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Abstract

By describing several industrial-scale applications

of formal methods, this paper intends to demon-

strate that formal methods for software develop-

ment and safety analysis are increasingly adopted

in the safety critical systems sector. The bene�ts

and limitations of using formal methods are de-

scribed, and the problems of developing software

for safety critical systems are analysed.

Keywords: formal methods, functional require-

ments analysis, safety analysis, safety critical sys-
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1 Introduction

A signi�cant problem of developing software for

safety critical systems is how to guarantee that

the functional behaviour of a developed software

system will satisfy the corresponding functional re-

quirements and will not violate the safety require-

ments for the associated overall system. In order

to solve this problem, it is important to analyse

thoroughly the safety properties of the overall sys-

tem, to achieve accurate software functional re-

quirements and to verify properly the implemen-

tation of the software.

Formal methods are perceived by the community

as a way of increasing con�dence in software for

safety critical systems. They are mathematically-

based techniques, often supported by reasoning

tools, that can o�er a rigorous and e�ective way

�

Work is partially supported by SafeIT (SERC/DTI)

grants ((IED4/1/90/3)) and ((IED4/1/93/4))

to model, design and analyse computer systems

[Abrial et al 1989],[Bowen, Stavridou 1993a]. For-

mal methods have attracted the attention of many

authorities. An example of this is the interim stan-

dard 00-55 on the procurement of safety critical

software in defence equipment, published by the

UK Minstry of Defence [MoD 1991]. 00-55 man-

dates the production of safety critical module spec-

i�cations in a formal notation. Such speci�cations

must be analysed to establish their consistency and

completeness in respect of all potentially hazardous

data and control 
ow domains. A further funda-

mental requirement is that all safety critical soft-

ware must be subject to validation and veri�cation

to establish that it complies with its formal speci-

�cations.

Interestingly, and despite the lack of any docu-

mented factual evidence as to their e�cacy, formal

methods are clearly considered desirable, particu-

larly in relation to safety critical systems. While we

share the view that such methods can be a very im-

portant analytical tool [Bowen, Stavridou, 1993b],

we also believe that hard factual evidence relating

to the impact of formal methods on the depend-

ability of safety critical systems is highly desirable.

To this end, we are currently participating in an ef-

fort to quantify and understand the dependability

implications of formal methods [Littlewood 1993].

This paper describes some applications of popular

formal methods in industry, especially for require-

ments analysis and speci�cation. Since there is

a close connection between the functional require-

ments of software and the safety of an overall sys-

tem, safety analysis techniques are also reviewed.
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Evidence shows that e�ective ways of using for-

mal methods for safety critical systems are still

an open problem [Austin, Parkin 1993]

1

. This is

because during the process of software develop-

ment for safety critical systems, not only the func-

tional behaviour of software has to be considered

carefully, but we must also demonstrate that the

developed software satis�es the overall safety re-

quirements. This paper analyses this problem and

presents a possible way forward.

The remainder of this paper is organised as fol-

lows. Section 2 describes the applications of formal

methods in functional requirements analysis and

speci�cation construction. Section 3 analyses the

bene�ts and limitations of formal methods. Sec-

tion 4 presents several popular safety requirements

analysis techniques. Section 5 addresses the prob-

lems of existing software development methods. Fi-

nally, we give our conclusions and outline further

research.

2 Applications of Formal Meth-

ods in Requirements Analysis

and Speci�cations

Requirements analysis is a key activity in the pro-

cess of software development for achieving satisfac-

tory systems. The quality of requirements analysis

determines the quality of requirements speci�ca-

tions which directly a�ects the quality of the de-

veloped system.

Evidence shows that the use of formal methods in-

creases con�dence in software systems, especially

for safety-critical systems [Austin, Parkin 1993].

One of the important reasons for this is that formal

methods can assist people to do requirements anal-

ysis thoroughly and to express precise requirements

speci�cations.

Many formal notations and methods have been

used so far in industry for the purpose of re-

quirements analysis and functional speci�cation of
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This is a report of a literature survey and a survey of

industry to discover the current situation of formal methods

exercises in both academia and industry. The surveys were

conducted through questionnaires.

safety critical systems. They include VDM, the

B-Method, RAISE and HOL. In this section we

present several examples of the industrial applica-

tion of these formal methods. The lessons learned

in practice are described. For the sake of readabil-

ity, we divide these cases into groups which have

had the same (or similar) formal method applied

to them.

2.1 VDM

VDM (Vienna Development Method) is a de-

notational model-based approach [Bj�rner, Jones

1982],[Jones 1990]. In VDM, speci�cations are con-

structed around abstract states which are models

de�ned in terms of data objects such as sets, maps

and lists. Operations on these state-like objects

are speci�ed by pre- and post-conditions. The pre-

condition is a predicate over the initial state of

the operation and can be used to limit the cases

in which the operation has to be applicable. The

post-condition is another predicate that speci�es

the \input-output" relationship between the initial

and �nal states of the operation.

Some of the industrial-scale projects which used

VDM for requirements analysis and speci�cations

are as follows:

(1) Ammunition Control System

The interim United Kingdom Minstry of De-

fence (MOD) Defence Standard 00-55 [MOD 1991]

on the procurement of safety critical software is ex-

pected to force the pace of change in the civil as

well as the defence sector. It advocates the use of

formal techniques in various stages of system de-

velopment.

An existing ammunition control system (ACS) is to

be replaced and the appropriate MOD authority in-

tends to produce a formal speci�cation of their own

regulations which would be incorporated in the Op-

erational Requirements document for the planned

ACS replacement in accordance with the spirit of

00-55.

The formal methods group at RHUL (Royal Hol-

loway - University of London) examined the ACS

and the explosives regulations. They then con-
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structed a formal model of the system and pro-

ceeded to formalise the associated safety require-

ments as well as to prove some properties of the

speci�cation using VDM [Mukherjee, Stavridou

1993b]. The model re
ects two main aspects of the

speci�cation which are the storage of explosives in

a particular magazine (a magazine is a building in

which explosives are stored) and the construction

of new buildings. The safety requirements include

storing objects, adding magazines and composing

operations.

Furthermore, the VDM speci�cation is translated

into the language OBJ3 [Goguen, Winkler 1988]

for the purpose of rapidly constructing a prototype

explosive storage model in order to allow animation

of the speci�cation. It is believed that a prototype

at such an early stage of the software development

process could help demonstrate the quality of the

formal speci�cation and �nd potential problems in

the �nal implementation.

The application described above has suggested sev-

eral practical bene�ts and di�culties in using for-

mal methods. First, the use of formal methods can

help clarify the documented informal requirements

(e.g. UN Orange book regulations in the above

case) and provide an unambiguous safety statement

for the replacement ACS system. However, it has

been demonstrated that wholesale adoption of for-

malization is not necessary for improving system

quality. Rather, it is more appropriate to use for-

mal methods for complex procedures and safety-

critical parts of the system, and as a communica-

tion medium between customers and contractors.

Second, formal speci�cations can be used as an aid

to site planning and prediction of further system

development. Third, formal methods can be used

e�ectively not only in their traditional role of im-

proving product quality or reducing product main-

tenance costs, but they can also facilitate modi�ca-

tion of system documents. Fourth, it is shown that

as the scale of the applications increases, maintain-

ing the advantage gained from short, abstract spec-

i�cations becomes progressively more di�cult. For

example, speci�cations can become as complex and

voluminous as programs. It is believed that han-

dling this complexity represents a challenge that

needs to be ultimately addressed through further

research. Finally, there is no hard evidence to guar-

antee the dependability of the system because of

using formal methods, but as with all formal spec-

i�cation and veri�cation exercises, the most that

can be safely asserted is that certain kinds of logi-

cal errors have been made far less likely within the

credibility bounds of the human speci�er and the

human/machine prover.

(2) Medical Instruments Control System

The cardiology business unit at Hewlett-

Packard's McMinnville Division is responsible for

the production of medical instruments, some of

which have life-critical functionality and require

high reliability [Cyrus et al 1991]. These instru-

ments are used in a high-tension environment by

medical personnel who are not necessarily com-

puter literate and do not use the instruments on

a daily basis. A project team from the cardiology

business unit is responsible for developing one of

these life-critical instruments.

Since the correctness of previous generations of the

product (software) is not formally veri�ed and the

code in these earlier instruments which was written

in assembly language is hard to understand and not

reusable, the project team decided to adopt formal

methods to improve the quality of product.

In collaboration with the applied methods group

from HP's Bristol laboratories, the project team

produced a complete formal speci�cation of the

safety-critical part of the software used in a med-

ical instrument. The speci�cation is derived from

the product's external speci�cation (ES) - a natural

language description of the product requirements,

and is written in the formal language HP-SL, which

is a VDM-like language [Rush et al 1990], in con-

junction with data 
ow diagrams. The formal spec-

i�cation provided a process model of the system,

specifying the relationship of inputs and outputs

over time. This model uses the HP-SL history spec-

i�cation, which associates data values with time,

thereby capturing timing constraints and specify-

ing a data object's value for all time. The speci�ca-

tion is illustrated by a variant of data 
ow diagrams

in which the data 
ows between processes corre-
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spond to HP-SL histories, and the dashed lines

are used to indicate optional data which are only

present in some product family members.

The formal methods exercise in this application

has led to the discovery of several major bene-

�ts. First, a well planned project schedule has

proved to be necessary to use formal methods suc-

cessfully for the �rst time. Such a schedule should

allow su�cient time at the outset for the learn-

ing curve of both formal notation and problems

to be addressed. It is observed that the bene�ts

of a complete external speci�cation, early require-

ments decisions, complete interface speci�cation,

and a good software design compensates for the

time needed to produce the formal speci�cation.

Second, the formal speci�cation a�ected the struc-

ture and content of the ES. It exposed ES ambi-

guities and incomplete product de�nition. For ex-

ample, the ES described normal system function-

ality, but did not de�ne system behaviour under

abnormal situations. Third, formal speci�cation

identi�ed important test cases and boundary con-

ditions. Some processes have preconditions or in-

variants that de�ne corner cases, which had to be

tested. Fourth, working on the formal speci�ca-

tion helped new team members learn the product

requirements by exposing areas of misunderstand-

ing or ambiguity.

On the other hand, the project team also found

some limitations of using formal methods. First,

it was very hard to stop thinking in programming

terms when HP-SL was used for speci�cations.

This is because while learning HP-SL, people fo-

cused on the notation, but not the abstractions or

modelling techniques required to use it e�ectively.

Second, some parts of the formal speci�cation were

intellectually pleasing but not understandable by

other members of the team or reviewers. Finally,

no early estimates of code size and dynamic be-

haviour of the system could be reached from the

formal speci�cation.

(3) The London Air Tra�c Control System

As part of its advanced program to expand

and develop the air tra�c control system over the

south-east of England, the Civil Aviation Author-

ity is building a major new operation centre, the

Central Control Function (CCF) facility, at the

London Air Tra�c Control Centre. Praxis Sys-

tems Ltd., which is a software engineering com-

pany located in Bath, England, has been selected

to conduct a design study for the CCF Display and

Information System (CDIS) which forms part of

this programme [PRAXIS 93],[Craigen 93]. CDIS

forms a vital component of the data entry and dis-

play equipment used by air tra�c controllers.

Since the requirements analysis phase of the CDIS

project was critical to its overall success, Praxis

used VDM in conjunction with entity-relation anal-

ysis (ERA) and real-time Yourdon techniques to

de�ne the requirements for the system in detail.

The requirements were documented in three com-

plementary models: a world model of the system

in its environment, based on ERA, a model of the

processing requirements based on real-time Your-

don techniques, and a formal speci�cation of the

CDIS data and functions built using VDM. The

formal VDM speci�cation is complementary to the

ERA and Yourdon models, and is both abstract

and unambiguous.

It has been suggested that VDM is di�cult to be

used e�ectively to capture the real requirements

for interface design, while prototyping is extremely

helpful in this respect. In order to de�ne the details

of the user interfaces (in terms of screen layouts,

layering of windows, `look and feel' etc), a number

of prototype user interfaces were constructed for

the major classes of user. These prototypes were

demonstrated to users and their e�ectiveness eval-

uated. As a result of this exercise, the details of the

actual interfaces were documented, as the third key

component of the speci�cation.

2.2 B-Method

The B-Method is a formal software development

process used for the production of highly reliable,

portable and maintainable software which is veri-

�ably correct with respect to its functional speci-

�cation [Abrial et al 1991]. The method uses the

Abstract Machine Notation (AMN) as the language

for speci�cation, design and implementation within

the process.
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Speci�cations are organized and presented as Ab-

stract Machines. Abstract Machine clauses pro-

vide a list of state variables, an invariant constrain-

ing and relating the state variables, and operations

on the state variables. Operations are speci�ed in

a pre/post condition style: state variable changes

are abstractly speci�ed as substitutions of new val-

ues for old, under stated pre-conditions. Abstract

Machines may be parameterised so that instances

of machines can be reused in the incremental con-

struction of more complex machines.

The variables of a constructed machine include the

collection of variables from each of the used ma-

chines. The invariant includes the conjunction of

the invariants from each individual machine. New

variables can be introduced and new invariant con-

ditions can be imposed. The initialisations from

the used machines are inherited.

An operation from a used machine may be pro-

moted, in which case it becomes an operation of

the new machine. Also new operations can be con-

structed from existing operations.

The method is supported over the entire spectrum

of activities from speci�cation to implementation

by a set of computer-aided tools.

A case of applying the B-Method is as follows:

Railway Signalling System

With the objective of increasing tra�c move-

ment by 25% while maintaining the safety levels

of the conventional system, a computerized sig-

nalling system for controlling RER (regional sub-

way) trains in Paris, called SACEM system (partly

embedded hardware and software), was developed

by GEC (General Electric Company) Alsthom,

Matra Transport and RATP (the Paris transporta-

tion authority) in 1989, and has since been control-

ling the speed of all trains on the RER Line A in

Paris [Guiho, Hennebort 1990],[Silva et al 1992].

The SACEM software consists of 21,000 lines of

Modula-2 code. 63% of the code is safety-critical

and has been subjected to formal speci�cation and

veri�cation. The speci�cation was written using

Abrial's B-Method and the proofs were done manu-

ally using automatically generated veri�cation con-

ditions for the code and Hoare's logic. The valida-

tion e�ort for the entire system took about 100

man years and therefore, this exercise represents a

substantial investment in the application of formal

methods.

The experience shows that the SACEM work has

primarily bene�ted from formal speci�cation which

enabled precise and unambiguous statements about

the system to be made. It is believed that the

system is safer as a result of the formal speci�ca-

tion and veri�cation exercise. Howevere, a di�cult

problem which the project team met during the

development of the system was communication be-

tween the veri�cation personnel and the signaling

experts who were not familiar with the formal nota-

tions used. They overcame this problem by provid-

ing the signaling experts with a natural language

description derived manually from the formal spec-

i�cation.

2.3 RAISE

RAISE (Rigorous Approach to Industrial Software

Engineering) is a systematic development method

[Bj�rner et al 1985],[Prehn 1987], which is a com-

bination of useful aspects of VDM with well-

researched areas of algebraic speci�cation tech-

niques and CSP [Hoare 1985]. It provides two lan-

guages, RAISE Speci�cation Language (RSL) and

RAISE Development Language (RDL). RSL is in-

tended to support multiple styles of speci�cation

and levels of design re�nement, whilst RDL is for

implementation of speci�cations.

Currently RAISE is successfully being used on two

applications:

� The Bell and LaPadula security model. The

purpose is to investigate modelling security in

RSL and to examine the issues of combin-

ing the functional and security re�nements.

Approximately two person-months have been

spent on this project and a draft report on the

work has been produced.

� The Safe Monitoring and Control System.

This system is a distributed controller, for

5



use in mining and other industrial applica-

tions. Six person-months have been spent.

RSL has been used to formulate the require-

ments, which have evolved during this time.

The reason for RAISE being chosen for the projects

was that the project teams believed that formal

methods of speci�cation are useful for a large class

of systems, partly because the need for formulation

forces people to consider the requirements carefully.

The experience with formal development exercise

in the projects supported this belief. However, one

problem is that, because RSL is a large language,

it is not obvious which style(s) of RSL to use at the

various stages of development. It is suggested that

this problem should be addressed by separating the

concerns of formal speci�cation and formal devel-

opment. That is, the �rst RSL speci�cation should

be constructed at requirements capture, without

any regard for development. Then the develop-

ment route should be outlined and a new top-level

speci�cation suitable for re�nement should be pro-

duced. Then the formal development can be car-

ried out based on the new speci�cation as in the

RAISE method.

2.4 HOL Logic and System

HOL system is a proof assistant based on high or-

der logic [Gordon 1988]. The HOL logic can be

used as a formal language for system speci�cation

and veri�cation. A HOL speci�cation consists of

a collection of theories. Each theory consists of

a set of types, type operators, constants, de�ni-

tions, axioms and theorems. The de�nitions de-

scribe all the functions introduced in the theory;

the axioms present properties of the types or func-

tions which do not need proving; and the theorems

express more complex properties which need to be

proved based on the de�nitions and/or the axioms.

Furthermore, a theory can build on other theories

in the way that all the types, constants, de�nitions,

axioms and theorems of those theories can be used

in the theory being built.

An example of using the HOL logic and system is

as follows:

Embedded Microprocessors

The Viper (Veri�able Integrated Processor for

Enhanced Reliability) is a microprocessor that has

been speci�cally developed for safety-critical ap-

plications [Cullyer, Pygott 1987]. The HOL sys-

tem has been used to verify parts of the processor.

However the method used and the claims about the

correctness of this processor have caused some con-

troversy in industrial and even the formal methods

communities [Brock, Hunt 1990],[Cohn 1989].

Viper was the �rst \real" microprocessor produced

using formal proof technique and intended for se-

rious use. The proofs focus on the top level func-

tional speci�cation with the host machine (state

machine) and the block level description of Viper

(register transfer level description). The proofs re-

lating to the top level speci�cation uncovered a

type error, a confused de�nition and an incom-

plete check [Cohn 1988] while the (only partially

completed) block level proof did not expose any

problems.

The Viper project team has learned some lessons

from the formal veri�cation exercise. First, the de-

pendability of the chip was enhanced at a price.

Second, it is di�cult to imagine that the formal

veri�cation produced a cheaper chip. Third, HOL

can be used for large scale projects. This work has

also raised the interesting question of whether such

proofs should be carried out by mathematicians or

digital designers.

3 Bene�ts and Limitations

The experience of formal methods in industry and

academia suggests that although formal methods

can bring bene�ts to software development, many

limitations exist. We summarize below some sur-

vey results on these two aspects of formal methods,

based on [Austin, Parkin 1993] and the practical

applications provided previously, and analyse these

in terms of safety critical systems applications.

3.1 Perceived bene�ts

� Requirements and Speci�cations are un-

ambiguous.
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The main reasons for this are twofold. The

�rst is that all the variables used in formal

speci�cations are typed and each type de�-

nition is based on mathematical objects (e.g.

natural number, real number, boolean value)

that have precise semantics. The second rea-

son is that every operation in formal speci�-

cations is de�ned precisely in the sense of its

precise input and output relationship.

� Errors due to misunderstandings are re-

duced.

As formal speci�cations are unambiguous,

communication between people involved in

requirements analysis, speci�cation construc-

tion, design and implementation via the for-

mal speci�cations is enhanced. Therefore, er-

rors due to misunderstandings are reduced.

� Implementations based on formal spec-

i�cations are usually easier than those

based on informal ones.

This is because formal speci�cations usu-

ally present precise tasks for implementation,

whereas informal ones cannot easily do so.

� Correctness proofs can be carried out,

especially for safety-critical properties.

Correctness proof has been recognized as a

powerful approach to verifying implemented

software systems against their speci�cations.

It is especially necessary for safety critical ap-

plications. Since formal speci�cations adopt

mathematical notation, correctness proofs be-

come possible.

� Validation of requirements speci�ca-

tions becomes easier.

Because of the precision of formal require-

ments speci�cations, every task speci�ed can

be precisely interpreted thus enhancing the

clients' ability to scrutinize the correctness of

formal requirements speci�cations.

3.2 Perceived limitations

� Formal speci�cations are di�cult to

read.

The reasons for this limitation are twofold.

The �rst is that the majority of people working

in the computing industry at present are ac-

customed to traditional informal methods and

are not well trained in formal notations.

The second reason is that mathematical nota-

tions are usually more di�cult to understand

than informal descriptions. Two elements con-

tribute to this di�culty. First, mathematical

notations are concise and the information de-

scribed by them is therefore compact. Second,

the language in which these descriptions are

expressed is necessarily terse and populated

with abstractions.

� Formal methods cannot help model all

aspects of the real world.

The di�culty is that the real world includes

static and dynamic aspects while formal meth-

ods are a static technology for dealing with

modelling and abstraction. Dynamic aspects

may be modelled using formal methods, but

the model produced cannot really demonstrate

the dynamic behaviour of the desired systems.

� Correctness proofs are

resource-intensive.

This is because considerable time is required to

produce formal speci�cations. Furthermore,

since there is intrinsic di�culty in performing

correctness proofs automatically (e.g. asser-

tion construction, associated knowledge man-

agement and e�cient use), proofs have to be

done manually or interactively with machines,

which is resource-intensive.

� Development costs increase (for some

companies and projects).

The main reason for this limitation is that

many companies and projects need to invest

more money for training their sta� in formal

methods technology.

� Formal speci�cations can still have er-

rors.

As we mentioned previously, formal methods

can help reduce errors due to misunderstand-
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ing. However, this is no guarantee that peo-

ple will not make mistakes in formal speci-

�cations (e.g. syntactic errors and semantic

inconsistency). No formal method so far can

provide automatic support to semantic consis-

tency checking for formal speci�cations (only

some tools for syntax and type checking are

available).

� There is no mechanism available in

many popular formal methods for de-

scribing time constraints on a proposed

system or a component of the system.

The reason for this is that the initial purpose

of some formal methods (e.g. VDM, Z) is not

for developing time-critical systems but for de-

veloping non time-critical systems. However,

when they are used for time critical applica-

tions, it is di�cult or impossible to describe

timing behaviours.

� Environments to support the use of for-

mal methods are not available.

Tools to support the use of some formal meth-

ods do exist (e.g. CADIZ for Z notation

was developed at the University of York, mu-

ral for VDM was built at the University of

Manchester [Jones et al 1991]). However, none

of them are powerful enough to support the

whole activity of using formal methods, such

as consistency checking of speci�cations, spec-

i�cation re�nements, correctness proofs, soft-

ware testing etc.

� It is not yet clear how to incorporate

formal methods into the whole life cycle

of software development.

To solve this problem, we need to answer the

following questions: How to construct good

quality formal speci�cations (understandable,

consistent, structured)? How to re�ne formal

speci�cations? How to do software veri�ca-

tion (including correctness proofs and software

testing) in an e�cient way? How to do docu-

mentation? how to manage a software project

and so on. There have been some research

results which answer some of these questions

for some formal methods (e.g. VDM, see [Liu

1993],[Bear 88]), but there is still a long way

to go for many other formal methods (e.g. Z,

RAISE).

4 Safety Requirements

Safety is a property of an overall system, which

depends on both hardware and software in embed-

ded safety critical systems. A safety requirement

can be expressed in terms of knowledge about the

possible causes of system safety failure (e.g. the air-

plane crash is caused by the engine failure). The

result of this analysis can help engineers under-

stand the safety problem concerned and make de-

cisions on eventual system design, including hard-

ware and software. Several techniques for safety

analysis have been used by industry for decades,

and some have attracted great attention in the re-

search community. They include Fault Tree Analy-

sis, Failure Modes, E�ects and Criticality Analysis,

Failure Propagation and Transformation Notation,

and Toulmin Argument Form.

We believe that identi�cation of appropriate safety

requirements is a prerequisite for any useful safety

critical application of formal methods. Therefore,

safety analysis methods must be incorporated in

the lifecycle of formal methods applications. It is

important to realize that formal methods are not

alternatives to safety analysis; the latter gets as

close to analysing physical reality as possible, while

the former deals in models and abstractions.

In this section we focus on the introduction of four

techniques. Their principles and possible connec-

tions with formal methods are described.

4.1 Fault Tree Analysis (FTA)

Fault Tree Analysis has been used for the assess-

ment of system reliability and safety [Chelson 1971]

for decades and has been developed into a well-

understood, standardised method with wide appli-

cations throughout the discipline of safety and reli-

ability engineering. A comprehensive introduction

to fault tree analysis is the extensive and authori-

tative Fault Tree Handbook [Veseley et al 1981].

Traditional fault tree analysis is a probabilistic
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method in which potential causes of some fail-

ure (\top event") are organised in a tree struc-

ture re
ecting causality { causality is a crucial

notion underlying all safety analysis techniques.

High-level events can be caused by various com-

binations of lower-level events, with the principal

logical connectives used in the tree being AND

and OR gates, which have meanings analogous

to those traditionally used in electronic circuit de-

sign. Priority-AND gates, exclusive-OR gates and

INHIBIT gates (which generate a true output if

some input representing an event in the system is

true, and some external \conditioning event" has

occurred ) are also available for use. Examples of

applying fault trees to system safety analysis are

described in [HSE 1987],[Bowman et al 1991].

Leveson and her colleagues were the �rst to apply

fault trees to the safety analysis of software [Leve-

son, Harvey 1983a],[Leveson, Harvey 1983b] at the

statement level. Software fault trees are derived

from the software (programs) based on the seman-

tics of statements (e.g. sequential, conditional and

iteration statements). Since the statements may

be either concrete or abstract (e.g. if x > 1 then

y := x � 1 else y := x + 1 is a concrete condi-

tional statement, while if x > 1 then S

1

else S

2

is an abstract one because S

1

and S

2

are not de-

�ned yet), software fault tree analysis can be ap-

plied on both software design and code levels. The

goal of software fault tree analysis is to show that

the logic contained in the software design will not

produce system failures, and to determine environ-

mental conditions which could lead to the software

causing a safety failure.

Clark and McDermid propose a more traditional

view of the application of fault trees to software

[Clark, McDermid 1993]. It is suggested that weak-

est preconditions are used for program speci�ca-

tion and validation, and software fault tree analysis

is employed for a system-wide analysis of hazards.

The scope of software fault trees can be increased

to include, for example, compiler errors, control er-

rors, and memory errors, as well as logical errors.

Thus a more realistic view of the software's role in

system hazards can be given.

Hansen et al have recently developed fault trees

into a notation for describing software safety re-

quirements for design speci�cations [Hansen et al

1993]. Speci�cations are given in a real-time, inter-

val logic, based on a conventional dynamic systems

model with a state changing over time. Fault trees

are interpreted as temporal logic formulae giving a

cause e�ect relationship between states. It is shown

how such formulae can be used for deriving safety

requirements for design components. Similar work

on formalisation of fault trees is also described in

[Bruns, Anderson 1993].

4.2 Failure Modes, E�ects and Critical-

ity Analysis (FMECA)

FMECA is a quantitative and qualitative method

which is used to analyse the e�ects of a single fail-

ure on a system. In particular, it is useful as a tool

for summarising the failure behaviour of a system

and can be used \pro-actively" as a tool for relia-

bility growth [Raheja 1990] if well integrated into

the development lifecycle. FMECA is also often

used as the basis for analysing maintainability and

related requirements.

The principle of FMECA is that it attempts to

evaluate the e�ects of a single failure of a com-

ponent on the system as a whole. The mapping

from failure modes to e�ects may be a direct one,

or hierarchies of failure modes and e�ects may be

necessary, with combinations of failures required to

result in particular output states. FMECA and re-

lated techniques are of great pragmatic importance

as one of the most common requirements in many

safety critical systems is that there should be no

single point of failure which can lead to a hazard.

FMECA is well-understood at the systems level.

Sound methodologies and standards have existed

for many years [APR 1967] and equipment sup-

pliers and users have developed much experience

in using the method. However, it is necessary to

formalise FMECA activities if it is to be used in

conjunction with formal methods for the develop-

ment of safety critical systems. It seems that not

much research has been done on this topic.
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4.3 Failure Propagation and Transfor-

mation Notation (FPTN)

FPTN is a graphic method for expressing the fail-

ure behaviour of systems with complex internal

structures [Fenelon, McDermid 1993]. Since fail-

ure propagation can be viewed as a form of data


ow, FPTN was initially intended to resemble data


ow based methods such as CORE and Mascot. It

is a modular and hierarchical notation which allows

decomposition based on system architecture where

the conventional concept of data 
ow is replaced

by failure propagation between modules.

A software module in FPTN is represented by a

box with a collection of input and output failure

modes. The box contains a set of predicates which

express the relationship between the input and out-

put failure modes of the module. These predicates

in fact correspond to the sum-of-products form of

the minimal cutsets of the fault tree (a minimal

cutset being any set of conditions necessary and

su�cient to cause the loss event described at the

top of the tree) for each output failure mode. In

e�ect the FPTN box contains a forest of fault trees

laid on their sides.

FPTN may be used in conjunction with struc-

tured and formal methods based on data 
ow anal-

ysis [Liu 1993],[Liu 1994] for safety critical sys-

tems. The functional speci�cations can be the ba-

sis of failure behaviour analysis of the system us-

ing FPTN and FPTN analysis can result in more

safety critical information for the re�nement of the

functional speci�cations.

4.4 Toulmin Argument Form (TAF)

Toulmin Argument Form was proposed by the En-

glish philosopher Stephen Toulmin in 1950's [Toul-

min 1958] and was initially designed as a method

and tool for expressing the structure of arguments.

It is usually expressed graphically and has six parts

as follows:

� Claim: the claim is an assertion describing the

conclusion we wish to establish (e.g. the safety

of the process of producing PETN can be guar-

anteed, where PETN stands for pentaerythri-

tol tetranitrate);

� Data: the data provides some facts to support

the claim (e.g. the decomposition can be pre-

vented);

� Warrant: the warrant presents a justi�cation

for deriving the claim from the data (e.g. as

long as the decomposition can be prevented,

the safety of the process of producing PETN

can be guaranteed);

� Backing: the backing provides some facts to

support the warrant and to provide evidence

that it is trustworthy (e.g. the corresponding

chemical principles);

� Quali�er: the quali�er indicates the degree

to which data and warrant support the claim

(e.g. probably or certainly);

� Rebuttal: the rebuttal is a statement describ-

ing an exceptional condition under which data

and warrant do not support the claim (e.g. the

reaction container has ruptured)

Quite recently the Toulmin Argument Form has at-

tracted the attention of the safety critical systems

research community. In the ASAM (A Safety Argu-

ment Manager) project which was funded by SERC

and DTI, and conducted by the University of York

in collaboration with Logica Cambridge Ltd. and

the Civil Aviation Authority [Forder et al 93], the

Toulmin Argument Form was developed and ap-

plied to express the safety case of a safety critical

system.

5 Discussion

There are several problems with the existing meth-

ods and principles for developing the software of

safety critical systems, but we believe the follow-

ing three are most critical.

First of all, there is no well-designed language and

principle to describe mappings from physical en-

vironments (including physical model, operation

principles and properties of the physical systems)

to safety requirements. Therefore, formal valida-

tion of safety requirements cannot be conducted.

The ASAM project has made some e�orts in this
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area [Forder et al 1993]. In SAM (Safety Argu-

ment Manager) which is a prototype produced by

the ASAM project to support the management of

safety arguments, system modelling is thought to

be a �rst step in the construction of safety require-

ments. Its purpose is to map a physical model of a

physical system to a logical system model which is

expected to re
ect all the safety related knowledge

about the physical system. However, there is no

principle on how to do this mapping, and the lan-

guage used to express the logical system model is a

collection of binary relations, which is not powerful

enough for the purpose.

Second, safety requirements are usually expressed

in natural language (although some graphical no-

tation may be used to layout the structure of text,

such as Toulmin Argument Form). Such require-

ments are not very helpful to software develop-

ers, and cannot serve as a �rm basis for proving

whether a developed software system satis�es the

corresponding safety requirements. There has been

little research so far on the application of formal

methods to expressing safety requirements. The

bene�ts and disadvantages of this kind of applica-

tion are not clear yet.

The third problem is that the precise relationship

between safety and the functionality of a system

is not consistently used as a framework for soft-

ware development for safety critical systems in the

whole software life cycle. The safety of an overall

system and the functionality of the software used

in this system are analysed, designed, implemented

and veri�ed separately. There is no systematic ap-

proach so far to link them together properly.

Formal methods can be an e�ective tool in increas-

ing the con�dence of software implementations for

safety critical systems. However, it is not clear how

to use formal methods in order to ensure that safety

and functional requirements are properly captured

and implemented.

We believe that safety is a property of an overall

system (including software and hardware) and is

completely re
ected by the functional behaviour

of the software system and hardware. In order

that the functional behaviour conforms to safety

requirements, safety constraints must be consid-

ered and enforced during the whole process of

software development including functional require-

ments analysis, design, implementation and veri-

�cation, rather than after the software system is

implemented.

In order to realise this goal, a safety-oriented ap-

proach to software requirements analysis and im-

plementation is necessary. Without such an ap-

proach, even if we precisely specify the functional

requirements using formal methods, we are still not

able to guarantee that the implemented software

satis�es the corresponding safety requirements.

6 Conclusions

This paper describes the current practices of for-

mal methods technology in safety critical systems

in industry, and analyses the bene�ts and prob-

lems of using formal methods. The evidence shows

that formal methods can help increase con�dence

in software. The most successful role which formal

methods can play is to assist developers to clar-

ify requirements, to allow formal reasoning about

speci�cations and to allow correctness proofs of im-

plemented programs against their formal speci�ca-

tions. In order to support the application of formal

methods, e�cient tools and e�cient environments

need to be developed and sta� training must be

provided.

In particular for safety critical systems, there is an

absence of the principle for enforcing safety con-

straints during the whole process of software devel-

opment, and no appropriate language and method

for supporting this principle exists. We believe that

a proper combination of causal tree analysis, tem-

poral logic, and pre- and post-conditions style no-

tation is a step in the right direction.
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