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Abstract. One of the main objectives of a Machine Learning – ML –
system is to induce a classifier that minimizes classification errors. Two
relevant topics in ML are the understanding of which domain character-
istics and inducer limitations might cause an increase in misclassifica-
tion. In this sense, this work analyzes two important issues that might
influence the performance of ML systems: class imbalance and error-
prone small disjuncts. Our main objective is to investigate how these
two important aspects are related to each other. Aiming at overcoming
both problems we analyzed the behavior of two over-sampling methods
we have proposed, namely Smote + Tomek links and Smote + ENN.
Our results suggest that these methods are effective for dealing with
class imbalance and, in some cases, might help in ruling out some un-
desirable disjuncts. However, in some cases a simpler method, Random
over-sampling, provides compatible results requiring less computational
resources.

1 Introduction

This paper aims to investigate the relationship between two important topics
in recent ML research: learning with class imbalance (class skews) and small

disjuncts. Symbolic ML algorithms usually express the induced concept as a
set of rules. Besides a small overlap within some rules, a set of rules might be
understood as a disjunctive concept definition. The size of a disjunct is defined
as the number of training examples it correctly classifies. Small disjuncts are
those disjuncts that correctly cover only few training cases. In addition, class
imbalance occurs in domains where the number of examples belonging to some
classes heavily outnumber the number of examples in the other classes. Class
imbalance has often been reported in the ML literature as an obstacle for the
induction of good classifiers, due to the poor representation of the minority class.
On the other hand, small disjuncts have often been reported as having higher
misclassification rates than large disjuncts. These problems frequently arise in
applications of learning algorithms in real world data, and several research papers
have been published aiming to overcome such problems. However, these efforts
have produced only marginal improvements and both problems still remain open.
A better understanding of how class imbalance influences small disjuncts (and
of course, the inverse problem) may be required before meaningful results might
be obtained.



Weiss [1] suggests that there is a relation between the problem of small dis-
juncts and class imbalance, stating that one of the reasons why small disjuncts
have a higher error rate than large disjuncts is due to class imbalance. Fur-
thermore, Japkowicz [2] enhances this hypothesis stating that the problem of
learning with class imbalance is potentiated when it yields small disjuncts. Even
though these papers point out a connection between such problems, the true
relationship between them is not yet well-established. In this work, we aim to
further investigate this relationship.

This work is organized as follows: Section 2 reports some related work and
points out some connections between class imbalance and small disjuncts. Sec-
tion 3 describes some metrics for measuring the performance of ML algorithms
regarding small disjuncts and class skews. Section 4 discusses the experimental
results of our work and, finally, Section 5 presents our concluding remarks and
outlines future research directions.

2 Related Work

Holt et al. [3] report two main problems when small disjuncts arise in a concept
definition: (a) the difficulty in reliably eliminating the error-prone small disjuncts
without producing an undesirable net effect on larger disjuncts and; (b) the
algorithm maximum generality bias that tends to favor the induction of good
large disjuncts and poor small disjuncts.

Several research papers have been published in the ML literature aiming to
overcome such problems. Those papers often advocate the use of pruning to draw
small disjuncts off the concept definition [3, 4] or the use of alternative learning
bias, generally using hybrid approaches, for coping with the problem of small
disjuncts [5]. Similarly, class imbalance has been often reported as an obstacle for
the induction of good classifiers, and several approaches have been reported in
the literature with the purpose of dealing with skewed class distributions. These
papers often use sampling schemas, where examples of the majority class are
removed from the training set [6] or examples of the minority class are added
to the training set [7] in order to obtain a more balanced class distribution.
However, in some domains standard ML algorithms induce good classifiers even
using highly imbalanced training sets. This indicates that class imbalance is not
solely accountable for the decrease in performance of learning algorithms. In [8]
we conjecture that the problem is not only caused by class skews, but is also
related to the degree of data overlapping among the classes.

A straightforward connection between both themes can be traced by ob-
serving that minority classes may lead to small disjuncts, since there are fewer
examples in these classes than in the others, and the rules induced from them
tend to cover fewer examples. Moreover, disjuncts induced to cover rare cases are
likely to have higher error rates than disjuncts that cover common cases, as rare
cases are less likely to be found in the test set. Conversely, as the algorithm tries
to generalize from the data, minority classes may yield some small disjuncts to



Table 1. Confusion matrix for a two-class problem.

Positive Prediction Negative Prediction

Positive Class True Positive (TP ) False Negative (FN)

Negative Class False Positive (FP ) True Negative (TN)

be ruled out from the set of rules. When the algorithm is generalizing, common
cases can “overwhelm” a rare case, favoring the induction of larger disjuncts.

Nevertheless, it is worth noticing the differences between class imbalance
and small disjuncts. Rare cases exist in the underlying population from which
training examples are drawn, while small disjuncts might also be a consequence
of the learning algorithm bias. In fact, as we stated before, rare cases might have
a dual role regarding small disjuncts, either leading to undesirable small disjuncts
or not allowing the formation of desirable ones, but rather small disjuncts might
be formed even though the number of examples in each class is naturally equally
balanced. In a nutshell, class imbalance is a characteristic of a domain while
small disjuncts are not [9].

As we mentioned before, Weiss [1] and Japkowicz [2] have suggested that
there is a relation between both problems. However, Japkowicz performed her
analysis on artificially generated data sets and Weiss only considers one aspect
of the interaction between small disjuncts and class imbalances.

3 Evaluating Classifiers with Small Disjuncts and

Imbalanced Domains

From hereafter, in order to facilitate our analysis, we constrain our discussion
to binary class problems where, by convention, the minority is called positive

class and the majority is called negative class. The most straightforward way
to evaluate the performance of classifiers is based on the confusion matrix anal-
ysis. Table 1 illustrates a confusion matrix for a two-class problem. A number of
widely used metrics for measuring the performance of learning systems can be
extracted from such a matrix, such as error rate and accuracy. However, when
the prior class probabilities are very different, the use of such measures might
produce misleading conclusions since those measures do not take into consider-
ation misclassification costs, are strongly biased to favor the majority class and
are sensitive to class skews.

Thus, it is more interesting to use a performance metric that disassoci-
ates the errors (or hits) that occur in each class. Four performance metrics
that directly measure the classification performance on positive and negative
classes independently can be derived from Table 1, namely true positive rate
– TPrate = TP

TP+FN
– (the percentage of correctly classified positive exam-

ples), false positive rate – FPrate = FP

FP+TN
– (the percentage of incorrectly

classified positive examples), true negative rate – TNrate = TN

FP+TN
– (the

percentage of correctly classified negative examples) and false negative rate –
FNrate = FN

TP+FN
– (the percentage of incorrectly classified negative examples).

These four performance metrics have the advantage of being independent of class



costs and prior probabilities. The aim of a classifier is to minimize the false pos-
itive and negative rates or, similarly, to maximize the true negative and positive
rates. Unfortunately, for most real world applications there is a tradeoff between
FNrate and FPrate, and similarly between TNrate and TPrate.

ROC (Receiver Operating Characteristic) analysis enables one to compare
different classifiers regarding their true positive rate and false positive rate. The
basic idea is to plot the classifiers performance in a two-dimensional space, one
dimension for each of these two measurements. Some classifiers, such as the
Näıve Bayes classifier and some Neural Networks, yield a score that represents
the degree to which an example is a member of a class. For decision trees, the
class distributions on each leaf can be used as a score. Such ranking can be used to
produce several classifiers by varying the threshold of an example to be classified
into a class. Each threshold value produces a different point in the ROC space.
These points are linked by tracing straight lines through two consecutive points
to produce a ROC curve. The area under the ROC curve (AUC) represents the
expected performance as a single scalar. In this work, we use a decision tree
inducer and the method proposed in [10] with Laplace correction for measuring
the leaf accuracy to produce ROC curves.

In order to measure the degree to which errors are concentrated towards
smaller disjuncts, Weiss [1] introduced the Error Concentration (EC) curve. The
EC curve is plotted starting with the smallest disjunct from the classifier and
progressively adding larger disjuncts. For each iteration where a larger disjunct is
added, the percentage of test errors versus the percentage of correctly classified
examples is plotted. The line Y = X corresponds to classifiers having errors
equally distributed towards all disjuncts. Error Concentration is defined as the
percentage of the total area above the line Y = X that falls under the EC
curve. EC may take values from between 100%, which indicates that the smallest
disjunct(s) covers all test errors before even a single correctly classified test
example is covered, to -100%, which indicates that the largest disjunct(s) covers
all test errors after all correctly classified test examples have been covered.

In order to illustrate these two metrics Figure 1 shows the ROC (Fig. 2(a))
and the EC (Fig. 2(b)) graphs for the pima data set and pruned trees – see
Table 3. The AUC for the ROC graph is 81.53% and the EC measure from the
EC graph is 42.03%. The graphs might be interpreted as follows: from the ROC
graph, considering for instance a false positive rate of 20%, one might expect a
true positive rate of nearly 65%; and from the EC graph, the smaller disjuncts
that correctly cover 20% of the examples are responsible for more than 55% of
the misclassifications.

4 Experimental Evaluation

The aim of our research is to provide some insights into the relationship be-
tween class imbalances and small disjuncts. To this end, we performed a broad
experimental evaluation using ten data sets from UCI [11] having minority class
distribution spanning from 46.37% to 7.94%, i.e., from nearly balanced to skewed



Fig. 1. ROC and EC graphs for the pima data set and pruned trees.

(a) ROC graph (b) Error Concentration graph

distributions. Table 2 summarizes the data sets employed in this study. It shows,
for each data set, the number of examples (#Examples), number of attributes
(#Attributes), number of quantitative and qualitative attributes and class dis-
tribution. For data sets having more than two classes, we chose the class with
fewer examples as the positive class, and collapsed the remainder classes as the
negative class.

Table 2. Data sets summary descriptions.

Data sets #Examples #Attributes Classes Classes %
(quanti., quali.) (min., maj.) (min., maj.)

Sonar 207 60 (60, 0) (R, M) (46.37%, 53.63%)
Bupa 345 6 (6, 0) (1, 2) (42.03%, 57.97%)
Pima 768 8 (8, 0) (1, 0) (34.77%, 65.23%)

German 1000 20 (7, 13) (Bad, Good) (30.00%, 70.00%)
Haberman 306 3 (3, 0) (Die, Survive) (26.47%, 73.53%)

New-thyroid 215 5 (5, 0) (hypo, remainder) (16.28%, 83.72%)
E-coli 336 7 (7, 0) (iMU, remainder) (10.42%, 89.58%)

Satimage 6435 36 (36, 0) (4, remainder) (9.73%, 90.27%)
Flag 194 28 (10, 18) (white, remainder) (8.76%, 91.24%)
Glass 214 9 (9, 0) (Ve-win-float-proc, remainder) (7.94%, 92.06%)

In our experiments we used the release 8 of the C4.5 symbolic learning al-
gorithm to induce decision trees [12]. Firstly, we ran C4.5 over the data sets
and calculated the AUC and EC for pruned (default parameters settings) and
unpruned trees induced for each data set using 10-fold stratified cross-validation.
Table 3 summarizes these results, reporting mean value results and their respec-
tive standard deviations. It should be observed that for two data sets, Sonar and
Glass, C4.5 was not able to prune the induced trees. Furthermore, for data set
Flag and pruned trees, the default model was induced.

We consider the results obtained for both pruned and unpruned trees because
we aim to analyze whether pruning is effective for coping with small disjuncts
in the presence of class skews. Pruning is often reported in the ML literature as
a rule of thumb for dealing with the small disjuncts problem. The conventional
wisdom beneath pruning is to perform significance and/or error rate tests aiming
to reliably eliminate undesirable disjuncts. The main reason for verifying the
effectiveness of pruning is that several research papers indicate that pruning



Table 3. AUC and EC results for pruned and unpruned decision trees.

Data set
Pruned Trees Unpruned Trees

AUC EC AUC EC

Sonar 86.71(6.71) 61.51(19.03) 86.71(6.71) 61.51(19.03)
Bupa 79.44(4.51) 66.03(12.36) 79.93(5.02) 65.80(14.04)
Pima 81.53(5.11) 42.03(11.34) 82.33(5.70) 45.41(8.52)

German 78.49(7.75) 52.92(17.22) 85.67(4.37) 87.61(7.72)
Haberman 58.25(12.26) 29.33(22.51) 67.91(13.76) 36.25(20.06)

New-thyroid 94.73(9.24) 33.54(41.78) 94.98(9.38) 33.13(42.64)
E-coli 87.64(15.75) 55.13(36.68) 92.50(7.71) 71.97(26.93)

Satimage 93.73(1.91) 80.97(4.19) 94.82(1.18) 83.75(5.21)
Flag 45.00(15.81) 0.00(0.00) 76.65(27.34) 61.82(39.01)
Glass 88.16(12.28) 56.53(57.38) 88.16(12.28) 56.53(57.38)

should be avoided when target misclassification costs or class distributions are
unknown [13, 14]. One reason to avoid pruning is that most pruning schemes,
including the one used by C4.5, attempt to minimize the overall error rate.
These pruning schemes can be detrimental to the minority class, since reducing
the error rate on the majority class, which stands for most of the examples,
would result in a greater impact over the overall error rate. Another fact is
that significance tests are mainly based on coverage estimation. As skewed class
distributions are more likely to include rare or exceptional cases, it is desirable
for the induced concepts to cover these cases, even if they can only be covered
by augmenting the number of small disjuncts in a concept.

Table 3 results indicate that the decision of not pruning the decision trees
systematically increases the AUC values. For all data sets in which the algorithm
was able to prune the induced trees, there is an increase in the AUC values. How-
ever, the EC values also increase in almost all unpruned trees. As stated before,
this increase in EC values generally means that the errors are more concentrated
towards small disjuncts. Furthermore, pruning removes most branches respon-
sible for covering the minority class, thus not pruning is beneficial for learning
with imbalanced classes. However, the decision of not pruning also leaves these
small disjuncts in the learned concept. As these disjuncts are error-prone, since
pruning would remove them, the overall error tends to concentrate on these dis-
juncts, increasing the EC values. Thus, concerning the problem of pruning or not
pruning, a trade-off between the increase we are looking for in the AUC values
and the undesirable raise in the EC values seems to exist.

We have also investigated how sampling strategies behave with respect to
small disjuncts and class imbalances. We decided to apply the sampling meth-
ods until a balanced distribution was reached. This decision is motivated by the
results presented in [15], in which it is shown that when AUC is used as per-
formance measure, the best class distribution for learning tends to be near the
balanced class distribution. Moreover, Weiss [1] also investigates the relationship
between sampling strategies and small disjuncts using a Random under-sampling
method to artificially balance training sets. Weiss’ results show that the trees
induced using balanced data sets seem to systematically outperform the trees
induced using the original stratified class distribution from the data sets, not
only increasing the AUC values but also decreasing the EC values. In our view,
the decrease in the EC values might be explained by the reduction in the num-



Table 4. AUC and EC results for over-sampled data and unpruned decision trees.

Data set
Random Smote

AUC EC AUC EC

Sonar 86.52(4.69) 47.29(27.24) 86.74(8.91) 52.07(24.63)
Bupa 80.06(3.48) 33.14(26.01) 72.81(9.13) 40.47(23.94)
Pima 86.03(4.14) 57.59(17.65) 85.97(5.82) 52.62(13.18)

German 85.03(4.91) 84.07(4.55) 84.19(5.54) 81.95(12.18)
Haberman 73.58(14.22) 54.66(22.37) 75.45(11.02) 43.15(25.55)

New-thyroid 98.89(2.68) 15.71(40.35) 98.91(1.84) 23.83(38.53)
E-coli 93.55(6.89) 81.93(13.09) 95.49(4.30) 91.48(16.12)

Satimage 95.52(1.12) 86.81(3.23) 95.69(1.28) 90.35(3.02)
Flag 79.78(28.98) 85.47(16.41) 73.87(30.34) 54.73(44.75)
Glass 92.07(12.09) 81.48(22.96) 91.27(8.38) 78.17(30.85)

ber of induced disjuncts in the concept description, which is a characteristic of
under-sampling methods. We believe this approach might rule out some interest-
ing disjuncts from the concept. Moreover, in previous work [16] we showed that
over-sampling methods seem to perform better than under-sampling methods,
resulting in classifiers with higher AUC values. Table 4 shows the AUC and EC
values for two over-sampling methods proposed in the literature: Random over-
sampling and Smote [7]. Random over-sampling randomly duplicates examples
from the minority class while Smote introduces artificially generated examples
by interpolating two examples drawn from the minority class that lie together.

Table 4 reports results regarding unpruned trees. Besides our previous com-
ments concerning pruning and class imbalance, whether pruning can lead to a
performance improvement for decision trees grown over artificially balanced da-
ta sets still seems to be an open question. Another argument against pruning
is that if pruning is allowed to execute under such conditions, the learning sys-
tem would prune based on false assumption, i.e., that the test set distribution
matches the training set distribution.

The results in Table 4 show that, in general, the best AUC result obtained by
an unpruned over-sampled data set is similar (less than 1% difference) or higher
than those obtained by pruned and unpruned trees grown over the original data
sets. Moreover, unpruned over-sampled data sets also tend to produce higher
EC values than pruned and unpruned trees grown over the original data sets.
It is also worth noticing that Random over-sampling, which can be considered
the simplest method, produced similar results to Smote (with a difference of less
than 1% in AUC) in six data sets (Sonar, Pima German, New-thyroid, Satimage
and Glass); Random over-sampling beats Smote (with a difference greater than
1%) in two data sets (Bupa and Flag) and Smote beats Random over-sampling
in the other two (Haberman and E-coli). Another interesting point is that both
over-sampling methods produced lower EC values than unpruned trees grown
over the original data for four data sets (Sonar, Bupa, German and New-thyroid),
and Smote itself produced lower EC values for another one (Flag). Moreover, in
three data sets (Sonar, Bupa and New-thyroid) Smote produced lower EC values
even if compared with pruned trees grown over the original data.

These results might be explained observing that by using an interpolation
method, Smote might help in the definition of the decision border of each class.
However, as a side effect, by introducing artificially generated examples Smote



Table 5. AUC and EC results for over-sampled data: Smote + ENN and Smote +
Tomek links and unpruned decision trees.

Data set
Smote + ENN Smote + Tomek

AUC EC AUC EC

Sonar 85.31(11.09) 52.56(28.21) 86.90(9.62) 49.77(17.24)
Bupa 78.84(5.37) 41.72(14.68) 75.35(10.65) 38.39(18.71)
Pima 83.64(5.35) 54.07(19.65) 85.56(6.02) 47.54(21.06)

German 82.76(5.93) 82.21(10.52) 84.40(6.39) 88.53(6.54)
Haberman 77.01(5.10) 62.18(19.08) 78.41(7.11) 43.26(29.39)

New-thyroid 99.22(1.72) 27.39(44.34) 98.91(1.84) 23.83(38.53)
E-coli 95.29(3.79) 87.58(18.36) 95.98(4.21) 90.92(16.17)

Satimage 96.06(1.20) 88.56(3.31) 95.69(1.28) 90.35(3.02)
Flag 78.56(28.79) 78.78(20.59) 82.06(29.52) 70.55(38.54)
Glass 93.40(7.61) 80.14(30.72) 91.27(8.38) 78.17(30.85)

might introduce noise in the training set. Although Smote might help in over-
coming the class imbalance problem, in some cases it might be detrimental re-
garding the problem of small disjuncts. This observation, allied to the results we
obtained in a previous study that poses class overlapping as a complicating factor
for dealing with class imbalance [8] motivated us to propose two new methods
to deal with the problem of learning in the presence of class imbalance [16].
These methods ally Smote [7] with two data cleaning methods: Tomek links [17]
and Wilson’s Edited Nearest Neighbor Rule (ENN) [18]. The main motivation
behind these methods is to pick up the best of the two worlds. We not only
balance the training data aiming at increasing the AUC values, but also remove
noisy examples lying in the wrong side of the decision border. The removal of
noisy examples might aid in finding better-defined class clusters, allowing the
creation of simpler models with better generalization capabilities. As a net effect,
these methods might also remove some undesirable small disjuncts, improving
the classifier performance. In this matter, these data cleaning methods might be
understood as an alternative for pruning.

Table 5 shows the results of our proposed methods on the same data sets.
Comparing these two methods it can be observed that Smote + Tomek produced
the higher AUC values for four data sets (Sonar, Pima, German and Haberman)
while Smote+ENN is better in two data sets (Bupa and Glass). For the other
four data sets they produced compatible AUC results (with a difference lower
than 1%). However, it should be observed that for three data sets (New-thyroid,
Satimage and Glass) Smote+Tomek obtained results identical to Smote – Ta-
ble 4. This occurs when no Tomek links or just a few of them are found in the
data sets.

Table 6 shows a ranking of the AUC and EC results obtained in all ex-
periments for unpruned decision trees, where: O indicates the original data set
(Table 3) R and S stand respectively for Random and Smote over-sampling
(Table 4) while S+E and S+T stand for Smote + ENN and Smote + Tomek
(Table 5).

√

1 indicates that the method is ranked among the best and
√

2 among
the second best for the corresponding data set. Observe that results having a dif-
ference lower than 1% are ranked together. Although the proposed conjugated
over-sampling methods obtained just one EC value ranked in the first place
(Smote + ENN on data set German) these methods provided the highest AUC



Table 6. AUC and EC ranking results for unpruned decision trees.

Data sets
AUC EC

O R S S+E S+T O R S S+E S+T

Sonar
√

1

√

1

√

1

√

2

√

1

√

1

√

2

Bupa
√

1

√

1

√

2

√

1

√

2

Pima
√

1

√

1

√

2

√

1

√

1

√

2

German
√

1

√

1

√

2

√

2

√

2

√

1

√

1

Haberman
√

2

√

1

√

1

√

2

√

2

New-thyroid
√

2

√

1

√

1

√

1

√

1

√

1

√

2

√

2

E-coli
√

2

√

1

√

1

√

1

√

1

√

2

Satimage
√

2

√

1

√

1

√

1

√

1

√

1

√

2

Flag
√

2

√

1

√

2

√

1

Glass
√

2

√

2

√

1

√

2

√

1

√

2

√

2

values in seven data sets. Smote + Tomek produced the highest AUC values
in four data sets (Sonar, Haberman, Ecoli and Flag), and the Smote + ENN
method produced the highest AUC values in another three data sets (Satimage,
New-thyroid and Glass). If we analyze both measures together, in four data sets
where Smote + Tomek produced results among the top ranked AUC values, it
is also in second place with regard to lower EC values (Sonar, Pima, Haber-
man and New-thyroid). However, it is worth noticing in Table 6 that simpler
methods, such as the Random over-sampling approach (R) or taking only the
unpruned tree (O), have also produced interesting results in some data sets. In
the New-thyroid data set, Random over-sampling produced one of the highest
AUC values and the lowest EC value. In the German data set, the unpruned
tree produced the highest AUC value, and the EC value is almost the same as
in the other methods that produced high AUC values. Nevertheless, the results
we report suggest that the methods we propose in [16] might be useful, specially
if we aim to further analyze the induced disjuncts that compound the concept
description.

5 Conclusion

In this work we discuss results related to some aspects of the interaction be-
tween learning with class imbalances and small disjuncts. Our results suggest
that pruning might not be effective for dealing with small disjuncts in the pres-
ence of class skews. Moreover, artificially balancing class distributions with over-
sampling methods seems to increase the number of error-prone small disjuncts.
Our proposed methods, which ally over sampling with data cleaning methods
produced meaningful results in some cases. Conversely, in some cases, Random
over-sampling, a very simple over-sampling method, also achieved compatible re-
sults. Although our results are not conclusive with respect to a general approach
for dealing with both problems, further investigation into this relationship might
help to produce insights on how ML algorithms behave in the presence of such
conditions. In order to investigate this relationship in more depth, several further
approaches might be taken. A natural extension of this work is to individually
analyze the disjuncts that compound each description assessing their quality
concerning some objective or subjective criterium. Another interesting topic is



to analyze the ROC and EC graphs obtained for each data set and method.
This might provide us with a more in depth understanding of the behavior of
pruning and balancing methods. Last but not least, another interesting point
to investigate is how alternative learning bias behaves in the presence of class
skews.
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