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Machine Printed Text and Handwriting
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Abstract—In this paper, we address the problem of the identification of text in noisy document images. We are especially focused on
segmenting and identifying between handwriting and machine printed text because: 1) Handwriting in a document often indicates

corrections, additions, or other supplemental information that should be treated differently from the main content and 2) the segmentation
and recognition techniques requested for machine printed and handwritten text are significantly different. A novel aspect of our approach
is that we treat noise as a separate class and model noise based on selected features. Trained Fisher classifiers are used to identify
machine printed text and handwriting from noise and we further exploit context to refine the classification. A Markov Random Field-based
(MRF) approach is used to model the geometrical structure of the printed text, handwriting, and noise to rectify misclassifications.

Experimental results show that our approach is robust and can significantly improve page segmentation in noisy document collections.

Index Terms—Text identification, handwriting identification, Markov random field, postprocessing, noisy document image

enhancement, document analysis.

1 INTRODUCTION

DOCUMENTS are the results of a set of physical processes
and conditions and the resulting document can be
viewed as consisting of layers (letterhead, content, signa-
tures, annotations, noise, etc., in the case of business
correspondence, for example). Document analysis reverses
these processes to segment a document into layers with
different physical and semantic properties. After decades of
research, automatic document analysis has advanced to a
point where text segmentation and recognition can be viewed
as a solved problem in clean, well-constrained documents.
However, the performance degrades quickly when a small
amount of noise is introduced. For example, a typical bottom-
up page segmentation method starts from the extraction of
connected components [1], [2]. Based on spatial proximity
and size, connected components are then merged into text
lines and zones. A classification process is then used to
identify zone types (text, tables, images, etc.). These algo-
rithms work well on clean documents where zones with
different properties can be easily separated. However, they
often fail on noisy documents where noise mixes with and /or
is spatially close to content regions. For example, Figs. 1a and
1b show segmentation results for an extremely noisy
document when we use the Docstrum algorithm [2] and
ScanSoft SDK [3]. Text and noise are erroneously segmented
into the same zones by both algorithms.

In this paper, we present a novel approach to identifying

text in extremely noisy documents. Instead of simple noise
filtering, as used in other work [1], [2], we treat noise as a
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distinguished class and model it based on selected features.
We further identify handwriting from machine printed text
since: 1) Handwriting in a document often indicates correc-
tions, additions, or other supplemental information that
should be treated differently from the main content and
2) segmentation and recognition techniques for machine
printed text and handwriting are significantly different.
Based on these considerations, we treat the problem as a
three-class (machine printed text, handwriting, and noise)
identification problem.

In practice, misclassification often happens in an over-
lapping feature space. This is especially true for handwriting
and noise. To deal with this problem, we exploit contextual
information in postprocessing and refine the classification.
Contextual information is very useful for improving classi-
fication accuracy. It is widely used in many OCR systems and
its effectiveness has been demonstrated in previous work [4],
[5]. The key is to model the statistical dependency among
neighboring components. The output of an OCR system is a
text stream which is one-dimensional. Therefore, an N-gram
language model, based on an Nth order 1D Markov chain, is
effective for modeling the context. With assistance from a
dictionary, the N-gram approach can correct most recogni-
tion errors. Images, however, are two-dimensional. Gener-
ally, 2D signals are not causal and it is much harder to model
the dependency among neighboring components in an
image. Among the image models studied so far, Markov
Random Fields (MRF) have been widely studied and
successfully used in many applications. MRFs are suitable
for image analysis because the local statistical dependency of
an image can be well-modeled by Markov properties. MRFs
can incorporate a priori contextual information or constraints
in a quantitative way. The MRF model has been extensively
used in various image analysis applications such as texture
synthesis and segmentation, edge detection, and image
restoration [6], [7]. In this paper, we use MRFs to model the
dependency of segmented neighboring blocks. As postpro-
cessing, MRFs can further improve classification accuracy.

Published by the IEEE Computer Society
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Fig. 1. Page segmentation results for an extremely noisy document using the Docstrum algorithm and ScanSoft SDK. Noise is segmented into text

zones erroneously in both cases. (a) Docstrum and (b) ScanSoft.

The documents we are processing are extremely noisy
with machine printed text, handwriting, and noise mixed
together. We first extract the connected components and
merge them at the word level based on spatial proximity. We
then extract several categories of features and use trained
Fisher classifiers to classify each word into machine printed
text, handwriting, or noise. Finally, contextual information is
incorporated into MRF models to refine the classification
results further.

The rest of the paper is organized as follows: Section 2 is a
literature survey of related work, followed by a detailed
description of our classification method in Section 3. MREF-
based postprocessing is presented in Section 4 and experi-
mental results are presented in Section 5. The paper concludes
with a brief summary and a discussion of future work.

2 RELATED WORK

The research presented in this paper is related to previous
work on page segmentation, zone classification, hand-
writing identification, and document enhancement.

2.1 Page Segmentation

Previous work on page segmentation can be broadly
divided into three categories: bottom-up [1], [2], top-down
[8], and hybrid [9]. In a typical bottom-up approach such as
the Docstrum algorithm proposed by O’Gorman [2],
connected components are extracted first and then merged
into words, lines, zones, and columns hierarchically based
on size and spatial proximity. Bottom-up methods can
handle documents with complex layouts. However, they
are time consuming and sensitive to noise.

A typical top-down method, such as the X-Y cuts
proposed by Nagy et al. [8], starts from the whole document
and splits it recursively into columns, zones, lines, words,
and characters. Top-down methods are effective for docu-
ments with regular layouts, but fail when the documents
have a non-Manhattan structure.

Another problem with X-Y cuts is that the global
parameters for optimal segmentation are often difficult to
find if prior knowledge is not available. Sylwester and Seth
proposed a hybrid method which starts from the top [9]. First,
they oversegment a document into small zones using the
X-Y cut algorithm. Then, they use the bottom-up method
which groups oversegmented small zones with the same
properties into a single zone.

All of the above methods are based on the analysis of
foreground (black pixels). As an alternative, white stream
methods based on the analysis of background (white pixels)
are presented in [10], [11]. In these methods, rectangles
covering white gaps (white pixels) between foreground are
extracted. Foreground regions surrounded by these white
rectangles are extracted as zones. A more comprehensive
survey is presented in [12].

2.2 Zone Classification

Zone classification labels the content of each segmented
zone as one of a set of predefined types [1], [11], [13], such
as text, images, graphics, and tables. Pavlidis and Zhou
used correlations of horizontal scan lines as features to
distinguish text and diagrams from half-tone images. The
black pixel density is used to further distinguish diagrams
from text [11]. Wang et al. used 69 features, such as run
length mean and variance, spatial mean and variance,
fraction of the total number of black pixels in the zone,
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width ratio of the zone, and number of text glyphs in the
zone, to classify each zone into nine classes. They did
experiments on ground-truthed zones of the UW III
database and achieved an accuracy as high as 98.52 percent
[13]. Jain and Yu directly performed classification on the
generalized lines (GTLs) extracted using a bottom-up
approach [1]. If the height of a GTL is less than a threshold
and the connected components in it are horizontally
aligned, it is classified as a text line. Text lines and nontext
lines are merged into text regions and nontext regions,
respectively. They further classify nontext regions into
images, tables, and drawings. This works well for long text
lines, but may fail when the text lines are short.

Some other approaches treat text, images, and figures as
different textures, and use trained classifiers to segment and
identify them [14], [15], [16]. They often work directly on
gray-scale images and need classification of each pixel. To
reduce the computation complexity, multiresolution techni-
ques are often used.

2.3 Handwriting Identification

Some work has been done on handwriting/machine printed
text identification. The classification is typically performed at
the text line [17], [18], [19], [20], word [21], or character level
[22], [23]. At the line level, machine printed text lines are
typically arranged regularly with a straight baseline, while
handwritten text lines are irregular with a varying baseline.
Srihari et al. implemented a text line-based approach using
this characteristic and achieved a classification accuracy of
95 percent [20]. One advantage of this approach is that it can
be used in different scripts (Chinese, English, etc.) with little
or no modification. Guo and Ma proposed an approach based
on the vertical projection profile of the segmented words [21].
They used a Hidden Markov Model (HMM) as the classifier
and achieved a classification accuracy of 97.2 percent.
Although, at the character level, less information is available,
humans can still identify the handwritten and machine
printed characters easily, inspiring researchers to pursue
classification at the character level. Kuhnke et al. proposed a
neural network-based approach with straightness and
symmetry as features [22]. Zheng et al. used run-length
histogram features to identify handwritten and printed
Chinese characters and achieved promising results [23]. In
previous work, we implemented a handwriting identification
method based on several categories of features and a trained
Fisher classifier [24]. However, the problems introduced by
noise are not addressed.

2.4 Document Enhancement

There are two types of degradation in document images:
1) physical degradation of the hardcopy documents during
creation and/or storage and 2) degradation introduced by
digitization. If severe enough, either of them can reduce the
performance of a document analysis system significantly.
Several document degradation models [25], [26], [27],
methods for document quality assessment [28], [29], and
document enhancement algorithms [30], [31], [32] have been
presented in previous work. One common enhancement
approach is window-based morphological filtering [30], [31],
[32]. Morphological filtering performs a look up table
procedure to determinate an output of ON (black pixel) or
OFF (white pixel) for each entry of the table, based on a
windowed observation of its neighbors. These algorithms can

be further categorized as manually designed, semimanually
designed, or automatically trained approaches. The kFill
algorithm, proposed by O’Gorman [32], is a manually
designed approach and has been used by several other
researchers [28], [33]. Experiments show it is effective
for removing salt-and-pepper noise. Liang and Haralick
proposed a semimanually designed approach with a
3 x 3 window size [34]. They manually determine some
entries to output ON or OFF based on a priori observations.
The remaining entries are trained to select the optimal output.
It is difficult to manually design a filter with a large window
size and success depends on experience. If both ideal and
degradedimagesareavailable, optimal filters can be designed
by training [31]. After registering the ideal and degraded
images at the pixel level, an optimal look-up table, based on
observation of the outputs of each specific windowed context,
can be designed. However, it is difficult to train, store, and
retrieve the look-up table when the window size is large. This
approach requires both the original and the corresponding
degraded images for training. Loce and Dougherty used
artificially degraded images generated by models for training
[31], while Kanungo et al. proposed methods for validation
and parameter estimation of degradation models [35], [36],
[37]. Though the uniformity and sensitivity of his approach
hasbeen tested by other researchers [27], [38], no degradation
model has been declared to pass the validation. Another
problem with morphological approaches is the small window
sizes. The most commonly used window size is no larger than
5 x 5, which is too small to contain enough information for
enhancement.

Ideally, image quality should be estimated first so the
appropriate enhancement algorithms can be applied auto-
matically. Cannon et al. proposed a document quality
assessment algorithm based on five factors: small speckle,
white speckle, touching characters, broken characters, and
font size [28]. They used a linear classifier to select the best
one out of four enhancement algorithms and reduced the
OCR error rate from 20.27 percent to 12.60 percent on their
database. Li and Doermann proposed an approach for
quality estimation of color video text which classifies the
video text quality into six levels [29].

A majority of the above approaches are focused on
improving OCR accuracy in noisy documents. As shown in
Fig. 1, degradation will not only deteriorate OCR perfor-
mance, but other document processing tasks, such as page
segmentation, as well. Little work has been done in this
area. The difference between our approach and previous
work is that we perform classification to identify noise and
exploit contextual information of neighboring blocks as a
postprocessing to refine the identification. Experiments
show that our noise removal algorithm can increase page
segmentation accuracy significantly.

3 TEXT IDENTIFICATION

In this section, we present our text (machine printed or
handwritten) extraction and classification method.

3.1 Pattern Unit

Special consideration must be given to the size of the region
being segmented before we can perform any classification.
We call the smallest unit for classification a pattern unit. If
the unit is too small, the information contained in it may not
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TABLE 1
Features Used for Machine Printed Text/Handwriting/Noise Classification

Feature set

Feature description

# of features | # of features selected

Structural Region size, connected components 18 9
Gabor filter Stroke orientation 16 4
Run-length histogram Stroke length 20 5
Crossing count histogram Stroke complexity 10 6
Bi-level co-occurrence Texture 16 2
2x2 gram Texture 60 5
Total 140 31
be sufficient for classification; if it is too large, however, wil hil I(z,y)
different types of components may be mixed in the same g = V=0 (1)
region. In previous work, we conducted a performance - wxh

evaluation for the classification accuracy of machine printed
text and handwriting at the character, word, and zone levels
and showed that a reliable classification can be achieved at
the word level [24]. We therefore segment images at the
word level and then perform classification. Since noise has
no concept of word, we use the terminology block and word
interchangeably in the following presentation.

We first extract connected components and then merge
them into words based on geometric proximity and size.
Those extremely large word blocks or blocks with very
large or small aspect ratios are filtered out. However, noise
with size similar to text cannot be filtered out. Our focus is
to distinguish text from this type of noise.

3.2 Feature Extraction

Several sets of features are extracted for classification. The
descriptions and sizes of the feature sets are listed in Table 1.
Machine printed text, handwriting, and noise have different
visual appearances and physical structures. Structural
features are extracted to reflect these differences. Gabor filter
features and run-length histogram features can capture the
difference in stroke orientation and stroke length between
handwriting and printed text. Compared with text, noise
blocks often have simple stroke complexity. Therefore,
crossing count histogram features are exploited to model
such differences. We further take regions of machine printed
text, handwriting, and noise blocks as different textures. Two
sets of bilevel texture features (bilevel co-occurrence features
and bilevel 2 x 2 gram features) are used for classification. In
the following sections, we present these features in detail.

3.2.1 Structural Features

We extract two sets of structural features. The first set
includes features related to the physical sizes of the blocks
such as density of black pixels, width, height, aspectratio, and
area. Suppose the image of the block is I(z,y), 0 <z < w,
0 <y < h, and w, h are its width and height, respectively.
Each pixel in the block has two values: 0 representing
background (a white pixel) and 1 representing content (a
black pixel). Then, the density of the black pixels d is

The sizes of machine printed words are more consistent
than those of handwriting and noise on the same page.
However, machine printed words on different pages may
vary significantly. Therefore, we use a histogram technique
to estimate the dominant font size [2] and then use the
dominant font size to normalize the width (w), height (h),
aspect ratio (r), and area (a) of the block.

The second set of structural features is based on the
connected components inside the block, such as the mean and
variance of the width (m,, and ¢,,), height (m;, and ¢},), aspect
ratio (m, and o,), and area (m, and o,) of connected
components. The sizes of connected components inside a
machine printed word are more consistent, leading to smaller
o, and oj. For a handwritten word or noise block, the
bounding boxes of the connected components tend to overlap
with each other, as shown in Fig. 2a. For machine printed
English words, however, each character forms a connected
component not overlapping with others. The overlapping
area (the sum of the areas of the gray rectangles in Fig. 2a)
normalized by the total area of the block is calculated as a
feature. Another feature we use is the variance of the vertical
projection. In a machine printed text block, the vertical
projection profile has obvious valleys and peaks since
neighboring characters do not touch each other. However,
for ahandwritten word or noise block, the vertical projections
are much smoother, resulting in smaller variance.

3.2.2 Gabor Filter Features

Gabor filters can represent signals in both the frequency and
time domains with minimum uncertainty [39] and have been
widely used for texture analysis and segmentation [15].
Researchers found that they match the mammalian visual
system very well, which provides further evidence thatwe can
use it in our classification tasks. In the spatial and frequency
domains, the two-dimensional Gabor filter is defined as

— 4+
2
(o=t g

g(z,y) = exp {—ﬂ

$/2 y/Q
2
Y

} x cos{2m(upz +voy)}  (2)
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(a)

(c)

Histogram counts
Weight windows 5

Length of black pixel run-length

o/1f --- 101

(d)

Fig. 2. lllustration of feature extraction. (a) The overlap area of the connected components inside a pattern unit is extracted as a structural feature.
(b) Run-length histogram features. (c) Crossing count features. The crossing counts of the top and bottom horizontal scan lines are 1 and 2,

respectively. (d) Bilevel 2 x 2 gram features.

Glu,0) = 2m0,0, (cap{ ~w{(u — up)20% + (v )%} +

‘ (3)

exp{—r[(u' + up)’o% + (v + ) 07}),
where 2/ = —zsinf+ycosf, v = —xcosf —ysinh, u =
usin® — wcosf, v = —ucosf —vsinb, uy = —upsind+ vy
cosB, v, = —ugcosf —vysinb, uy = fcos, and vy = fsiné.

Here, f and 6 are two parameters, representing the
central frequency and orientation of the Gabor filter.

The variances of the filtered images are taken as features.
In our experiments, 16 Gabor filters with different orienta-
tions 6y =k x 180/N,k=1,2,...16, are used, which gen-
erate 16 features.

3.2.3 Run-length Histogram Features

Run-length histogram features are proposed in [23] for
machine printed/ handwritten Chinese character classifica-
tion. These features are used in our case to capture the
difference between the stroke lengths of machine printed text,
handwriting, and noise blocks. First, black pixel run-lengths
in four directions, including horizontal, vertical, major
diagonal, and minor diagonal, are extracted. We then
calculate four histograms of run-lengths for these four
directions, as shown in Fig. 2b. To get scale-invariant features,
we normalize the histograms. Suppose Cy, k =1,2,..., N, is
the number of runs with length &, and IV is the maximal length
of all possible runs, then the normalized histogram Cj is

o= (1)

We then divide the histogram into five bins with equal
width and use five Gaussian-shaped weight windows to get
the final features (Fig. 2b). Taking the horizontal run-length
histogram as an example, the run-length histogram feature
Rh; is calculated as

Rh; = ZG(k; u;,0)C, i=1,2,3,4,5, (5)
k=1

where w is the width of the block (the maximal length of all
possible horizontal run-lengths) and G(k;u;,0) is a Gaus-
sian-shaped function:

N2
G(kju;,0) = emp{—w}. (6)

202

As shown in Fig. 2b, o is chosen so the weight on each bin
border is 0.5. Another alternative is to use rectangular
windows without overlap between neighboring bins.
Experiments show that the extracted features with Gaussian
weighted windows are more robust. Five features are
extracted in each direction, leading to 20 features.

3.2.4 Crossing Count Histogram Features

A crossing count is the number of times the pixel value
changes from 0 (white pixel) to 1 (black pixel) along a
horizontal or vertical raster scan line. As shown in Fig. 2c,
the crossing counts of the top and bottom horizontal scan
lines are 1 and 2, respectively. Crossing counts can be used
to measure stroke complexity [24], [40]. In our approach,
first the crossing count for each horizontal and vertical scan
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line is calculated. Similarly, we get two histograms for the
horizontal and vertical crossing counts, respectively. The
same technique (as in extracting the run-length histogram
features) is exploited to get the final features from the
histograms. A total of 10 features are extracted.

3.2.5 Bilevel Co-Occurrence Features

A co-occurrence count is the number of times a given pair of
pixels occurs at a fixed distance and orientation [41]. In the
case of binary images, the possible co-occurrence pairs are
white-white, black-white, white-black, and black-black. In
our case, we are concerned primarily with the foreground.
Since the white background region often accounts for up to
80 percent of a document page, the occurrence frequency of
white-white or white-black pixel pairs will always be much
higher than that of black-black pairs. The black-black pairs
carry most of the information. To eliminate the redundancy
and reduce the effects of overemphasizing the background,
we consider only black-black pairs. Four different orienta-
tions (horizontal, vertical, major diagonal, and minor
diagonal) and four distance levels (1, 2, 4, and 8 pixels)
are used for classification (16 features total). The horizontal
co-occurrence count Cj,(d), for example, is defined as

Ci(d) =Y Iw,yI(x+dy),d=1248  (7)

I(z,y) = 0 for white pixels; therefore, only black-black pixel
pairs contribute. For a fixed distance d, we normalize the
occurrence by dividing by the sum of the occurrences in all
four directions.

3.2.6 Bilevel 2 x 2 Gram Features

The N x M grams were first introduced in the context of
image classification and retrieval [42]. An N x M gram
extends the one-dimensional co-occurrence feature to the
two-dimensional case. We only consider 2 x 2 grams, which
count the numbers of occurrences of the patterns shown in
Fig. 2d. The cells labeled 0/1 should take specific values and
the values of other cells are irrelevant. Therefore, there are
2' = 16 patterns for each distance d. Like the co-occurrence
features, the all white patterns are removed to reduce
overemphasis on the background. For a fixed distance, the
occurrences are normalized by dividing by the sum of all
occurrences. Four distances (1, 2, 4, and 8 pixels) are chosen,
generating 4 x 15 = 60 features.

3.3 Feature Selection

There are two purposes for feature selection. First, reducing
the computation needed for feature extraction and classifica-
tion. As shown in Table 1, we extract a total of 140 features
from the segmented blocks. Though these features are
designed to distinguish between different types of blocks,
some features may contain more information than others.
Using only a small set of the most powerful features reduces
the time for feature extraction and classification. The second
purpose is to alleviate the curse of dimensionality. When the
number of training samples is limited, using a large feature
set may decrease the generality of a classifier [43]. The larger
the feature set, the more training samples are needed.
Therefore, we perform feature selection before feeding the
features to the classifier.

We use a forward search algorithm to perform feature
selection [44]. We first divide the whole feature set F into a

currently selected feature set 7, and an unselected feature
set F, which satisfy

FNFn=0a (8)
FoUF, =F. (9)

The selection procedure can then be described as

1. Set =&, and F, = F.

2. Label all features in F, as untested.

3. Select one untested feature f € F, and label it as
tested.

4. Put f and F; together and generate a temporary
selected feature set F..

5. Estimate the classification accuracy with feature set
F! using a 1-NN classifier and leave-one-out cross
validation technique. The basic idea is that at each
iteration only one sample is used for testing, while
the others have been used for training. We repeat
this process until all samples have been used as
testing samples once. The average accuracy for all
iterations is taken as the estimated accuracy for the
current feature set. The leave-one-out cross valida-
tion technique can estimate the accuracy of a
classifier with small variation [43].

6. If there are untqsted features in F,, go to Step 3.

7. Find a feature f € F,, such that the corresponding
temporary feature set ' has the highest classification
accuracy:

f=arg ffnafux Accuracy(FL), (10)

then move f from F, to Fs.

8. If F,, # @, go to Step 2; otherwise exit.

We use LNKnet pattern classification software to conduct our
feature selection experiments [45]. LNKnet provides several
classifiers, such as likelihood classifiers, k-NN classifiers, and
Neural Network classifiers, and several feature selection
algorithms such as forward search, backward search, and
forward and backward search. Feature selection can be an
extremely expensive task. Considering the large number of
feature sets to evaluate and the number of classifiers to train,
the lightweight forward feature selection algorithm and
1-NN classifier, which does not need training, are used in
our feature selection experiment.

We collected about 1,500 blocks for each class. As shownin
Fig. 3a, when the number of selected features increases, the
error rate decreases sharply at first. The trend reverses at
some point. The best classification is achieved when only
31 features are selected, with an error rate of 5.7 percent.
When all features are used, the error rate increases to
9.2 percent due to the limited number of training samples
and large feature set. The last column in Table 1 lists the
number of features selected in each set. It shows that texture
features, such as bilevel co-occurrence and 2 x 2 grams, are
less discriminating than other feature sets, mainly due to the
small region size. Only 1/8 of the bilevel co-occurrence
features and 1/12 of the 2 x 2 gram features are selected.
Crossing count histogram features and structural features are
very effective, with more than half of the original features in
both sets selected in the final feature set.

Principal Component Analysis (PCA) is another techni-
que for reducing feature dimension [43]. To extract the first
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Fig. 3. Feature analysis. (a) Feature selection: The best classification result is achieved when 31 features are selected. (b) PCA: The best

classification result is achieved when 64 principal components are used.

n principal components, we need to search a subspace of
dimension n with basis w. Suppose the mean is already
removed from the feature vector X and let the projection of
X onto this subspace be X

X = (W?X)wl + (WQTX)UJ? +ot+ (ng)wn' (11)

PCA finds the optimal subspace @ such that the energy
contained in X is maximized:

n
W =arg urlndz() Z Var [XZ]
i=1 (12)
1 ifi=j
0 ifi#jy.
The optimal basis is the first n eigenvectors of the
covariance matrix of X, corresponding to the first n largest
eigenvalues [43]. The first n principal components are
P =w!X,i=1,...,n. The idea of PCA is to concentrate
the energy into the first several principal components.
Assuming the classification information is contained in the
energy, the first several principal components are more
powerful than the remaining components. Furthermore,
PCA analysis can remove the correlation among features.
As in the feature selection experiment, the 1-NN classifier
and the leave-one-out technique are used to estimate the
classification accuracy. Fig. 3b shows the classification error
rate versus the number of principal components used. As in
feature selection, the error rate drops quickly at first until
16 principal components are added. The minimal error rate,
8.5 percent, is achieved when 64 principal components are
used. Compared with the minimum error rate of 5.7 percent
achieved by the feature selection technique, PCA is not as
powerful as feature selection in this problem. Furthermore,
to perform PCA, all features must be extracted first.
However, for feature selection, we only need to extract
the desired features, which would increase the feature
extraction speed. Therefore, in the following, we do
classification on the 31 selected features.

T _
s.t.w; w; = {

3.4 Classification

Compared with the Neural Network (NN) and the Support
Vector Machine (SVM), the Fisher classifier is easier to train,
faster for classification, needs fewer training samples, and
does not suffer from overtraining problems. According to
the comparison experiment in Section 5.2, the SVM classifier

performs slightly better than the Fisher classifier, but the
latter is much faster; we therefore use it for classification.

For a feature vector X, the Fisher classifier projects X
onto one dimension Y in direction W

Y =WwTX. (13)

The Fisher criterion finds the optimal projection direction W,
by maximizing the ratio of the between-class scatter to the
within-class scatter, which benefits the classification. Let S,
and S, be the within and between-class scatter matrices
respectively,

K

S,=Y. > @-w)@—u)" (14)
k=1 zeclass k
K
S, = Z(Hk —uy) (uy, — HO)T (15)
k=1
1K
Yy = ?Zﬂk: (16)
k=1

where u,, is the mean vector of the kth class, u, is the global
mean vector, and K is the number of classes. The optimal
projection direction is the eigenvector of S,'S, correspond-
ing to its largest eigenvalue [43]. For a two-class classification
problem, we do not need to calculate the eigenvectors of
S.'S,. It is shown that the optimal projection direction is

W, =8, (u —uy). (17)

LetY; and Y, be the projections of two classes and let E[Y;] and
E[Y;] be the means of Y; and Y;, respectively. Suppose
E[Y1] > E[Y3], then the decision can be made as

C(x) = {class 1 IfY > (E[Yi] +E[Y)])/2

class 2 Otherwise. (18)

It is known that, if the feature vector X is jointly Gaussian
distributed and the two classes have the same covariance
matrices, then the Fisher classifier is optimal in a minimum
classification error sense [43].

The Fisher classifier is often used for two-class classifica-
tion problems. Although it can be extended to multiclass
classification (three classes in our case), the classification
accuracy decreases due to the overlap between neighboring
classes. Therefore, we use three Fisher classifiers, each
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optimized for a two-class classification problem (machine
printed text/handwriting, machine printed text/noise, and
handwriting/noise). Each classifier outputs a confidence in
the classification and the final decision is made by fusing the
outputs of all three classifiers.

3.5 Classification Confidence

In a Fisher classifier, the feature vector is projected onto an
axis on which the ratio of between-class scatter to within-class
scatter is maximized. According to the central limit theorem
[46], the distribution of the projection can be approximated by
a Gaussian distribution, if no feature has dominant variance
over the others, as follows:

1 1y— m) 2]
=——exp|—2 ,
) =—7%— p{ 3 ( 5
where fy(y) is the probability density function of the
projection. The parameters m and ¢ can be estimated from
training samples. The classification confidence C; ; of class ¢
using classifier j is defined as

(19)

fy (y/Xeclass i) .. . e .
C, ;= { FrRets vy oy Xeme If 4 is applicable for classifier;.
Y 0 Otherwise,

(20)

where i is the class label and j represents the trained
classifiers. If a classifier is trained to classes 1 and 2, its
output is not applicable to estimating the classification
confidence of class 3. Therefore, C3;=0. The final
classification confidence is defined as

(21)

C;j € [0,1] for the two applicable classifiers and C; ; = 0 for
the third classifier, C; € [0,1]. However, C; is not a good
estimate of the a posteriori probability since Y7 | C; = 1.5
instead of 1. We can take C; as an estimate of a
nondecreasing function of the a posteriori probability,
which is a kind of generalized classification confidence [47].
Fig. 4 shows the word segmentation and classification
results (with the Fisher classifier) for the whole and parts of a
document image, with solid, dot, and dashed rectangles
representing noise, handwriting, and printed text, respec-
tively. We can see that most of the blocks are correctly
classified. However, some blocks are misclassified due to
overlap in the feature space. For example, some noise blocks
are classified as handwriting in Fig. 4b and some small
printed words are classified as noise in Fig. 4c. Since very little
information is available in such small areas, it is very hard to
get good results. In the next section, we present a method of
Markov Random Field-based (MRF) postprocessing to refine
the classification by incorporating contextual information.

4 MRF-BASED POSTPROCESSING

4.1 Background

Let X denote the random field defined on 2 and let T’
denote the set of all possible configurations of X on Q. X is
an MRF with respect to the neighborhood 7 if it has the
following Markov property
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Fig. 4. Word block segmentation and classification results, with solid,
dot, and dashed rectangles representing noise, handwriting, and printed
text, respectively. (a) A whole document image. (b) and (c) Two parts of
the image in (a). The classification errors are highlighted with reverse
video in (b) and (c).

Pr(X=2z)>0 forall zeT

(zs/Tr,7 € Q1 # 8) = Pla,/z,,7 € ).

Compared with Markov chains, one difficulty with
MRFs is that there is no chain rule for MRFs. The joint

(22)
(23)
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Fig. 5. Clique definition. (a) C, for horizontally arranged machine printed words. (b) C, for noise blocks.

probability P(X = z) cannot be recursively written in terms
of local conditional probabilities P(x;/x,,r € n). Therefore,
it is difficult to get an optimal estimate of the MRF X which
maximizes the posteriori probability

X = arg max P(X/Y). (24)
The establishment of the connection between the MRF and
Gibbs distribution provides a way to optimize of the MRF.
To maximize the posteriori probability of the MRF, we need
to minimize the total energy of the corresponding Gibbs
distribution

X =argminy_V.(X).

— ceC

(25)

Here, a clique c is defined as a subset of sites in which every
pair of distinct sites are neighbors. The clique potential V. (X)
is the energy associated with a clique and depends on the local
configuration on clique c. Therefore, the optimization
problem (24) is converted to another optimization problem
(25). The information about the observation Y is contained in
the clique system.

In the study of MRFs, the problems are often posed as
labeling problems in which a set of labels are assigned to
sites of an MREF [7]. In our problem, each block constitutes a
site of an MRF. A label (as one of machine-printed text,
handwriting, and noise) is assigned to each block and
context information (encoded by the MRF model) is used to
flip the labels so that the total energy of the corresponding
Gibbs distribution is minimized. Relaxation algorithms are
often used for MRF optimization [7].

4.2 Clique Definition

As shown in (25), the MREF is totally determined by clique ¢
and clique potential V.(X). The design of the clique and its
potential is crucial, but a systematic method is not yet
available. In our case, machine printed text, handwriting,
and noise exhibit different patterns of geometric relation-
ships. Our definition of cliques reflects these differences.
Printed words often form horizontal (or vertical) text
lines. Clique C, is defined in Fig. 5a, which models
contextual constraints on neighboring machine printed
words. We first define the connection between word blocks
i and j. As shown in Fig. 5a, O, is the vertical overlap
between two blocks and Dj, is the horizontal distance

between two blocks. The distance between block i and j is
D(i, ) = |Dy(i, j) — Gu| + [H; — Hj| + [Ch; — Chyl,  (26)

where D, (i, j) is the horizontal distances between words ¢
and j, G, is the estimated average word gap in the whole

document, H; and H; are the heights of blocks ¢ and j,
respectively, and Ch; and Ch; are the vertical centers of the
two blocks. Two blocks are connected if they satisfy

2. 0< Dy <2G,y,.

3. D(i,j) < T, where T, is a threshold, which is not

sensitive to postprocessing.

After defining the connection between two blocks, we can
construct a graph in which nodes represent blocks and edges
link two connected nodes. The property of an edge can be
measured by the distance D(i, j) between twoblocks. Ifanode
is connected with more than one node on one side (left or
right), we only keep the edge with the smallest distance.
Clique C), can be represented by nodes together with their left
and rightneighbors. If we cannot find neighbors on the left or /
and right sides, the corresponding neighbor is set to NULL.

Noise blocks exhibit rather random patterns in geometric
relationships and tend to overlap or be very close to each
other. As shown in Fig. 5b, the noise block labeled “Center”
is overlapped with blocks 1, 2, 3, and is very close to block 4.
Clique C,, is defined primarily for noise blocks. Similarly,
the distance between two blocks is defined as

D(Z’J) :maX(Dh(Zvj)vDU(ZL])L (27>

where Dy, (4, j) = max(L;, L;) — min(R;, R;), D,(4,j) = max
(T;,T;) — min(B;, Bj), and L, R, T, B are the left, right, top,
and bottom coordinates of the corresponding blocks. If two
blocks overlap in the horizontal or vertical direction, then
Dy (i,7) < 0or Dy(z,5) < 0.Blocks i and j are connected if and
only if D(i,5) < T, where T, is a threshold. If T, is too big,
incorrect label flips of noise and handwriting between two
printed text lines may happen. If 7, is too small, the
contextual constraints on the noise blocks cannot be fully
used. We set T), as half of the dominant character height
(about 10 pixels in our experiments). Each node, together
with all nodes connected to it, defines clique C,,. The number
of connected nodes may vary from 0 to about 10, depending
on the size of the block. As an approximation, we consider
only the first four nearest connected neighbors. If the number
of neighbors is less than four, we set the corresponding
neighbors to NULL.

The geometric constraint on handwriting has weaker
horizontal or vertical structure than machine printed words
and, thus, is partially reflected in both cliques C, and C,,.
Therefore, we do not define a specific clique for handwriting.

4.3 Clique Potential

Clique potential is the energy associated with a clique.
Generally, we assign high energy to an undesirable
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configuration of the clique and low energy to a preferred
configuration. For example, an undesired configuration of
clique C), (as shown in Fig. 5a) is that the left and right blocks
are labeled as printed text and the center block as noise.
Flipping the label of the center block from noise to printed
text would achieve a more preferred configuration and
reduce the total energy. Another undesirable configuration
is that all blocks are labeled as printed text for the clique C,
in Fig. 5b. It should have higher energy than the configura-
tion in which all blocks are labeled as noise. In many
applications, the clique potentials are defined in ad hoc
ways. One systematic way is to define clique potential as the
occurrence frequency of each clique in the training set,
which can be expressed as a function of local conditional
probabilities. Based on this idea, we define two clique
potentials V,(c) and V,,(¢) for cliques C, and C, as

P(X,XQXT)
%) =~ ) PR PLE)) (28)
‘/r(c) - _ P(X07X17X27X37X4) (29)

(P(X.)P(X,)P(X,)P(X3)P(Xy))"’

where X, X., and X, are labels for the left, center, and right
blocks of clique ¢, w is a constant, and X;, i = 1,2, 3,4, is the
label of the ith nearest block. The energy of the correspond-
ing Gibbs distribution is

U(X/X) = Ws Z[_p(@e/ysn +wp Z Vp(c) + wy, Z VT,(C),

seQ ceC, ceCy,
(30)

where w;, w,, and w,, are weights which adjust the relative
importance of classification confidence and contextual
information for cliques C, and C,. If w, =1, w, =0, and
w, = 0, no contextual information is used; with increase in
w, and w,, more contextual information is emphasized. If
we set w, = w, = 0o or, equivalently, w, = 0, no classifica-
tion confidence is used.

In the following experiments, we want to use MRFs for
word block labeling. The number of handwritten words is
much smaller than that of the other two types, leading to a
lower estimated frequency of cliques with handwriting. As
a result, the optimization tends to label handwritten
words as machine printed text or noise. Therefore, we
regularize the estimated clique frequency P(X;, X, X,)
and P(X., X1, X5, X3,X,) by dividing by the product of
the probabilities of the word block labels which compose
the clique. The above regularization is very similar to the
previous approach [48], where w is set to 1. In our case, w
is changeable; increasing w will emphasize handwritten
words. Our clique potential definition is very systematic
and can be optimized for different applications.

After defining the cliques and the corresponding clique
potential, we can search the optimal configuration of the
labels of all blocks so that the total energy of the correspond-
ing Gibbs distribution is minimized. Relaxation algorithms
are often used for MRF optimization. There are two types of
relaxation algorithms: stochastic and deterministic [7].
Stochastic algorithms can always converge to the global
optimal solution if some constraints are satisfied. They are,
however, computationally demanding. Deterministic algo-
rithms are simpler, but only converge to local optimal

solutions depending on the initial value. In our experiments,
Highest Confidence First (HCF), a deterministic approach, is
used for MRF optimization due to its fast speed and good
performance [49]. The HCF algorithm finds a block such that
the flipping of its label to another label would reduce the total
energy the most and then flips its label to the desired one. It
repeats this procedure until no single flipping can further
reduce the total energy. Since each flipping would reduce the
energy and the energy is bounded below, the HCF algorithm
converges in a finite number of steps. Fig. 6 is an example of
the refined classification results after postprocessing. Com-
pared with Fig. 4, we can see in Fig. 6 that most misclassified
noise blocks are corrected, with a few exceptions due to their
having fewer constraints. The misclassified small machine
printed words are all corrected in Fig. 6c¢.

5 EXPERIMENTS

5.1 Data Set

We collected a total of 318 business letters from the tobacco
industry litigation archives. These document images are
noisy with a lot of handwritten annotations and signatures,
few logos, and no figures or tables. Currently, we identify
three classes: machine printed text, handwriting, and noise.
Since the groundtruthing of each word block in the images of
the entire database would be time consuming, we only did it
for 94 extremely noisy documentimages. These 94 images are
used for testing, and the other 224 images for training. All
handwritten words (about 1,500) in the training set are
groundtruthed. Since there is much more machine printed
text and noise, we randomly selected and groundtruthed
about the same number of samples of each type in the training
set. We use accuracy and precision as metrics to evaluate the
result:

# of correctly classified blocks of type i
# of blocks of type i

Accuracy of typei=

31)

.. . # of correctly classified blocks of type i
Precision of typei = .

# of blocks classified as type i
(32)

5.2 Classifier Comparison

In this section, we compare the performance of three different
classifiers: the k-NN classifier, the Fisher classifier, and the
SVM classifier. The SVM classifier is based on VC dimension
theory and structural risk minimization theory of statistical
learning [50]. A public domain SVM tool, LibSVM, is used in
the following experiment [51]. The N-fold verification
technique, a variation of the leave-one-out technique, is used
to estimate the classification accuracy. Instead of holding one
sample for testing at each iteration, it first divides the data set
into N groups (N = 10 in our experiment) and then holds one
group of samples for testing and the remaining groups for
training. The classification accuracies of all the classifiers are
shown in Table 2. We can see that the SVM classifier achieved
the highest accuracy. Considering the large variance, the
improvement is not significant. The variance of the classifica-
tion accuracy of all classifiers is the smallest for printed text
and the largest for handwriting, indicating that the printed
text is more compact in the feature space. Among all three
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Fig. 6. Word block classification results after postprocessing. The result
before postprocessing is shown in Fig. 4. (a) The whole document
image. (b) and (c) Two parts of the image in (a). There is only one
classification error in (b), which is highlighted with reverse video. All
errors in (c) are corrected after postprocessing.

classifiers, the Fisher classifier is the fastest since only one
vector multiplication is needed to perform a classification.
Therefore, we use the Fisher classifier for the rest of
experiments.

The classification result on the test set of 94 images, using
the Fisher classifier, is shown in Table 3. The accuracies on
all three classes range from 93.2 percent to 96.8 percent,
with the overall accuracy 96.1 percent. While this overall
accuracy is very high, we notice that the precision for
handwriting is very low (62.9 percent). This is mainly
because of the small number of handwritten words in the
testing set. Even small percentages of misclassification of
machine printed text and noise as handwriting will
significantly decrease the precision of handwriting.

5.3 Postprocessing Using MRFs

In the following experiments, we investigate how MRFs can
improve classification accuracy. In the firstrun, wesetw, = 0,
wy, =0, and w, = 1 to show the effectiveness of clique C,.
Fig. 7a shows the number of corrected blocks which were
previously misclassified, with change in w. As expected, C, is
very effective for machine printed words, but not so effective
for handwriting and noise. When w = 0.3 (under this
condition, the classification accuracy of all three classes
increases), 355 (46 percent) of the previously misclassified
machine printed words are corrected. When w increases,
handwriting is more emphasized, leading to higher classifica-
tion accuracy of handwriting and lower accuracy of machine
printed words and noise. In practice, w can be adjusted to
optimize the overall accuracy.

In the second run, we test the effectiveness of clique C,, by
setting wy, =0, w, =0, and w, = 1. As shown in Fig. 7b,
clique C,, is very effective in correcting classification errors of
noise blocks. The classification error of noise blocks is greatly
reduced when w is small. For w = 0.6 (under this condition,
the classification accuracy of all classes increases), the number
of misclassified noise blocks is reduced by 99 (35 percent). C,,
can also correct some classification errors of machine printed
words, but is less effective than C,, as shown in Fig. 7a.

The third run tests the effectiveness of classification
confidence for postprocessing. Fig. 7c shows postprocessing
results by adjusting w, when w = 0.3, w, =0, and w, = 1.
Adjusting w, will change the total flip number greatly. When
w, = 0, the energy reaches the minimum with the initial labels
and the total flip number is 0. When w, increases, more
emphasis is put on the contextual information and the flip
number increases. When w,, — +00, it converges to the case of
w, = 1 and w, = 0, the setting of the first run. The maximal
overall classification accuracy is achieved when w, = 6.
Compared with the first run, the total number of corrected
blocks increases from 389 to 424 by incorporating classifica-
tion confidence. Similar results are achieved by combining
classification confidence with clique C,,.

In the last run, we fix wy = 1 and manually adjust w, w),
and w, to optimize the overall classification accuracy. The
final parameters we chose are w = 0.39, w, = 5, and w,, = 4.
Table 4 shows the results after postprocessing. The “Error
Reduction Rate” in Table 4 is defined as follows:

# of Errors Before Postprocessin; # of Errors After Postprocessin,
e = P g — I k
7 of Error Before Postprocessing

(33)

Error Reduction Rat

The error rate reduces to about half of the original for both
machine printed text and noise, but increases slightly for
handwriting. However, compared with Table 3, the precision
of handwriting increases from 62.9 percent to 83.3 percent
due to fewer machine printed text and noise misclassifica-
tions as handwriting. The overall accuracy increases from
96.1 percent to 98.1 percent.
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TABLE 2

Performance Comparison of Three Different Classifiers: The k-

NN Classifier, the Fisher Classifier, and the SVM Classifier

the k-NN classifier the Fisher classifier the SVM classifier
# of blocks
Correct | Accuracy | Variance | Correct | Accuracy | Variance | Correct | Accuracy | Variance
Printed text 1,519 1,489 98.0% 1.4% 1,473 97.0% 1.1% 1,480 97.4% 1.2%
Handwriting 1,518 1,390 91.6% 2.3% 1,410 92.9% 2.2% 1,435 94.5% 2.1%
Noise 1,512 1,406 93.0% 2.0% 1,451 96.0% 1.5% 1,453 96.1% 1.2%
Overall 4,549 4,285 94.2% 1.3% 4,344 95.5% 0.9% 4,368 96.0% 0.9%
TABLE 3
Single Word Block Classification
Percentage | # Of correctly | # of misclassified | Accuracy | Precision
il Blodks classified blocks blocks
Printed text 19,227 66.9% 18,446 781 95.9% 99.5%
Handwriting 701 2.4% 653 48 93.2% 62.9%
Noise 8,802 30.7% 8,522 280 96.8% 93.0%
Overall 28,730 100.0% 27,621 1,109 96.1% N/A
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Fig. 7. MRF-based postprocessing. (a) Number of corrected blocks using clique C,,. (b) Number of corrected blocks using clique C,,. (c) Number of

corrected blocks using clique C, and classification confidence.

TABLE 4
Word Block Classification after MRF-Based Postprocessing
Reduction of Error
# of blocks | # of correctly | # of misclassified | misclassified | reduction | Accuracy | Precision

classified blocks blocks blocks rate
Printed text 19,227 18,835 392 389 49.8% 98.0% 99.7%
Handwriting 701 652 49 -1 -2.1% 93.0% 83.3%
Noise 8,802 8,682 120 160 57.1% 98.6% 96.0%

Total 28,730 28,169 561 548 49.4% 98.1% N/A

Fig. 8 shows another example of machine printed text and
handwriting identification from noisy documents. To display
the classification results clearly, we decompose the classified
image into three layers, representing machine printed text
(Fig. 8b), handwriting (Fig. 8c), and noise (Fig. 8d), respec-
tively. The result is good with very few misclassifications.

Our approach is very general and can be extended to
other languages with minor modification. Fig. 9 shows

identification results for a Chinese document. In Chinese,
there is no clear definition of words and no spaces between
neighboring words. Therefore, the parameters of our word
segmentation module are adjusted to get characters. We only
need to retrain the classifiers; the postprocessing module is
intact. We can see that most handwriting and noise blocks
are classified correctly, but several machine printed digits
are misclassified as handwriting. On the right margin of the
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Fig. 8. An example of machine printed text and handwriting identification from noisy documents. (a) The original document image, (b) machine
printed text, (c) handwriting, and (d) noise. The logo is classified as noise since currently we only consider three classes.

document, some machine printed text is identified as noise
due to touching.

Our approach is fast; the averaging processing time for a
business letter scanned at 300 DPI is about 2-3 seconds on a
PC with 1.7 GHZ CPU and 1.0 GB memory.

5.4 Page Segmentation in Noisy Images

In this experiment, we show that our method can improve
general page segmentation results after removing identified
noise. We evaluated two widely used zone segmentation
algorithms: the Docstrum algorithm [2] and ScanSoft SDK, a
commercial OCR software package [3]. Many different zone
segmentation evaluation metrics have been proposed in
previous work. Kanai et al. [52] evaluated zone segmentation

accuracy from the OCR aspect. Any zone splitting and
merging, if it does not affect the reading order of the text, is
not penalized. The approach of Mao and Kanungo is based on
text lines, which penalizes only horizontal text line splitting
and merging since it will change the reading order of text [53].
Randriamasy et al. [54] proposed an evaluation method
based on multiple ground truth, which is very expensive.
Liang et al.’s approach is performed at the zone level [30].
After finding the correspondence between the segmented
and groundtruthed zones, any large enough difference is
penalized. We use Liang et al.’s scheme in our experiment
since we focus more on zone segmentation. From the
OCR perspective, vertical splitting or merging of different
zones should not be penalized even when these zones have
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Fig. 9. An example of machine printed text and handwriting identification from Chinese documents. (a) Original Chinese document image,

(b) machine printed text, (c) handwriting, and (d) noise.

different physical and semantic properties, but, from the
point view of zone segmentation, it should be penalized.
There are 1,374 machine printed text zones in 94 noisy
document images. The experimental results are shown in
Table 5. All merging and splitting errors are counted as
partially correct in the table. Before noise removal, ScanSoft
gets very poor results, with an accuracy of 15.9 percent, on
noisy documents under this metric. After analyzing the
segmentation results, we found that ScanSoft tends to merge
horizontally arrayed zones into one zone, which is suitable for

documents with simple layouts such as technical articles, but
not suitable for other document types such as business letters.
The Docstrum algorithm outputs many more zones than
ScanSoft, resulting in a higher accuracy (53.0 percent), but
also a higher false alarm rate (114.1 percent). After noise
removal, the accuracy of both algorithms increases signifi-
cantly, from 15.9 percent to 48.4 percent for ScanSoft and from
53.0 percent to 78.0 percent for the Docstrum algorithm. The
false alarm rate is reduced from 32.5 percent to 1.3 percent for
ScanSoft and from 114.1 percent to 7.9 percent for Docstrum.
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TABLE 5
Machine Printed Zone Segmentation Experimental Results
on 94 Noisy Document Images (Total 1,374 Zones), before and after Noise Removal
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Before noise removal After noise removal
rrectl . . rrectl .
i eci};i False Partially correctly | Missed ca ectt Y i False | Partially correctly
segmente alarm zones segmente alarm
. Jones segmented zones Z0nes Jones segmented zones

Missed
Zones

ScanSoft 219 446 1148 7 665 18 671
(15.9%) (32.5%) (83.7%) (0.5%) (48.4%) (1.3%) (48.8%)

38
(2.8%)

Docstrum 728 1568 646 0 1071 109 270
(53.0%) (114.1%) (47.0%) (0.0%) (78.0%) (7.9%) (19.7%)

33
(2.4%)
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Fig. 10. Zone segmentation before and after noise removal using the Docstrum algorithm. (a) and (c) Show the results before noise removal. (b) and

(d) Are the results after noise removal.
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Fig. 10 shows the zone segmentation results for two noisy
documents with the Docstrum algorithm before and after
noise removal. The handwriting is output to another layer
which is not shown here. We can see that, after noise removal,
there are many fewer splitting and merging errors and overall
the segmentation results are significantly improved.

6 SUMMARY

In this paper, we have presented an approach to segmenting
and identifying text from extremely noisy document images.
Instead of using simple filtering rules, we treat noise as a
distinct class and use statistical classification techniques to
classify each block into machine printed text, handwriting,
and noise. We then use Markov Random Fields to incorporate
contextual information for postprocessing. Experiments
show that MRFs are a very effective tool for modeling local
dependency among neighboring image components. After
postprocessing, the classification error rate is reduced by
approximately 50 percent. Our method is general enough to
be extended to documents in other languages. The technique
presented in this paper can be used for image enhancement to
improve page segmentation accuracy of noisy documents.
After noise identification and removal, the zone segmenta-
tion accuracy increase from 53 percent to 78 percent using the
Docstrum algorithm.

Currently, our clique potential definition considers only
the labels of each block inside the clique, which may lose
useful information. For example, for clique C,, a clique of
three printed words with roughly the same height is quite
different from one with different heights. In the latter case, it
is possible that one of the blocks is erroneously identified.
Another potential improvement is to integrate high-level
contextual information in addition to the local contextual
information that we used. For example, the text line and zone
segmentation results can be fed back to our classification
module to refine the classification. Effective use of contextual
information is one of our future research directions.
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