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Abstract—In this paper, we address the problem of the identification of text in noisy document images. We are especially focused on

segmenting and identifying between handwriting and machine printed text because: 1) Handwriting in a document often indicates

corrections, additions, or other supplemental information that should be treated differently from themain content and 2) the segmentation

and recognition techniques requested for machine printed and handwritten text are significantly different. A novel aspect of our approach

is that we treat noise as a separate class and model noise based on selected features. Trained Fisher classifiers are used to identify

machine printed text and handwriting from noise and we further exploit context to refine the classification. AMarkov RandomField-based

(MRF) approach is used to model the geometrical structure of the printed text, handwriting, and noise to rectify misclassifications.

Experimental results show that our approach is robust and can significantly improve page segmentation in noisy document collections.

Index Terms—Text identification, handwriting identification, Markov random field, postprocessing, noisy document image

enhancement, document analysis.
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1 INTRODUCTION

DOCUMENTS are the results of a set of physical processes
and conditions and the resulting document can be

viewed as consisting of layers (letterhead, content, signa-
tures, annotations, noise, etc., in the case of business
correspondence, for example). Document analysis reverses
these processes to segment a document into layers with
different physical and semantic properties. After decades of
research, automatic document analysis has advanced to a
pointwhere text segmentation and recognition canbeviewed
as a solved problem in clean, well-constrained documents.
However, the performance degrades quickly when a small
amount of noise is introduced. For example, a typical bottom-
up page segmentation method starts from the extraction of
connected components [1], [2]. Based on spatial proximity
and size, connected components are then merged into text
lines and zones. A classification process is then used to
identify zone types (text, tables, images, etc.). These algo-
rithms work well on clean documents where zones with
different properties can be easily separated. However, they
often fail onnoisydocumentswhere noisemixeswith and/or
is spatially close to content regions. For example, Figs. 1a and
1b show segmentation results for an extremely noisy
document when we use the Docstrum algorithm [2] and
ScanSoft SDK [3]. Text and noise are erroneously segmented
into the same zones by both algorithms.

In this paper, we present a novel approach to identifying

text in extremely noisy documents. Instead of simple noise

filtering, as used in other work [1], [2], we treat noise as a

distinguished class and model it based on selected features.
We further identify handwriting from machine printed text
since: 1) Handwriting in a document often indicates correc-
tions, additions, or other supplemental information that
should be treated differently from the main content and
2) segmentation and recognition techniques for machine
printed text and handwriting are significantly different.
Based on these considerations, we treat the problem as a
three-class (machine printed text, handwriting, and noise)
identification problem.

In practice, misclassification often happens in an over-
lapping feature space. This is especially true for handwriting
and noise. To deal with this problem, we exploit contextual
information in postprocessing and refine the classification.
Contextual information is very useful for improving classi-
fication accuracy. It iswidely used inmanyOCR systems and
its effectiveness has been demonstrated in previouswork [4],
[5]. The key is to model the statistical dependency among
neighboring components. The output of an OCR system is a
text stream which is one-dimensional. Therefore, an N-gram
language model, based on anNth order 1DMarkov chain, is
effective for modeling the context. With assistance from a
dictionary, the N-gram approach can correct most recogni-
tion errors. Images, however, are two-dimensional. Gener-
ally, 2D signals are not causal and it is much harder to model
the dependency among neighboring components in an
image. Among the image models studied so far, Markov
Random Fields (MRF) have been widely studied and
successfully used in many applications. MRFs are suitable
for image analysis because the local statistical dependency of
an image can be well-modeled by Markov properties. MRFs
can incorporate a priori contextual information or constraints
in a quantitative way. The MRF model has been extensively
used in various image analysis applications such as texture
synthesis and segmentation, edge detection, and image
restoration [6], [7]. In this paper, we use MRFs to model the
dependency of segmented neighboring blocks. As postpro-
cessing, MRFs can further improve classification accuracy.
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The documents we are processing are extremely noisy
with machine printed text, handwriting, and noise mixed
together. We first extract the connected components and
merge them at the word level based on spatial proximity. We
then extract several categories of features and use trained
Fisher classifiers to classify each word into machine printed
text, handwriting, or noise. Finally, contextual information is
incorporated into MRF models to refine the classification
results further.

The rest of the paper is organized as follows: Section 2 is a
literature survey of related work, followed by a detailed
description of our classification method in Section 3. MRF-
based postprocessing is presented in Section 4 and experi-
mental results arepresented inSection5.Thepaper concludes
with a brief summary and a discussion of future work.

2 RELATED WORK

The research presented in this paper is related to previous
work on page segmentation, zone classification, hand-
writing identification, and document enhancement.

2.1 Page Segmentation

Previous work on page segmentation can be broadly
divided into three categories: bottom-up [1], [2], top-down
[8], and hybrid [9]. In a typical bottom-up approach such as
the Docstrum algorithm proposed by O’Gorman [2],
connected components are extracted first and then merged
into words, lines, zones, and columns hierarchically based
on size and spatial proximity. Bottom-up methods can
handle documents with complex layouts. However, they
are time consuming and sensitive to noise.

A typical top-down method, such as the X-Y cuts
proposed by Nagy et al. [8], starts from the whole document
and splits it recursively into columns, zones, lines, words,
and characters. Top-down methods are effective for docu-
ments with regular layouts, but fail when the documents
have a non-Manhattan structure.

Another problem with X-Y cuts is that the global
parameters for optimal segmentation are often difficult to
find if prior knowledge is not available. Sylwester and Seth
proposed ahybridmethodwhich starts from the top [9]. First,
they oversegment a document into small zones using the
X-Y cut algorithm. Then, they use the bottom-up method
which groups oversegmented small zones with the same
properties into a single zone.

All of the above methods are based on the analysis of
foreground (black pixels). As an alternative, white stream
methods based on the analysis of background (white pixels)
are presented in [10], [11]. In these methods, rectangles
covering white gaps (white pixels) between foreground are
extracted. Foreground regions surrounded by these white
rectangles are extracted as zones. A more comprehensive
survey is presented in [12].

2.2 Zone Classification

Zone classification labels the content of each segmented
zone as one of a set of predefined types [1], [11], [13], such
as text, images, graphics, and tables. Pavlidis and Zhou
used correlations of horizontal scan lines as features to
distinguish text and diagrams from half-tone images. The
black pixel density is used to further distinguish diagrams
from text [11]. Wang et al. used 69 features, such as run
length mean and variance, spatial mean and variance,
fraction of the total number of black pixels in the zone,
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Fig. 1. Page segmentation results for an extremely noisy document using the Docstrum algorithm and ScanSoft SDK. Noise is segmented into text
zones erroneously in both cases. (a) Docstrum and (b) ScanSoft.



width ratio of the zone, and number of text glyphs in the
zone, to classify each zone into nine classes. They did
experiments on ground-truthed zones of the UW III
database and achieved an accuracy as high as 98.52 percent
[13]. Jain and Yu directly performed classification on the
generalized lines (GTLs) extracted using a bottom-up
approach [1]. If the height of a GTL is less than a threshold
and the connected components in it are horizontally
aligned, it is classified as a text line. Text lines and nontext
lines are merged into text regions and nontext regions,
respectively. They further classify nontext regions into
images, tables, and drawings. This works well for long text
lines, but may fail when the text lines are short.

Some other approaches treat text, images, and figures as
different textures, and use trained classifiers to segment and
identify them [14], [15], [16]. They often work directly on
gray-scale images and need classification of each pixel. To
reduce the computation complexity, multiresolution techni-
ques are often used.

2.3 Handwriting Identification

Some work has been done on handwriting/machine printed
text identification. The classification is typically performed at
the text line [17], [18], [19], [20], word [21], or character level
[22], [23]. At the line level, machine printed text lines are
typically arranged regularly with a straight baseline, while
handwritten text lines are irregular with a varying baseline.
Srihari et al. implemented a text line-based approach using
this characteristic and achieved a classification accuracy of
95 percent [20]. One advantage of this approach is that it can
be used in different scripts (Chinese, English, etc.) with little
or nomodification.Guo andMaproposed an approach based
on the vertical projection profile of the segmentedwords [21].
They used a Hidden Markov Model (HMM) as the classifier
and achieved a classification accuracy of 97.2 percent.
Although, at the character level, less information is available,
humans can still identify the handwritten and machine
printed characters easily, inspiring researchers to pursue
classification at the character level. Kuhnke et al. proposed a
neural network-based approach with straightness and
symmetry as features [22]. Zheng et al. used run-length
histogram features to identify handwritten and printed
Chinese characters and achieved promising results [23]. In
previouswork,we implementedahandwriting identification
method based on several categories of features and a trained
Fisher classifier [24]. However, the problems introduced by
noise are not addressed.

2.4 Document Enhancement

There are two types of degradation in document images:
1) physical degradation of the hardcopy documents during
creation and/or storage and 2) degradation introduced by
digitization. If severe enough, either of them can reduce the
performance of a document analysis system significantly.
Several document degradation models [25], [26], [27],
methods for document quality assessment [28], [29], and
document enhancement algorithms [30], [31], [32] have been
presented in previous work. One common enhancement
approach is window-basedmorphological filtering [30], [31],
[32]. Morphological filtering performs a look up table
procedure to determinate an output of ON (black pixel) or
OFF (white pixel) for each entry of the table, based on a
windowedobservationof its neighbors. These algorithms can

be further categorized as manually designed, semimanually
designed, or automatically trained approaches. The kFill
algorithm, proposed by O’Gorman [32], is a manually
designed approach and has been used by several other
researchers [28], [33]. Experiments show it is effective
for removing salt-and-pepper noise. Liang and Haralick
proposed a semimanually designed approach with a
3� 3 window size [34]. They manually determine some
entries to output ON or OFF based on a priori observations.
The remaining entries are trained to select the optimal output.
It is difficult to manually design a filter with a large window
size and success depends on experience. If both ideal and
degradedimagesareavailable,optimal filterscanbedesigned
by training [31]. After registering the ideal and degraded
images at the pixel level, an optimal look-up table, based on
observationof theoutputs of each specificwindowedcontext,
can be designed. However, it is difficult to train, store, and
retrieve the look-up tablewhen thewindow size is large. This
approach requires both the original and the corresponding
degraded images for training. Loce and Dougherty used
artificiallydegraded images generatedbymodels for training
[31], while Kanungo et al. proposed methods for validation
and parameter estimation of degradation models [35], [36],
[37]. Though the uniformity and sensitivity of his approach
has been tested by other researchers [27], [38], no degradation
model has been declared to pass the validation. Another
problemwithmorphological approaches is the smallwindow
sizes. Themost commonlyusedwindowsize is no larger than
5� 5, which is too small to contain enough information for
enhancement.

Ideally, image quality should be estimated first so the
appropriate enhancement algorithms can be applied auto-
matically. Cannon et al. proposed a document quality
assessment algorithm based on five factors: small speckle,
white speckle, touching characters, broken characters, and
font size [28]. They used a linear classifier to select the best
one out of four enhancement algorithms and reduced the
OCR error rate from 20.27 percent to 12.60 percent on their
database. Li and Doermann proposed an approach for
quality estimation of color video text which classifies the
video text quality into six levels [29].

A majority of the above approaches are focused on
improving OCR accuracy in noisy documents. As shown in
Fig. 1, degradation will not only deteriorate OCR perfor-
mance, but other document processing tasks, such as page
segmentation, as well. Little work has been done in this
area. The difference between our approach and previous
work is that we perform classification to identify noise and
exploit contextual information of neighboring blocks as a
postprocessing to refine the identification. Experiments
show that our noise removal algorithm can increase page
segmentation accuracy significantly.

3 TEXT IDENTIFICATION

In this section, we present our text (machine printed or
handwritten) extraction and classification method.

3.1 Pattern Unit

Special consideration must be given to the size of the region
being segmented before we can perform any classification.
We call the smallest unit for classification a pattern unit. If
the unit is too small, the information contained in it may not
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be sufficient for classification; if it is too large, however,
different types of components may be mixed in the same
region. In previous work, we conducted a performance
evaluation for the classification accuracy of machine printed
text and handwriting at the character, word, and zone levels
and showed that a reliable classification can be achieved at
the word level [24]. We therefore segment images at the
word level and then perform classification. Since noise has
no concept of word, we use the terminology block and word
interchangeably in the following presentation.

We first extract connected components and then merge
them into words based on geometric proximity and size.
Those extremely large word blocks or blocks with very
large or small aspect ratios are filtered out. However, noise
with size similar to text cannot be filtered out. Our focus is
to distinguish text from this type of noise.

3.2 Feature Extraction

Several sets of features are extracted for classification. The

descriptions and sizes of the feature sets are listed in Table 1.

Machine printed text, handwriting, and noise have different

visual appearances and physical structures. Structural

features are extracted to reflect these differences. Gabor filter

features and run-length histogram features can capture the

difference in stroke orientation and stroke length between

handwriting and printed text. Compared with text, noise

blocks often have simple stroke complexity. Therefore,

crossing count histogram features are exploited to model

such differences. We further take regions of machine printed

text, handwriting, and noise blocks as different textures. Two

sets of bilevel texture features (bilevel co-occurrence features

and bilevel 2� 2 gram features) are used for classification. In

the following sections, we present these features in detail.

3.2.1 Structural Features

We extract two sets of structural features. The first set
includes features related to the physical sizes of the blocks
suchasdensityofblackpixels,width,height, aspect ratio, and
area. Suppose the image of the block is Iðx; yÞ, 0 � x < w,
0 � y < h, and w, h are its width and height, respectively.
Each pixel in the block has two values: 0 representing
background (a white pixel) and 1 representing content (a
black pixel). Then, the density of the black pixels d is

d ¼

Pw�1

x¼0

Ph�1

y¼0

Iðx; yÞ

w� h
: ð1Þ

The sizes of machine printed words are more consistent

than those of handwriting and noise on the same page.

However, machine printed words on different pages may

vary significantly. Therefore, we use a histogram technique

to estimate the dominant font size [2] and then use the

dominant font size to normalize the width (w), height (h),

aspect ratio (r), and area (a) of the block.
The second set of structural features is based on the

connected components inside theblock, such as themeanand

variance of the width (mw and �w), height (mh and �h), aspect

ratio (mr and �r), and area (ma and �a) of connected

components. The sizes of connected components inside a

machineprintedword aremore consistent, leading to smaller

�w and �h. For a handwritten word or noise block, the

boundingboxes of the connected components tend to overlap

with each other, as shown in Fig. 2a. For machine printed

English words, however, each character forms a connected

component not overlapping with others. The overlapping

area (the sum of the areas of the gray rectangles in Fig. 2a)

normalized by the total area of the block is calculated as a

feature. Another feature we use is the variance of the vertical

projection. In a machine printed text block, the vertical

projection profile has obvious valleys and peaks since

neighboring characters do not touch each other. However,

for a handwrittenwordor noise block, the vertical projections

are much smoother, resulting in smaller variance.

3.2.2 Gabor Filter Features

Gabor filters can represent signals in both the frequency and

time domains withminimumuncertainty [39] and have been

widely used for texture analysis and segmentation [15].

Researchers found that they match the mammalian visual

systemverywell,whichprovidesfurtherevidencethatwecan

use it in our classification tasks. In the spatial and frequency

domains, the two-dimensional Gabor filter is defined as

gðx; yÞ ¼ exp ��
x02

�2
x

þ y02

�2y

" #( )
� cosf2�ðu0xþ v0yÞg ð2Þ
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Gðu; vÞ ¼ 2��x�yðexpf��½ðu0 � u0
0Þ

2�2
x þ ðv0 � v00Þ

2�2
y�g þ

expf��½ðu0 þ u0
0Þ

2�2
x þ ðv0 þ v00Þ

2�2
y�gÞ;

ð3Þ

where x0 ¼ �x sin �þ y cos �, y0 ¼ �x cos �� y sin �, u0 ¼
u sin �� v cos �, v0 ¼ �u cos � �v sin �, u0

0 ¼ �u0 sin �þ v0
cos �, v00 ¼ �u0 cos �� v0 sin �, u0 ¼ f cos �, and v0 ¼ f sin �.
Here, f and � are two parameters, representing the
central frequency and orientation of the Gabor filter.

The variances of the filtered images are taken as features.
In our experiments, 16 Gabor filters with different orienta-
tions �k ¼ k� 180=N; k ¼ 1; 2; . . . 16, are used, which gen-
erate 16 features.

3.2.3 Run-length Histogram Features

Run-length histogram features are proposed in [23] for
machine printed/ handwritten Chinese character classifica-
tion. These features are used in our case to capture the
difference between the stroke lengthsofmachineprinted text,
handwriting, and noise blocks. First, black pixel run-lengths
in four directions, including horizontal, vertical, major
diagonal, and minor diagonal, are extracted. We then
calculate four histograms of run-lengths for these four
directions, as shown inFig. 2b.Toget scale-invariant features,
we normalize the histograms. Suppose Ck, k ¼ 1; 2; . . . ; N , is
thenumberof runswith length k, andN is themaximal length
of all possible runs, then the normalized histogram C0

k is

C0
k ¼

CkPN
i¼1

Ci

: ð4Þ

We then divide the histogram into five bins with equal
width and use five Gaussian-shaped weight windows to get
the final features (Fig. 2b). Taking the horizontal run-length
histogram as an example, the run-length histogram feature
Rhi is calculated as

Rhi ¼
Xw
k¼1

Gðk;ui; �ÞC0
k; i ¼ 1; 2; 3; 4; 5; ð5Þ

where w is the width of the block (the maximal length of all
possible horizontal run-lengths) and Gðk;ui; �Þ is a Gaus-
sian-shaped function:

Gðk;ui; �Þ ¼ exp �ðk� uiÞ2

2�2

( )
: ð6Þ

As shown in Fig. 2b, � is chosen so the weight on each bin
border is 0.5. Another alternative is to use rectangular
windows without overlap between neighboring bins.
Experiments show that the extracted features with Gaussian
weighted windows are more robust. Five features are
extracted in each direction, leading to 20 features.

3.2.4 Crossing Count Histogram Features

A crossing count is the number of times the pixel value
changes from 0 (white pixel) to 1 (black pixel) along a
horizontal or vertical raster scan line. As shown in Fig. 2c,
the crossing counts of the top and bottom horizontal scan
lines are 1 and 2, respectively. Crossing counts can be used
to measure stroke complexity [24], [40]. In our approach,
first the crossing count for each horizontal and vertical scan
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respectively. (d) Bilevel 2� 2 gram features.



line is calculated. Similarly, we get two histograms for the
horizontal and vertical crossing counts, respectively. The
same technique (as in extracting the run-length histogram
features) is exploited to get the final features from the
histograms. A total of 10 features are extracted.

3.2.5 Bilevel Co-Occurrence Features

A co-occurrence count is the number of times a given pair of
pixels occurs at a fixed distance and orientation [41]. In the
case of binary images, the possible co-occurrence pairs are
white-white, black-white, white-black, and black-black. In
our case, we are concerned primarily with the foreground.
Since the white background region often accounts for up to
80 percent of a document page, the occurrence frequency of
white-white or white-black pixel pairs will always be much
higher than that of black-black pairs. The black-black pairs
carry most of the information. To eliminate the redundancy
and reduce the effects of overemphasizing the background,
we consider only black-black pairs. Four different orienta-
tions (horizontal, vertical, major diagonal, and minor
diagonal) and four distance levels (1, 2, 4, and 8 pixels)
are used for classification (16 features total). The horizontal
co-occurrence count ChðdÞ, for example, is defined as

ChðdÞ ¼
X
x

X
y

Iðx; yÞIðxþ d; yÞ; d ¼ 1; 2; 4; 8: ð7Þ

Iðx; yÞ ¼ 0 for white pixels; therefore, only black-black pixel
pairs contribute. For a fixed distance d, we normalize the
occurrence by dividing by the sum of the occurrences in all
four directions.

3.2.6 Bilevel 2� 2 Gram Features

The N�M grams were first introduced in the context of
image classification and retrieval [42]. An N�M gram
extends the one-dimensional co-occurrence feature to the
two-dimensional case. We only consider 2� 2 grams, which
count the numbers of occurrences of the patterns shown in
Fig. 2d. The cells labeled 0=1 should take specific values and
the values of other cells are irrelevant. Therefore, there are
24 ¼ 16 patterns for each distance d. Like the co-occurrence
features, the all white patterns are removed to reduce
overemphasis on the background. For a fixed distance, the
occurrences are normalized by dividing by the sum of all
occurrences. Four distances (1, 2, 4, and 8 pixels) are chosen,
generating 4� 15 ¼ 60 features.

3.3 Feature Selection

There are two purposes for feature selection. First, reducing
the computation needed for feature extraction and classifica-
tion. As shown in Table 1, we extract a total of 140 features
from the segmented blocks. Though these features are
designed to distinguish between different types of blocks,
some features may contain more information than others.
Using only a small set of the most powerful features reduces
the time for feature extraction and classification. The second
purpose is to alleviate the curse of dimensionality. When the
number of training samples is limited, using a large feature
set may decrease the generality of a classifier [43]. The larger
the feature set, the more training samples are needed.
Therefore, we perform feature selection before feeding the
features to the classifier.

We use a forward search algorithm to perform feature
selection [44]. We first divide the whole feature set F into a

currently selected feature set F s and an unselected feature
set F n which satisfy

F s \ F n ¼ � ð8Þ
F s [ F n ¼ F : ð9Þ

The selection procedure can then be described as

1. Set F s ¼ �, and F n ¼ F .
2. Label all features in F n as untested.
3. Select one untested feature f 2 F n and label it as

tested.
4. Put f and F s together and generate a temporary

selected feature set F f
s.

5. Estimate the classification accuracy with feature set
F f

s using a 1-NN classifier and leave-one-out cross
validation technique. The basic idea is that at each
iteration only one sample is used for testing, while
the others have been used for training. We repeat
this process until all samples have been used as
testing samples once. The average accuracy for all
iterations is taken as the estimated accuracy for the
current feature set. The leave-one-out cross valida-
tion technique can estimate the accuracy of a
classifier with small variation [43].

6. If there are untested features in F n, go to Step 3.
7. Find a feature f̂f 2 F n, such that the corresponding

temporary feature setF f
s has the highest classification

accuracy:

f̂f ¼ argmax
f2F n

AccuracyðF f
sÞ; ð10Þ

then move f̂f from F n to F s.
8. If F n 6¼ �, go to Step 2; otherwise exit.

WeuseLNKnet pattern classification software to conduct our
feature selection experiments [45]. LNKnet provides several
classifiers, such as likelihood classifiers, k-NNclassifiers, and
Neural Network classifiers, and several feature selection
algorithms such as forward search, backward search, and
forward and backward search. Feature selection can be an
extremely expensive task. Considering the large number of
feature sets to evaluate and the number of classifiers to train,
the lightweight forward feature selection algorithm and
1-NN classifier, which does not need training, are used in
our feature selection experiment.

We collected about 1,500 blocks for each class.As shown in
Fig. 3a, when the number of selected features increases, the
error rate decreases sharply at first. The trend reverses at
some point. The best classification is achieved when only
31 features are selected, with an error rate of 5.7 percent.
When all features are used, the error rate increases to
9.2 percent due to the limited number of training samples
and large feature set. The last column in Table 1 lists the
number of features selected in each set. It shows that texture
features, such as bilevel co-occurrence and 2� 2 grams, are
less discriminating than other feature sets, mainly due to the
small region size. Only 1/8 of the bilevel co-occurrence
features and 1/12 of the 2� 2 gram features are selected.
Crossing count histogram features and structural features are
very effective, with more than half of the original features in
both sets selected in the final feature set.

Principal Component Analysis (PCA) is another techni-
que for reducing feature dimension [43]. To extract the first
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n principal components, we need to search a subspace of

dimension n with basis w. Suppose the mean is already

removed from the feature vector X and let the projection of

X onto this subspace be X̂X

X̂X ¼ ðwT
1XÞw1 þ ðwT

2XÞw2 þ � � � þ ðwT
nXÞwn: ð11Þ

PCA finds the optimal subspace ŵw such that the energy

contained in X̂X is maximized:

ŵw ¼arg max
w1;...;wn

Xn
i¼1

V ar X̂iXi

� �

s:t: wT
i wj ¼

1 if i ¼ j

0 if i 6¼ j:

� ð12Þ

The optimal basis is the first n eigenvectors of the
covariance matrix of X, corresponding to the first n largest
eigenvalues [43]. The first n principal components are
Pi ¼ wT

i X; i ¼ 1; . . . ; n. The idea of PCA is to concentrate
the energy into the first several principal components.
Assuming the classification information is contained in the
energy, the first several principal components are more
powerful than the remaining components. Furthermore,
PCA analysis can remove the correlation among features.
As in the feature selection experiment, the 1-NN classifier
and the leave-one-out technique are used to estimate the
classification accuracy. Fig. 3b shows the classification error
rate versus the number of principal components used. As in
feature selection, the error rate drops quickly at first until
16 principal components are added. The minimal error rate,
8.5 percent, is achieved when 64 principal components are
used. Compared with the minimum error rate of 5.7 percent
achieved by the feature selection technique, PCA is not as
powerful as feature selection in this problem. Furthermore,
to perform PCA, all features must be extracted first.
However, for feature selection, we only need to extract
the desired features, which would increase the feature
extraction speed. Therefore, in the following, we do
classification on the 31 selected features.

3.4 Classification

Compared with the Neural Network (NN) and the Support
Vector Machine (SVM), the Fisher classifier is easier to train,
faster for classification, needs fewer training samples, and
does not suffer from overtraining problems. According to
the comparison experiment in Section 5.2, the SVM classifier

performs slightly better than the Fisher classifier, but the
latter is much faster; we therefore use it for classification.

For a feature vector X, the Fisher classifier projects X
onto one dimension Y in direction W

Y ¼ WTX: ð13Þ

The Fisher criterion finds the optimal projection directionWo

by maximizing the ratio of the between-class scatter to the
within-class scatter, which benefits the classification. Let Sw

and Sb be the within and between-class scatter matrices
respectively,

Sw ¼
XK
k¼1

X
x2class k

ðx� ukÞðx� ukÞ
T ð14Þ

Sb ¼
XK
k¼1

ðuk � u0Þðuk � u0Þ
T ð15Þ

u0 ¼
1

K

XK
k¼1

uk; ð16Þ

where uk is the mean vector of the kth class, u0 is the global
mean vector, and K is the number of classes. The optimal
projection direction is the eigenvector of S�1

w Sb correspond-
ing to its largest eigenvalue [43]. For a two-class classification
problem, we do not need to calculate the eigenvectors of
S�1
w Sb. It is shown that the optimal projection direction is

Wo ¼ S�1
w ðu1 � u2Þ: ð17Þ

LetY1 andY2 be theprojections of twoclasses and letE½Y1�and
E½Y2� be the means of Y1 and Y2, respectively. Suppose
E½Y1� > E½Y2�, then the decision can be made as

CðXÞ ¼ class 1 If Y > ðE½Y1� þ E½Y2�Þ=2
class 2 Otherwise:

�
ð18Þ

It is known that, if the feature vector X is jointly Gaussian
distributed and the two classes have the same covariance
matrices, then the Fisher classifier is optimal in a minimum
classification error sense [43].

The Fisher classifier is often used for two-class classifica-
tion problems. Although it can be extended to multiclass
classification (three classes in our case), the classification
accuracy decreases due to the overlap between neighboring
classes. Therefore, we use three Fisher classifiers, each
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Fig. 3. Feature analysis. (a) Feature selection: The best classification result is achieved when 31 features are selected. (b) PCA: The best

classification result is achieved when 64 principal components are used.



optimized for a two-class classification problem (machine
printed text/handwriting, machine printed text/noise, and
handwriting/noise). Each classifier outputs a confidence in
the classification and the final decision is made by fusing the
outputs of all three classifiers.

3.5 Classification Confidence

In a Fisher classifier, the feature vector is projected onto an
axis onwhich the ratio of between-class scatter towithin-class
scatter is maximized. According to the central limit theorem
[46], thedistributionof theprojection canbeapproximatedby
a Gaussian distribution, if no feature has dominant variance
over the others, as follows:

fY ðyÞ ¼
1ffiffiffiffiffiffi
2�

p
�
exp � 1

2

y�m

�

� �2
� �

; ð19Þ

where fY ðyÞ is the probability density function of the
projection. The parameters m and � can be estimated from
training samples. The classification confidence Ci;j of class i
using classifier j is defined as

Ci;j ¼
fY ðy=X2class iÞ

fY ðy=X2class iÞþfY ðy=X2another classÞ If i is applicable for classifierj:
0 Otherwise;

�
ð20Þ

where i is the class label and j represents the trained
classifiers. If a classifier is trained to classes 1 and 2, its
output is not applicable to estimating the classification
confidence of class 3. Therefore, C3;j ¼ 0. The final
classification confidence is defined as

Ci ¼
1

2

X3
j¼1

Ci;j: ð21Þ

Ci;j 2 ½0; 1� for the two applicable classifiers and Ci;j ¼ 0 for
the third classifier, Ci 2 ½0; 1�. However, Ci is not a good
estimate of the a posteriori probability since

P3
i¼1 Ci ¼ 1:5

instead of 1. We can take Ci as an estimate of a
nondecreasing function of the a posteriori probability,
which is a kind of generalized classification confidence [47].

Fig. 4 shows the word segmentation and classification
results (with the Fisher classifier) for the whole and parts of a
document image, with solid, dot, and dashed rectangles
representing noise, handwriting, and printed text, respec-
tively. We can see that most of the blocks are correctly
classified. However, some blocks are misclassified due to
overlap in the feature space. For example, some noise blocks
are classified as handwriting in Fig. 4b and some small
printedwords are classified asnoise inFig. 4c. Sincevery little
information is available in such small areas, it is very hard to
get good results. In the next section, we present a method of
Markov Random Field-based (MRF) postprocessing to refine
the classification by incorporating contextual information.

4 MRF-BASED POSTPROCESSING

4.1 Background

Let X denote the random field defined on � and let �
denote the set of all possible configurations of X on �. X is
an MRF with respect to the neighborhood � if it has the
following Markov property

PrðX ¼ xÞ > 0 for all x 2 � ð22Þ
P ðxs=xr; r 2 �; r 6¼ sÞ ¼ P ðxs=xr; r 2 �Þ: ð23Þ

Compared with Markov chains, one difficulty with

MRFs is that there is no chain rule for MRFs. The joint
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Fig. 4. Word block segmentation and classification results, with solid,
dot, and dashed rectangles representing noise, handwriting, and printed
text, respectively. (a) A whole document image. (b) and (c) Two parts of
the image in (a). The classification errors are highlighted with reverse
video in (b) and (c).



probability P ðX ¼ xÞ cannot be recursively written in terms
of local conditional probabilities P ðxs=xr; r 2 �Þ. Therefore,
it is difficult to get an optimal estimate of the MRF X̂X which
maximizes the posteriori probability

X̂X ¼ arg max
X

P ðX=Y Þ: ð24Þ

The establishment of the connection between the MRF and
Gibbs distribution provides a way to optimize of the MRF.
To maximize the posteriori probability of the MRF, we need
to minimize the total energy of the corresponding Gibbs
distribution

X̂X ¼ argmin
X

X
c2C

VcðXÞ: ð25Þ

Here, a clique c is defined as a subset of sites in which every
pair of distinct sites are neighbors. The clique potential VcðXÞ
is theenergyassociatedwithacliqueanddependson the local
configuration on clique c. Therefore, the optimization
problem (24) is converted to another optimization problem
(25). The information about the observation Y is contained in
the clique system.

In the study of MRFs, the problems are often posed as
labeling problems in which a set of labels are assigned to
sites of an MRF [7]. In our problem, each block constitutes a
site of an MRF. A label (as one of machine-printed text,
handwriting, and noise) is assigned to each block and
context information (encoded by the MRF model) is used to
flip the labels so that the total energy of the corresponding
Gibbs distribution is minimized. Relaxation algorithms are
often used for MRF optimization [7].

4.2 Clique Definition

As shown in (25), the MRF is totally determined by clique c
and clique potential VcðXÞ. The design of the clique and its
potential is crucial, but a systematic method is not yet
available. In our case, machine printed text, handwriting,
and noise exhibit different patterns of geometric relation-
ships. Our definition of cliques reflects these differences.

Printed words often form horizontal (or vertical) text
lines. Clique Cp is defined in Fig. 5a, which models
contextual constraints on neighboring machine printed
words. We first define the connection between word blocks
i and j. As shown in Fig. 5a, Ov is the vertical overlap
between two blocks and Dh is the horizontal distance
between two blocks. The distance between block i and j is

Dði; jÞ ¼ jDhði; jÞ �Gwj þ jHi �Hjj þ jChi � Chjj; ð26Þ

where Dhði; jÞ is the horizontal distances between words i
and j, Gw is the estimated average word gap in the whole

document, Hi and Hj are the heights of blocks i and j,
respectively, and Chi and Chj are the vertical centers of the
two blocks. Two blocks are connected if they satisfy

1. Ov � minðHi;HjÞ=2.
2. 0 � Dh � 2Gw.
3. Dði; jÞ < Tp, where Tp is a threshold, which is not

sensitive to postprocessing.

After defining the connection between two blocks, we can
construct a graph in which nodes represent blocks and edges
link two connected nodes. The property of an edge can be
measuredbythedistanceDði; jÞbetweentwoblocks. If anode
is connected with more than one node on one side (left or
right), we only keep the edge with the smallest distance.
CliqueCp can be represented by nodes togetherwith their left
andrightneighbors. Ifwecannot findneighborsonthe leftor/
and right sides, the corresponding neighbor is set to NULL.

Noise blocks exhibit rather random patterns in geometric
relationships and tend to overlap or be very close to each
other. As shown in Fig. 5b, the noise block labeled “Center”
is overlapped with blocks 1, 2, 3, and is very close to block 4.
Clique Cn is defined primarily for noise blocks. Similarly,
the distance between two blocks is defined as

Dði; jÞ ¼ maxðDhði; jÞ; Dvði; jÞÞ; ð27Þ

where Dhði; jÞ ¼ maxðLi; LjÞ �minðRi;RjÞ, Dvði; jÞ ¼ max
ðTi; TjÞ �minðBi;BjÞ, and L, R, T , B are the left, right, top,
and bottom coordinates of the corresponding blocks. If two
blocks overlap in the horizontal or vertical direction, then
Dhði; jÞ < 0 orDvði; jÞ < 0. Blocks i and j are connected if and
only if Dði; jÞ < Tn, where Tn is a threshold. If Tn is too big,
incorrect label flips of noise and handwriting between two
printed text lines may happen. If Tn is too small, the
contextual constraints on the noise blocks cannot be fully
used. We set Tn as half of the dominant character height
(about 10 pixels in our experiments). Each node, together
with all nodes connected to it, defines cliqueCn. The number
of connected nodes may vary from 0 to about 10, depending
on the size of the block. As an approximation, we consider
only the first four nearest connected neighbors. If the number
of neighbors is less than four, we set the corresponding
neighbors to NULL.

The geometric constraint on handwriting has weaker
horizontal or vertical structure than machine printed words
and, thus, is partially reflected in both cliques Cp and Cn.
Therefore, we do not define a specific clique for handwriting.

4.3 Clique Potential

Clique potential is the energy associated with a clique.
Generally, we assign high energy to an undesirable
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Fig. 5. Clique definition. (a) Cp for horizontally arranged machine printed words. (b) Cn for noise blocks.



configuration of the clique and low energy to a preferred
configuration. For example, an undesired configuration of
clique Cp (as shown in Fig. 5a) is that the left and right blocks
are labeled as printed text and the center block as noise.
Flipping the label of the center block from noise to printed
text would achieve a more preferred configuration and
reduce the total energy. Another undesirable configuration
is that all blocks are labeled as printed text for the clique Cn

in Fig. 5b. It should have higher energy than the configura-
tion in which all blocks are labeled as noise. In many
applications, the clique potentials are defined in ad hoc
ways. One systematic way is to define clique potential as the
occurrence frequency of each clique in the training set,
which can be expressed as a function of local conditional
probabilities. Based on this idea, we define two clique
potentials VpðcÞ and VnðcÞ for cliques Cp and Cn as

VpðcÞ ¼ � P ðXl;Xc;XrÞ
ðP ðXlÞP ðXcÞP ðXrÞÞw

; ð28Þ

VnðcÞ ¼ � P ðXc;X1; X2; X3; X4Þ
ðP ðXcÞP ðX1ÞP ðX2ÞP ðX3ÞP ðX4ÞÞw

; ð29Þ

where Xl, Xc, and Xr are labels for the left, center, and right
blocks of clique c, w is a constant, and Xi, i ¼ 1; 2; 3; 4, is the
label of the ith nearest block. The energy of the correspond-
ing Gibbs distribution is

UðX=Y Þ ¼ ws

X
s2�

½�P ðxs=ysÞ� þ wp

X
c2Cp

VpðcÞ þ wn

X
c2Cn

VnðcÞ;

ð30Þ

where ws, wp, and wn are weights which adjust the relative
importance of classification confidence and contextual
information for cliques Cp and Cn. If ws ¼ 1, wp ¼ 0, and
wn ¼ 0, no contextual information is used; with increase in
wp and wn, more contextual information is emphasized. If
we set wp ¼ wn ¼ 1 or, equivalently, ws ¼ 0, no classifica-
tion confidence is used.

In the following experiments, we want to use MRFs for
word block labeling. The number of handwritten words is
much smaller than that of the other two types, leading to a
lower estimated frequency of cliques with handwriting. As
a result, the optimization tends to label handwritten
words as machine printed text or noise. Therefore, we
regularize the estimated clique frequency P ðXl;Xc;XrÞ
and P ðXc;X1; X2; X3; X4Þ by dividing by the product of
the probabilities of the word block labels which compose
the clique. The above regularization is very similar to the
previous approach [48], where w is set to 1. In our case, w
is changeable; increasing w will emphasize handwritten
words. Our clique potential definition is very systematic
and can be optimized for different applications.

After defining the cliques and the corresponding clique
potential, we can search the optimal configuration of the
labels of all blocks so that the total energy of the correspond-
ing Gibbs distribution is minimized. Relaxation algorithms
are often used for MRF optimization. There are two types of
relaxation algorithms: stochastic and deterministic [7].
Stochastic algorithms can always converge to the global
optimal solution if some constraints are satisfied. They are,
however, computationally demanding. Deterministic algo-
rithms are simpler, but only converge to local optimal

solutions depending on the initial value. In our experiments,
Highest Confidence First (HCF), a deterministic approach, is
used for MRF optimization due to its fast speed and good
performance [49]. The HCF algorithm finds a block such that
the flipping of its label to another labelwould reduce the total
energy the most and then flips its label to the desired one. It
repeats this procedure until no single flipping can further
reduce the total energy. Since each flippingwould reduce the
energy and the energy is bounded below, the HCF algorithm
converges in a finite number of steps. Fig. 6 is an example of
the refined classification results after postprocessing. Com-
pared with Fig. 4, we can see in Fig. 6 that most misclassified
noise blocks are corrected, with a few exceptions due to their
having fewer constraints. The misclassified small machine
printed words are all corrected in Fig. 6c.

5 EXPERIMENTS

5.1 Data Set

We collected a total of 318 business letters from the tobacco
industry litigation archives. These document images are
noisy with a lot of handwritten annotations and signatures,
few logos, and no figures or tables. Currently, we identify
three classes: machine printed text, handwriting, and noise.
Since the groundtruthing of eachword block in the images of
the entire database would be time consuming, we only did it
for 94 extremely noisydocument images. These 94 images are
used for testing, and the other 224 images for training. All
handwritten words (about 1,500) in the training set are
groundtruthed. Since there is much more machine printed
text and noise, we randomly selected and groundtruthed
about the samenumber of samples of each type in the training
set. We use accuracy and precision as metrics to evaluate the
result:

Accuracy of type i ¼ # of correctly classified blocks of type i

# of blocks of type i

ð31Þ

Precision of type i ¼ # of correctly classified blocks of type i

# of blocks classified as type i
:

ð32Þ

5.2 Classifier Comparison

In this section,we compare theperformance of threedifferent
classifiers: the k-NN classifier, the Fisher classifier, and the
SVM classifier. The SVM classifier is based on VC dimension
theory and structural risk minimization theory of statistical
learning [50]. A public domain SVM tool, LibSVM, is used in
the following experiment [51]. The N-fold verification
technique, a variation of the leave-one-out technique, is used
to estimate the classification accuracy. Instead of holding one
sample for testing at each iteration, it first divides the data set
intoN groups (N ¼ 10 in our experiment) and then holds one
group of samples for testing and the remaining groups for
training. The classification accuracies of all the classifiers are
shown in Table 2.We can see that the SVMclassifier achieved
the highest accuracy. Considering the large variance, the
improvement is not significant. The variance of the classifica-
tion accuracy of all classifiers is the smallest for printed text
and the largest for handwriting, indicating that the printed
text is more compact in the feature space. Among all three
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classifiers, the Fisher classifier is the fastest since only one
vector multiplication is needed to perform a classification.
Therefore, we use the Fisher classifier for the rest of
experiments.

The classification result on the test set of 94 images, using
the Fisher classifier, is shown in Table 3. The accuracies on
all three classes range from 93.2 percent to 96.8 percent,
with the overall accuracy 96.1 percent. While this overall
accuracy is very high, we notice that the precision for
handwriting is very low (62.9 percent). This is mainly
because of the small number of handwritten words in the
testing set. Even small percentages of misclassification of
machine printed text and noise as handwriting will
significantly decrease the precision of handwriting.

5.3 Postprocessing Using MRFs

In the following experiments, we investigate how MRFs can
improveclassificationaccuracy. In the first run,wesetws ¼ 0 ,
wn ¼ 0, and wp ¼ 1 to show the effectiveness of clique Cp.
Fig. 7a shows the number of corrected blocks which were
previouslymisclassified,with change inw. As expected,Cp is
very effective for machine printedwords, but not so effective
for handwriting and noise. When w ¼ 0:3 (under this
condition, the classification accuracy of all three classes
increases), 355 (46 percent) of the previously misclassified
machine printed words are corrected. When w increases,
handwriting ismoreemphasized, leading tohigher classifica-
tion accuracy of handwriting and lower accuracy of machine
printed words and noise. In practice, w can be adjusted to
optimize the overall accuracy.

In the second run, we test the effectiveness of clique Cn by
setting ws ¼ 0, wp ¼ 0, and wn ¼ 1. As shown in Fig. 7b,
cliqueCn is very effective in correcting classification errors of
noise blocks. The classification error of noise blocks is greatly
reduced when w is small. For w ¼ 0:6 (under this condition,
theclassificationaccuracyofall classes increases), thenumber
ofmisclassified noise blocks is reduced by 99 (35 percent).Cn

can also correct some classification errors of machine printed
words, but is less effective than Cp, as shown in Fig. 7a.

The third run tests the effectiveness of classification
confidence for postprocessing. Fig. 7c shows postprocessing
results by adjusting wp when w ¼ 0:3, wn ¼ 0, and ws ¼ 1.
Adjustingwp will change the total flip number greatly. When
wp ¼ 0, the energy reaches theminimumwith the initial labels
and the total flip number is 0. When wp increases, more
emphasis is put on the contextual information and the flip
number increases.Whenwp ! þ1, it converges to the case of
wp ¼ 1 and ws ¼ 0, the setting of the first run. The maximal
overall classification accuracy is achieved when wp ¼ 6.
Compared with the first run, the total number of corrected
blocks increases from 389 to 424 by incorporating classifica-
tion confidence. Similar results are achieved by combining
classification confidence with clique Cn.

In the last run, we fix ws ¼ 1 and manually adjust w, wp,
and wn to optimize the overall classification accuracy. The
final parameters we chose are w ¼ 0:39, wp ¼ 5, and wn ¼ 4.
Table 4 shows the results after postprocessing. The “Error
Reduction Rate” in Table 4 is defined as follows:

Error Reduction Rate ¼ # of Errors Before Postprocessing � # of Errors After Postprocessing
# of Error Before Postprocessing : ð33Þ

The error rate reduces to about half of the original for both
machine printed text and noise, but increases slightly for
handwriting.However, comparedwith Table 3, the precision
of handwriting increases from 62.9 percent to 83.3 percent
due to fewer machine printed text and noise misclassifica-
tions as handwriting. The overall accuracy increases from
96.1 percent to 98.1 percent.
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Fig. 6. Word block classification results after postprocessing. The result

before postprocessing is shown in Fig. 4. (a) The whole document

image. (b) and (c) Two parts of the image in (a). There is only one

classification error in (b), which is highlighted with reverse video. All

errors in (c) are corrected after postprocessing.



Fig. 8 shows another example of machine printed text and

handwriting identification fromnoisydocuments. Todisplay

the classification results clearly, we decompose the classified

image into three layers, representing machine printed text

(Fig. 8b), handwriting (Fig. 8c), and noise (Fig. 8d), respec-

tively. The result is good with very few misclassifications.
Our approach is very general and can be extended to

other languages with minor modification. Fig. 9 shows

identification results for a Chinese document. In Chinese,

there is no clear definition of words and no spaces between

neighboring words. Therefore, the parameters of our word

segmentationmodule are adjusted to get characters.We only

need to retrain the classifiers; the postprocessing module is

intact. We can see that most handwriting and noise blocks

are classified correctly, but several machine printed digits

are misclassified as handwriting. On the right margin of the
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TABLE 2
Performance Comparison of Three Different Classifiers: The k-NN Classifier, the Fisher Classifier, and the SVM Classifier

TABLE 3
Single Word Block Classification

Fig. 7. MRF-based postprocessing. (a) Number of corrected blocks using clique Cp. (b) Number of corrected blocks using clique Cn. (c) Number of
corrected blocks using clique Cp and classification confidence.

TABLE 4
Word Block Classification after MRF-Based Postprocessing



document, some machine printed text is identified as noise
due to touching.

Our approach is fast; the averaging processing time for a
business letter scanned at 300 DPI is about 2-3 seconds on a
PC with 1.7 GHZ CPU and 1.0 GB memory.

5.4 Page Segmentation in Noisy Images

In this experiment, we show that our method can improve
general page segmentation results after removing identified
noise. We evaluated two widely used zone segmentation
algorithms: the Docstrum algorithm [2] and ScanSoft SDK, a
commercial OCR software package [3]. Many different zone
segmentation evaluation metrics have been proposed in
previouswork. Kanai et al. [52] evaluated zone segmentation

accuracy from the OCR aspect. Any zone splitting and
merging, if it does not affect the reading order of the text, is
not penalized. The approachofMaoandKanungo is basedon
text lines, which penalizes only horizontal text line splitting
andmerging since itwill change the reading order of text [53].
Randriamasy et al. [54] proposed an evaluation method
based on multiple ground truth, which is very expensive.
Liang et al.’s approach is performed at the zone level [30].
After finding the correspondence between the segmented
and groundtruthed zones, any large enough difference is
penalized. We use Liang et al.’s scheme in our experiment
since we focus more on zone segmentation. From the
OCR perspective, vertical splitting or merging of different
zones should not be penalized even when these zones have
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Fig. 8. An example of machine printed text and handwriting identification from noisy documents. (a) The original document image, (b) machine

printed text, (c) handwriting, and (d) noise. The logo is classified as noise since currently we only consider three classes.



different physical and semantic properties, but, from the
point view of zone segmentation, it should be penalized.

There are 1,374 machine printed text zones in 94 noisy
document images. The experimental results are shown in
Table 5. All merging and splitting errors are counted as
partially correct in the table. Before noise removal, ScanSoft
gets very poor results, with an accuracy of 15.9 percent, on
noisy documents under this metric. After analyzing the
segmentation results, we found that ScanSoft tends to merge
horizontally arrayedzones intoonezone,which is suitable for

documents with simple layouts such as technical articles, but
not suitable for other document types such as business letters.
The Docstrum algorithm outputs many more zones than
ScanSoft, resulting in a higher accuracy (53.0 percent), but
also a higher false alarm rate (114.1 percent). After noise
removal, the accuracy of both algorithms increases signifi-
cantly, from15.9percent to 48.4percent for ScanSoft and from
53.0 percent to 78.0 percent for the Docstrum algorithm. The
false alarm rate is reduced from32.5 percent to 1.3 percent for
ScanSoft and from 114.1 percent to 7.9 percent for Docstrum.
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Fig. 9. An example of machine printed text and handwriting identification from Chinese documents. (a) Original Chinese document image,

(b) machine printed text, (c) handwriting, and (d) noise.
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TABLE 5
Machine Printed Zone Segmentation Experimental Results

on 94 Noisy Document Images (Total 1,374 Zones), before and after Noise Removal

Fig. 10. Zone segmentation before and after noise removal using the Docstrum algorithm. (a) and (c) Show the results before noise removal. (b) and

(d) Are the results after noise removal.



Fig. 10 shows the zone segmentation results for two noisy
documents with the Docstrum algorithm before and after
noise removal. The handwriting is output to another layer
which is not shownhere.We can see that, after noise removal,
there aremany fewer splitting andmerging errors andoverall
the segmentation results are significantly improved.

6 SUMMARY

In this paper, we have presented an approach to segmenting
and identifying text from extremely noisy document images.
Instead of using simple filtering rules, we treat noise as a
distinct class and use statistical classification techniques to
classify each block into machine printed text, handwriting,
andnoise.We thenuseMarkovRandomFields to incorporate
contextual information for postprocessing. Experiments
show that MRFs are a very effective tool for modeling local
dependency among neighboring image components. After
postprocessing, the classification error rate is reduced by
approximately 50 percent. Our method is general enough to
be extended to documents in other languages. The technique
presented in this paper canbeused for image enhancement to
improve page segmentation accuracy of noisy documents.
After noise identification and removal, the zone segmenta-
tion accuracy increase from 53 percent to 78 percent using the
Docstrum algorithm.

Currently, our clique potential definition considers only
the labels of each block inside the clique, which may lose
useful information. For example, for clique Cp, a clique of
three printed words with roughly the same height is quite
different from one with different heights. In the latter case, it
is possible that one of the blocks is erroneously identified.
Another potential improvement is to integrate high-level
contextual information in addition to the local contextual
information that we used. For example, the text line and zone
segmentation results can be fed back to our classification
module to refine the classification. Effective use of contextual
information is one of our future research directions.
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