatibility of the proposed
schemes for solving the real life problem.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Evolutionary algorithms (EAs) [1] are a broad class of stochastic optimization algorithms inspired by biology and, in par-
ticular, by those biological processes that allow populations of organisms to adapt to their surrounding environments: ge-
netic inheritance and survival of the fittest. EAs have a prominent advantage over other types of numerical methods, among
which the following two are the most important [2]:

� They can be applied to problems that consist of discontinuous, non-differentiable and non-convex objective functions
and/or constraints.

� They can easily escape from local optima.

EAs have been applied to a wide range of functions and real life problems [3–6]. Some common EAs are genetic algorithms
(GA), evolutionary programming (EP), differential evolution (DE), etc. Besides these algorithms, there are some other
population based methods like particle swarm optimization (PSO) and Ant colony optimization (ACO) based on social behav-
ior shown by different species like birds, ants bees, etc.
. All rights reserved.
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In the present research paper, we have concentrated our work on DE, which is comparatively a newer addition to the class
of population based search techniques. It was developed by Storn and Price [7] in 1995. DE is a novel evolutionary approach
capable of handling non-differentiable, nonlinear and multimodal objective functions. DE has been designed as a stochastic
parallel direct search method, which utilizes concepts borrowed from the broad class of EAs. It typically requires few, easily
chosen control parameters. Experimental results have shown that performance of DE is better than many other well known
EAs [8,9]. While DE shares similarities with other EAs, it differs significantly in the sense that in DE, distance and direction
information is used to guide the search process [10].

Despite several attractive features, it has been observed that DE sometimes does not perform as good as the expectations.
Empirical analysis of DE has shown that it may stop proceeding towards a global optimum though the population has not
converged even to a local optimum [12]. The situation when the algorithm does not show any improvement though it ac-
cepts new individuals in the population is known as stagnation. Besides this, DE also suffers from the problem of premature
convergence. This situation arises when there is a loss of diversity in the population. It generally takes place when the objec-
tive function is multi objective having several local and global optima. Further, like other EA, the performance of DE dete-
riorates with the increase in dimensionality of the objective function. Several modifications have been made in the
structure of DE to improve its performance. Some interesting modifications are; parameter adaption strategy for DE sug-
gested by Zaharie [13], Abbas [14] proposed a self-adaptive crossover rate for multiobjective optimization problems, Omran
et al. [15] introduced a self-adaptive scaling factor parameter F, Brest et al. [16] proposed SADE, which encoded control
parameters F and Cr into the individuals and evolved their values by using two new probabilities. Das et al. [17] introduced
two schemes for the scale factor F in DE. Some other recent modified versions include opposition based DE (ODE) by Rahn-
amayan et al. [18], a hybridization of DE with neighborhood search by Yang et al. [19], fittest individual refinement [FIR]
method by Noman and Iba [20]. Many recent developments in DE algorithm design and application can be found in [21].

The present study proposes five new mutation schemes for DE algorithm. Here we would like to mention that a prelimin-
ary version of this work appears in a conference proceeding [22]. However in [22], only one mutation scheme is proposed.
Also in [22], only unconstrained optimization problems are tested whereas in the present study, we have considered a con-
strained real life optimization problem as well. All the mutation schemes proposed in the present study are based on the
absolute weighted difference between the two points and use Laplace distributed random number as amplifying factor.

The structure of the paper is as follows: in Section 2, we briefly explain the differential evolution algorithm, in Section 3;
we have defined and explained the proposed schemes for MDE algorithm. Section 4 deals with experimental settings, Section
5 gives the benchmark problems. In Section 6, the algorithms used for comparison are given and the numerical results of
benchmark problems are analyzed in Section 7. Section 8 deals with the performance of MDE algorithms for constrained real
life problem. Finally the paper concludes with Section 9.

2. Differential evolution

DE shares a common terminology of selection, crossover and mutation operators with GA however it is the application of
these operators that make DE different from GA; while, in GA crossover plays a significant role, it is the mutation operator
which affects the working of DE [11]. A general DE variant may be denoted as DE/X/Y/Z, where X denotes the vector to be
mutated, Y specifies the number of difference vectors used and Z specifies the crossover scheme which may be binomial
or exponential. For the more details the interested reader may please refer to [23].

The working of DE is as follows: First, all individuals are initialized with uniformly distributed random numbers and eval-
uated using the fitness function provided. Then the following are executed until a stopping criterion is satisfied.

2.1. Mutation

For a D-dimensional search space, for each target vector Xi;g at the generation g, its associated mutant vector is generated
via certain mutation strategy. The most often used mutation strategies implemented in the DE codes are listed below.
DE=rand=1 : Vi;g ¼ Xr1 ;g þ F�ðXr2 ;g � Xr3 ;gÞ ð1Þ
DE=rand=2 : Vi;g ¼ Xr1 ;g þ F�ðXr2 ;g � Xr3 ;gÞ þ F�ðXr4 ;g � Xr5 ;gÞ ð2Þ
DE=best=1 : Vi;g ¼ Xbest;g þ F�ðXr1 ;g � Xr2 ;gÞ ð3Þ
DE=best=2 : Vi;g ¼ Xbest;g þ F�ðXr1 ;g � Xr2 ;gÞ þ F�ðXr3 ;g � Xr4 ;gÞ ð4Þ
DE=rand� to� best=1 : Vi;g ¼ Xr1 ;g þ F�ðXbest;g � Xr2 ;gÞ þ F�ðXr3 ;g � Xr4 ;gÞ ð5Þ
where r1; r2; r3; r4; r5 2 f1;2; . . . ;NPg are randomly chosen integers, different from each other and also different from the run-
ning index i. F(>0) is a scaling factor which controls the amplification of the difference vector. Xbest;g is the best individual
vector with the best fitness value in the population at generation g.

2.2. Crossover

Once the mutation phase is over, crossover is performed between the target vector and the mutated vector to generate a
trial point for the next generation. Crossover is introduced to increase the diversity of the population [8].
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The mutated individual, Vi;Gþ1 ¼ ðv1;i;Gþ1; . . . ;vD;i;Gþ1Þ, and the current population member, Xi;G ¼ ðx1;i;G; . . . ; xD;i;GÞ, are then
subject to the crossover operation, that finally generates the population of candidates, or ‘‘trial” vectors, Ui;Gþ1 ¼ ðu1;i;Gþ1; . . . ;

uD;i;Gþ1Þ, as follows:
Table 1
Propose

Sche

MDE
MDE
MDE

MDE

MDE
uj;i:Gþ1 ¼
v j;i:Gþ1 if randj 6 Cr _ j ¼ k

xj;i:G otherwise

�
ð6Þ
where j; k 2 f1; . . . ;Dg k is a random parameter index, chosen once for each i;Cr is the crossover probability parameter whose
value is generally taken as Cr 2 ½0;1�.

2.3. Selection

The final step in the DE algorithm is the selection process. Each individual of the temporary (trial) population is compared
with its counterpart in the current population. The one with the lower objective function value survives the tournament
selection and go to the next generation. As a result, all the individuals of the next generation are as good as or better than
their counterparts in the current generation. A notable point in DE’s selection scheme is that a trial vector is not compared
against all the individuals in the current generation, but only against one individual, its counterpart, in the current genera-
tion. The population for the next generation is thus selected from the individuals in current population and its corresponding
trial vector according to the following rule:
Xi:Gþ1 ¼
Ui:Gþ1 if f ðUi:Gþ1Þ 6 f ðXi:GÞ
Xi:G otherwise

�
ð7Þ
In the present study we shall be following the scheme DE/rand/1/bin version which is apparently the most commonly used
version and shall refer to it as basic DE or classical DE.

3. Proposed scheme for modified DE algorithm

The structural difference between the proposed MDE schemes and the basic DE lies in the mutation phase only. These
schemes are based on the absolute weighted difference between the vectors to generate a mutant vector. The amplification
factor, F, is replaced by a random variable (say L) following Laplace distribution. Based on these modifications five schemes
namely MDE1, MDE2, MDE3, MDE4 and MDE5 are proposed. The first scheme, MDE1, uses only two vectors to generate a
mutant vector. The second scheme, MDE2, is like target to best scheme of basic DE where the vector having the best fitness
function value is used as a base vector. In MDE3, which is the third scheme two vectors are generated and the one having the
better fitness function value is accepted as a mutant vector. In the fourth scheme the original mutation scheme as given by
Eq. (1) and the MDE1 scheme are applied stochastically according to the user defined parameter PMDE. Uniformly distributed
random numbers between 0 and 1 are generated. If the random number is greater than the parameter PMDE, then MDE1 is
applied to generate the mutant vector otherwise the mutant vector is generated using Eq. (1). In the fifth case the mutant
vector is generated by adding a random vector to the amplified distance between the best vector and another randomly gen-
erated vector. Mathematical definitions of the proposed schemes are given in Table 1.

As mentioned earlier the amplifying factor in all the cases is a random variable L following Laplace distribution. The prob-
ability density function (pdf) of Laplace distribution is similar to that of normal distribution however, the normal distribu-
tion is expressed in terms of squared difference from the mean, Laplace density is expressed in terms of absolute difference
from the mean. The density function of Laplace distribution is given as:
d schemes of MDE algorithm.

me Definition Number of points used for the generation of mutant vector

1 v i;gþ1 ¼ xr1 ;g þ L�jxr1 ;g � xr2 ;g j 2, both points are selected randomly
2 v i;gþ1 ¼ xbest;g þ L�jxr1 ;g � xr2 ;g j 3, one best point and the other two are randomly selected
3 v 0i;gþ1 ¼ xr1 ;g þ L�jxr1 ;g � xr2 ;g j 2, both points are randomly selected

v 00i;gþ1 ¼ xr2 ;g þ L�jxr1 ;g � xr2 ;g j
If ðf ðv 0i;gþ1Þ < f ðv 00i;gþ1ÞÞ then

v i;gþ1 ¼ v 0i;gþ1

Else v i;gþ1 ¼ v 00i;gþ1

4 If (U(0,1) > PMDE) then MDE1 and Eq. (1) are applied stochastically
v i;gþ1 ¼ xr1 ;g þ L�jxr1 ;g � xr2 ;g j
Else
v i;gþ1 ¼ xr1 ;g þ F�ðxr2 ;g � xr3 ;gÞ

5 v i;gþ1 ¼ xr1 ;g þ L�jxbest;g � xr2 ;g j 3, one is the best point and the other two are randomly selected.
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f ðx=hÞ ¼ 1
2l

exp
�jx� hj

l

� �
; �1 6 x 61 ð8Þ
Its distribution function is given by:
¼ 1
2l

exp � x�h
l

� �
if x 6 h

1� exp � h�x
l

� �
if x > 0

8><
>: ð9Þ
l > 0 is the scale parameter.
From Table 1, it can be seen that the newly generated mutant vector will lie in the vicinity of the base vector. However its

nearness or distance from base vector will be controlled by L. For smaller values of l, the mutant vector is likely to be pro-
duced near the initially chosen vector, whereas for larger values of l, the mutant vector is more likely to be produced at a
distance from the chosen vector. This behavior makes the algorithm self-adaptive in nature, which in turn helps in preserv-
ing the diversity of the population by exploring the search space more effectively.

4. Experimental settings

Setting of control parameters or fine tuning of parameters is a crucial task in EA and is mainly done empirically to select
the best value of parameters. The main parameters of DE are population size, crossover rate Cr and scaling factor F. The pop-
ulation size is taken as 50 for all the test problems. However, this is a heuristic choice and may be increased, depending on
the complexity of the problem. The other parameters, crossover rate Cr and scaling factor F, for classical DE, are fixed at 0.2
and 0.9, respectively. For MDE schemes we did a sensitivity analysis for various crossover rates varying it from 0.1 to 0.9 for
all the test problems and observed that the crossover rate of 0.2 is most suitable for all the schemes used for solving the test
suit taken in the present study. The value of additional parameter PMDE in MDE4 scheme is taken as 0.2. As mentioned in the
previous section, the scaling factor for all MDE schemes is a random variable L which follows Laplace distribution.

In order to make a fair comparison of DE and MDE algorithms, we fixed the same seed for random number generation so
that the initial population is same for all the algorithms. For each algorithm, the maximum number of iterations allowed was
set to 5000 and the error goal was set as 1*e�04. The numerical results are recorded for 30 runs for each algorithm. The algo-
rithms are programmed using Developer C++ and are executed on a Pentium IV PC.

5. Benchmark problems

For the present study we considered a test bed of 10 benchmark problems given in Table 2. Though this test bed is rather
narrow, we have tried to include problems having different characteristics. Except for the last two functions; f9 and f10, all the
problems are solved for dimension 30. In this section we describe briefly the properties of these functions.

� Rastringin’s function’s contour is made up of a large number of local minima which increases with the increase in the
dimensionality of the problem.

� The second function is a simple sphere function which is strictly convex and unimodal and is generally considered as a
good starting point for testing an optimization algorithm.

� Griewank function is a continuous multimodal function considered difficult to optimize because of its non-separable
nature.

� The search space of Rosenbrock function is dominated by a large gradual slope which is raised along one edge to a fine
point. Though it looks simple, it is notoriously hard for some optimization algorithms because of the extremely large
search space combined with relatively small global minima.

� Noisy function is constructed by adding a uniformly distributed random noise to a quartic function. Due to the presence
of noise the global optimum keeps on shifting from one position to another.

� The surface of Schwefel function consists of a large number of peaks and valleys. Also for this function the global min-
imum is near the bounds of the domain.

� In Ackley function, the presence of an exponential term makes is surface covered with several local minima.
� The eighth function is again a multimodal function having several local and global minima.
� Himmelblau’s function is also a multimodal function with one global minimum and four identical local minima.
� Shubert’s function has 760 local minima out of which 18 are global minima.

6. Algorithms used for comparison

Besides using the basic DE we have also used two recent versions of DE namely opposition based DE (ODE) and differen-
tial evolution with preferential crossover (DEPC), for comparison with the proposed schemes.



Table 2
Numerical benchmark problems.

Function Function definition Range Min. Value

Rastringin function f1ðxÞ ¼
Pn

i¼1ðx2
i � 10 cosð2pxiÞ þ 10Þ [�5.12,5.12] 0

Spherical function f2ðxÞ ¼
Pn

i¼1x2
i

[�5.12,5.12] 0

Griewank function f3ðxÞ ¼ 1
4000

Pn�1
i¼0 x2

i þ
Pn�1

i¼0 cos xiffiffiffiffiffiffi
iþ1
p
� �

þ 1 [�600,600] 0

Rosenbrock function f4ðxÞ ¼
Pn�1

i¼0 100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2 [�30,30] 0

Noisy function f5ðxÞ ¼
Pn�1

i¼0 ðiþ 1Þx4
i

� �
þ rand½0;1� [�1.28,1.28] 0

Schwefel function f6ðxÞ ¼ �
Pn

i¼1xi sin
ffiffiffiffiffiffiffi
jxij

p� �
[�500,500] �12569.5

Ackley Function f7ðxÞ ¼ 20þ e� 20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x2

i

q� �
� exp 1

n

Pn
i¼1 cosð2pxiÞ

� 	 [�32,32] 0

Michalewicz function f8ðxÞ ¼ �
Pn

i¼1 sinðxiÞðsinði x2
i
pÞÞ

2m; m ¼ 10 ½�p;p� –

Himmelblau function f9ðxÞ ¼ ðx2 þ x2
1 � 11Þ2 þ ðx1 þ x2

2 � 7Þ2 þ x1 [�5,5] �3.78396

Shubert function f10ðxÞ ¼
P5

j¼1j cosððjþ 1Þx1 þ jÞ
P5

j¼1j cosððjþ 1Þx2 þ jÞ [�10,10] �186.7309

Table 3
Parameter Settings of MDE schemes.

Algorithm Population size F CR Max. generations Error goal Max. run

MDE schemes vs. DE
DE 50 0.9 0.2 5000 1*e�04 30
MDE schemes 50 Laplace distributed 0.2 5000 1*e�04 30

MDE schemes vs. DEPC
DEPC 10*n ½�1;�0:4� [ ½0:4;1� 0.5 – 1*e�04 100
MDE schemes 10*n Laplace distributed 0.5 – 1*e�04 100

MDE schemes vs. ODE
ODE 100 0.5 0.9 10000 1*e�08 50
MDE schemes 100 Laplace distributed 0.9 10000 1*e�08 50

n – dimension of the problem.
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Differential evolution with preferential crossover was suggested by Ali in 2007 [24]. In this work he suggested three
changes in the basic DE structure. The DEPC algorithm uses Fi as a random variable in ½�1;�0:4� [ ½0:4;1� for each target
point. Secondly DEPC used two population sets S1 and S2 containing N points. The function of the auxiliary set S2 in DEPC
is to keep record of the trial points that are discarded in DE. Potential trial points in S2 are then used for further explorations.
Finally DEPC uses a new crossover rule, namely the preferential crossover, which always generates feasible trial points. Ali
tested his algorithm on comprehensive set of benchmark problems and showed that DEPC outperforms the basic DE in most
of the test cases. The second algorithm that we have used for comparison is opposition based DE, suggested by Rahnamayan
et al. [25]. They suggested a novel method of generating the population based on opposition based-learning. They made use
of two population sets one containing the randomly generated points and the other containing the points opposite to that of
the initial points. Finally the two populations were merged and the best n points were taken to form the initial population.
They also introduced the concept of generation jumping to further improve the performance of ODE. The parameter settings
of MDE schemes for comparison of DE, DEPC and ODE are given in Table 3.

7. Numerical results and comparison

7.1. Performance measures

In order to compare the proposed MDE schemes with basic DE and other modified versions of DE we considered various
performance metrics like average fitness function value and standard deviation (STD) to check the efficiency and reliability of
the algorithm. To compare the convergence speed of algorithms we considered the average number of function evaluations
(NFE). Smaller number of function evaluations indicates faster convergence. The speed of the algorithm is also measured by
recording the total CPU time and the average CPU time taken by the algorithm to meet the stopping criteria. Besides this we
have measured the success rate (SR) and average success rate (ASR). A run is considered to be a success if the value obtained
at the end of the algorithm is within one percent of the desired accuracy. The definitions of performance measures used in
Tables 5–7 are given as:



Table 4
Average

Fun.

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10
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Average NFE ¼
Pn

i¼1NFEðfiÞ
n

Improvement ð%Þ in terms of NFE ¼ Total NFE ðbasic DE algorithmÞ � Total NFE ðAlgorithm to be comparedÞ
Total NFE ðbasic DE algorithmÞ ¼ 100

Acceleration rate ðARÞ ¼ Total NFE for basic DE
Total NFE for algorithm to be compared

Average CPU time ¼
Pn

i¼1TimeðfiÞ
n

Improvement ð%Þ in terms of CPU Time ¼ Total time ðbasic DE algorithmÞ � Total time ðAlgorithm to be comparedÞ
Total NFE ðbasic DE algorithmÞ � 100

Average SR ¼
Pn

i¼1 SRðfiÞ
n

7.2. Performance analysis I: Comparison of MDE schemes with basic DE

Performance comparisons of MDE schemes with basic DE are given in Tables 4–7. From Table 4 which gives the average
fitness function value, we can see that all the MDE schemes performed better than the basic DE for all the test problems.
Particularly in case of f1 (Rastringin function) and f4 (Rosenbrock function), there is a significant improvement in the perfor-
mance of DE using the proposed MDE3, MDE4 and MDE5 schemes. In case of f1, there is an improvement of 97% in the func-
tion value while using MDE5 scheme. Similarly for f4, the use of MDE3 scheme improves the function value up to 99%. For
other functions also, the proposed schemes outperform the basic DE algorithm.

The superior performance of proposed schemes is more evident from Tables 5–7 which give the convergence speed, aver-
age CPU time and success rate of the proposed schemes and the basic DE. From these tables, it can be seen that there is more
than 50% improvement in the convergence speed with the implementation of MDE1, MDE4 and MDE5 schemes. MDE3
scheme improves the performance by 44%. Under the present parameter settings, MDE2 scheme did not show much
improvement as the improvement in convergence rate is only 0.33%. The concept of acceleration rate (AR), which again is
a criterion of measuring the convergence speed of an algorithm is taken from [25]. When AR is greater than 1, then it means
that the proposed algorithm is better than the basic algorithm. For all the proposed MDE schemes, the AR is greater than 1.

When we observe the CPU time given in Table 6, we can see that the average time taken by all the proposed MDE schemes
to solve the given test problems is less than the time taken by DE algorithm. With MDE1 scheme, the improvement is 64%
and with MDE3, MDE4 and MDE5 schemes the improvement in time is more than 50%. However with MDE2 scheme, this
improvement is only 5%. If we talk about the success rate, which is given in Table 7, we can see that on an average the pro-
posed MDE1, MDE3 MDE4 and MDE5 gives more than 80% success while MDE2 gives more than 65% success for all the test
problems considered in this study. The performance curves of MDE vs. DE for all benchmark problems are shown in Fig. 1a–j.

7.3. Performance analysis II: Comparison of MDE schemes with other algorithms

While comparing the performance of proposed MDE schemes with DEPC and ODE, we changed the parameter settings of
MDE schemes same as that of the algorithms to which they were compared. This was done to give an equal opportunity to all
fitness function value and (standard deviation) obtained by basic DE and proposed schemes for 30 runs.

DE MDE1 MDE2 MDE3 MDE4 MDE5

29.9076 (1.34989) 5.87024 (2.10827) 27.7223 (7.18165) 4.97478 (1.33962) 2.78592 (0.974859) 0.895465
(0.696468)

6.87e�05 (9.13e�06) 3.99e�06 (1.18e�06) 9.45e�06
(3.70e�06)

5.41e�06 1.54e�06) 4.14e�05 (1.40e�05) 5.09e�06
(1.18e�06)

7.70e�05 (8.63e�06) 4.83e�06 (2.22e�06) 2.06491 (0.790521) 4.08e�11 3.53e�09) 4.82e�05 (1.17e�05) 0.017624 (0.052857)
26.3194 (1.4247) 8.98702 98.01641) 17.2028 (4.56154) 1.35307 (3.10551) 0.334056 (8.00e�05) 4.79998 (3.29972)
0.0177813
(0.0042194)

0.0039471
(0.00110212)

0.0761519
(0.055258)

0.0039252
(0.0007672)

0.0031820
(0.0006822)

0.003726 (0.000837)

�12474.7 (4.73753) �12534 (3.58375) �11618.2 (3.5559) �12545.8 (2.10634) �12569.5 (0.00000) �12569.5
(1.31e�06)

0.0001830
(2.077e�05)

6.84e�05 (0.0001639) 1.13e�06 (0.739362) 1.25e�05 (0.13524) 0.0001516 (2.38e�05) 1.55e�05
(2.09e�06)

�27.095 (0.32179) �28.6223 (0.215474) �27.2475 (1.29499) �28.8925 (0.201602) �29.1373 (0.181723) �29.5502
(0.028403)

�3.28972 (0.388473) �3.49703 (0.470752) �3.31278 (0.012865) �3.78396 (0.00000) �3.39549 (0.475781) �3.29837
(0.485592)

�186.731 (1.11e�07) �186.731 (1.77e�08) �186.731
(4.01e�09)

�186.731 (8.79e�09) �186.731 (2.38e�07) �186.731
(1.94e�08)



Table 5
MDE vs. DE (number of function evaluations (NFE)).

Function DE MDE1 MDE2 MDE3 MDE4 MDE5

f1 250050 34585 250050 86375 37440 37935
f2 57000 18935 19455 45020 16540 18570
f3 175570 27005 26715 78305 24715 29165
f4 250050 178750 197189 192980 216285 242105
f5 250050 250050 250050 750050 250050 250050
f6 122525 28290 31735 75425 28025 31460
f7 100655 32170 19030 82415 28290 32450
f8 250050 53580 25475 141005 53655 74385
f9 5470 4755 5155 13490 4155 4070
f10 18120 3950 1610 9545 4675 8315P

1479540 632070 826464 1474610 663830 728505
Average NFE 147954 63207 82646.4 147461 66383 72850.5
Improvement (%) of NFE 57.27929 44.14048 0.333212 55.13268 50.76139
AR 2.340785 1.790205 1.003343 2.228794 2.030926

Table 6
CPU Time (in seconds) taken by basic de algorithm and proposed MDE schemes.

Function DE MDE1 MDE2 MDE3 MDE4 MDE5

f1 42.8 5.4 37.3 11.8 5.7 5.9
f2 8.6 2.8 2.9 5.7 2.5 2.8
f3 28.9 4.1 4.1 11.3 3.6 4.3
f4 106.9 64.9 66.7 146.4 88.2 87.1
f5 37.9 37.0 37.1 97.4 40.2 37.8
f6 2.3 0.5 0.6 1.2 0.7 0.6
f7 13.9 6.1 3.9 15.7 4.6 5.2
f8 129.1 11.9 9.6 61.4 13.0 18.1
f9 0.1 0.1 0.4 0.3 0.1 0.1
f10 0.1 0.01 0.01 0.1 0.01 0.1P

370.6 132.81 162.61 351.3 158.61 162
Average Time 37.06 13.281 16.261 35.13 15.861 16.2
Improvement (%) of Time 64.16352 56.1225 5.207771 57.20183 56.2871

Table 7
MDE vs. DE (success rate (SR) (%)).

Function DE MDE1 MDE2 MDE3 MDE4 MDE5

f1 – 100 – 100 100 100
f2 100 100 100 100 100 100
f3 100 100 100 100 100 100
f4 – 70 30 90 70 10
f5 – – – – – –
f6 100 100 70 100 100 100
f7 100 100 100 100 100 100
f8 – 100 100 100 100 100
f9 100 100 100 100 100 100
f10 70 90 70 100 100 100
Average SR 57 86 67 89 87 81
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the algorithms. In these comparisons we have not recorded the average CPU time because it was not mentioned in the lit-
erature. The remaining performance metrics are kept same as mentioned in Section 7.2. Performance analysis of MDE
schemes with ODE is given in Table 8. From this Table we can see that under the changed parameter settings, except for
MDE2 scheme for function f1 (Rastringin function) where it failed to give any result, the performance of the remaining
MDE schemes is either better or at par with ODE in terms of NFE. In terms of reliability, the SR for ODE is 85% while
MDE3 and MDE5 gave an average of 100% success for all the test problems that were considered. The SR of MDE1 and
MDE4 was more than 95%. However, the SR of MDE2 scheme was only 75%.

In Table 9, the performance comparison of proposed MDE schemes is given with DEPC algorithm. Once again, we changed
the parameter settings of MDE schemes according to DEPC [24]. Here, we observed an interesting thing that MDE2 scheme
which was giving the worst performance in previous cases started performing very well under the changed parameter set-
tings. It gave the best results in terms of NFE for function f1 for which it failed in previous cases. The other schemes per-
formed more or less in a stable manner giving good results (giving an average success rate of 90%) which were again
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either better or at par with the DEPC algorithm. The success rate for DEPC algorithm was however 98% but this is quite ex-
pected because the parameter settings were in favor of DEPC.

8. Application of proposed MDE algorithms: Optimization of directional over-current relay settings

An optimization algorithm is said to be successful only if it is capable of solving real life problems, which may or may not
be assisted with constraints, along with the benchmark problems. Therefore in order to check the efficiency of the proposed
MDE algorithms, we tested them on an engineering design problem, optimization of directional over-current relay (DOCR)
settings [26], which is an important problem in electrical engineering. The problem is modeled as a nonlinear constrained
optimization problem in which the two settings namely time delay setting (TDS) and plug setting (PS) of each relay are con-
sidered as decision variables; the sum of the operating times of all the primary relays, which are expected to operate in order
Fig. 1. (a)–(j) Performance curves of DE, MDE1, MDE2, MDE3, MDE4 and MDE5 for the given benchmark problems.



Fig. 1 (continued)
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to clear the faults of their corresponding zones, is considered as objective function. Two models are considered namely IEEE
3-bus model and IEEE 4-bus model.

8.1. General model of the problem

The optimal coordination problem of DOCRs using optimization technique consists of minimizing an objective function
(performance function) subject to certain coordination criteria and limits on problem variables. The relay, which is supposed
to operate first to clear the fault, is called primary relay. A fault close to relay is known as the close-in fault for the relay and a
fault at the other end of the line is known as a far-bus fault for this relay. Conventionally, objective function in coordination
studies is constituted as the summation of operating times of all primary relays, responding to clear all close-in and far-bus
faults. The objective function is as follows:
Minimize OBJ ¼
XNcl

i¼1

Ti
pri cl in þ

XNfar

j¼1

Tj
pri far bus ð10Þ



Table 8
Comparison results of MDE vs. ODE [25] (NFE, success rate (%)).

Fun Dim ODE MDE1 MDE2 MDE3 MDE4 MDE5

NFE SR NFE SR NFE SR NFE SR NFE SR NFE SR

f1 10 70389 76 52866 94 – – 70090 100 30050 100 29793 100
f2 30 47716 100 46893 100 51500 100 115630 100 43440 100 50133 100
f3 30 69342 96 61146 100 66424 100 150400 100 65860 100 65933 100
f7 30 98296 100 88453 100 98460 100 219700 100 96530 100 95026 100
f8 10 213330 56 174446 86 183256 76 9790 100 146487 88 15100 100

Table 9
Comparison results of MDE vs. DEPC [24] (NFE, success rate (%)).

Fun Dim DEPC MDE1 MDE2 MDE3 MDE4 MDE5

NFE SR NFE SR NFE SR NFE SR NFE SR NFE SR

f1 10 26927 100 25800 100 11180 100 60340 100 24510 100 24140 100
f3 10 47963 100 36866 100 18400 100 92050 100 30490 100 36770 100
f4 10 512165 100 209787 100 930950 40 1191700 70 484033 80 815130 40
f6 10 24046 100 19120 100 10940 100 51550 100 21800 100 20100 100
f7 10 29825 100 24020 100 12690 100 68980 100 25320 100 24930 100
f10 2 1955 89 1333 100 630 100 3566 100 1644 100 1918 100
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where, Ncl is number of relays responding for close-in fault; Nfar is number of relays responding for far-bus fault; Tpri cl in is
primary relay operating time for close-in fault; Tpri far bus is primary relay operating time for far-bus fault. The constraints are
as follows:

Bounds on variables TDSs:
TDSi
min 6 TDSi

6 TDSi
max; where i varies from 1 to Ncl:
where TDSi
min is lower limit and TDSi

max is upper limit of TDSi. These limits are 0.05 and 1.1, respectively.
Bounds on variables PSs
PSj
min 6 PSj

6 PSj
max; where j varies from 1 to Ncl:
where PSj
min is lower limit and PSj

max is upper limit of PSj. These are 1.25 and 1.50, respectively.
Limits on primary operation times:
This constraint imposes constraint on each term of objective function to lie between 0.05 and 1.0.
Selectivity constraints for all relay pairs:
Tbackup � Tprimary � CTI P 0
where Tbackup is operating time of backup relay, Tprimary is operating time of primary relay and CTI is coordinating time
interval.

8.2. Model I: IEEE 3-bus model

For the coordination problem of IEEE 3-bus model, value of each of Ncl and Nfar is 6 (equal to number of relays or twice the
lines). Accordingly, there are 12 decision variables (two for each relay) in this problem i.e. TDS1 to TDS6 and PS1 to PS6.

Objective function (OBJ) to be minimized as given by:
OBJ ¼
X6

i¼1

Ti
pri cl in þ

X6

j¼1

Tj
pri far bus ð11Þ
where
Ti
pri cl in ¼

0:14� TDSi

ai

PSi�bi

� �0:02
� 1

ð12Þ

Ti
pri far bus ¼

0:14� TDSj

ci

PSj�di

� �0:02
� 1

ð13Þ
The values of constants ai; bi
; ci and di are given in the Table 10.



Table 10
Values of constants ai; bi

; ci and di for Model I.

Ti
pri cl in Ti

pri far bus

TDSi ai bi TDSj ci di

TDS1 9.46 2.06 TDS2 100.63 2.06
TDS2 26.91 2.06 TDS1 14.08 2.06
TDS3 8.81 2.23 TDS4 136.23 2.23
TDS4 37.68 2.23 TDS3 12.07 2.23
TDS5 17.93 0.8 TDS6 19.2 0.8
TDS6 14.35 0.8 TDS5 25.9 0.8
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Constraints for the model are:
Bounds on variables TDSs:
Table 1
Values

Ti
back

p

5
6
4
2
5
6
2
4

Table 1
Values

Ti
pri c

TDSi

TDS1

TDS2

TDS3

TDS4

TDS5

TDS6

TDS7

TDS8
TDSi
min 6 TDSi

6 TDSi
max; where; i varies from 1 to 6 ðNclÞ
Bounds on variables PSs:
PSj
min 6 PSj

6 PSj
max; where; j varies from 1 to 6 ðNclÞ
Limits on primary operation times:
This constraint imposes constraint on each term of objective function to lie between 0.05 and 1.0.
Selectivity constraints are:
Ti
backup � Ti

primary � CTI P 0 ð14Þ
Tbackup is operating time of backup relay and Tprimary is operating time of primary relay. Value of CTI is 0.3. Here,
Ti
backup ¼

0:14� TDSp

ei

PSp�f i

� �0:02
� 1

ð15Þ

Ti
primary ¼

0:14� TDSq

gi

PSq�hi

� �0:02
� 1

ð16Þ
1
of constants ei; f i; gi and hi for Model I.

up Ti
primary

ei f i q gi hi

14.08 0.8 1 14.08 2.06
12.07 0.8 3 12.07 2.23
25.9 2.23 5 25.9 0.8
14.35 0.8 6 14.35 2.06

9.46 0.8 1 9.46 2.06
8.81 0.8 3 8.81 2.23

19.2 2.06 6 19.2 0.8
17.93 2.23 5 17.93 0.8

2
of constants ai; bi

; ci and di for Model II.

l in Ti
pri far bus

ai bi TDSj ci di

20.32 0.48 TDS2 23.75 0.48
88.85 0.48 TDS1 12.48 0.48
13.61 1.1789 TDS4 31.92 1.1789

116.81 1.1789 TDS3 10.38 1.1789
116.7 1.5259 TDS6 12.07 1.5259

16.67 1.5259 TDS5 31.92 1.5259
71.7 1.2018 TDS8 11 1.2018
19.27 1.2018 TDS7 18.91 1.2018



Table 13
Values of constants ei; f i; gi and hi for Model II.

Ti
backup Ti

primary

p ei
f i q gi hi

5 20.32 1.5259 1 20.32 0.48
5 12.48 1.5259 1 12.48 0.48
7 13.61 1.2018 3 13.61 1.1789
7 10.38 1.2018 3 10.38 1.1789
1 1.16 0.48 4 116.81 1.1789
2 12.07 0.48 6 12.07 1.1789
2 16.67 0.48 6 16.67 1.5259
4 11 1.1789 8 11 1.2018
4 19.27 1.1789 8 19.27 1.2018

Table 14
Comparison results of IEEE 3-bus, 4-bus and 6-bus models: interms of objective function value (OBJ) and NFE.

Algorithm IEEE 3-bus model IEEE 4-bus model

OBJ NFE OBJ NFE

DE 4.84218 78360 3.67744 95400
MDE1 4.80699 72350 3.66945 43400
MDE2 4.78728 73350 3.67349 67200
MDE3 4.78227 97550 3.66925 99700
MDE4 4.78067 69270 3.66749 55100
MDE5 4.78068 38250 3.66941 35330

Table 15
Improvement(%) of modified DE algorithms in comaprison with DE interms of objective function values.

Algorithm IEEE 3-bus IEEE 4-bus

MDE1 0.726739 0.217271
MDE2 1.133787 0.107412
MDE3 1.237253 0.222709
MDE4 1.270296 0.270569
MDE5 1.270089 0.218358
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The values of constants ei; f i; gi and hi are given in the Table 11.

8.3. Model II: IEEE 4-bus model

For coordination problem of IEEE 4-bus model, value of each of Ncl and Nfar is 8 (equal to number of relays or twice the
lines). Accordingly, there are 16 decision variables (two for each relay) in this problem i.e. TDS1 to TDS8 and PS1 to PS8. The
value of for this model is 0.3. The number of selectivity constraints is 9.

The objective function and constraints for this model will be of same form as in the case of Model I problem (with Ncl ¼ 8)
described in Section 8.2. The values of constants ai; bi

; ci; di and ei; f i; gi;hi for Model II are given in Tables 12 and 13,
respectively.

8.4. Results and discussion

Parameter settings for all the real life problems are kept same as that of the test functions. Constraint handling approach
based on repair methods [27] is used for handling constraints. The best solution obtained by DE and modified DE algorithms
of IEEE 3-bus model and IEEE 4-bus model in terms of objective function value and number of function evaluations are given
in Table 14. From the numerical results, we can see that MDE4 gave better result than the other algorithms in terms of objec-
tive function value for both the models. On the other hand, if we compare the NFE, then the performance of MDE5 is better
than all other compared algorithms. Also, from the numerical results of Table 14 we can see that all the modified versions of
DE outperform the basic DE algorithm by a significant difference. In Table 15, we have given the improvement (%) of mod-
ified DE algorithms in comparison with basic DE.
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9. Conclusions

In the present study we proposed five new mutation schemes for the basic DE algorithm. The two main differences be-
tween the basic DE mutation operation and the proposed schemes are (i) use of absolute difference between the two points
rather than simple vector difference between the points and (ii) use of Laplace distribution for scaling factor instead of hav-
ing a predefined value. The performance of the proposed schemes is validated on a set of 10 test problems and the numerical
results are compared with basic DE and two other versions of DE. The numerical results show that the proposed schemes
help in improving the convergence rate up to 50% in comparison to the basic DE and at the same time maintain a good
SR as well. Also it was observed that out of the five proposed schemes MDE2 was most sensitive to the parameter settings
as its performance changed drastically when the parameter settings were changed. However the remaining four schemes
performed more or less in a stable manner giving good performance even when the parameter settings were changed
according to the algorithms to which they were being compared (i.e. DEPC and ODE). The efficiency of MDE algorithms were
further tested by applying them on a real life problem, optimization of directional over-current relay (DOCR) settings, which
is an important problem in electrical engineering. This problem was modeled as a nonlinear constrained optimization prob-
lem; the constraints were dealt with the constraint handling mechanism based on repair methods. Numerical results of real
as well as test problems show the robustness and efficiency of proposed MDE algorithms.
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