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Abstract. In dynamic graph drawing, the input is a sequence of graphs
for which a sequence of layouts is to be generated such that the quality
of individual layouts is balanced with layout stability over time. Qual-
itatively different extensions of drawing algorithms for static graphs to
the dynamic case have been proposed, but little is known about their
relative utility. We report on a quantitative study comparing the three
prototypical extensions via their adaptation for the stress-minimization
framework. While some findings are more subtle, the linking approach
connecting consecutive instances of the same vertex is found to be the
overall method of choice.

1 Introduction

A dynamic graph is a sequence of (static) graphs, often representing an evolving
structure at discrete times of observation. Dynamic graph drawing refers to the
problem of generating a sequence of layouts to be used either in a small multiples
representation or as frames in an animation. In the offline scenario the entire
input sequence is known in advance, whereas in the online scenario the sequence
is given one graph at a time.

Approaches to dynamic graph drawing most often augment a layout algorithm
designed for static graphs in such a way that the resulting sequence of layouts
is more stable than if each graph was drawn from scratch [5]. The motivation
for this approach is generally said to be the preservation of a viewer’s mental
map [15], but it may also be interpreted as conveying the degree and location of
structural change more accurately by aligning it with layout change.

A common objective for drawing general undirected graphs is stress minimiza-
tion [10,13], a special case of multidimensional scaling applied to graph-theoretic
distances. It has been found to outperform other spring embedder variants [3]
and will be the basis in this study.

The simplest (and most common) approach to add stability to an iterative
layout algorithm for static graphs is to initialize the computation for each graph
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in the sequence with the preceding layout [12,16]. The implicit assumption is
that consecutive graphs are similar in general, and thus, the initial layout is not
too far from a locally optimal one. The method is therefore easy to implement,
more efficient than computing a layout from scratch, and applicable in both on-
and offline scenarios.

However, stability is not addressed in a controlled way, hence this approach
may result in excessive and unnecessary movement of vertices, and layout quality
tends to degrade over the course of the sequence. Among the first to address
stability directly were [1], and [17] provides a generic problem statement. The
trade-off between readability and stability is formalized in [4] and a similar
principle for offline scenarios is proposed in [7].

More sophisticated attempts to increase stability are typically based on one of
three approaches. Maximum stability is achieved in aggregation approaches (e.g.,
[2,16]) where fixed vertex positions are obtained from the layout of an aggregate
of all graphs in the sequence. Alternatives are based on anchoring vertices to
reference positions (e.g., [4]), or linking vertices to instances of themselves that
are close in the sequence (e.g., [8,9]).

Do these methods work well? Which one to implement for a given application?
While the natural response to these questions appears to be a user study [18],
their design may be challenging. Controlled experiments require a thorough un-
derstanding of the way in which model parameters affect outcomes. By purely
algorithmic experimentation, we therefore want to provide quantitative evidence
for the differential behavior of variant approaches, and thus prepare the ground
for further user studies.

Our study compares aggregation, anchoring, and linking variants of stress
minimization for offline dynamic graph drawing scenarios. The latter are of in-
creasing relevance especially in longitudinal social network analysis [16], from
which we hence draw some of our test cases. Our most important conclusion is
that linking compares favorably with the other approaches.

After reviewing layout methods in Sect. 2, we formulate hypotheses in Sect. 3
that are based on common, though often implicit, assumptions about these meth-
ods and serve as a guideline for the experiments in Sect. 4. The experimental
results are discussed in Sect. 4.3, and we conclude in Sect. 5.

2 Offline Dynamic Layout Approaches

Let G = (V, E) be an undirected graph defined by a set V of n vertices, and a
set E of m edges. An arbitrary pair of vertices is called dyad. Given a matrix
D of vertex dissimilarities δij , i, j ∈ V , the purpose of stress minimization is
to determine positions pi = 〈xi, yi〉 ∈ R

2 for every vertex i ∈ V such that the
Euclidean distances in the plane resemble the given dissimilarities as closely as
possible, i.e., δij ≈ ‖pi − pj‖, where ‖ · ‖ denotes the Euclidean norm. For any
given layout P = (p1, . . . , pn) this is quantified using a parameterized stress

function stress(P ),
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stress(P ) =
∑

i<j

ωij (δij − ‖pi − pj‖)2 , (1)

where W = (ωij)i,j∈V
is a weight matrix whose entries determine the contribu-

tion of each dyad. For graph drawing, lengths of shortest paths are a plausible
choice for dissimilarities [10,13], and the objective is to find a layout of mini-
mum stress. Because these distances are clearly not realizable for any non-trivial
graph, weights ωij = δ−2

ij discount representation errors for distant pairs, thus
emphasizing local accuracy.

Similar to other energy-based methods a solution can only be obtained by
iterative stress reduction that yields a local minimum which may be far from
an optimal layout. However, low-stress layouts can be routinely and efficiently
computed using a two-step process [3]: In the first step, an initial layout is
determined using classical scaling. In the second step, the representation of small
distances is improved by iteratively and monotonically reducing stress using
majorization [10].

2.1 Aggregation

Maximum stability is obtained when a vertex maintains its position throughout
the entire sequence of diagrams. That is, given a sequence G(1) = (V, E(1)), . . . ,
G(T ) = (V, E(T )) of T graphs with corresponding shortest-path distances D(t),
1 ≤ t ≤ T , we are looking for one layout P̄ for the vertices in V and let P (t) = P̄
at all times t = 1, . . . , T .

We aggregate all shortest-path information by adapting input dissimilarities

and weights in Eq. 1. We use D̄ =
(
δ̄ij

)

i,j∈V
, δ̄ij := 1

T

∑T
t=1 δ

(t)
ij , i.e., the mean

shortest-path distances, as dissimilarities, and weights W̄ = (ω̄ij)i,j∈V
with

ω̄ij =
1

δ̄2
ij

· 1

1 + var(δij)
,

where var(δij) := 1
T

∑T
t=1

(

δ
(t)
ij − δ̄ij

)2

is the variance of distances within a

dyad across all observations. Thus, representation accuracy of dyads that are
connected via short paths most of the time is emphasized. By additionally scal-
ing with the variance, priority is given to structures that are relatively stable
throughout the sequence. To obtain a layout we use the same algorithms as in
the static case: Layout computation is initialized by classical scaling of mean
distances; subsequently, stress

(
P̄

)
is reduced via majorization. Note that, in an

offline scenario, infinite distances in a dyad that might occur due to tempo-
rary disconnectedness can be handled by interpolating between the two finite
distances observed previously and next for this dyad, and by adding a small
constant, say 1.
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2.2 Anchoring

The main idea of the anchoring approach [4] is an explicit modeling of the
trade-off between layout quality as measured by an objective function, and lay-
out stability with respect to a reference drawing as measured by a difference
metric [6]. A stress function quantifying the compromise between quality of each
individual graph in the sequence and deviation from reference positions is

stress
A
α

(

P (t)
)

= (1 − α) · stress
(

P (t)
)

︸ ︷︷ ︸

quality

+ α ·
∑

i∈V

φ
(t)
i

∥
∥
∥p

(t)
i − pi

∥
∥
∥

2

︸ ︷︷ ︸

stability

, (2)

where P = (pi)i∈V denotes the reference layout and weights φ
(t)
i allow for inter-

vertex variation in deviation tolerance.
The stability term thus corresponds to a point-wise penalty for deviations

from the reference layout, and the parameter 0 ≤ α ≤ 1 provides explicit control
of the trade-off between quality (original stress) and stability. Note that min-
imizing stress

A
α for α = 0 corresponds to regular stress minimization without

control for stability, and α = 1 yields the reference layout, since no deviation is
tolerated.

For now, we use constant stability weights φ
(t)
i := 1 for all i and t. More so-

phisticated choices, however, may be useful to compensate for cases with highly
varying degrees or localized structural change. Before minimization of stress

A
α ,

we perform a Procrustes rotation [20] – an affine transformation that minimizes
the sum of squared deviations from reference positions without changing rela-
tive distances – of the initial layout to the reference. After each layout of the
sequence is obtained, we again apply Procrustes rotation subsequently to the
whole sequence.

Depending on initialization and the type of reference, we obtain four anchor-
ing methods. The first two are purely online, whereas the second two incorpo-
rate offline information by means of using the aggregate layout (Sect. 2.1) as
reference:

APP initialize with previous layout (classical MDS for the first network), and
also anchor to previous layout (no anchoring for the first network).

ACP initialize with classical scaling, anchor to previous layout (no anchoring
for the first network).

APA initialize with previous layout (aggregate layout for the first network),
anchor to aggregate layout.

ACA initialize with classical scaling, anchor to aggregate layout.

2.3 Linking

The main idea of the linking approach is to implicitly make use of all information
about the networks of a sequence in an offline scenario. Instances of the same
vertex are linked with each other, so as to stabilize their positions throughout
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the sequence. In contrast to the anchoring approach, layout calculation is not
performed one after each other, but the whole system is computed simultane-
ously.

A general formulation of a corresponding stress function is

stress
L
α

(
P (1), . . . , P (T )

)
=

(1 − α) ·
T∑

t=1

stress

(

P (t)
)

︸ ︷︷ ︸

quality

+ α ·
∑

i∈V

T∑

t′=1,t′ 6=t

φ
(t)
i ζ(t, t′)

∥
∥
∥p

(t)
i − p

(t′)
i

∥
∥
∥

2

︸ ︷︷ ︸

stability

, (3)

where ζ(t, t′) is a function controlling the influence of the position at a cer-
tain time t for vertices at other time points t′. Concretely, we implemented two
versions w.r.t. ζ(t, t′) similar to the two alternatives stated in [8]: ζG(t, t′) =

e−
1

2
(t′−t)2 , a Gaussian function with mean value t and variance 1 without nor-

malization, i.e., ζG(t, t) = 1; and ζW (t, t′) = 1 for |t − t′| = 1, and ζW (t, t′) = 0
otherwise, i.e., a vertex is only linked within a time-window of size 1. Again,

we use φ
(t)
i = 1, and align all layouts in the sequence by Procrustes rotation af-

ter initialization, and after stress minimization. Depending on initialization and
ζ(t, t′), we obtain four linking methods:

LCG initialization by classical scaling, use ζG.
LAG initialization by aggregate layout as described in Sect. 2.1, use ζG.
LCW initialization by classical scaling, use ζW .
LAW initialization by aggregate layout, use ζW .

3 Hypotheses

Explicitly addressing stability by use of the above methods instead of simply
initializing with the preceding layout implies that a better compromise between
quality and stability is expected. Assessment of this claim is broken down into
constituent components to structure the discussion of detailed quantitative re-
sults in Sect. 4.3.

Our first hypothesis to test is thus that the methods actually display the
assumed effects at all.

H 1. Aggregation, anchoring, and linking increase dynamic stability, but reduce
individual quality.

Likewise, the explicit trade-off between quality and stability should be control-
lable via control parameter α.

H 2. In anchoring and linking, higher values of α result in more stability and
less quality.
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Being an iterative method, stress minimization is known to be susceptible to poor
local minima and thus to depend on good initialization [3]. As a consequence,
the same caveat should be in place where the outcome is not governed by the
attempt to maintain stability.

H 3. For decreasing values of control parameter α, anchoring and linking are
increasingly sensitive to initialization.

And finally, the principal adaptation to the offline scenario is by either anchoring
to a reference position determined from the entire sequence of graphs, or by
linking with future instances. These should pay off in case there is a persistent
global structure.

H 4. For dynamic graphs with persistent structure, anchoring to an aggregate
layout and linking outperform online approaches.

The experiments conducted in the next section are designed to provide evidence
for assessing these rather qualitative associations in detail.

4 Experiments

Instead of illustrating the approaches on selected examples, we here perform
algorithmic experiments to obtain more detailed and generalizable insight into
the behavior of dynamic graph drawing approaches. It is thus particularly im-
portant to use realistic input graph sequences, but we also address the issue of
quantifying the output in a novel way.

4.1 Data

As mentioned above, our focal application area are longitudinal social networks.
Instead of using a (necessarily small) collection of benchmark networks, though,
we generate random graphs that are believed to be realistic for the application
scenario, because they are obtained from the two most prevalent models in this
domain.

These are exponential-family random graph models (ERGM, [19], modeling
the characteristics of single networks) to create the initial graph of each sequence,
and stochastic actor-oriented models (SAOM, [21], modeling the evolution be-
tween two networks) to obtain the actual sequence.1 Both models are based on
network-specific characteristics, called effects – such as density of the network,
reciprocity of edges for directed networks, or number of triangles – and associ-
ated model parameters determining whether an effect increases or decreases the
probability of a network (ERGM), or of particular network changes (SAOM).
Both allow for model estimation, given networks and the desired set of effects,
and for simulation of networks, given a starting network and a specified model.

1 Available for the open source statistical system R (packages ergm and RSiena).
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A sequence of T graphs is created in the following way: Two actual observa-
tions G1 and G2 of a longitudinal network serve as the basis for the creation
process. Using G1, we estimate an ERGM using basic effects,2 from which an
artificial first observation Gsim

1 is simulated. Next, a SAOM is estimated using
the real observations G1 and G2.

3 The thus estimated SAOM is used for the
following two simulations.4 The artificial second observation Gsim

T is obtained

by running a simulation using Gsim
1 and G2 as input. Then, a simulation using

Gsim
1 and Gsim

T as input is performed to obtain a reliable sequence of changes

leading from Gsim
1 to Gsim

T , which is partitioned into T − 1 parts. Applying the

corresponding changes to the initial observation Gsim
1 yields a sequence of T

networks.
As real input data, we use two data sets that are well studied in the social

sciences.5 The s50 data set [14] comprises a sequence of three friendship networks
of 50 female teenage pupils. We use the first and third observation as input for
network sequence generation. The second real data set used is the van de Bunt

data set [22], again, an evolving friendship network among 32 university freshmen
comprising seven observations. We obtain input for network sequence generation
by only considering edges with rating best friendship and friendship from the
second and the seventh observation. Note also, that we removed vertex 18, since
it is isolated at all time points.

In addition to the network generation process described above, we employ
generation of unstructured artificial data by means of the G(n, p) random graph
model [11]. An initial observation is created with n = 50 and p = log(n)/n,
which produces connected graphs with high probability. Repeatedly, k/2 edges
are formed uniformly at random and, likewise, k/2 edges deleted, where we do not
allow deletion of edges just formed, and the resulting graph is made connected.
In our experiments, we use k = 2

√
n and k = n.

4.2 Measurements

To assess the quality and stability of layouts of a dynamic graph, we use the
measures that constitute our approaches, that are, stress and sum of squared
positional difference. Although it may be doubted whether these measures re-
ally capture either quality or stability, no other measures have been shown to
better represent these concepts; it is therefore only reasonable to use the intrin-
sic measures of the approaches. Another problem is that both measures are not
directly comparable across graphs of different sizes or structure. We solve this by
relating both measures to the ones obtained from a common baseline method B,
that is, we compute static layouts for each graph in the sequence as suggested

2 We use effects edges, mutual, gwodegree and gwesp.
3 We use effects for the the number of changes (rate parameter), outdegree, reci-

procity, and transitivity (transitive triplets).
4 The first RSiena simulation uses the unconditional method of moments, the second

uses the maximum likelihood method.
5 Publicly available at http://www.stats.ox.ac.uk/~snijders/siena/
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Table 1. Median values for δσ and δϕ at certain selected values of α for measurements
on sequences generated from the s50 data set. Note that only measurements belonging
to either the anchoring or linking approaches can be compared directly. Sequences from
other generators reveal similar tendencies.

α : 0.1 0.2 0.3 0.7 0.8 0.9 0.1 0.2 0.3 0.7 0.8 0.9

APP 0.94 0.86 0.78 0.48 0.40 0.31 0.49 0.63 0.72 0.93 0.95 0.98
ACP 0.97 0.90 0.80 0.48 0.40 0.31 0.29 0.54 0.70 0.93 0.95 0.98
APA 0.94 0.86 0.77 0.54 0.47 0.37 0.46 0.64 0.76 0.95 0.97 0.99

ACA 0.96 0.87 0.79 0.53 0.47 0.38 0.22 0.52 0.72 0.95 0.97 0.99

LAG 0.96 0.91 0.86 0.68 0.62 0.54 0.51 0.69 0.78 0.95 0.97 0.99
LCG 0.98 0.93 0.89 0.69 0.63 0.54 0.35 0.59 0.72 0.94 0.97 0.99
LAW 0.95 0.90 0.85 0.68 0.62 0.55 0.57 0.73 0.81 0.95 0.97 0.99
LCW 0.97 0.92 0.87 0.68 0.63 0.55 0.43 0.64 0.75 0.94 0.97 0.99

δ̂σ δ̂ϕ

of the measurements obtained for the 50 network sequences generated from the
s50 data set when applying the APA method. The gray horizontal lines indicate
thresholds used in our experiments, that are, 5% and 20% more stress w.r.t.
the baseline for quality measurements, and 80% and 95% reduction in positional
difference w.r.t. to the baseline for stability measurements. Note that, for both
δσ and δϕ, there are outliers that contradict the intuitive assumptions regarding
the range of the measures. We can only explain these by the heuristic nature of
stress minimization. Still, most of the measured values are within a reasonable
range around the median values, as can be observed by the inter-quartile range.
Thus, we will argue about the approaches by means of the median measure-
ments, denoted by δ̂σ and δ̂ϕ, respectively. Table 1 shows values of δ̂σ and δ̂ϕ at
selected levels of α for network sequences generated from the s50 data set, and
Fig. 2 summarizes measurements for all methods and data sets.

4.3 Results

Figure 2 (upper row, right endpoints) shows that already a slight compromise in
quality (5% additional stress compared to static baseline layouts) yields a large
increase in positional stability (ranging from 24% to 82% reduction of total
movement). If we allow a 20% increase of stress (left-hand side of each upper
graph), all methods reduce movement by more than 50%. Across all experiments,
reduction in positional difference increases very rapidly at lower ranges of α as
exemplified in Fig. 1. This provides evidence that the methods are largely having
the desired effects (H 1). Moreover, the actual values corroborate earlier findings
that low stability mechanisms appear to be most effective [18].

The monotone behavior of median values of δσ and δϕ in Table 1 support
the expected dependencies on α (H 2). Also, sensitivity to initialization (H 3)
is confirmed: Although small, there are noticeable differences in quality at the
lower range (α ≤ 0.3) in favor of initialization with classical scaling. There are,
however, large differences in stability in favor of initialization with the previous





109

the A?P approaches, in favor of the former, and regardless of the data set. The
linking approaches perform better than the anchoring approaches throughout.
Thus, our evaluation of H 4 is inconclusive, since no statement can be made
for very low stability, and methods incorporating offline information apparently
perform better regardless of structure for moderate, and especially, high stability
requirements. To our surprise, the choice between the two functions ζG and ζW

does not seem to considerably influence the results.

5 Conclusion

We compared dynamic variants of the stress-minimization approach for general
undirected graphs in which vertices are at the same position throughout the
sequence of layouts (aggregation), attracted by a reference position (anchoring),
or attracted by positions of their copies in neighboring time slices (linking).

The comparison was based on a novel form of measurement of the trade-off
between quality (in terms of stress) and stability (in terms of vertex movement):
Measures were related to a baseline, determined from Procrustes aligned static
layouts, to normalize over graphs of different sizes and structure.

A second novel aspect is our use of more sophisticated graph generators that
eliminate reliance on small benchmark data sets and still produce application-
typical data. Here, ERGMs were used for boundary observations and SAOMs
for the evolution.

Our results suggest that linking is a generally preferable approach. Since it
is computationally demanding, a faster alternative is anchoring to an aggregate
layout initialized with the previous one in the sequence.

The present study is an attempt to move towards more precise measurement of
those aspects of the performance of graph drawing algorithms that are not easily
characterized analytically, but we are left with more new questions than answers
to old ones. The focus on stress-minimization approaches and two particular
criteria for quality and stability allowed for better comparison and more detailed
insights, but different quantities may turn out important as well. Other avenues
for future research include refined data generation procedures (e.g., including
behavioral effects), in-depth discussion of outliers and other observations, and
dependencies on specific graph structures and change sequences.
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