
SMART: An Application Framework for Real Time
Big Data Analysis on Heterogeneous Cloud Environments

Julio C.S. dos Anjos1, Marcos D. Assunção3, Jean Bez1, Claudio Geyer1, Edison Pignaton de Freitas1

Alexandre Carissimi1, João Paulo C. L. Costa2, Gilles Fedak3, Felix Freitag4, Volker Markl5, Paul Fergus6, Rubem Pereira6

1Federal University of Rio Grande do Sul, Brazil
Institute of Informatics - PPGC

{jcsanjos, geyer, jean.bez, edison.pignaton, asc}@inf.ufrgs.br
2University of Brasilia, Brazil
joaopaulo.dacosta@ene.unb.br
3Inria, LIP, ENS Lyon, France

marcos.dias.de.assuncao@ens-lyon.fr, gilles.fedak@inria.fr
4Universitat Politècnica de Catalunya, Spain

Felix@ac.upc.edu
5Technische Universitat Berlin, Germany

Volker.markl@TU-Berlin.de
6Liverpool John Moores University, England

{p.fergus, r.pereira}@ljmu.ac.uk

Abstract—The amount of data that human activities generate
poses a challenge to current computer systems. Big data
processing techniques are evolving to address this challenge,
with analysis increasingly being performed using cloud-based
systems. Emerging services, however, require additional en-
hancements in order to ensure their applicability to highly
dynamic and heterogeneous environments and facilitate their
use by Small & Medium-sized Enterprises (SMEs). Observing
this landscape in emerging computing system development,
this work presents Small & Medium-sized Enterprise Data
Analytic in Real Time (SMART) for addressing some of
the issues in providing compute service solutions for SMEs.
SMART offers a framework for efficient development of Big
Data analysis services suitable to small and medium-sized
organizations, considering very heterogeneous data sources,
from wireless sensor networks to data warehouses, focusing
on service composability for a number of domains. This paper
presents the basis of this proposal and preliminary results on
exploring application deployment on hybrid infrastructure.

I. INTRODUCTION

Human activities are increasingly supported by computing

devices, which can collect and store data about their behavior

almost on a continuous basis. Similarly, the environment

(both built and natural) is gradually been monitored by

sensing devices that sample environmental aspects and gen-

erate large volumes of data. According to IDC1, by 2020

there will be around 40 Zettabytes (40,000,000 Petabytes)

of data that will require processing of some sort. Cloud

1IDC’s Digital Universe Study, sponsored by EMC, December 2012.

computing has increasingly been used as a platform for

business applications and data processing [1].

Big-data processing is an approach with specific char-

acteristics which distinguish it of from other applications,

such as volume, variety, velocity and veracity [2]. A large

volume of data (volume) coming from multiple sources can

enter the cloud under different formats (variety), and can

demand processing in real-time (velocity) with high levels

of accuracy (veracity). The data volume handled by Big

Data analysis often requires processing capabilities beyond

those that current IT infrastructure can provide. Specifically

related to this concern, data streaming is an important tech-

nique to support incoming data with fast input as continual

streams generate large volumes of data. It is not unusual to

use resources from multiple data centers and, increasingly

more common, from several clouds for deploying clusters

for Big Data analysis [3].

MapReduce (MR) [4] is a programming framework

adopted by many companies for Big Data processing, that

executes “map, merge and reduce” data transformations. It

addresses applications only based in batch model, normally

in homogeneous environments such as large clusters in

data centers. Hadoop [5], a popular MR implementation,

is considered an industrial standard to Big Data, but it does

not provide services that can be composed and combined

in multi-cloud or hybrid infrastructures to support different

types of applications. Other transformations, such as event-

driven systems are hence necessary.

2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications;

Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing

978-1-5090-0154-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CIT/IUCC/DASC/PICOM.2015.29

199

This work considers a large variety of data sources,

ranging from wireless sensor nodes instrumenting open and

indoor environments to large corporate databases, passing

by social networks and broadcast media, where there is a

clear need for standardization. Observing this large domain

spectrum, this work proposes a modular framework for Big

Data analysis called Small & Medium-sized Enterprise Data

Analytic in Real Time (SMART) that aims to simplify the

deployment of Big Data services by Small & Medium-

sized Enterprises (SMEs). SMART takes advantage of cloud,

multi-cloud and hybrid infrastructures to provide support for

SME service operation, and does not need to aggregate data

in a single data center for Big Data analysis. It provides a

secure and flexible cloud-based system capable of providing

different types of services that can be combined to address

specific needs of multiple application domains. This paper

specifically builds on previous efforts made on deploying

MR applications to provide SMART with an approach that

enables application deployment on hybrid infrastructure.

The rest of this paper is structured as follows. Section II

examines related work. In Section III, there is a description

of the main characteristics of the proposed system model.

Section IV describes the evaluation criteria, methodology,

experiments and preliminary results. The conclusion and

directions for future work are summarized in Section V.

II. RELATED WORK

Previous work can be divided into the following topics:

frameworks for Big Data analysis, and techniques for man-

aging data and application deployment in hybrid infrastruc-

ture and across multiple clouds.

A. Frameworks for big data analysis

MR is a programming framework that abstracts the com-

plexity of parallel applications by partitioning and scattering

data sets across hundreds or thousands of machines, and

by bringing computation and data closer together [5]. Map
and Reduce phases are handled by the programmer, whereas

the Shuffle is performed while a task is being carried out.

The data is serialized and distributed across machines that

compose the Distributed File System (DFS). The application

executions are represented as a Directed Acyclic Graph

(DAG) under a batch processing model, which can provide

high-latency response when applied to stream processing

where data arrives constantly to be processed [6].

Streaming systems are event-driven and their behavior

differs from that of batch systems [7]. Resilient Distributed

Datasets (RDDs) have been presented as an extension to the

Spark cluster computing engine [8]. An RDD provides a

storage abstraction that avoids replication by using lineage

for fault recovery, i.e., the events are grouped into micro-

batches. The RDD is kept in memory as a distributed

shared memory abstraction and its programming produces

operations with “map, filter and join” and enables interactive

data mining. Although RDDs are best suited for batch

applications that apply the same operation to all elements of

a data set; they are less suitable for applications that make

asynchronous fine-grained updates to shared state [8].

Storm [6], [9], one of the most popular frameworks

for real-time processing, offers very low latency and has

mechanisms that guarantee that all events are processed,

as well as an extension called Trident, which provides

basic operators and state management. Trident evaluates

performance characteristics for individual types of nodes in

a cluster and periodically executes workload re-balancing.

MR, Spark and Storm have been conceived to handle

specific application models. SMART framework, on the

other hand, offers services that can be composed to support

applications that handle large volumes of data coming from

a large number of diverse sources. The advantage of having

these services in the cloud is clear as they are intended

to support applications from different domains according

to their demands. Thus, the computational environment

must be as flexible as possible to support the execution of

applications according to their required application model.

B. Hybrid infrastructure and multi-cloud

Organizations are increasingly relying on infrastructure

from multiple providers as a means to increase tolerance

to failures and avoid provider lock-in. When considering

multiple clouds (i.e. hereafter also termed as multi-cloud),

application deployment becomes complex as each individual

cloud may have specific configuration parameters [10], and

its resource availability and utilization can change dynami-

cally. There is therefore a need for automatic configuration

of complex cloud services at different abstraction levels.

Users need means for efficiently mapping the computing re-

quirements of their services to available resources. The lack

of knowledge about the underlying infrastructure can lead

to inefficient allocations where either allocated resources are

not fully used or the Quality of Service (QoS) of applications

is compromised due to allocating insufficient resources. As

optimal allocation is difficult to achieve, an approximation

strategy is generally acceptable [11].

Enterprises and governments often organize their data

across multiple cloud sites or availability zones in order to

maintain resource proximity; create data stores with organi-

zations that share common goals; and keep data replicas

across regions for redundancy purposes. However, under

certain scenarios data needs to be analyzed globally. When

considering MR, one way of doing this is to aggregate data

in a single data center, and another is to execute individual

instances of MR jobs on each data set separately and then

aggregate the results [12].

Jayalath et al. [12] introduced G-MR, an implementation

of Hadoop MapReduce for processing geo-distributed data

set across multiple data centers. It is possible, for instance, to

have multiple execution paths for performing a MR job, and

200

the performance can be quite different. Popular MR open

source packages like Hadoop, however, do not support this

feature and the majority of Cloud Service Providers (CSPs)

normally do not provide bandwidth guarantees to massive

data transfers across data centers [13].

To optimize data storage across multiple clouds, a bro-

kering algorithm has been proposed [14]. The algorithm

considers the cost to maintain one object in a cloud provider;

the failure probability and QoS associated with each Service

Level Agreement (SLA) with a cloud provider. An object

is a target data, without particular size or defined type.

The primary goal is to find the optimal chunk placement

according to the user’s needs and budget. An expected

availability represents M objects in each data center, this

number determines the expected failure of the object in

each data center. The study evaluates two parameters of

each cloud provider, namely the failure probability and the

cost per object. Objects are replicated across multiple sites

considering these metrics, but the proposed solution does

not identify network overhead caused by data transfers; an

important factor when data sizes approach the exabytes.

Write Once Read Many (WORM) is a common assump-

tion for data access for many Big Data applications, specially

those that adopt the MR approach. A convenient approach

for Big Data processing involving several data centers is to

replicate data across different CSPs. However, the perfor-

mance variability of cloud resources such as network can

lead to bottlenecks [15], [16], and under such conditions

the best strategy is to minimize data transfers. A study

shows that there are two main approaches for modeling

complex infrastructure [17], namely analytic models that use

low-level details with workload characterization to predict

performance; and sampling methods that do not require a

priory knowledge about the underlying infrastructure. As

information about network bandwidth, topology and routing

strategies are not available to users of public clouds, the

authors introduce a sample-based modeling technique that

employs agents to monitor the environment. The agents are

deployed on Virtual Machines (VMs) in each CSP where

the applications are running. A decision manager considers

how the transfer paths are established between source and

destination. Transfer can be done directly from a node to

a data center or use multiple paths across intermediate data

centers. The data transfers are intra-site data replications due

to dedicated links among data centers of a same CSP. The

scientific applications interact with an API to provide data

transfers over a WAN. A monitor agent monitors the envi-

ronment and reports measurements to the decision manager.

The measurements include bandwidth throughput between

data centers, CPU load, I/O speed and memory status of

VM nodes. The decision manager periodically updates the

weights across the paths with these measurements.

Heterogeneous-Aware Tiered Storage (HATS) aims to

improve I/O performance in Hadoop MR implementations

[18]. HATS performs data placement in accordance with

I/O throughput and device capacity. Each different device

is a Hadoop Distributed File System (HDFS) instance in a

DataNode. A DataNode with storage technologies different

from the usual receives a different data size, according to

its performance characteristics. The data placement con-

cept creates policies to consider network proximity, tier-
awareness and hybrid approaches. Network proximity con-

siders retrieving replicas from nearest rack to reduce network

traffic. The tier-aware policy ensures that a node stores a sin-

gle replica even if the node has multiple HDFS instances and

retrieves data from the fastest available tier. The approach

for SMART can be seen as a mix of these two policies.

SALSA, a framework for configuration orchestration of

services in multiple clouds [10], provides a model for

application configuration and deployment of multiple types

of services. The configuration information supports several

levels of cloud services, such as applications, deployment

relationships at multiples software stacks and the association

between service units and configuration capabilities. The

configuration capabilities are captured from registered ser-

vices (cloud services and specifications of topology services)

or user specifications. SALSA has a service unit orchestrator
for multiple configuration services for each configuration

task group. The VM creation is a process separates from

other software levels. The configuration capability depen-

dencies determine the relationships between service units.

Meta information contains abstract nodes with generic types

of service units that implement the virtual nodes. Each

service unit orchestrator runs independently and interacts

with a cloud service orchestrator. Although the framework

enables heterogeneous configurations, there is not a mecha-

nism to evaluate the performance and the user workloads to

adapt load-balance in cloud computing.

Table I summarizes the main frameworks and techniques

used for Big Data analysis, and compares them against the

SMART framework.

III. INFRASTRUCTURE MODEL

Different cloud infrastructures have their own configu-

ration parameters, and the availability and performance of

offered resources can change dynamically due to several

factors, including the degree of over-commitment that a

provider employs. In this context, solutions are needed

for the automatic configuration of complex cloud services.

Cloud infrastructure comprising heterogeneous hardware

environments may need the specification of configuration

parameters at several levels such as the operating systems,

service containers and network capabilities [10]. As users,

who need to execute applications, may not know how to

map their requirements to available resources, this lack

of knowledge about the cloud provider infrastructure will

lead either to overestimating or underestimating required

201

Table I
FRAMEWORKS AND TECHNIQUES FOR BIG DATA ANALYSIS

Geo-Distributed
Data

Consider
Coast

Failure
Probability

Network
Overhead

I/O
Throughput

Device
Capacity

Replicate
Objects

Minimize
Transfers

G-MR X
Brokering Algorithm X X X X
WORM X X X
HATS X X X X X
SALSA X
SMART X X X X X X

capacity; both are equally bad as the former leads to waste

of resources whereas the second sacrifices QoS.

Hybrid infrastructure, where there are many cloud

providers with heterogeneous environments and configura-

tions, often needs to use an orchestrator to manage the

results and data input from users. The orchestrator must be

decentralized [10] in order to improve data distribution in

the network. The infrastructure enables the use of highly

heterogeneous machines. When considering the use of a

public cloud to extend the capacity of a community cloud,

or desktop grid, several scenarios and data strategies are

possible. The extent to which a set of data-distribution

strategies is applicable to a given scenario depends on how

much bandwidth is available. If one considers MR, two

distinct DFS implementations may be required to handle

data distribution in two scenarios, namely low-bandwidth

and high-bandwidth.

Figure 1. SMART architecture.

Building on previous work performed on MR for hybrid

environments [19], [3], Figure 1 illustrates the solution pro-

posed here to model a hybrid system which depicts a Global
Dispatcher and Global Aggregator to be used on the infras-

tructure for services that use multiple data abstractions. The

Global Dispatcher located outside the cloud has middleware

functions for handling task assignment, and management of

user-provided data. It is a centralized data storage system

that manages policies for splitting data and distributing it

in accordance with the needs of each system. The working

principle is similar to a publish/subscribe service in which

the system obtains data and publishes computing results

[3]. The Global Aggregator obtains data output from both

systems and merges them in order to obtain the final data

set.

Apache Flink, formerly known as Stratosphere [20], is the

base infrastructure of the SMART framework as depicted in

Figure 2. Its flexible pipeline enables several map-reduce

and extended functions like Map, MapPartition, Reduce,

Aggregate, Join and Iterative. It can be used in order to

allow this cloud extension. The setting will be transparent

to users because a middleware in a top level abstracts the

complexity away from the users.

The different layers of the stack build on top of each other

and raise the abstraction level of the program representations

they accept:

• The API layer implements multiple APIs that create

operator DAGs for their programs. Each API needs to

provide utilities (serializers, comparators) that describe

the interaction between its data types and the runtime.

All programming APIs are translated to an intermediate

program representation that is compiled and optimized

via a cost-based optimizer.

• The Flink Common API and Optimizer layer takes

programs in the form of operator DAGs. The operators

are specific (e.g., Map, Join, Filter, Reduce, FlatMap,

MapPartition, ReduceGroup, Aggregate, Union, Cross,

etc) and the data is in non-uniform type. The concrete

types and their interaction with the runtime are specified

by the higher layers.

• The Flink Runtime layer receives a program in the

form of a JobGraph. A JobGraph is a generic parallel

data flow with arbitrary tasks that consume and produce

data streams. The runtime is designed to perform very

well both in settings with abundant memory and where

memory is scarce.

Flink explores the power of massively parallel computing

for advanced analysis and leverages a novel, database-

inspired approach to analyze, aggregate, and query very

large collections of either textual or (semi-)structured data

on a virtualised, massively parallel cluster architecture. It

combines the strengths of MapReduce/Hadoop with pow-

erful programming abstractions in Java and Scala and a

202

Figure 2. Apache Flink component stack.

high-performance runtime. In addition to basic dataflow

concepts, common in relational databases or systems like

Hadoop and Spark, Flink has native support for iterations,

incremental iterations, and programs consisting of large

DAGs of operations. It is possible to highlight the following

features:

• Flink uses a richer set of primitives than MapReduce,

including primitives that allow the easy specification,

automatic optimization, and efficient execution of joins.

This makes the system a more attractive compilation

platform for data warehousing, information extraction,

information integration, and many other applications.

The programmer does not need to worry about writing

parallel code or hand-picking a join order.

• Flink includes native support rather than outside loop in

Mahout2 on top of Hadoop for iterative programs that

make repeated passes over a data set updating a model

until they converge to a solution. Flink contains explicit

“iterate” operators including bulk iteration and delta

iteration that enable very efficient loops over data sets,

e.g., for machine learning and graph applications. These

operators enable the specification, optimization, and

execution of graph analytic and statistical applications

inside the data processing engine.

• Different from Spark, Flink uses an execution engine

that includes external memory query processing algo-

rithms and natively supports arbitrarily long programs

shaped as DAGs. Flink offers both pipeline (inter-

operator) and data (intra-operator) parallelism. Flink’s

runtime is designed as a pipelined data processing

engine rather than a batch processing engine, thus it

supports both batch and streaming processing. Opera-

tors do not wait for their predecessors to finish in order

to start processing data. This results in a very efficient

handling of large data sets.

SMART approach take advantage of cloud, multi-cloud

and hybrid infrastructures to provide support for SME ser-

vice operation. The heterogeneous resources, in this scale,

2http://mahout.apache.org/

impose challenges to the data management and synchro-

nizations, task distributions, result aggregations and failure

tolerance mechanisms. The strategy to avoid the input data

aggregation in a single data center for Big Data analysis pro-

motes less data movement and reduces bandwidth needs. The

new architecture improves SME competitiveness, because it

allows them to choose the best resources with lowest prices.

IV. EVALUATION METHODOLOGY AND RESULTS

This section describes the environment setup and results

of a primary evaluation to demonstrate the scalability of

the proposed framework. The experiments comprise em-

pirical evaluation performed on the Grid’5000 environment

and discrete-event simulation. Grid’5000 is an experimental

testbed carried out under the Inria ALADDIN development

plan with support from CNRS, RENATER and several

universities in France. The simulation is performed with the

BIGhybrid simulator, introduced in previous work [3], with

a focus on cloud and hybrid systems3.

The first experiment employs two homogeneous clusters

from Grid’5000 and evaluates the profile execution and scal-

ability of the proposal. The first cluster, located in Sophia,

has 64 hosts, each host with 2 Intel Xeon E5520 processors

of 2.27 GHz, with 4 cores, 24 GB of RAM, 119 GB of

local disk and 1 Gbps network. The cluster performance is

equivalent to 55.45 GFlops. The second cluster in Nancy

has 128 hosts each with 1 processor Intel Xeon X3440 of

2.53 GHz, with 4 cores, 16 GB of RAM, 298 GB of local

disk and 1 Gbps network. Each experiment was executed

30 times and results consider average times, and confidence

interval of 95% with a t-student distribution.

The application is a MR execution, batch type. The input

data contains a log with n lines, where each line has a

host name related to an execution time. The Map function

creates a key/value pair when the value is higher than 300

seconds. This key is the host name and the value is the

execution time. The Reduce function receives all key/value
pairs and calculates the average of execution time for each

host, after that it creates a new key/value pair, where the

key is the host name and value is the average execution

of host. This execution is similar to wordcount, a popular

micro-benchmark widely used by the MR community [21].

With this experiment the goal is to identify if the framework

scales linearly as the workload grows.

Figure 3 shows an execution with 64 hosts, where red,

blue and green colors represent Map, Reduce and Shuffle
phases respectively. In the y-axis, the execution time is pre-

sented in seconds and the x-axis is the workload in GBs. The

job presents linear execution time as the workload grows.

The maximum standard deviation is 4.52 for a workload

of 36 GBs. Map and Reduce functions are very fast with

low workloads. Most time is spent with Map functions as

3https://github.com/Julio-Anjos/Bighybrid

203

the workload increases. This behavior is realistic because it

resembles wordcount where the map phase counts a word

number of incidences and the reduce phase only sums up its

incidences.

Figure 3. Profile execution time of 64 hosts.

An experiment with 128 hosts is shown in Figure 4, where

red, blue and green colors represent Map, Reduce and Shuffle
phases respectively. In the y-axis, the execution time is

measured in seconds and the x-axis represents the workload

in GBs. The job presents the same linear performance than

in the experiment with 64 hosts, as the workload grows.

This experiment is interesting because when the number of

hosts is higher than what the workload requires, there is a

tendency to have the same execution time of smaller settings

(workloads of 9 GB and 18 GB). The standard deviations

are 4.6 s and 2.8 s respectively. However, with workload

of 72 GB the execution has a variability due to bandwidth

competition that generates data contention with massive data

transfers. For this case, the standard deviation is 9.5 s.

Figure 3 and 4 demonstrate that there is a similar behavior

to different workloads and host numbers in a batch execution

for data-intensive computing. The next experiment was

executed in a cluster in Rennes with 25 hosts each host with

2 Intel Xeon E5-2630v3 processors of 2.4 GHz, with 8 cores,

128 GB of RAM, 600 GB of local disk and 1 Gbps network.

This experiment has the goal to evaluate the performance

between SMART vs. Spark, in streaming environment. The

applications are wordcount and PI estimation calculation the

following Monte Carlo methodology.

Each experiment was executed 90 times and the result is

average time, the confidence interval is 95% with a t-student

distribution. In Figure 5 the red and green colors represent

SMART and Spark executions respectively. In the y-axis, the

execution time is measured in seconds and the x-axis, the

workload is measured in GBs. In Figure 6 the red and green

colors represent SMART and Spark executions respectively.

Figure 4. Profile execution time of 128 hosts.

In the y-axis, the execution time is measured in seconds

and the x-axis, the interaction numbers for PI estimation is

measured in units. The software versions of Spark and Flink

used by Spark and SMART are 1.4 and 0.9 respectively.

The performance between SMART and Spark is better

with small workloads while with large workloads the per-

formance is similar as shown in Figure 5. The application is

data-intensive, hence bandwidth contention is lower under

small data transfers and grows as data transfers increase,

thus minimizing the performance gain. Spark uses a resilient

distributed data set approach that saves data intermediate

first into memory to persist after in disk when finishing all

operations.

Figure 5. SMART vs. Spark streaming execution @ wordcount

Figure 6 presents the SMART implementation with a

super-linear speedup. This speedup occurs because the im-

plementation is CPU-intensive, and the SMART takes advan-

204

tage with a more simplified programming model than Spark.

This model is related with interact operators that enable very

efficient loops over data sets. Therefore, a workload increase

does not have important impacts on the system performance.

Figure 6. SMART vs. Spark streaming execution @ PI estimation

The next experiment reproduces the characterization of

applications devised by Chen [22] from traces from two

production environments of Yahoo and Facebook. The Ya-

hoo traces were obtained from a 2,000 host cluster and

contain 30,000 jobs spanning a period of over 3 weeks.

The evaluation considers an application to data aggregation

with fast jobs. The applications are data-intensive with

MapReduce in batch model. This experiment is a large-

scale simulation that enables to evaluate the proposal by

simulating of algorithms and environment used by SMART,

in a hybrid-cloud version of interest. The workload has

568 GB of input and 9,088 tasks, and each job has an

execution time of 322.64 seconds from Map and 703.32

seconds from job. The number of mappers is 2,000 and of

reducers is 1,000. This experiment has the goal to identify

if the execution time of a theoretical SMART model is near

to a real-world performance in large scale.

In Figure 7, red, blue and green colors represent Map,

Reduce and Shuffle phases respectively. In the y-axis, the

concurrent tasks are measured as units and the x-axis, the

execution time is measured in seconds. Each host executes

two tasks Map and Reduce concurrently. The experiment

shows a Job time ≈ 680 s and a Map time ≈ 300. As the

task numbers are limited to 2 tasks per host, the maximum

concurrent Map tasks is 4,000 tasks and 2,000 concurrent

Reduce tasks. These results indicate a good approximation

from model.

V. CONCLUSIONS

In order to face the emerging challenges in cloud-based

Big Data processing, this work presented a framework

Figure 7. MapReduce execution of 2,000 host scenario from Yahoo traces.

consisting of composable data-analysis services that can be

combined to address needs of specific applications. Focusing

on applications for small and medium-sized organizations,

the framework offers a flexible and lightweight approach

that allows these organizations to take advantage of Big Data

analysis in the cloud without incurring in the maintenance of

heavy cloud infrastructures. Another important aspect to be

highlighted is that of handling heterogeneous data sources,

which makes the proposal applicable to a great number

of companies and organizations running business in very

different domains.

Preliminary results show good scalability of the SMART

proposal, and the profile execution does not change with

workload or host number. In streaming systems, the perfor-

mance is workload sensitive which indicates a need for more

detailed evaluation. The SMART implementation achieves

better performance than Spark for CPU-intensive applica-

tions, and a workload increase does not have important

impacts on the system performance. In large scale, the

SMART simulation has a similar performance for large

workloads in data-intensive applications.

Future work in handling data heterogeneity aiming at data

standardization is a next step in the framework development.

The exploration of diverse hybrid cloud infrastructures is

another challenge to be addressed, as well as security and

data privacy issues concerning the data analysis services

performing operations on data from the heterogeneous data

sources. Nevertheless, more evaluation will be needed con-

sidering data heterogeneity in future work.

ACKNOWLEDGMENTS

This work was partly supported by CAPES - Foundation

for Coordinating the Improvement of Higher Education

Personnel - (Process BEX 14966/13-1). The experiments

discussed in this paper were conducted with the aid of the

Grid’5000 experimental testbed, under the Inria ALADDIN

205

development plan with support from CNRS, RENATER and

a number of universities (see https://www.grid5000.fr).

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” Tech. Rep., Sep. 2011. [Online]. Available: http:
//csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[2] M. Stonebraker et al., “Intel "Big Data" Science and
Technology Center Vision and Execution Plan,” SIGMOD
Rec., vol. 42, no. 1, pp. 44–49, May 2013. [Online].
Available: http://doi.acm.org/10.1145/2481528.2481537

[3] J. C. S. Anjos et al., “BIGhybrid – A Toolkit for Simulating
MapReduce in Hybrid Infrastructures,” in Computer Archi-
tecture and High Performance Computing Workshop (SBAC-
PADW), 2014 International Symposium on, Oct 2014, pp.
132–137.

[4] J. Dean and S. Ghemawat, “MapReduce - A Flexible Data
Processing Tool,” Communications of the ACM, vol. 53, no. 1,
pp. 72–77, 2010.

[5] T. White, Hadoop - The Definitive Guide, 3rd ed. O’Reilly
Media, Inc., 2012, vol. 1.

[6] M. Rychly et al., “Scheduling Decisions in Stream Processing
on Heterogeneous Clusters,” in Complex, Intelligent and
Software Intensive Systems (CISIS), 2014 Eighth International
Conference on, July 2014, pp. 614–619.

[7] M. Zaharia et al., “Discretized streams: an efficient and
fault-tolerant model for stream processing on large clusters,”
in Proceedings of the 4th USENIX conference on Hot Topics
in Cloud Computing, ser. HotCloud’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2342763.2342773

[8] ——, “Resilient Distributed Datasets: A Fault-tolerant Ab-
straction for In-memory Cluster Computing,” in Proceedings
of the 9th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 2–14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2228298.2228301

[9] A. Toshniwal et al., “Storm@Twitter,” in Proceedings
of the 2014 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’14. New York,
NY, USA: ACM, 2014, pp. 147–156. [Online]. Available:
http://doi.acm.org/10.1145/2588555.2595641

[10] D.-H. Le et al., “SALSA: A Framework for Dynamic Config-
uration of Cloud Services,” in Cloud Computing Technology
and Science (CloudCom), 2014 IEEE 6th International Con-
ference on, Dec 2014, pp. 146–153.

[11] L. Mashayekhy et al., “A PTAS Mechanism for Provisioning
and Allocation of Heterogeneous Cloud Resources,” Parallel
and Distributed Systems, IEEE Transactions on, vol. PP,
no. 99, pp. 1–14, 2014.

[12] C. Jayalath et al., “From the Cloud to the Atmosphere:
Running MapReduce across Data Centers,” Computers, IEEE
Transactions on, vol. 63, no. 1, pp. 74–87, Jan 2014.

[13] Z. Zheng et al., “STAR: Strategy-Proof Double Auctions for
Multi-Cloud, Multi-Tenant Bandwidth Reservation,” Comput-
ers, IEEE Transactions on, vol. PP, no. 99, pp. 1–14, 2014.

[14] Y. Mansouri et al., “Brokering Algorithms for Optimizing the
Availability and Cost of Cloud Storage Services,” in Cloud
Computing Technology and Science (CloudCom), 2013 IEEE
5th International Conference on, vol. 1, Dec 2013, pp. 581–
589.

[15] A. Iosup et al., “On the Performance Variability of Production
Cloud Services,” in Cluster, Cloud and Grid Computing
(CCGrid), 2011 11th IEEE/ACM International Symposium
on, May 2011, pp. 104–113.

[16] N. Grozev and R. Buyya, “Performance Modelling and
Simulation of Three-Tier Applications in Cloud and Multi-
Cloud Environments,” The Computer Journal, vol. 58,
no. 1, pp. 1–22, 2015. [Online]. Available: http://comjnl.
oxfordjournals.org/content/58/1/1.abstract

[17] R. Tudoran et al., “Bridging Data in the Clouds: An
Environment-Aware System for Geographically Distributed
Data Transfers,” in Cluster, Cloud and Grid Computing
(CCGrid), 2014 14th IEEE/ACM International Symposium
on, May 2014, pp. 92–101.

[18] K. Krish et al., “HATS: A Heterogeneity-Aware Tiered Stor-
age for Hadoop,” in Cluster, Cloud and Grid Computing
(CCGrid), 2014 14th IEEE/ACM International Symposium
on, May 2014, pp. 502–511.

[19] S. Delamare et al., “SpeQuloS: a QoS service for
BoT applications using best effort distributed computing
infrastructures,” in Proceedings of the 21th international
symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC ’12. New York, NY, USA:
ACM, 2012, pp. 173–186. [Online]. Available: http:
//doi.acm.org/10.1145/2287076.2287106

[20] A. Alexandrov et al., “The Stratosphere platform for
big data analytics,” VLBD Journal, vol. 23, no. 6,
pp. 939–964, 2014. [Online]. Available: http://dx.doi.org/
10.1007/s00778-014-0357-y;http://dblp.uni-trier.de/rec/bib/
journals/vldb/AlexandrovBEFHHKLLMNPRSSHTW14

[21] S. Huang et al., “The HiBench benchmark suite: Characteri-
zation of the MapReduce-based data analysis,” in Data Engi-
neering Workshops (ICDEW), 2010 IEEE 26th International
Conference on, March 2010, pp. 41–51.

[22] Y. Chen et al., “The Case for Evaluating MapReduce Perfor-
mance Using Workload Suites,” in IEEE 19th Int. Symposium
on Modeling, Analysis Simulation of Computer and Telecom-
munication Systems, ser. (MASCOTS). IEEE Computer
Society, July 2011, pp. 390–399.

206

