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The dynamic-Q optimization method is combined with an interpolating moving least-squares approximation-based response surface
model to design an efficient adaptive strategy for solving computationally heavy design problems. The proposed optimal strategy is
validated by comparing its performances in finding the solutions of other common optimal methods on two different kinds of problems.

Index Terms—Dynamic-Q method, global optimization, optimal design, response surface methodology.

1. INTRODUCTION

OR computationally heavy design problems, such as

inverse electromagnetic problems, an efficient, but less
strictly global, algorithm may work better than strictly global
and, yet, expensive search ones due to limitations in the max-
imum number of iterations. In this regard, the dynamic-Q
optimization method (DQOM) is worthy of investigation. The
DQOM is a new deterministic algorithm that decomposes
the original problem into a sequence of spherically quadratic
optimization subproblems which are then solved by using the
steepest descent method [1], [2]. The performance of such
method is reliable and very competitive to the well-established
conjugate gradient algorithm. In addition, DQOM has been
shown to be highly linear, i.e., the number of iterations before
the solution converges is independent of the number of design
variables. Hence, DQOM is very promising for solving com-
plex engineering design problems. Although DQOM does not
require the use of second-order derivatives, it still requires the
first-order ones in the decomposition process, and, hence, its
application is rather limited. To address this problem, Craig and
Stander propose to use the response surface gradients [3]. In
this paper, an adaptive optimal strategy using the basic DQOM
and the response surface methodology (RSM) is proposed.
Compared with the corresponding work of [3], the first-order
gradients in this paper are indirectly determined from the
response surfaces of functions rather than from those of the
gradients themselves. In other words, the proposed algorithm
is used instead of those expensive numerical approaches that
compute, directly, the gradients which are rich in noise due to
numerical errors. Moreover, the performance of the DQOM
is degraded when there are some noises in the gradient infor-
mation, which is, however, very common in those cases where
the derivatives are determined directly using simulation-based
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approaches such as finite-element analysis (FEA) [3]. Thus, it
would be preferable if the corresponding RSM can filter away
the numerical errors. In this regard, the moving least-squares
approximation (MLS) based one is ideal. For the aforemen-
tioned reasons, the MLS is extended into an interpolating MLS
(IMLS), which is then combined with the DQOM to develop
an adaptive optimal strategy in this paper.

II. DYNAMIC-Q METHOD

For a general, nonlinear optimal problem expressed as

min f(X)X = (z1 2 z,) € R"

s.t. gj(X) < OJLk(X):O

its successive spherical quadratic approximation for step i(i =
1,2,--+) in the dynamic-Q method (DQM) is [2]

FX) = f(X) + VIA(X)(X - X7)
G X’L)T;(X - X7)
35(X) = g;(X*) + VT g;(X")(X - X)
(X — XHTB;(X — X7)
hi(X) = hi(X7) + VTlQLk(Xi)(X - X%
L (- Xi)Tg)k(X — X7
G=12,....pk=12....9) ()

+

where the Hessian matrices A, B; and (), are taking the diag-
onal forms of

A = diag(a,a,...,a) = al,

B]' = bj[, Cj = Ckl. (3)
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The coefficient a, b; and c;, are determined on the bases that
the approximation interpolates its corresponding actual function
at both points X* and X1 je.

2f(X*7Y) — f(XT) = VIF(X) (X! - X))

a =

X1 — X2
s 20y (X1 — gy (X) — Vg, (X)X - X
' [ X1 — X712
2[hi (X)) — hp(X?) — VI hp (X)) (X1 — X))
Cr = HXi—l _ XLHZ . (4)

The solution of the original optimization problem defined in
(1) is transferred to those of its successive approximations as
given by (2) and can then be solved successively using any op-
timal method until a termination criteria is satisfied. Obviously,
the DQOM is a primitive form of RSM.

III. DETERMINATION OF GRADIENTS

To determine the gradients as required in (2), the first-order
finite-difference approach was used in the original DQM [2].
Since the efficiency and robustness of the DQM are degraded
in those cases in which there are noises in the computed gra-
dient, Craig et al. propose an improved version of it using the
linear Koshal response surface of the gradients to replace the fi-
nite-difference approach [3]. Their numerical results show that
the improved algorithm is more robust in its ability to converge
stably. However, it is still necessary to provide the first-order
derivative information to construct the gradient responses. As it
is well known, the determination of derivatives is very difficult,
if not impossible, for some engineering design problems. There-
fore, it would be preferable to build the response surface using
only function values. To approximate the function (gradient)
values with enough numerical accuracy, the sample points in
the neighborhood of the approximation point, say X*, should be
more densely populated than those in other regions. Therefore, a
local interpolation scheme with a zoom-in ability to handle the
aforementioned problem is desirable. In this regard, the MLS
approximation technique [4] may be a promising one. However,
MLS is not necessarily interpolant, and a feasible solution may
be taken as an infeasible one, or vice versa, if it is used to solve
a constrained optimal problem. To overcome this shortcoming,
the MLS approximation technique is firstly extended to be an
IMLS, and it is then used to construct the objective and con-
straint functions. For the sake of completeness, a brief introduc-
tion about IMLS is given in the following paragraphs.

To reconstruct a function f(x) : R"® — R on the basis of its
values f; at a set of sample points 7; € RP(i = 1,2,...,N)
using the MLS approximation technique in terms of some basis
b= {bD1"_ (n < N),alocal approximation L, f of it at each
point z € R™ C R" is defined as

Lof = ai(x)b®. )
i=1
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One then defines a global projector G f such that for any point
r € R"

n

Gf(x) = Lof(x) =Y ai()b™ (x). ©

=1

To determine the coefficient a(x) in (5) and (6), one employs
a discrete L? norm by an z-dependent inner product (u,v), of
vectors u and v, which is defined by

(u, ) = v w(z)v @)
lellz = (s, )2 ®
where z = (z(x1) z(x2) - -+ z(J{N))T(z = u,v) and w(zx) is a

N x N diagonal matrix with w(® (z) as its ith element, w(*) ()
is called the weight function of the MLS.

A characteristic of the MLS is that the weight function
w(i)(x) is a compactly supported one centered at each sam-
pling point, thereby making the MLS a local approximation of
the function.

From the condition that G f is the best approximation of f in
the least-squares sense, one obtains

a(z) = A(z) ' B(z)f )

where f = [f1 f> --- fn]" and

N

Adz) =Y wD (@)b(a)b" (a;)

=1

[wl(x)b(:m) w2(aj)b(;p2) ..

(10)
w™ (z)b(zn)]. (1)

Obviously, this approximation procedure imposes no specific
requirement on the sample point pattern. The only condition for
the procedure to work is that the coefficient matrix A(z) must
be invertible, and this can be guaranteed by automatically ad-
justing the support, which, in turn, refers to the size of the in-
fluence domain of a point of the weight functions so as to in-
volve enough sampling points (>n) for each point whose influ-
ences are nonzero at that specific point. In other words, the MLS
approximation has the self-adaptive regulating ability to take
care of irregular sample point patterns. However, the MLS ap-
proximation described previously is not necessarily interpolant.
To make it interpolant, singularities into the weight functions
w™®) () at sampling points x}, is introduced. For this purpose,
the weight function as proposed in this paper is modified to

w'(x)
o= 2] (12)
where « is a positive even integer.

After the construction of the objective and constraint func-
tions from their function values of the sampled points using
the proposed response IMLS-based response surface model, the
computation of the gradient information can be obtained from
these response surfaces readily.
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IV. ADAPTIVE OPTIMAL STRATEGY

In order to explain the proposed adaptive optimal strategy, its
iterative procedure is firstly given step by step as follows.

1) Generate the initial sampling points. Compute their ob-
jective and constraint function values using a computa-
tionally expensive approach.

2) Reconstruct the original optimal problem using IMLS
from these sampled points obtained so far, and solve it
using a tabu search method to find a global optimal solu-
tion, say, X ¢ of the reconstructed problem.

3) Starting from X*, solve the optimal problem using the

DQM.

Intensify the sample points in the neighborhood of
X% and compute the objective and constraint function
values of the newly added points. Construct the op-
timal problem again from all the points being sampled
so far using IMLS;

Determine the required gradient information from the
newly constructed response surfaces.

Termination test for DQM. If the test is passed, go to
step 4; otherwise, go to step 3.4.

Build a local approximation L(i) to the optimal
problem at X* using (2).

Solve the approximated problem L(%) using a tabu
search algorithm to yield an optimal solution X, gpt.

3.6) Seti:=i+1,X":= X(, and go tostep 3.1.

4) Termination test. If the test is passed, stop; otherwise, go
to step 2.

3.1)

3.2)
3.3)
3.4)

3.5)

A. Generation of Initial Sampling Points

Generally speaking, the RSMs, including the proposed one,
require an excessive number of function calls, which, in turn,
requires a large number of sample points, in order to build a re-
sponse surface with enough accuracy when the number of deci-
sion parameters is high. Due to the heavy computation burden in
optimal problems such as in an inverse electromagnetic one, the
number of sampling points cannot be more than several thou-
sand points. Consequently, these points should be distributed in
the feasible parameter space in an irregular pattern such that the
point densities are higher in regions where the local optima are
likely to exist. Thus, two problems arise, i.e., 1) how to generate
the sample points with a desired distribution and 2) how to deal
with the irregular distribution of the data in the corresponding
RSM. To address the first problem, the simulated annealing (SA)
algorithm is proposed to run first on the computationally heavy
optimal problem to generate the sample points because it has
some “intelligence” in generating new points, i.e., intensifying
the points in regions where the local optima exist. Of course,
when the number of the total sample points is only of the order
of a few hundred, there is no need for a well engineered SA al-
gorithm to generate the sampling points “intelligently.” In such
a case, one should deliberately design a “poorly” engineered
SA algorithm by setting a relatively small control parameter
(temperature). For the second problem, it is relatively easy to
use the proposed IMLS-based RSM due to its power in recon-
structing functions from irregularly distributed sample points as
described and demonstrated previously.
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TABLE 1
PERFORMANCE COMPARISON OF DIFFERENT OPTIMAL METHODS FOR CASE 1

Algorithms No. of averaged iterations _ Relative error  Success rate
Proposed D-Q 831 1.8x10™° 100
Original D-Q 788" 2.0x10™° 100

GA+RSM 1024 1.7x10"° 100

788 is the result of one run.

B. Enhancement of Global Search Ability

Although the DQM has found the global solution of most of
the test problems [2] as explained in the introduction, there is
no guarantee that it will never terminate on a local minimum.
In other words, the global search ability of the DQM is not ro-
bust. To address this problem, the iterative procedure of the pro-
posed strategy is designed as a multistart refinement searching
procedure that includes an outer (global) and an inner (local)
searching cycle. In the outer cycle, the tabu search is used to
determine the initial point of the DQM to guarantee that the
starting point of the inner cycle is the global optimal point of
the approximated problem constructed from the points being
sampled so far. In the inner one, i.e., the dynamic-Q searching
process, the tabu search method is also used to ensure that the
searched solution in this cycle is the global one of the local
approximation. Therefore, a more robust algorithm in terms of
global searching ability may be expected. The details about the
tabu search method used in this paper are referred to [5].

V. VALIDATION AND APPLICATION

A. Validation and Performance Comparison

For performance comparison and validation purposes, the
problem 13 with n = 10, as reported in [1], is selected as the
test case. In the numerical experiment, three different optimal
methods, i.e., the proposed, the original DQM, and a genetic
algorithm combined with the same IMLS response surface
methodology (GA 4+ RSM) are used to solve this problem.
For each method, it is run 100 times independently by starting
from a randomly generated point, and the results are given in
Table I. It is obvious that all three methods can find the exact
optimal solution with a 100% success rate. In regard to the
iterative number, the proposed algorithm is comparable to its
predecessor, and is superior to a GA-based one. However, since
the gradient information of the proposed strategy is obtained
from the IMLS-based response surface, the proposed algorithm
is more suitable for engineering design problems in which the
gradient information of the objective and constraint functions is
either unavailable or computationally too heavy to determine.
Moreover, to demonstrate the performances of the proposed
method for a problem with many decision parameters, it is
used to solve this same problem with n = 100. The averaged
iterative number for 100 runs with a 100% success rate is 2945,
and this is comparable to the 2580 iterations of the original
DQM.

To demonstrate the enhancement of global search abilities
of the proposed algorithm for solving complex optimal prob-
lems, a very complicated function with 15° local optimums as
detailed in [5] is solved using both the proposed and the original
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Fig. 1. Schematic diagram of the exciting system of a harmonic excited
synchronous generator.

DQMs. In the numerical experiment, every algorithm is also in-
dependently run 100 times with a maximum of 1000 iterations
for each function call. The success rates to find the global op-
timal solutions of such a complex problem for the proposed and
the original DQM are, respectively, 41% and 32%. Evidently,
the global searching ability of the proposed DQM has been en-
hanced significantly.

B. Application

In some small- and medium-scale salient synchronous gener-
ators, the harmonic currents (mainly the triple-frequency ones)
induced in the harmonic coils mounted on the stator are usu-
ally converted into dc via a rectifier in the field circuit (Fig. 1).
To obtain a maximum triple-frequency harmonic current, the
five-sectional arc geometry of a pole arc rather than the tradi-
tional one-piece pole arc is studied. Therefore, one needs to op-
timize the parameters of the five-sectional arc. An efficient al-
gorithm for achieving this goal is very important since the com-
putation of the objective function is computationally expensive
because FE analysis is involved. Therefore, this problem is an
ideal example to demonstrate the feasibility of the proposed al-
gorithm in solving realistic engineering design problems. The
details about this problem are referred to [6]. Mathematically,
the optimal problem can be formulated as

max wie; + wses

s.t. 9min Z g0

by > byo (13)

where w1 and w3 are two weighting factors; e; and es are,
respectively, the fundamental and the triple-frequency compo-
nents waveforms of the open-circuit characteristics of the ma-
chine; gmin is the minimal length of the air gap; and b, is the
length of the pole arc.

The geometric parameters to be optimized are the position
coordinates, arc radii, and the length of the five-sectional arc. In
the optimizing process, the waveform of the open-circuit char-
acteristics of the machine is determined using FE analysis. For
the convenience of performance comparisons, this problem is
solved using the proposed and the same GA combined with
the IMLS-based RSM algorithms. The final solutions and the
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TABLE 1I

PERFORMANCE COMPARISON OF DIFFERENT OPTIMAL METHODS

FOR A 6.5-kW HARMONIC-EXCITED SYNCHRONOUS GENERATOR
Algorithm No. of FE computations ei(pu) e3(pu)
Proposed 1284 1.09 1.20
GA+RSM 1876 1.10 1.20

SA 6258 1.08 1.21

performance comparison results, together with those obtained
using a SA algorithm [6], of a 6.5-kW harmonic excited gen-
erator, are summarized in Table II. From these numerical re-
sults, it can be seen that: 1) the iterative numbers using the two
RSM-based optimal strategies are reduced significantly com-
pared to that of a SA-based one; 2) the final solutions found
by different methods are nearly the same; and 3) among all the
three optimal strategies, the proposed method is the most effi-
cient one.

VI. CONCLUSION

An adaptive optimal strategy based on the combination of
DQOM and RSM is proposed to enhance its global searching
ability. The proposed algorithm relaxes the requirement upon
the direct gradient computations of the original DQMs without
sacrificing its inherent advantages. To achieve these goals, the
MLS approximation technique is extended to become an inter-
polant one, and a tabu search algorithm is embedded in the itera-
tive procedure in twofold, i.e., one for the global search to give a
starting point of the dynamic-Q search procedure, and the other
is used for finding the global optimal solution of a local approx-
imated subproblem. The numerical results as reported in this
paper demonstrate fully the robustness and efficiency of the pro-
posed algorithm in solving both mathematical and engineering
design problems.
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