
Negotiation mechanism for self-organized scheduling system
with collective intelligence

A. Madureira a,n, I. Pereira a, P. Pereira a, A. Abrahamb

a GECAD – Knowledge Engineering and Decision Support Research Center, School of Engineering, Polytechnic of Porto (ISEP/IPP), Portugal
b Machine Intelligence Research Labs (MIR Labs), USA

a r t i c l e i n f o

Article history:
Received 31 October 2012
Received in revised form
2 September 2013
Accepted 23 October 2013
Available online 27 November 2013

Keywords:
Negotiation in MAS
Self-organization
Swarm intelligence
Dynamic scheduling
Agile manufacturing

a b s t r a c t

Current Manufacturing Systems challenges due to international economic crisis, market globalization
and e-business trends, incites the development of intelligent systems to support decision making, which
allows managers to concentrate on high-level tasks management while improving decision response and
effectiveness towards manufacturing agility.

This paper presents a novel negotiation mechanism for dynamic scheduling based on social and
collective intelligence. Under the proposed negotiation mechanism, agents must interact and collaborate
in order to improve the global schedule. Swarm Intelligence (SI) is considered a general aggregation term
for several computational techniques, which use ideas and inspiration from the social behaviors of
insects and other biological systems. This work is primarily concerned with negotiation, where multiple
self-interested agents can reach agreement over the exchange of operations on competitive resources.
Experimental analysis was performed in order to validate the influence of negotiation mechanism in the
system performance and the SI technique. Empirical results and statistical evidence illustrate that the
negotiation mechanism influence significantly the overall system performance and the effectiveness of
Artificial Bee Colony for makespan minimization and on the machine occupation maximization.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

For today's manufacturing environments, it is increasingly neces-
sary that a close relationship between manufacturing decision making
and corporate business strategy exists, so that manufacturing decisions
complement and are fully aligned with the strategic objectives of
organizations through agility concerns and requirements. Agility refers
to the manufacturing systems ability to efficiently adapt to market and
environmental changes in an cost-effective ways.

Real world scheduling requirements are related with complex
systems operated in dynamic environments frequently subject to
several kinds of imponderables and perturbations, such as:

� Scheduled orders could take more time than estimated;
� Machines could become unavailable or additional ones may be

introduced;
� New orders arrive continuously to the system while scheduled

orders could be cancelled;
� Unexpected events occur in the system (employees sickness,

rush orders, lateness on raw-materials or components)

These scenarios make the current schedules easily outdated
and unsuitable. Scheduling under this environment is known as
dynamic, which could be defined as a continuous and ongoing
reactive process where the real time information implies the
revision and dynamic adaptation of current schedules to the
perturbations [1,3].

A Job-Shop like manufacturing system has associated a
dynamic nature observed through several kinds of perturbations
on working conditions and requirements over time. For this kind
of environment, it is important that the ability to efficiently and
effectively adapt, on a continuous basis, existing schedules accord-
ing to the referred disturbances, are mandatory for keeping
business performance levels. The application of optimization
techniques to the resolution of this class of real world scheduling
problems seems really promising. Although, most of the known
work on scheduling deals with optimization of classical Job Shop
Scheduling Problems (JSSP) problems, on static and dynamic
environments [1,2].

The problem of finding good solutions is very important to real
manufacturing systems considering that production rate and
production costs are very dependent on the schedules used for
controlling the flow of work through the system. Production
planning and distribution, transport planning, allocation of
resources (raw materials, manpower or machines in time) and

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2013.10.032

n Correspondence to: GECAD, Dr. António Bernardino de Almeida, 431, 4200-072
Porto, Portugal. Tel.: þ351 22 8340500; fax: þ351 22 8321159.

E-mail address: amd@isep.ipp.pt (A. Madureira).
URL: http://www.gecad.isep.ipp.pt/ (A. Madureira).

Neurocomputing 132 (2014) 97–110

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.10.032
http://dx.doi.org/10.1016/j.neucom.2013.10.032
http://dx.doi.org/10.1016/j.neucom.2013.10.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.10.032&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.10.032&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.10.032&domain=pdf
mailto:amd@isep.ipp.pt
http://www.gecad.isep.ipp.pt/
http://dx.doi.org/10.1016/j.neucom.2013.10.032

task scheduling are combinatorial optimization problems common
in industrial reality. It is not possible to always adopt the optimal
solution for two reasons: due to its complex nature, the resolution
to optimality in an acceptable time for making decisions is
normally intractable, and many problems in reality are so dynamic
that when we process/execute the solution, the characteristics of
the problem have already changed, and this is not the optimal
solution for the new problem. Such dynamic scheduling has
receiving increasing attention amongst researchers and practi-
tioners [3–6]. However, scheduling is still having difficulties in real
world environments and, hence, human intervention is required to
maintain real-time adaptation and optimization.

The interest and research on Decision Support Systems (DSS)
that exhibit self-organization properties is increasingly drawing to
formalize some of the ideas from Autonomic Computing [7,8] for
handling problems in complex manufacturing systems and to
identify mechanisms that makes use of autonomous entities in
solving hard computational problems and in modelling complex
systems through Self-organized or Self-managed behaviours. Self-
managed systems have the ability to manage themselves and to
dynamically adapt to change in accordance with evolving or
dynamic business policies and objectives, allowing the addition
and removal of resources/tasks without service disruption [8]. This
field of research has received much attention in Autonomic
Computing (AC) paradigm [7]. As a result, managers and profes-
sionals can focus on tasks with higher value to the business
process. Agent based Computing technology is well adapted to
model and solve production planning problems in manufacturing
systems and can easily integrate social issues and self-organized
mechanisms into multi-agent architectures.

Nature provides several and diverse examples of social systems
and collective intelligence, such as: insect colonies foraging
behaviour for food; bacteria which appear able to act in a finalized
way; the human brain considering that intelligence and mind
arises from the interaction and coordination of neurons; the
molecule and cell formation considering homeostasis and the
capability of adapting and reproducing arise from protein interac-
tions and antibody detection. Several efforts and contributions
have been related on literature that take collective intelligence as
an inspiration and basis for optimization algorithms developing
based on analogy with social and self-organized behaviour
[4,6,11,10,11]. These approaches have been generally referred as
Swarm Intelligence (SI), and are based on assumption that an
organized behaviour emerges from the interactions of many
simple agents like observed in nature [9,10].

To address DSS for dynamic scheduling with self-organized
capabilities, we intend to integrate and explore the following
paradigms: Multi-Agent Systems (MAS) [12–14], Coordination
and Competition [15,16], Autonomic Computing [7,8] and Swarm
Intelligence [9,10].

In this research, we propose a novel negotiation mechanism, to
the resolution of scheduling in real manufacturing systems, which
is by nature intrinsically a Complex Adaptive System, through
negotiation. Complex in the sense that manufacturing systems are
composed of many components (jobs, operations, machines). Adap-
tive when referring to the fact that the system must dynamically
adapt to external perturbations, like rush orders, or lateness on raw-
materials, and System considering that all components are inter-
connected and interdependent. A negotiation mechanism is pro-
posed considering the following assumptions: A set of autonomous
resource agents, each implementing a SI method for Single Machine
Scheduling Problems (SMSP) are engaged in finding the optimal or
sub-optimal solution; A coordination mechanism combining the
single solutions obtained by the resource agents into a global
solution is performed; A negotiation mechanism to improve global
solutions by machine idle times reducing could be established.

The remaining sections of this paper are organized as follows:
in section 2 the scheduling problem definition is presented.
Theoretical foundations, biological motivation and fundamental
aspects of SI Paradigm namely with focalization on Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO) and Artificial
Bees Colony (ABC) algorithms are summarized in Section 3.
Section 4 presents some related work on negotiation for schedul-
ing through MAS. In Section 5, the competitive architecture for the
self-organized dynamic scheduling is presented and in Section 6 it
is described the proposed negotiation mechanism, which inte-
grates the ideas from collective intelligence and negotiation in a
Multi-Agent System. The computational study and discussion of
results is presented on Section 7. Finally, the paper presents some
conclusions and provides some ideas for future works.

2. Problem definition

Real world scheduling problems have received a lot of attention
in recent years. In this work, we consider the resolution of more
realistic problems. Most real world multi-operation scheduling
problems can be described as dynamic and extended versions of
the classic Job-Shop scheduling combinatorial optimization pro-
blem. In practice, many scheduling problems include further
restrictions and relaxation of others [1,2]. Thus, for example,
precedence constraints among operations of the different jobs
are common because, often, mainly in discrete manufacturing,
products are made of several components that can be seen as
different jobs whose manufacture must be coordinated. Addition-
ally, since a job can be the result of manufacturing and assembly of
parts at several stages, different parts of the same job may be
processed simultaneously on different machines (concurrent or
simultaneous processing). Moreover, in practice, scheduling envir-
onments tend to be dynamic, i.e. new jobs arrive at unpredictable
intervals, machines breakdown, jobs can be cancelled and due
dates and processing times can frequently change.

In this work, solutions are encoded by the direct representa-
tion, where the schedule is described as a sequence of operations,
i.e. each position represents an operation index with initial and
final processing times. Each operation is characterized by the
index (i, j, k, l), where i defines the machine where the operation
k is processed, j the job it belongs to, and l the graph precedence
operation level (level 1 (one) corresponds to initial operations,
without precedents [3].

The minimization of total completion time, also known as
makespan [1,2] is given by

Min Cmax ¼maxðFjÞ; 8 j¼ 1; …; n;

Subject to

STijklþpijklrSTij′k′l′ 8 j¼ 1; …; n; 8ðOijkl;Oij′k′l′Þ ð1Þ

The constraint from (1) represents the precedent relationship
between two operations k and k′(kak′ and kok′ and lo l′) of the
same job j, that could be executed on different machines k and k′,
and at different levels l and l′.

STijklZtijklþ1 8Oijkl ð2Þ

The constraint shown in (2) represents that the processing time
to start operation Oijkl must be greater or equal to the earliest start
time for the same operation. The constraint, specified on (3),
represents machine occupation, where only one operation could

A. Madureira et al. / Neurocomputing 132 (2014) 97–11098

be processed on each instant of time.

∑Xijt ¼ 1 8 i; j¼ 1; …; n 8 trmaxðFjÞ ð3Þ
The system machine occupation rate U, is given by

max U ¼max
1

M � Cmax
∑
M

i ¼ 1
∑
n

k ¼ 1
pijkl � 100 8 j; l ð4Þ

where pijkl is the processing time for each operation k on each
machine i.

3. Swarm Intelligence

Recently, biological processes have been a source of inspiration
for several fields in science and engineering [5,6,9,10]. Evolution-
ary computing is based on the Darwinian notions of survival of the
fittest and on evolution, while particle swarm optimization is
based on the theory of swarming insects or flocking birds. Several
biologically inspired algorithms have been designed and applied,
and many of them are effective for producing high quality
solutions to a diversity of real world optimization problems,
including scheduling, planning, logistics, space allocation, engi-
neering design, bioinformatics and data mining, etc. The size and
complexity of the optimization problems require the development
of methods and solutions whose efficiency is measured by their
ability to find acceptable solutions within a reasonable amount
of time.

Swarm Intelligence (SI) refers to a research area that integrates
efforts from computer science and artificial intelligence commu-
nities for the study, design and specification of efficient computa-
tional approaches for problem solving, inspired from the collective
intelligence of biological populations that can be observed in
nature such as ants, bees, fish, and birds.

3.1. Ant Colony Optimization

Ant Colony Optimization (ACO) algorithm takes inspiration
from the foraging behavior of some ant species. These ants deposit
pheromone on the ground in order to mark some favorable path
that should be followed by other members of the colony. ACO
exploits a similar mechanism for solving optimization problems
and was initially proposed by Marco Dorigo [17]. The original idea
has since then diversified to solve a wider class of numerical
problems, and as a result, several problems have emerged, draw-
ing on several aspects of the behavior of ants [18,19].

A general ACO algorithm is described in Table 1. After initi-
alization, ACO iterates over three main steps: at each iteration, a
number of solutions are constructed by the ants; these solutions
could be then improved, optionally, through a local search, and
finally the pheromone is updated through two possible events:

evaporation and by increasing the pheromone levels associated
with a chosen set of good solutions. A more detailed description of
the three phases can be stated as follows [19]:

Construct Ant Solutions: A set of m artificial ants constructs
solutions from elements of a finite set of available solution
components C¼{cij}, i¼1,…, n, j¼1,…, |Di|. A solution construction
starts from an empty partial solution sp¼∅. At each construction
step, the partial solution sp is extended by adding a feasible
solution component from the set N(sp)DC, which is defined as
the set of components that can be added to the current partial
solution sp without violating any of the constraints in Ω. The
process of constructing solutions can be regarded as a walk on the
construction graph GC¼(V, E) as stated in [19]. The selection of a
solution component from N(sp) is guided by a stochastic mechan-
ism, which is biased by the pheromone associated with each of the
elements of N(sp). The rule for the stochastic choice of solution
components vary across the different proposed ACO algorithms
but, in all of them, it is inspired by the Goss model (experimental
setup for the double bridge experiment) of the behavior of real
ants assuming that at a given moment in time m1 ants have used
the first bridge andm2 the second one, the probability p1 for an ant
to choose the first bridge is given by [19]

p1 ¼
ðm1þkÞh

ðm1þkÞhþðm2þkÞh
ð5Þ

where parameters k and h are to be fitted to the experimental
data. Monte Carlo simulations showed a very good fit for kE20
and hE2.

� Apply Local Search: Once solutions have been constructed, and
before updating the pheromone, it is common to improve the
solutions obtained by the ants through a local search. This
phase, which is highly problem-specific, is optional although it
is usually included in state-of-the-art ACO algorithms.

� Update Pheromones: The aim of the global pheromone update
is to increase the pheromone values associated with good or
promising solutions, and to decrease those that are associated
with bad ones. Usually, this is achieved by decreasing all the
pheromone values through pheromone evaporation, and by
increasing the pheromone levels associated with a chosen set
of good solutions.

Several ACO algorithms have been proposed in the literature,
which differ in some decisions characterizing the construction of
solutions and update pheromone procedures [19]. Additional
information about ACO based algorithms details of implementa-
tion could be found in [18,19].

In this work we consider an ACS for SMSP described in
Madureira et al. [20], a particular ACO algorithm. The ACS differs
from the previous Ant System due to three main aspects [18]: the
state transition rule, the global updating rule, and the local
updating rule. When applied to the SMSP, each ant constructs a
feasible sequence by selecting an unscheduled job j to be on the
ith position of the partial sequence constructed so far. This process
is influenced by specific heuristic information ηij, as well as the
pheromone trails τij.

The most interesting contribution of ACS [17,19] is the intro-
duction of a local pheromone update and the pheromone update
performed at the end of the construction process (named offline
pheromone update). ACS algorithm can be stated as follows
[17,19]: m ants are initially positioned on n cities chosen according
to some initialization rule (randomly, for example). Each ant builds
a tour (feasible solution) by repeatedly applying a stochastic
greedy rule (the state transition rule). While constructing its
tour/path, an ant also modifies the amount of pheromone on the

Table 1
Ant Colony Optimization Algorithm.

Algorithm 1: Ant Colony Optimization

Input: ACO Parameters and scheduling data problem

Output: Best solution

1: Begin

2: Set ACO parameters.

3: Initialize pheromone trails

4: While termination criteria not met do

5: Construct AntSolutions

6: Apply Localsearch (optional)

7: Update Pheromones

8: Memorize the best solution achieved so far

9: EndWhile

10: End

A. Madureira et al. / Neurocomputing 132 (2014) 97–110 99

visited edges (cities) by applying the local updating rule. Once all
ants have terminated their tour/path, the amount of pheromone
on edges/cities is modified again, by global updating rule applying.
Ants are guided, in building their solutions, by both heuristic
information (they prefer to choose short edges), and by phero-
mone information (an edge with a high amount of pheromone is a
very desirable choice). The pheromone updating rules are
designed to give more pheromone to edges/cities which should
be visited by ants.

The local pheromone update is performed by all ants after
each construction step. Each ant applies it only to the last edge
traversed:

τij ¼ ð1�φÞτijþφτ0 ð6Þ

where φA[0,1] is the pheromone decay coefficient, and τ0 is the
initial value of the pheromone.

The main goal of the local pheromone update is to introduce
diversity in the search process performed by subsequent ants
during an iteration by decreasing the pheromone concentration on
the traversed edges, ants encourage subsequent ants to choose
other edges and, hence, probably to produce different solutions.
This mechanism makes it less likely that several ants produce
identical solutions during one iteration.

The offline pheromone update, is applied at the end of each
iteration by only one ant, which can be either the iteration-best
(Lib) or the best-so-far (Lbs). However, the update formula is
slightly different:

τij ¼
ð1�ρÞ � τijþρ� Δτij if ði; jÞ belongs to the best tour;
τij otherwise

(
ð7Þ

where τij¼1/Lbest, where Lbest can be either Lib or Lbs.
Another important difference between ACS and AS is in the

decision rule used by the ants during the construction process
[18–20].

pkij ¼
ταij�ηβij
∑

cijANðSp Þ
ταij�ηβij

if cijANðSpÞ

0 otherwise

8><
>: ð8Þ

In ACS, the so-called pseudorandom proportional rule is used
by the ants during the construction process: the probability for an
ant to move from city i to city j depends on a random variable q
uniformly distributed over [0,1], and a parameter q0; if qrq0,
j¼ argmaxcij ANðSpÞ fτilηβilg otherwise (8) is used.

3.2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population based sto-
chastic optimization technique proposed by Kennedy and Eberhart
[22], inspired by social behavior of bird flocking or fish schooling.
The algorithm is initialized with a population of random solutions
and searches for sub-optimal solution by updating generations.

There are N particles, each of these particles adjusts its
direction based on their own experience and the experience of
the rest of the population (group of particles). Each movement of
each particle is based on three parameters: the sociability factor,
the cognitive factor, and the maximum speed [10,22].

The algorithm starts by initializing particles population, defin-
ing initial current position and velocity of all the particles
(Table 2). Then, at each iteration and for each particle, the
velocities are updated, based on its previous best value pBesti
and on best global value gBest, and a new position (for each
particle) in the search space is defined according to (6) and (7),
respectively. Each particle is treated as a point in a D-dimensional
space. Considering all the current positions of each particle as
Xid¼{Xi1,Xi2,…,Xid}, where Xi is the position of the particle i
dimension d. The velocity of each particle is updated based on

Vid ¼w� Viþr1 � C1ðpBesti�XiÞþr2 � C2ðgBest�XiÞ ð9Þ
where C1 (cognitive component reflecting personal experience)
and C2 (social component reflecting group experience) are positive
constants, Vi is the velocity of particle i, and r1 and r2 are random
numbers defined in the range [0,1]. ω constitutes the inertia
weight provides a balance between global and local exploration
and exploitation [22]. The velocity update consists (9) in three
components: the acceleration that cannot be modified abruptly but
adjusted considering current velocity and maximum speed; the
cognitive component represents the learning from its personal
flying experience; and the social component that represents group
learning flying experience.

The current position of each particle is updated based on the

Xid ¼ XiþVid ð10Þ
where Xid is the new position of particle i, Xi is the current position
of particle i and Vid is the velocity of particle i.

PSO has become a popular optimization method and has been
widely used in practical problem solving [9-11,22].

3.3. Artificial Bee Colony

Artificial Bee Colony (ABC) arise from the analogy with real
bees as a social insects living in organized group called hive. In a
beehive, the bees have some specific tasks performed by specia-
lized bees. The main purpose of the colony is the maximization of
the amount of nectar getting the utmost of the food sources. In
2005, Pham proposed a Bees Algorithm in a technical report [24]
inspired in the foraging behavior of honey bees to find food
sources, as an optimization algorithm to find an optimal solution.
At the same time, Karaboga [23] proposes a similar algorithm
named Artificial Bee Colony.

In a real bee colony, some tasks are performed by specialized
individuals. These specialized bees try to maximize the nectar
amount stored in the hive using collaboration and division of labor
task trough self-organization. In this work we consider a modified
Artificial Bee Colony described in [21] for single machine schedul-
ing problems.

A modified ABC algorithm have three main phases, correspond-
ing to three types of specialized bees, Employed, Onlooker and
Scout, that represent a minimal model of the real swarm intelli-
gent forage selection [25]. Employed bees are in the same number
of food sources (solutions) and are responsible to explore one and

Table 2
Particle Swarm Optimization Algorithm.

Algorithm 2: Particle Swarm Optimization

Input: PSO Parameters and scheduling data problem

Output: Best solution

1: Begin

2: Initialize particles population

3: Evaluate fitness of individual particles and define

pBesti and Gbset

4: While termination criteria not met do

5: Modify velocities based on previous best and global best

6: Vid ¼ω*Viþr1*C1*(pBesti-Xi)þr2*C2*(gBest-Xi)

7: Move to the new position Xi¼XiþVid

8: Evaluate fitness of individual particles

9: If f(Xi)of(pBesti) then pbesti¼Xi

10: If f(Xi)of(gBest) then gbest¼Xi

11: EndWhile

12: End

A. Madureira et al. / Neurocomputing 132 (2014) 97–110100

only one food source at the time and give information to other
bees. When an employed bee left his food source becomes a scout
bee. Onlooker bees turret in the hive for a information of a
employed bees to establish a good food source. Scouts bees seek
environment trying to find a new food source depending on an
internal motivation or external clues or randomly. Half of the hive
is composed by employed bees and the other half by onlooker
bees. The food source position represents a solution that is
measured by the nectar amount corresponds to the quality of
the solution (Table 3).

In the initialization phase, the algorithm randomly generates
sn/2 initial solutions, were sn is the size of the population, which
will be the food field for the employed bees. Each xi (i¼1, 2, sn/2)
is a dimensional vector D. Values between the limits of the
parameterization are assigned to the solution and a failurei

value is also added to analyze when this solution i must be
abandoned. After validating the population, the algorithm repeats
a specified number of cycles of employed, onlooker and scout bees
phases.

3.3.1. Employed bees phase
An employed bee performs a change in their position of food

source based on (11) and evaluates the nectar amount in the new
position/solution [25]:

vij ¼
xijþ∅ðxij�xkjÞ; if RjoMR

xij otherwise

(
ð11Þ

where kA{1,2,…,sn} is a randomly chosen index that has to be
different from i, and ∅ij is an uniformly distributed random real
number in the range of [�1,1]. Rj is uniformly distributed random
real number in the range of [0,1] and MR is a control parameter of
ABC algorithm in the range of [0,1] which controls the number of
parameters to be modified.

Then the algorithm selects the solution by the following rules:

� Two realizable solutions – selects the one with the best amount
of nectar (fitness) value;

� One solution realizable and one unrealizable – select the
realizable;

� Two unrealizable solution – select the one with the smaller
degradation factor.

Finished the search, the employed bees share the information
with the onlooker bees and the solutions are selected based on a
probability by the value of fitness or violation of the solutions
depending if they are realizable or not.

3.3.2. Onlooker bees phase
Onlooker bees select their own food source based on a probabilistic

rate according to the amount of nectar on the solution. The algorithm
uses (8) to create a new food source, validating and adjusting the new
solution according to the parameterization.

3.3.3. Scout bees phase
After the above steps, all food sources that will not be explored

anymore are abandoned. The employed bees that left the food
source get a new position from scouts search.

Several modified algorithms have been proposed since then
in the literature and has been widely used in practical problem
solving [10,25,21].

4. Negotiation in Multi-Agent System and Self-* systems

Competition has been studied in several fields, including
psychology, sociology and anthropology. Social psychologists, for
instance, study the nature of competition. They investigate the
natural urge of competition and its circumstances. They also study
dynamics group, to detect how competition emerges and what its
effects are [15]. Several contributions have been stated for nego-
tiation research area in several fields, including sociology, anthro-
pology, philosophy, economics and political science.

Software systems developing involving autonomic interacting
software agents present new challenges in Computer Science and
Software Engineering. Agent based technologies provide a way to
conceptualize complex and dynamic systems as comprising inter-
acting social and autonomous entities, acting, learning and evol-
ving separately in response to interactions and stimuli in their
local environment [12–14]. Techniques to design and implement
agent based systems could be categorized into three classes [12]:
organization level (concerning organizational structure related to
agent societies as a whole, trust, norms and obligations), interac-
tion level (concerning agent communication, interaction and
decision making) and Agent Level (concerning individual agents,
like reasoning and learning).

A particularly challenging problem is the engineering of several
forms of interaction among agents. Interaction may be aimed at
enabling agents to coordinate their activities and behaviors, cooperate
to reach common objectives, or compete to better achieve their
individual objectives. Considering real manufacturing systems com-
posed by multiple autonomous agents, negotiation is an important
form of interaction that enables groups of agents to achieve at a
mutual agreement regarding some objective or scheduling plan.

Multi-Agent Systems are composed of several agents, capable of
mutual interaction. The interaction can be designed in the form of
message passing, requesting, negotiating or producing changes in their
common environment. MAS provide a way to conceptualize adaptive
systems and self-organization as comprising interacting autonomous
agents, each acting, learning or evolving individually in response to
interactions on their own environments. MAS can manifest self-
organization and complex behaviors even when the individual strate-
gies of all their agents are simple [12].

Literature attempts to classify software agents according to
different dimensions and criteria, which refer to the study of
entities types and the investigation of agent’s typology [27,28].
Based on the exhibition of ideal and primary attributes, Nwana
[28] proposed a classification where agents may be classified
considering several ideals and primary attributes which agents
should exhibit such as: Autonomy, Cooperation and Learning.

Based on these three characteristics Nwana [28] proposed a
classification with four types of agents: collaborative agents, colla-
borative learning agents, interface agents and truly smart agents
(Fig. 1). Different MAS approaches are described on literature to

Table 3
Artificial Bee Colony Algorithm.

Algorithm 3: Modified ABC Algorithm

Input: ABC Parameters and scheduling data problem

Output: Best solution

1: Begin

2: Initialization of Bee Population and Food sources

3: Cycle¼1

4: While cycle o4 Maximum Cycle Number

5: Solutions Evaluation

6: Employed Bees Phase

7: Calculate Probabilities for Onlookers

8: Onlooker Bees Phase

9: Scout Bees Phase

10: Memorize the best solution achieved so far

11: Increment Cycle

12: EndWhile

13: End

A. Madureira et al. / Neurocomputing 132 (2014) 97–110 101

implement collaboration and negotiation between agents that could
be categorized in two main classes [12–14,27,29]: first, each agent is
able to communicate with the others requesting their needs to the
group. It requires a higher degree of agents' intelligence, since they
should be able to analyze the task and communicate with each other
to obtain the solution. In the second class of approaches, a coordinator
agent analyzes the problem and, based on their characteristics; send
the tasks to each agent individually.

In MAS, agents should often work against each other due to the
conflicts in their objectives, leading to competition. Competitive
agents try to maximize their own benefits at the expense of others,
and thus the success of one implies the failure of others [30]. A
significant part of research in coordination of competitive agents is
made on negotiation [31–34]. Negotiation can be defined as a form
of interaction in which a group of agents with conflicting interests
(and wish to collaborate) try to reach a mutual agreement for the
allocation of scarce resources [33].

Negotiation can be defined as the process by which a joint decision
is reached by two or more agents, each one trying to reach an
individual objective. The agents first communicate their targets, which
may be conflicted, and then try to reach an agreement by making
concessions or searching for alternatives [30]. Mainly because compe-
titive agents are autonomous and cannot be assumed to be benevo-
lent, they must try to influence others in order to convince them to act
in certain ways. Negotiation is thus decisive for managing such inter-
agent dependencies [34]. Generally, literature defines the following
negotiation methods: Contract Net Protocol [35]; Auctions [36]; Game
Theory [37]; Argumentation [38].

One objective of negotiation is that the allocation of resources
should be accepted by all participants. Since there are several different
forms of agreements, negotiation can be seen as a distributed search
through a space of possible agreements [38]. Negotiation mechanisms
should consider some features such as [38]: simplicity, efficiency,
distribution, symmetry, stability, and flexibility. Such mechanisms
must lead to an agreement even if agents have not completed or
corrected their private information related to their own decisions.

The protocol and strategy are the main components of a
negotiation mechanism. The protocol defines the common rules
among the participants in the act of negotiate. In general, it
includes a set of norms that represents the constraints for the
proposals that participants can do. The strategy defines the
possible actions (or sequence of actions) that an agent plans to
follow during the negotiation process [38].

Usually, the negotiation process consists in a group of rounds, with
all agents making a proposal in each round. The agents' proposals are
defined by its strategy and must be consistent with the defined

protocol. The negotiation is concluded when an agreement is reached
[36]. A complex aspect of the negotiation process is the number of
agents involved and how these agents interact [36]. This interaction
can be made as: One-to-one, where only one agent negotiates with
another agent (e.g., a sale of a product to a costumer); One-to-many, in
which an agent negotiates with a set of agents (e.g., auctions); Many-
to-many, where multiple agents simultaneously negotiate with other
agents (e.g., marketplace).

Several negotiation mechanisms have been proposed and refer-
enced in the literature. In scheduling, negotiation is used generally
to improve the quality of final solutions. For example, Zattar et al.
[39] proposed the use of an operation-based time-extended nego-
tiation protocol to allow decision-making for the real-time routing
of job orders composed by operations in a job-shop environment.
Singh et al. [40] proposed an improved Contract Net Protocol
architecture named Contract Net Trust Establishment Protocol
where two agents that are willing to cooperate in the achievement
of the system's goal are ruled by process and resource managers. In
Kim and Cho [41] negotiation agents have been used to allocate
numerous orders to many participants for a supply chain formation.
Adhau et al. [42] proposed a novel distributed multi-agent system
using negotiation based on auctions for solving the resource
conflicts and allocating multiple different types of shared resources
amongst multiple competing projects.

In this paper it is used an adaptation of Contract Net Protocol in
order to allow the negotiation between conflicting agents [46].

5. Collaborative Dynamic Scheduling architecture

The Collaborative Dynamic Scheduling architecture – Auto-
DynAgents scheduling system – consists in a MAS in which a
community of agents models a real manufacturing system subject
to perturbations and imponderables (Fig. 2). Agents must be able
to learn and manage their internal behavior and their relationships
with other autonomic agents, by negotiation in accordance with
business policies defined by managers and operational managers.

5.1. Collaborative architecture

Towards the distributed, autonomous and coordination features
considered, the MAS technology is suitable to model real manufactur-
ing systems, which can be mapped into the MAS where autonomous
intelligent agents coordinate to solve scheduling problems.

Considering agents operational and subordination relations [26,27]
defined in the proposed system, it is possible to consider the proposed
architecture as a hybrid market based architecture with hybrid agents.
AutoDynAgents is a Decision Support System for discrete manufactur-
ing systems in dynamic environments and its application is flexible for
any type of production system (Single Machine, FlowShop, JobShop) of
products regarding as single items or multi‐component assemblies,
and different types of manufacturing environments, static or dynamic.
In this scheduling approach, a divide-conquer methodology is used to
decompose it into sub-problems, so that each SMSP can be solved
separately [3,43]. The solutions could then be reassembled for an
overall solution.

The scheduling problem under consideration is decomposed into a
series of deterministic SMSP (considering that all release dates,
processing times and due dates are known in advance), which are
solved by a SI. The obtained solutions are then incorporated into the
main problem and a repair mechanism is carried out, having into
account job operation precedence and machine occupation times [43].
Its main objective is to guarantee the schedule feasibility. Then, the
obtained solution is negotiated in order to refine the schedule based
on three inter-related optimization objectives minimization of idle

Fig. 1. Agent typology.
Adapted from Nwana's [28].

A. Madureira et al. / Neurocomputing 132 (2014) 97–110102

times, minimization of makespan (completion time of all jobs) and
maximization of machine utilization rate.

Whenever a new order arrives or some will be cancelled which
disturbs the current schedule, in such a way that rescheduling
must be done, the dynamic adaptation module integrates the
event on a new deterministic problem [3]. Then, Resource Agents
will be resubmitted to negotiation.

The AutoDynAgents system [3,4] and the embedded negotia-
tion mechanism were developed in Java Language according to
standardization of FIPA using the Jade platform for the develop-
ment of agents [31] and the Eclipse as development environment.

5.2. System model

The system model envisages representing the main compo-
nents of a dynamic scheduling process. The model is to be
implemented in a multi-agent system designed to simulate
resources and tasks in a scheduling decision making process
involving coordination. The main objective is to support the
operational manager in the decision making. In the proposed
model there are agents representing tasks/jobs (Task Agents) and
agents representing machines/resources (Resource Agents) in a
manufacturing environment. The Resource Agents must be able to
find an optimal or near optimal local solution through SI algo-
rithms (ABC, ACS and PSO) for SMSP and to negotiate with other
agents (Fig. 3). SMSP aims at sequencing a set of jobs on a single
machine [1,2,43].

Additionally the proposed model considers a Coordinator agent
(UI Coordinator agent) responsible to coordinate and integrate the

single solutions obtained by each Resource Agent solution in order
to obtain a global schedule for the original scheduling problem
and self-n agents responsible for guarantee agility and adaptation.

The proposed self-managed model (Fig. 3) represents a more
detailed view of the model described above. At this phase, we
consider in the model three distinct agent types, here identified
by self-n agents: Self-Configuration Agent, Self-Optimization
Agent and Self-Healing agent. Considering classification schemes
described in Section 4 proposed by Nwana [28], we propose a
hybrid Multi-Agent architecture since it combine two or more
approaches in a single agent that includes collaborative agents,
collaborative learning agents, interface agents and smart agents.

The developed MAS for Scheduling problem resolution (Auto-
DynAgents) is a self-organized scheduling system and consists in a
hybrid autonomous hierarchical architecture. There are agents
representing jobs (or tasks) and agents representing resources
(or machines). The system is able to [4]: find optimal or near
optimal solutions through the use of MH; deal with dynamism
(arriving of new jobs, cancelled jobs, changing jobs attributes,
etc.); switch from one SI to another; and change/adapt the
parameters of the algorithm according to the current situation.

The architecture model is based on four different types of
agents: User Interface Coordinator Agent, Task Agents, Resource
Agents and self-n Agents:

� User Interface Coordinator agent (Smart Agent), apart from being
responsible for the user interface, dynamically generates the
necessary Task Agents and Resource Agents, according to the
number of jobs and machines that comprise the scheduling
problem, and assign each job to the respective Task Agent. It is
also responsible for the verification of feasible schedules and
identification of constraint conflicts on each Task and the decision
of which Resource Agent is responsible for solving a specific
conflict.

� Task Agents (Collaborative Agents) process the necessary
information regarding the task. Each one is responsible for
the generation of the earliest and latest processing times
and division of operations throughout the different Resource
Agents.

� Resource Agents (Collaborative Agents) are responsible for sche-
duling the jobs' operations that require processing in the machine
supervised by the Resource agent. These agents implement a SI
algorithm (ABC, ACS or PSO) in order to find the best possible
schedules, and communicate those solutions to the UI Coordinator
Agent for later feasibility check. Resource agents are organized
following the Market based architecture [25].

Additionally, to provide self-managing properties to the sys-
tem, three agents representing three components of Autonomic
Computing Self-CHOP (Configuring, Healing, Optimizing and Pro-
tecting) [7,8] were added to system in order to provide the system
with autonomy, such as:

� Self-Configuring Agent (autonomic agent) is responsible for
monitoring the system in order to detect changes occurred in
the schedule, allowing a dynamic adaptation of the system.
With this agent, the system is prepared to automatically handle
with dynamism by adapting the solutions to external perturba-
tions.

� Self-Optimizing Agent (interface agent) is responsible for
automatically select a SI algorithm and tune the respective
parameters, according to the problem. This parameters tuning
is made through learning and experience, since it uses a CBR
module [44].

� Self-Healing Agent (autonomic agent) monitors other agents
in order to provide overall self-healing capabilities, providing

New Orders
Orders Cancelation
Dates Negotiation

Processing

Method

Negotiation

Mechanism Dynamic Adaptation

User Interface

Scheduling Plan

Scheduling Module

Pre

Scheduling

Self-
Healing

Self-
Configuring

Self-
Optimizing

Fig. 2. System architecture.

A. Madureira et al. / Neurocomputing 132 (2014) 97–110 103

the ability of recovering from failures. With this agent, the
system becomes stable, even if some deadlocks or crashes can
occur.

The used approach to deal with this problem is divided in two
steps. In the first, the system waits for the solutions obtained by
the Resource Agents and then applies a repair mechanism to adapt
some operations in the generated schedules till a feasible solution
is obtained. In the second step, a negotiation mechanism is
established between related agents in the process, in order to
interact with each other to pursuit their objectives through
negotiation. This negotiation mechanism, described in the next
sub-section, is prepared to accept agents subjected to dynamism
(new jobs arriving, cancelled jobs, changing jobs attributes).

6. Negotiation mechanism

In this paper a negotiation mechanism is proposed for dynamic
manufacturing scheduling systems. The approach seeks to provide
the system with negotiation capability, so that the scheduling
plan generated by the Resource Agents can be improved by
reducing the idle times, and corresponding machine occupation
rate improving.

Initially, the Resource Agents generate their own solution
independently. The UI Agent analyzes this local solutions and
applies a repair mechanism, according to precedence's constraints
and occupation times on the different machines/resources [45]. At
this stage, the system is entirely dependent of the initial solutions,
becoming “blind” and incapable of improving the scheduling
plans. As such, with this mechanism we intent to give the system,
through a negotiation process, the capability to optimize the
scheduling plans.

The implemented Negotiation Mechanism (NM) works on a
continuous cycle, so that all idle times can be analyzed. As such,
the mechanism is concluded when the process locks after trying to
swap an operation and/or when a lack of credits exists.

The negotiation mechanism (Table 4) seeks to reduce/eliminate
the idle times between operations, thus improving the utilization
rate of each machine/resource, the overall delays and downtimes.
Idle times in the Resource Agents are generated by operations
precedence's constraints, i.e., an operation must wait to be
processed until the end of its precedence operation. Therefore,
the negotiator needs to anticipate the processing of the prece-
dence operation or set another operation for an idle time. The
negotiation mechanism is responsible for handling different sce-
narios and choosing the one that is more optimized.

In this context, we consider two types of agents, an initiator
and a participant. At any time, an agent can be an initiator, a
participant or both. In this sense, initiators are managers and
participants are contractors. An Initiator could be an agent willing
to buy something useful or wanting to sell the right to supply
something useful. Participants would be agents wanting to sell
something useful to buy the right to supply something useful. Each
agent has a credit that is equal to the total amount of idle times
found in the scheduling plan. This credit can be used as currency
to buy something useful from other agents. As compensation for
the changes to a scheduling plan the agent receives a value that is
added to the credit. An agent that makes changes to its own
scheduling plan pays himself.

Fig. 4 depicts the negotiation protocol established between two
agents considering that negotiation is based on successive and
multiple negotiation contacts between two agents involved in
critical operations. During the negotiation process resource agents
may exchange the following messages (request, refuse, accept):

� Request (A1, A2, Action Y) – agent A1 ask agent A2 to perform
action (ex: exchange op1 with op2);

� Accept (A1, A2, Action Y) – agent A1 tell agent A2 that it
accepts its request to perform the action Y;

� Reject/Refuse (A1, A2, Action Y) – agent A1 tell agent A2 that it
cannot accept its request to perform the action Y.

In the negotiation algorithm, each agent aims to achieve a
continuous scheduling plan with the biggest credit gain. The first
Initiator agent is the one with the highest value of idle times
between operations. After choosing the first Initiator agent
the negotiation process begins with the algorithm described in
Table 4. The Negotiation mechanism is established from the
moment that a new deterministic scheduling plan has been
defined by the system.

In order to better understand the negotiation mechanism a
small practical example will be presented. The main goal is to
produce a scheduling plan where the idle times are minimized. In
this practical example each machine has an initial credit value that
is equal to the sum of the idle times. The negotiation process will
be started by the machine with the biggest credit value. Thus, the
initial scheduling plan is represented in Fig. 5 and Table 5
summarizes the credits of each machine.

The negotiation process is started by agent M1, where the first
candidate operation to be swapped is T4,4 but a precedence constrains
is in place by T4,3 since this one only can start after T4,2 has been
concluded. The process is repeated but this time for T3,3. The
mechanism tests if it possible to swap with the operation on the right
or with a precedence and concludes that the swap to the right is not
possible due to the fact that T4,4 only starts after T4,3 ends. As such, it
proceeds with a precedence swap between T3,2 and T1,2 with a credit
cost of 4 units. A request is send to agent M2 to perform the swap
between T3,2 and T1,2. Agent M2 makes the swap and receives 4 units.
The process is repeated in a form of cycle until a feasible and possibly
improved scheduling plan is achieved.

From Fig. 6 it is possible to analyze that the final scheduling
plan managed to be improved in 13 time units and from Table 6

Fig. 3. System model.

A. Madureira et al. / Neurocomputing 132 (2014) 97–110104

that agent M2 obtained the biggest credit gain. With the proposed
negotiation mechanismwe pretend to provide the systemwith the
ability of optimize the global solution by negotiation, allowing it to
evolve and produce better scheduling plans.

The Negotiation Mechanism (NM) is used when a global
solution has been already attained by the scheduling module
(based on integration of local solutions obtained by Resource
Agents trough SI method), or when a disturbance (arrival of new
jobs, canceled jobs, changes on due dates, etc.) occurs in the
system and its adaptation has been incorporated in the current

scheduling plan. Its main function is to improve the system
performance (the current solution could not be degraded).

7. Experimental analysis

A software tool was developed to support out the computa-
tional study aiming to analyze and evaluate the performance of
the proposed negotiation mechanism, on minimizing the make-
span (Cmax). The computational tests were performed on an Intels

Core™ 2 Quad Q6600@ 2.40 GHz processor, 4 GB of RAM memory,
a 250 GB 7200 rpm disc, and Windows 7 64-bit as operative
system. The performance was tested on 20 benchmark instances
of Job-Shop Scheduling Problem (JSSP) from different sizes, avail-
able at OR Library [47]. The instances were selected based on their
dimension (number of jobs). Therefore, for this study we used
different problem instances from Fisher and Thompson [48],
Lawrence [49], Adams et al. [50], Storer et al. [51] and Yamada
and Nakano [52].

The work reported in this paper is related to a Collaborative
Dynamic Scheduling architecture – AutoDynAgents scheduling
system – that consists in MAS in which a community of agents
models a real manufacturing system subject to perturbations and
imponderables. Agents must be able to learn and manage their
internal behavior and their relationships with other autonomic
agents, by negotiation in accordance with business policies
defined by managers and operational managers. The Negotiation
Mechanism (NM) is used when a global solution has been attained
by the scheduling module, or when a disturbance (arrival of new
jobs, canceled jobs, changes on due dates, etc.) occurs in the
system and its adaptation has been implemented in the current
scheduling plan.

7.1. Configuration and parameters tuning

According to system characteristics, considering decomposition
of scheduling problem on single machine scheduling problems. SI
parameters were defined for SMSP considering the minimization

Table 4
Negotiation Mechanism Algorithm.

Algorithm 4: Negotiation Mechanism Optimization

Input: Scheduling plan obtained by scheduling module

Output: Scheduling plan optimized

1: Begin

2: Start Negotiation Mechanism

3: If the mechanism is running for the first time then

4: Update the data on each agent

5: Start communication process between the agents

6: EndIf

7: While termination criteria not met do

8: Get the solution from each agent

9: Evaluate each operation relatively to their

precedence’s

10: If the final plan is not feasible then

11: Update agents with the previous valid solution

12: End negotiation process

13: EndIf

14: If the solution is the best so far then

15: Update the data on each agent

16: Restart communication process between the agents

17: Else

18: Continues the negotiation process in the next

operation

19: EndIf

20: EndWhile

21: End

Fig. 4. Negotiation mechanism sequence diagram.

A. Madureira et al. / Neurocomputing 132 (2014) 97–110 105

of makespan (Cmax). Additionally, the self-parameterization mod-
ule was disabled in order to ensure selected SI technique main-
tenance, permitting inside analysis of system performance analysis
trough NM influence and/or by SI technique advantage.

The tuning of parameters can allow greater flexibility and
robustness but requires a careful initialization. The parameters
can have a major influence on the efficiency and effectiveness of
the search. Becomes not obvious, a priori, the setting of para-
meters to use. The values for the parameters depend on the
problem, instances structure and the time available to solve the
problem. There are no universal values for the parameters con-
sidered for SI based algorithms. Being widespread view, that its
definition must result from a careful experimental effort, towards
their tuning.

We consider the following common parameters to SI based
techniques in analysis [43]:

� Solution/individual representation – the solutions/indivi-
duals are encoded by the natural representation (string), each
position corresponds to a task and it is characterized by the
quartet (i, j, k, l), where i indicates the machine where the
operation k of the task j is processed, and l is the level
of operation in the precedence graph. Additionally, the repre-
sentation includes the time of start and processing conclusion
of each operation. The position of the operation is the corre-
spondent processing order in the corresponding machine. The
number of positions on the string corresponds to the number of
operations assigned to the single machine into consideration.

� Initial solution generation mechanism – the initial solution/
individual (bee, ant or particle) is defined by the procedure rule
SeqNivel [43] where the operations are sequenced in order of
non-decreasing processing level (defined on precedence
graph), giving priority to operations that are processed earlier.
Avoiding the possibility of some operation that is processed at
the end could be scheduled at the beginning of the plan what
could have as consequence an infeasible solution. Thus, we
expect to generate a good initial solution from which an initial
colony will be obtained. Consider, for example an initial
solution from machine 1,(1,9,1,1)!(1,10,2,2)!(1,3,3,3)!
(1,7,4,5)!(1,5,5,5)!(1,2,6,7)!(1,8,7,8)!(1,4,8,8)!
(1,1,9,9)!(1,6,10,10) The symbol “!” means in this context
“immediately preceding in the sequence”.

� Initial population/colony generation mechanism – the analogy
with Genetic Algorithms for populations is followed. The initial

bee/ant/particle colony generation process consists in applying
PermNivelAdj mechanism [43] generator to the initial individual.
So, new individuals, at first iteration, are generated consisting on
exchanging operations belonging to the same processing level,
based on initial individual. This procedure avoid that schedule
mechanism try to schedule an operation of a job/task in a machine
prior to its previous operation has been completed.

In order to evaluate the performance of the proposed negotia-
tion mechanism three Swarm Intelligent techniques were used
ACS, PSO and ABC. The SI based algorithm has a certain number of
specific parameters that need to be set appropriately. An extensive
computational effort has been made for parameter tuning of the SI
techniques in order to unsure identical computational effort. In
Table 7 the different set of parameterization values used for each
SI techniques is presented.

7.2. Discussion of results

We considered several academic benchmark problems as an
effective evaluation framework, since multiple authors and diverse
application areas have used them over the years. Additionally, they
allow us an insight on global behavior and performance for a
significant class of scheduling problems, which are our main objective.

This computational study aims to evaluate how the Negotiation
Mechanism influences system's performance, by measuring the
makespan (Cmax) values obtained by each SI technique, before and
after negotiation, as well as the machine occupation rate (U).
Additionally, we intend to analyze the performance of ABC, ACS
and PSO with the negotiation mechanism and the overall system's
performance. Each SI algorithm (ACS, PSO and ABC) was computed
n¼5 simulations for each instance under analysis, leading to 100
simulations in total, for each SI technique. For each instance

Fig. 5. Initial scheduling plan.

Table 5
Initial credits

Stops Credits gain Credits lost Credits

M1 21 0 0 21
M2 10 0 0 10
M3 7 0 0 7
M4 20 0 0 20

Fig. 6. Final scheduling plan.

Table 6
Final credits.

Stops Credits gain Credits lost Credits

M1 11 0 8 3
M2 0 8 0 8
M3 1 7 7 1
M4 6 5 5 6

A. Madureira et al. / Neurocomputing 132 (2014) 97–110106

resolution through each SI algorithm were retrieved the Cmax

values of solutions before and after the negotiation mechanism
(on each simulation) and machine occupation rate (U)

Initially it is our proposal to validate the contribution of
Negotiation Mechanism on the system performance: obtained
results will be analyzed and its significance verified trough
nonparametric statistics techniques [53], considering that small
samples (n¼20 instances).

After the general exploratory results analysis about the beha-
vior of the scheduling system through negotiation based on three
different SI techniques a significance analysis of the results has
been performed to identify possible dependencies mainly on the
identification of SI performance on the minimization of makespan
(Cmax) and on the maximization of machine occupation rate (U).
The Friedman test [53] for related samples was used, in both cases,
to compare the performance of the three SI techniques considering
that the results are mutually independent (results within one
instance do not influence the results within other instance) and
within each instance the observations (Cmax objective and
Machine occupation) can be ranked.

7.3. Negotiation mechanism influence in the overall
system performance

The boxplot from Fig. 7 allows the analysis of location, disper-
sion and asymmetry of data, making its synthesis by ACS, PSO and
ABC, before and after the negotiation mechanism processing. From
its analysis it is possible to conclude that there are not outliers or
extreme values and about the influence of mechanism in the
system performance, in terms of minimization of makespan (Cmax),
in the resolution of the analyzed instances of JSSP, when compared
mean values obtained before negotiation mechanism application.
However, it is not clear, from the graph analysis, the negotiation
mechanism influence in the overall system performance.

From the analysis of statistical sampling summary based on
Cmax minimization (Table 8), it is possible to conclude that
exist some statistic evidence on the advantage of negotiation
mechanism in the overall system performance. This conclusion
can be supported either by central tendencies and dispersion
measures. This evidence can be observed even on median and
dispersion indicators. Regarding variability, through standard
deviation and interquartile range analysis it possible to conclude
that ABC presents the lowest variability, followed by PSO and ACS.

Additionally, it is possible to refer that, in general the difference
in performance before and after negotiation mechanism is less
significant on ABC than with PSO and ACS which can be mainly
explained by the fact that ABC was able to get good solutions
before negotiation mechanism applying, and therefore the
mechanism offered few improvements to the solution (Fig. 7 and
Table 8). This conclusion converge for the assumption that a global

solution for a scheduling problem may emerge from a community
of resource agents solving locally their schedules and negotiating
with other machine agents that shares some relations between the
operations/jobs (e.g. a precedence relation).

To evaluate the significance of Negotiation Mechanism influ-
ence on the performance of scheduling system on the resolution of
scheduling problems, the Wilcoxon Signed Ranks Test [53] has
been used. From inferential statistical analysis it is possible to
conclude about statistical evidence that NM influence the perfor-
mance of the system with α¼5% of significance level. For all SI
techniques performed, ABC (p¼0.004oα), PSO (p¼0.0005oα)
ACS (p¼0.009oα) the null hypothesis H0, that consider NM does
not influence significantly the performance of system, was
rejected with 95% of confidence level.

7.4. Minimization of makespan (Cmax)

The bar graph from Fig. 8 allows the analysis of location,
dispersion and asymmetry of data, making its synthesis by ACS,
PSO and ABC for Cmax. From its analysis it is possible to conclude
that there are not outliers or extreme values and about the
advantage of ABC in the resolution of the analyzed instances of
JSSP when compared mean values with PSO and ACS methods.
ABC is more effective in terms of minimization of makespan (Cmax),
followed by PSO and ACS techniques. This evidence can be
observed even on median and dispersion indicators. Regarding
variability, through standard deviation and interquartile range
analysis it possible to conclude that ABC presents the lowest
variability, followed by PSO and ACS. The lower median for Cmax

and the lowest variability show some statistical tendency on
advantage ABC performance when compared with PSO and ACS.

After the general exploratory results analysis about the beha-
vior of the scheduling system through negotiation based on three
different SI techniques a significance analysis of the results has
been performed to identify possible dependencies mainly on the
identification of SI performance on the minimization of makespan
(Cmax). The Friedman test for related samples was used, to
compare the difference of performance obtained by SI techniques.
Considering a significance level α¼5%, it is possible to conclude
that exist at least one SI technique whose performance is different
from at least one of the other SI technique (χ2(2)¼21.7; po0.001).
Having concluded that there exist some significant differences the
post-hoc statistical procedure LSD has been used to characterize
these differences and validate which algorithm is really more
effective. Thus, is it possible to conclude based on the statistical
evidence that allows us to say, with a confidence level of 95% that
ABC was the most effective when the optimization objective is the
minimization of makespan (Cmax).

Table 7
ACS, PSO and ABC parameterization.

ACO PSO ABC

Parameter Value Parameter Value Parameter Value

Evaporation rate 80% Minimum velocity –4 Size of population 50/100
Number of colonies 1 Maximum velocity 4 Maximum failure 1000/2000
Alpha 1 Minimum inertia 40% Number of cycles 3000/4500
Beta 1 Maximum inertia 95%
Stopping criteria 95 C1 2.0
Number of ants per colony 50 (150) C2 2.0

Lower limit 0
Upper limit 4
Stopping criteria 1000/1500
Particles number 150/250

A. Madureira et al. / Neurocomputing 132 (2014) 97–110 107

7.5. Machine occupation rate

Manufacturing systems efficiency can often be improved by
identifying the real reasons and true extent of manufacturing
downtime, constraints or bottlenecks caused by machine down-
time. An important aspect of manufacturing organizations is
related with the improvement of resource utilization.

In Fig. 9 the obtained results are illustrated, for the machine
occupation rate (%), where the main objective is to create a
scheduling plan that reduce idle times and production delays
while maximizing resource utilization/occupation (U).

When analyzing machine occupation percentage results (Fig. 9)
it is possible to conclude about general system performance
through SI based algorithms. In average the system performance
was more effective on the machine idle times reduction with ABC
when compared with PSO and ACS. Fig. 9 displays the boxplot of
the resource occupation (%) for each technique in analysis. In
terms of median rate for resource occupation, the ABC technique
showed the best performance, followed by PSO technique and
finally the ACS. Regarding the variability, the ABC and ACS
techniques are similar, although the ACS technique presents lower
rate values compared with ABC. The PSO technique has the highest
variability. Summarizing the information provided by Fig. 9 and

Table 9, it is possible to conclude that: the high median rate and
the smaller variability support statistical evidence on the advan-
tage regarding the performance of the ABC on the maximization of
machine occupation rate (%).

The Friedman test was used, to compare the difference of
performance obtained by SI techniques. Considering a significance
level α¼5%, it is possible to conclude that exist at least one SI
technique whose performance is different from at least one of the
other SI technique (χ2(2)¼8.532; p¼0.014oα). Having concluded that
there exist some significant differences the post-hoc statistical
procedure LSD has been used to characterize these differences and

Table 8
Statistical sampling summary based on Cmax.

ABC PSO ACS

Cmax with NM Cmax without NM Cmax with NM Cmax without NM Cmax with NM Cmax without NM

Mean 1327.040 1330.860 1528.460 1537.390 1611.700 1615.690
Median 1290.600 1292.900 1443.500 1448.800 1491.700 1491.700
Variance 258,753.796 260,105.323 371,849.285 371,113.800 473,759.682 477,087.076
Std. Deviation 508.678 510.0052 609.7945 609.1911 688.3020 690.7149
Interquartile range 727.850 728.4 924.3 897.9 1143.4 1153.3
Skewness 0.927 0.925 0.702 0.731 0.549 0.552
Kurtosis 0.412 0.407 �0.206 �0.117 �0.849 –0.834

Fig. 7. Boxplot of the Cmax values with and without Negotiation Mechanism using
ABC, PSO and ACS.

Fig. 8. Boxplot of the Cmax minimization for ABC, PSO and ACS.

Fig. 9. Boxplot of the machine occupation % for ABC, PSO and ACS.

A. Madureira et al. / Neurocomputing 132 (2014) 97–110108

validate which algorithm is really more effective. Thus, is it possible to
conclude based on the statistical evidence that allows us to say, with a
confidence level of 95% that ABC was the most effective when the
optimization objective is the maximization of machine occupation.

Considering efficiency, most of the instances were solved in
relatively short CPU time. For example, instance ABZ8 with 20 jobs
and 15 machines took 2 s with ACS, 7 s with PSO and 19 s with
ABC. In average the instances were solved in 5 s with ACS, 6 s with
PSO, and 7 s with ABC.

8. Conclusions and further work

We proposed a novel framework that allows agents to coordi-
nate their actions automatically, without human supervision, a
requirement found in a wide variety of real world applications,
such as the one proposed in this article.

The work reported in this paper is concerned with the resolu-
tion of real world scheduling problems by taking advantages from
Swarm Intelligence paradigm, Negotiation in Multi-Agent Systems
and Autonomic Computing. The main objective of this paper is the
research of negotiation related issues for dynamic manufacturing
systems in order to provide scheduling systems with collective
intelligence and negotiation capabilities. A negotiation mechanism
for dynamic scheduling based on Swarm Intelligence is proposed,
where multiple self-interested agents can reach agreement over
the operations exchange on competitive resources. Agents must
collaborate to improve your local solution and global schedule. The
proposed negotiation mechanism is able to analyze the scheduling
plan generated by the Resource Agents and integrated by Coordi-
nator Agent, and refine it by idle times reducing.

Experimental analysis was performed in order to validate the
influence of the SI technique and negotiation mechanism in the
system performance. From the obtained results it was possible to
conclude about statistical evidence that negotiation mechanism
influence significantly the overall system performance and about
advantage of Artificial Bee Colony on effectiveness of makespan
minimization and on the machine utilization maximization.

Future work includes the refinement of the Negotiation
Mechanism, and the validation of the proposed system and
negotiation mechanisms under dynamic environments subject to
several random perturbations and imponderables.

Acknowledgements

This work is supported by FEDER Funds through the “Programa
Operacional Factores de Competitividade – COMPETE” program
and by National Funds through FCT “Fundação para a Ciência e a
Tecnologia” under the Project: FCOMP-01-0124-FEDER-PEst-OE/
EEI/UI0760/2011 and PTDC/EME-GIN/109956/2009.

References

[1] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, 4th edition, Springer,
New York, NY, 2012.

[2] K. Baker, D. Trietsch, Principles of Sequencing and Scheduling, Wiley, Hoboken,
NJ, 2007.

[3] A. Madureira, I. Pereira, Self-optimization for dynamic scheduling in manu-
facturing systems, in: Khaled Elleithy, et al., (Eds.), Technological Develop-
ments in Networking Education and Automation, Springer, Netherlands, 2010,
pp. 421–426.

[4] A. Madureira, I. Pereira, Intelligent bio-inspired system for manufacturing
scheduling under uncertainties, Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 3
(2011) 72–79.

[5] F. Xhafa, A. Abraham, Metaheuristics for Scheduling in Industrial and Manu-
facturing Applications Series: Studies in Computational Intelligence, Springer,
2008.

[6] P. Siarry, Z. Michalewicz, Advances in Metaheuristics for Hard Optimization,
Springer-Verlag, Berlin Heidelberg, 2008. (Natural Computing Series).

[7] EMA. Practical Autonomic Computing: Roadmap to Self-Managing Technology
– A White Paper Prepared for IBM. Enterprise Management Associates, 2006.

[8] J. Kephart, D. Chess, The vision of autonomic computing, Computer 36 (2003)
41–50.

[9] M. Dorigo, Swarm Intelligence, Springer, New York, 2007.
[10] J. Kennedy, Swarm Intelligence, Handbook of Nature-Inspired and Innovative

Computing, Springer-Verlag, Berlin Heidelberg, 2006.
[11] Y. Sun, L. Zhang, X. Gu, A hybrid co-evolutionary cultural algorithm based on

particle swarm optimization for solving global optimization problems,
NeuroComputing 98 (2012) 76–89.

[12] M. Luck, P. McBurney, O. Shehory, S. Willmoth, Agent Technology: Computing
as Interaction. A Roadmap for Agent-Based ComputingAgentLink III, 2005.

[13] M. Wooldridge, N.R. Jennings, Intelligent agents: theory and practice, Knowl.
Eng. Rev. 10 (2) (1995).

[14] N.R. Jennings, An agent-based approach for building complex software
systems, Commun. ACM 44 (4) (2001) 35–41.

[15] L.G. Telser, A Theory of Effective Cooperation and Competition, Cambridge
University Press, 1987.

[16] M. Allen-Williams, Coordination in Multi-Agent Systems (Ph.D. thesis), Uni-
versity of Southampton, 2005.

[17] M. Dorigo, Optimization, Learning and Natural Algorithms (Ph.D. thesis),
Politecnico di Milano, Italy, 1992.

[18] M. Dorigo, L.M. Gambardella, Ant Colony System: a cooperative learning
approach to the traveling salesman problem, IEEE Trans. Evol. Comput. 1 (1)
(1997) 53–66.

[19] M. Dorigo, M. Birattari, T. Stützle, Ant colony optimization – artificial ants as a
computational intelligence technique, IEEE Comput. Intell. Mag. 1 (2006) 28–39.

[20] A. Madureira, D. Falcão, I. Pereira, Ant colony system based approach to single
machine scheduling problems – weighted tardiness scheduling problem, in:
Proceedings of International Fourth World Congress on Nature and Biologi-
cally Inspired Computing (NaBIC'12), 2012, pp. 86–91, .

[21] A. Madureira, I. Pereira, A. Abraham, Towards scheduling optimization through
artificial bee colony approach, in: Proceedings of International Fifth World
Congress on Nature and Biologically Inspired Computing (NaBIC'13), 2013,
pp. 252–257.

[22] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the
IEEE International Conference Neural Networks, 1995, pp. 1942–1948.

[23] D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization,
Technical Report TR06, Erciyes University, Engineering Faculty, Computer
Engineering Department, 2005.

[24] D.T. Pham, A. Ghanbarzadeh, E. Koc, S Otri, S. Rahim, M. Zaidi, The Bees
Algorithm, Manufacturing Engineering Centre, Cardiff University, United
Kingdom, 2005.

[25] D. Karaboga, B. Akay, A modified Artificial Bee Colony (ABC) algorithm for
constrained optimization problems, Appl. Soft Comput. 11 (2011) 3021–3031.

[26] N.R. Jennings, P. Faratin, A.R. Lomuscio, C. Sieera, M. Wooldridge, Automated
negotiation: prospects, methods and challenges, Int. J. Group Decision
Negotiation (GDN2000) 10 (2) (2000) 199–215.

[27] B. Horling, V. Lesser, A survey of multi-agent organizational paradigms, Knowl.
Eng. Rev. 19 (4) (2005) 281–316.

[28] H.S. Nwana, Software agents: an overview, Knowl. Eng. Rev. 11 (3) (1996)
205–244.

[29] H.S. Kim, J.H. Cho, Supply Chain Formation Using Agent Negotiation, Decision
Support Systems, 2010.

[30] G. Weiss, Multiagent Systems – A Modern Approach to Distributed Artificial
Intelligence, The MIT Press, Cambridge, MA, 1999.

[31] F. Bellifemine, G. Caire, D. Greenwood, Developing Multi-Agent Systems with
JADE, John Wiley & Sons, West Sussex, England, 2007. (Wiley Series in Agent
Technology).

[32] H. Nwana, L. Lee, N. Jennings, Coordination in software agent systems, BT
Technol. J. 14 (4) (1996) 79–88.

[33] D. Pruitt, Negotiation Behavior, Academic Press, New York, 1981.
[34] M. Beer, M. d'Inverno, N. Jennings, M. Luck, C. Preist, M. Schroeder, Negotia-

tion in multi-agent systems, Knowl. Eng. Rev. 14 (3) (1999) 285–289.
[35] R. Smith, The Contract Net Protocol: high level communication and control in

a distributed problemsolver, in: Proceedings of the First International

Table 9
Statistical sampling summary based on machine occupation rate (U).

ABC PSO ACS

Mean 59.3975 55.1285 51.2385
Median 61.0350 57.7650 51.7850
Variance 212.869 268.726 243.453
Std. Deviation 14.59003 16.39287 15.60299
Interquartile range 27.57 28.49 24.58
Skewness 0.313 0.514 0.358
Kurtosis �0.690 �0.960 �1.072

A. Madureira et al. / Neurocomputing 132 (2014) 97–110 109

http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref1
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref1
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref2
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref2
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref3
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref3
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref3
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref3
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref4
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref4
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref4
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref5
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref5
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref5
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref6
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref6
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref7
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref7
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref8
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref9
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref9
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref10
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref10
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref10
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref11
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref11
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref12
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref12
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref13
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref13
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref14
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref14
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref14
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref15
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref15
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref16
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref16
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref16
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref17
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref17
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref18
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref18
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref18
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref100
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref100
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref19
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref19
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref20
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref20
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref21
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref21
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref21
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref21
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref22
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref22
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref23
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref24
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref24

Conference on Distributed Computing Systems, IEEE, New York, 1979, pp. 185–
192.

[36] M. Wooldridge, An Introduction to Multiagent Systems, John Wiley and Sons
Ltd., West Sussex, England, 2002.

[37] T. Sandholm, eMediator: a next generation electronic commerce server,
Comput. Intell. 18 (4) (2002) 656–676 (Special Issue on Agent Technology
for Electronic Commerce).

[38] N. Jennings, An agent-based approach for building complex software systems,
Commun. ACM 44 (4) (2001) 35–41.

[39] I. Zattar, J. Ferreira, J. Rodrigues, C. Sousa, A multi-agent system for the
integration of process planning and scheduling using operation-based time-
extended negotiation protocols, Int. J. Comput. Integrated Manuf. 23 (5) (2010)
441–452.

[40] A. Singh, D. Juneja, A.K. Sharma, Introducing Trust Establishment Protocol in
Contract Net Protocol, in: Proceedings of the International Conference on
Advances in Computer Engineering, 2010.

[41] H. Kim, J. Cho, Supply Chain Formation Using Agent Negotiation, Decision
Support Systems, 2010.

[42] S. Adhau, M. Mittal, A. Mittal, A multi-agent system for distributed multi-
project scheduling: an auction-based negotiation approach, Eng. Appl. Artif.
Intell. (2012).

[43] A.M. Madureira, Meta-Heuristics Application to Scheduling in Dynamic
Environments of Discrete Manufacturing (PhD Dissertation), University of
Minho, Braga, Portugal, 2003 (in portuguese).

[44] I. Pereira, A. Madureira, Self-Optimization module for Scheduling using Case-
based Reasoning, Applied Soft Computing, Elsevier, 2012. (in press).

[45] A. Madureira, C. RamosS.C. Silva,A Coordination Mechanism for Real World
Scheduling Problems Using Genetic Algorithms, 2002 IEEE World Congress on
Computational Intelligence, Hawai (EUA), 2002.

[46] C. Xueguang, S. Haigang, Further Extensions of FIPA Contract Net Protocol:
Threshold plus DoA, ACM Symposium on Applied Computing, 2004.

[47] OR-Library – 〈http://people.brunel.ac.uk/�mastjjb/jeb/info.html〉.
[48] H. Fisher, G.L. Thompson, Probabilistic learning combinations of local job-shop

scheduling rules, Industrial Scheduling, Prentice Hall, Englewood Cliffs,
New Jersey (1963) 225–251.

[49] S. Lawrence, Resource constrained project scheduling: an experimental
investigation of heuristic scheduling techniques, Graduate School of Industrial
Administration, Carnegie-Mellon University, Pennsylvania, 1984.

[50] J. Adams, E. Balas, D. Zawack, The shifting bottleneck procedure for job shop
scheduling, Manag. Sci. 34 (1988) 391–401.

[51] R.H. Storer, S.D. Wu, R. Vaccari, New search spaces for sequencing instances
with application to job shop 38 (1992) 1495–1509Manage. Sci. 38 (1992)
1495–1509.

[52] T. Yamada, R. Nakano, A genetic algorithm applicable to large-scale job-shop
instances, in: R. Manner, B. Manderick (Eds.), Parallel Instance Solving from
Nature 2, North-Holland, Amsterdam, 1992, pp. 281–290.

[53] W.J. Conover, Practical Nonparametric Statistics, 3rd edition, Wiley Series in
Probability and Statistics, 1999.

Ana Madureira was born in Moçambique, in 1969. She
got her BSc degree in Computer Science Engineering in
1993 from ISEP, Master degree in Electrical and Com-
puters Engineering–Industrial Informatics, in 1996,
from FEUP, and the Ph.D. degree in Production and
Systems, in 2003, from University of Minho, Portugal.
She is Vice-Chair of IEEE Portugal Section and IEEE-CIS
Portuguese chapter. She became IEEE Senior Member in
2010. Currently she is Coordinator Professor at the
School of Engineering–Polytechnic of Porto (ISEP/IPP)
and Ph.D. researcher of the GECAD Research Group. In
the last few years, she was author of more than seventy
scientific papers in scientific conference proceedings,

journals and books

Ivo Pereira was born in 1984. His BSc degree in
Computer Science Engineering was obtained in 2007
and his MSc degree was concluded in 2009, both in the
Institute of Engineering–Polytechnic of Porto. Currently
he is a Ph.D. student in University of Trás-os-Montes e
Alto Douro. He is also a researcher of GECAD Research
Group, where participated in three R&D projects. In the
last few years, Ivo was author and co-author of more
than twenty scientific papers in conference proceed-
ings, journals and books. His main scientific areas
of interest are Meta-Heuristics, Parameter Tuning,
Machine Learning, Scheduling, and Intelligent Systems

Pedro Pereira was born in 1970. Completed his BSc
degree in Food Engineering in 1994, at ESB-UCP, its
master in Industrial Management at ISEP in 2010, and
two post-graduate courses. Played for several year
activities relates to quality, food, environmental, health
and safety assurance and systems certification. Cur-
rently work as consultant in Food Safety and Health
and Safety areas, as well as professional training. His
main scientific areas of interest are Production Plan-
ning and Control, Quality Management, Sustainable
manufacturing, Green economy, Green manufacturing.

Ajith Abraham received Ph.D. in Computer Science
from Monash University, Melbourne, Australia. He is
currently the Director of Machine Intelligence Research
Labs (MIR Labs), Scientific Network for Innovation and
Research Excellence, USA, which has members from
more than 100 countries. He has a worldwide academic
and industrial experience of over 23 years. He works in
a multidisciplinary environment involving machine
intelligence, network security, various aspects of net-
works, e-commerce, Web intelligence, computational
grids, data mining, and their applications to various
real-world problems. He has numerous publications/
citations (h-index 54) and has also given more than 70

plenary lectures and conference tutorials in these areas. He is an Associate Editor of
Neurocomputing, since 2003. Since 2008, he is the Chair of IEEE Systems Man and
Cybernetics Society Technical Committee on Soft Computing and a Distinguished
Lecturer of IEEE Computer Society representing Europe (since 2011). He is the
founder of several IEEE technically sponsored conferences, which are now annual
events for over a decade. More information at: http://www.softcomputing.net

A. Madureira et al. / Neurocomputing 132 (2014) 97–110110

http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref25
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref25
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref26
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref26
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref27
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref27
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref27
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref27
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref28
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref28
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref28
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref29
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref29
http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref30
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref30
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref30
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref31
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref31
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref32
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref32
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref32
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref33
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref33
http://refhub.elsevier.com/S0925-2312(13)01092-8/sbref33
http://www.softcomputing.net

	Negotiation mechanism for self-organized scheduling system with collective intelligence
	Introduction
	Problem definition
	Swarm Intelligence
	Ant Colony Optimization
	Particle Swarm Optimization
	Artificial Bee Colony
	Employed bees phase
	Onlooker bees phase
	Scout bees phase

	Negotiation in Multi-Agent System and Self-* systems
	Collaborative Dynamic Scheduling architecture
	Collaborative architecture
	System model

	Negotiation mechanism
	Experimental analysis
	Configuration and parameters tuning
	Discussion of results
	Negotiation mechanism influence in the overall system performance
	Minimization of makespan (Cmax)
	Machine occupation rate

	Conclusions and further work
	Acknowledgements
	References

