
Baltzer Journals July 2, 1995Measurements of GeneralisationBased on Information GeometryHuaiyu Zhu and Richard RohwerNeural Computing Research GroupDepartment of Computer Science and Applied Mathematics,Aston University, Birmingham B4 7ET, UKE-mail: zhuh@aston.ac.ukNeural networks are statistical models and learning rules are estimators. In thispaper a theory for measuring generalisation is developed by combining Bayesiandecision theory with information geometry. The performance of an estimator ismeasured by the information divergence between the true distribution and theestimate, averaged over the Bayesian posterior. This uni�es the majority of errormeasures currently in use. The optimal estimators also reveal some intricate inter-relationships among information geometry, Banach spaces and su�cient statistics.1 IntroductionA neural network (deterministic or stochastic) can be regarded as a parameterisedstatistical model P (yjx; w), where x 2 X is the input, y 2 Y is the output andw 2 W is the weight. In an environment with an input distribution P (x), it isalso equivalent to P (zjw), where z := [x; y] 2 Z := X � Y denotes the combinedinput and output as data [11]. Learning is the task of inferring w from z. It isa typical statistical inference problem in which a neural network model acts as a\likelihood function", a learning rule as an \estimator", the trained network asan \estimate" and the data set as a \sample". The set of probability measureson sample space Z forms a (possibly in�nite dimensional) di�erential manifoldP [2, 16]. A statistical model forms a �nite-dimensional submanifold Q, composedof representable distributions, parameterised by weights w acting as coordinates.To infer w from z requires additional information about w. In a Bayesianframework such auxiliary information is represented by a prior P (p), where p isthe true but unknown distribution from which z is drawn. This is then combinedwith the likelihood function P (zjp) to yield the posterior distribution P (pjz) viathe Bayes formula P (pjz) = P (zjp)P (p)=P (z).



H. Zhu and R. Rohwer / Measurements of Generalisation 2An estimator � : Z ! Q must, for each z, �x one q 2 Q which in a sense ap-proximate p. 1 This requires a measure of \divergence" D(p; q) between p; q 2 Pde�ned independent of parameterisation. General studies on divergences betweenprobability distributions are provided by the theory of information geometry (See[2, 3, 7] and further references therein). The main thesis of this paper is thatgeneralisation error should be measured by the posterior expectation of the in-formation divergence between true distribution and estimate. We shall show thatthis retains most of the mathematical simplicity of mean squared error theorywhile being generally applicable to any statistical inference problems.2 Measurements of GeneralisationThe most natural \information divergence" between two distribution p; q 2 P isthe �-divergence de�ned as [2] 2D�(p; q) := 1�(1� �) �1� Z p�q1��� ; 8� 2 (0; 1):(1)The limits as � tends to 0 and 1 are taken as de�nitions ofD0 and D1, respectively.Following are some salient properties of the �-divergences [2]:D�(p; q) = D1��(q; p) � 0: D�(p; q) = 0 () p = q:(2) D0(q; p) = D1(p; q) = K(p; q) := Z p log pq :(3) D1=2(p; q) = D1=2(q; p) = 2 Z (pp� pq)2 :(4) D�(p; p+ �p) � 12 Z (�p)2p � 12 
(� log p)2� :(5)The quantity K(p; q) is the Kullback-Leibler divergence (cross entropy). Thequantity D1=2(p; q) is the Hellinger distance. The quantity R (�p)2=p is usuallycalled the �2 distance between two nearby distributions.Armed with the �-divergence, we now de�ne the generalisation errorE�(�) := Zp P (p) Zz P (zjp)D�(p; �(z)); E�(qjz) := Zp P (pjz)D�(p; q);(6)where p is the true distribution, � is the learning rule, z is the data, and q = �(z)is the estimate. A learning rule � is called �-optimal if it minimises E�(�). A1Some Bayesian methods give the entire posterior P (pjz) instead of a point estimate q as theanswer. They will be shown later to be a special case of the current framework.2This is essentially Amari's �-divergence, where � 2 [�1; 1], re-parameterised by � = (1 ��)=2 2 [0; 1] for technical convenience, following [6].



H. Zhu and R. Rohwer / Measurements of Generalisation 3probability distribution q is called a �-optimal estimate, or simply a �-estimate,from data z, if it minimises E�(qjz). The following theorem is a special case of astandard result from Bayesian decision theory.Theorem .1 (Coherence)A learning rule � is �-optimal if and only if for any data z, excluding a set of zeroprobability, the result of training q = �(z) is a �-estimate.De�nition .2 (�-coordinate)Let � := 1=�, � := 1=(1� �). Let L� be the Banach space of �th power integrablefunctions. Then L� and L� are dual to each other as Banach spaces. Let p 2 P.Its �-coordinate is de�ned as �l(p) := p�=� 2 L� for � > 0, and �0l(p) := log p [2].Denote by 1=�l the inverse of �l.Theorem .3 (�-estimator in P)The �-estimate bq 2 P is uniquely given [14] by bq � 1=�l (R P (pjz)�l(p)).3 Divergence between Finite Positive MeasuresOne of the most useful properties of the least mean square estimate is the so calledMSE = V AR+BIAS2 relation, which also implies that, for a given linear spaceW , the LMS estimate of w within W is given by the projection of the posteriormean bw onto W . This is generalised to the following theorem [16], applying thegeneralised Pythagorean Theorem for �-divergences [2].Theorem .4 (Error decomposition in Q)Let Q be a �-
at manifold. Let P (p) be a prior on Q. Then 8q 2 Q, 8z 2 Z,E�(qjz) = E�(bpjz) +D�(bp; q);(7)where bp is the �-estimate in Q.To apply this theorem it is necessary to extend the de�nition of �-divergenceto eP, the space of �nite positive measures, which is �-
at for any � for a �nitesample space Z [2], following suggestions in [2].



H. Zhu and R. Rohwer / Measurements of Generalisation 4De�nition .5 (�-divergence on eP)The �-divergence on eP is de�ned byD�(p; q) : = 1�(1� �) Z ��p+ (1� �)q � p�q1���(8) This de�nition retains most of the important properties of �-divergence onP , and reduces to the original de�nition when restricted to P . It has the addi-tional advantage of being the integral of a positive measure, making it possible toattribute the divergence between two measures to their divergence over variousevents [16]. In particular, the generalised cross entropy is [16]K(p; q) := Z �q � p+ p log pq� :(9)The �-divergence de�nes a di�erential structure on eP . The Riemannian geom-etry and the �-a�ne connections can be obtained by the Eguchi relations [2, 7]The most important advantage of this de�nition is that the following importanttheorem is true and can be proved by pure algebraic manipulation [16].Theorem .6 (Error Decomposition on eP)Let P (p) be a distribution over eP. Let q 2 eP. ThenhD�(p; q)i = hD�(p; bp)i+D�(bp; q);(10)where bp is the �-average of p given by bp� := 
p��.Theorem .7 (�-estimator in eP)The �-estimate bp = ��(z) in eP is given by bp� = 
p��z. In particular, the 1-estimateis the posterior marginal distribution bp = hpiz.Theorem .8 (�-estimator in Q)Let Q be an arbitrary submanifold of eP. The �-estimate bq in Q is given by the�-projection of bp onto Q, where bp is the �-estimate in eP.4 Examples and Applications to Neural NetworksExplicit formulas are derived for the optimal estimators for the multinomial [15]and normal distributions [14].



H. Zhu and R. Rohwer / Measurements of Generalisation 5Example 1Letm 2 Nn; p 2 P = �n�1; a 2 Rn+. Consider multinomial family of distributionsM(mjp) with a Dirichlet prior D(pja). The posterior is also a Dirichlet distribu-tion D(pja+m). The �-estimate bp 2 eP is given by (bpi)� = (ai +mi)�=(ja+mj)�,where jaj := Pi ai and (a)b := �(a+b)=�(a). In particular, bpi = (ai+mi)=ja+mjfor � = 1, and bpi = exp (	(ai +mi)� 	(ja+mj)) for � = 0, where 	 is the thedigamma function. The �-estimate bq 2 P is given by normalising bp.Example 2Let z; � 2 R; h 2 R+; a 2 R; n 2 R+. Consider the Gaussian family of distribu-tions f(zj�) = N(z��jh), with �xed variance �2 = 1=h. Let the prior be anotherGaussian f(�) = N(��ajnh), Then the posterior after seeing a sample z of size k,is also a Gaussian f(�jz) = N(��akjnkh), where nk = n+k; ak = (na+P z)=nk,which is also the posterior least squares estimate. The �-estimate bq 2 P is givenby the density f(z0jbq) = N �z0 � ak��h=(1 + �=nk)�.The entities jaj for the multinomial model and n for the Gaussian model aree�ective previous sample sizes, a fact known since Fisher's time. In a restrictedmodel, the sample size might not be well re
ected, and some ancillary statisticsmay be used for information recovery [2].Example 3In some Bayesian methods, such as the Monte Carlo method [10], no estimatoris explictly given. Instead, the posterior is directly used for sampling p. Thisproduces a prediction distribution on test data which is the posterior marginaldistribution. Therefore these methods are implicitly 1-estimators.Example 4Multilayer neural networks are usually not �-convex for any �, and there may existlocal optima of E�(�jz) on Q. A practical learning rule is usually a gradient descentrule which moves w in the direction which reduces E�(qjz). The 1-divergence canbe minimised by a supervised learning rule, the Boltzmann machine learning rule[1]. The 0-divergence can be minimised by a reinforcement learning rule, thesimulated annealing reinforcement learning rule for stochastic networks[13].Minq K(p; q) () �w � h@w�0l(q)ip � h@w�0l(q)iq(11) Minq K(q; p) () �w � h@w�0l(q); �0l(p)� �0l(q)iq(12)



H. Zhu and R. Rohwer / Measurements of Generalisation 65 ConclusionsThe problem of �nding a measurement of generalisation is solved in the frameworkof Baysian decision theory, with machinery developed in the theory of informationgeometry.By working in the Bayesian framework, this ensures that the measurement isinternally coherent, in the sense that a learning rule is optimal if and only if itproduces optimal estiamtes for almost all the data. By adopting an informationgeometric measurement of divergence between distributions, this ensures thatthe theory is independent of parameterisation. This resolves the controversy in[8, 12, 9].To guarantee a unique and well-de�ned solution to the learning problem, it isnecessary to generalise the concept of information divergence to the space of �nitepositive measures. This development reveals certain elegant relations betweeninformation geometry and the theory of Banach spaces, showing that the dually-a�ne geometries of statistical manifolds are in fact intricately related to the duallinear geometries of Banach spaces.In a computational model, such as a classical statisitical model or a neuralnetwork, the optimal estimator is the projection of the ideal estimator to themodel. This theory generalises the theory of linear Gaussian regression to generalstatistical estimation and function approximation problems. Further research maylead to Kalman �lter type learning rules which are not restricted to linear andGaussian models.AcknowledgementWe are grateful to Prof. S. Amari for clarifying a point of information geometry.We would like to thank many people in the Neural Computing Research Group,especially C. Williams, for useful comments and practical help. This work waspartially supported by EPSRC grant (GR/J17814).References[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmannmachines. Cog. Sci., 9:147{169, 1985.[2] S. Amari. Di�erential-Geometrical Methods in Statistics, volume 28 of Springer LectureNotes in Statistics. Springer-Verlag, New York, 1985.[3] S. Amari. Di�erential geometrical theory of statistics. In Amari et al. [4], chapter 2, pages19{94.[4] S. Amari, O. E. Barndo�-Nieldon, R. E. Kass, S. L. Lauritzen, and C. R. Rao, editors.Di�erential Geometry in Statistical Inference, volume 10 of IMS Lecture Notes Monograph.
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