Baltzer Journals July 2, 1995

Measurements of Generalisation
Based on Information Geometry

Hualyu ZHU AND RICHARD ROHWER
Neural Computing Research Group

Department of Computer Science and Applied Mathematics,
Aston University, Birmingham B} TET, UK

FE-mail: zhuh@aston.ac.uk

Neural networks are statistical models and learning rules are estimators. In this
paper a theory for measuring generalisation is developed by combining Bayesian
decision theory with information geometry. The performance of an estimator is
measured by the information divergence between the true distribution and the
estimate, averaged over the Bayesian posterior. This unifies the majority of error
measures currently in use. The optimal estimators also reveal some intricate inter-
relationships among information geometry, Banach spaces and sufficient statistics.

1 Introduction

A neural network (deterministic or stochastic) can be regarded as a parameterised
statistical model P(y|z,w), where € X is the input, y € Y is the output and
w € W is the weight. In an environment with an input distribution P(z), it is
also equivalent to P(z|w), where z := [z,y] € Z := X x Y denotes the combined
input and output as data [11]. Learning is the task of inferring w from z. It is
a typical statistical inference problem in which a neural network model acts as a
“likelihood function”, a learning rule as an “estimator”, the trained network as
an “estimate” and the data set as a “sample”. The set of probability measures
on sample space Z forms a (possibly infinite dimensional) differential manifold
P [2, 16]. A statistical model forms a finite-dimensional submanifold Q, composed
of representable distributions, parameterised by weights w acting as coordinates.

To infer w from z requires additional information about w. In a Bayesian
framework such auxiliary information is represented by a prior P(p), where p is
the true but unknown distribution from which z is drawn. This is then combined
with the likelihood function P(z|p) to yield the posterior distribution P(p|z) via
the Bayes formula P(p|z) = P(z|p)P(p)/ P(z).
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An estimator 7 : Z — Q must, for each z, fix one ¢ € Q which in a sense ap-
proximate p. ' This requires a measure of “divergence” D(p, ¢) between p,q € P
defined independent of parameterisation. General studies on divergences between
probability distributions are provided by the theory of information geometry (See
[2, 3, 7] and further references therein). The main thesis of this paper is that
generalisation error should be measured by the posterior expectation of the in-
formation divergence between true distribution and estimate. We shall show that
this retains most of the mathematical simplicity of mean squared error theory
while being generally applicable to any statistical inference problems.

2 Measurements of Generalisation

The most natural “information divergence” between two distribution p,q € P is
the é-divergence defined as [2] ?

(1) Ds(p, q) = ﬁ (1 - /péql‘é) . Yée(0,1).

The limits as é tends to 0 and 1 are taken as definitions of Dy and D, respectively.
Following are some salient properties of the é-divergences [2]:

(2) Ds(p.q) = Di_s(q,p) > 0.  Ds(p,q) =0 <= p=gq.
= =K = 0 B.

(3) Do(q,p) = Di(p,q) = K(p,q) : /pl g

4) Dijelpoa) = Digala-p) =2 [ (VB = V)

(5) Ditpp+ ) = 3 [ B < L ((atogpr).

The quantity K(p,q) is the Kullback-Leibler divergence (cross entropy). The
quantity Djs(p,q) is the Hellinger distance. The quantity [(Ap)*/p is usually
called the y? distance between two nearby distributions.

Armed with the é-divergence, we now define the generalisation error

6) B(r):= [ P) [ PEIDA(), Bal):= [ POIIDSp.a),

where p is the true distribution, 7 is the learning rule, z is the data, and ¢ = 7(2)
is the estimate. A learning rule 7 is called é-optimal if it minimises Fs(7). A

'Some Bayesian methods give the entire posterior P(p|z) instead of a point estimate ¢ as the
answer. They will be shown later to be a special case of the current framework.

2This is essentially Amari’s a-divergence, where o € [—1,1], re-parameterised by § = (1-
a)/2 € [0,1] for technical convenience, following [6].
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probability distribution ¢ is called a é-optimal estimate, or simply a é-estimate,
from data z, if it minimises Fs(¢|z). The following theorem is a special case of a
standard result from Bayesian decision theory.

Theorem .1 (Coherence)
A learning rule T is 6-optimal if and only if for any data z, excluding a set of zero
probability, the result of training ¢ = 7(z) is a é-estimate.

Definition .2 (6-coordinate)
Let p:=1/6, v:=1/(1—¢). Let L, be the Banach space of jith power integrable
functions. Then L, and L, are dual to each other as Banach spaces. Let p € P.

5

Its 6-coordinate is defined as l(p) := p*/é € L, for 6 > 0, and ¢0l(p) := logp [2].
1/6 5

Denote by | the inverse of I.

Theorem .3 (6-estimator in P)

1/6 s
The §-estimate ¢ € P is uniquely given [14] by ¢~ 1 ([ P(p|z)l(p)).

3 Divergence between Finite Positive Measures

One of the most useful properties of the least mean square estimate is the so called
MSE = VAR + BIAS? relation, which also implies that, for a given linear space
W, the LMS estimate of w within W is given by the projection of the posterior
mean @ onto W. This is generalised to the following theorem [16], applying the
generalised Pythagorean Theorem for é-divergences [2].

Theorem .4 (Error decomposition in Q)
Let Q be a 6-flat manifold. Let P(p) be a prior on Q. ThenVq € Q, Vz € Z,

(7) Es(q|z) = Es(plz) + Ds(p, q),
where p is the d-estimate in Q.

To apply this theorem it is necessary to extend the definition of é-divergence
to P, the space of finite positive measures, which is é-flat for any é for a finite
sample space Z [2], following suggestions in [2].
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Definition .5 (é-divergence on P)
The 6-divergence on P is defined by

(8) Ds(p,q) : = ﬁ/ (bp+(1—8)g—p'q"")

This definition retains most of the important properties of é-divergence on
P, and reduces to the original definition when restricted to P. It has the addi-
tional advantage of being the integral of a positive measure, making it possible to
attribute the divergence between two measures to their divergence over various
events [16]. In particular, the generalised cross entropy is [16]

(9) K(p,q) r=/<q—p+plog§)-

The é-divergence defines a differential structure on P. The Riemannian geom-
etry and the é-affine connections can be obtained by the Eguchi relations [2, 7]
The most important advantage of this definition is that the following important
theorem is true and can be proved by pure algebraic manipulation [16].

Theorem .6 (Error Decomposition on P)
Let P(p) be a distribution over P. Let ¢ € P. Then

where p is the §-average of p given by p° := (p’).

Theorem .7 (6-estimator in P)
The é-estimate p = 75(z) in P is given by p* = <p5>z. In particular, the 1-estimate
is the posterior marginal distribution p = (p)._.

Theorem .8 (é6-estimator in Q)
Let Q be an arbitrary submanifold of P. The 6-estimate ¢ in Q is given by the
d-projection of p onto Q, where p is the 6-estimate in P.

4 Examples and Applications to Neural Networks

Explicit formulas are derived for the optimal estimators for the multinomial [15]
and normal distributions [14].
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Example 1

Letm € N*, pe P =A"""', a € R}. Consider multinomial family of distributions
M (m|p) with a Dirichlet prior D(p|a). The posterior is also a Dirichlet distribu-
tion D(pla+m). The §-estimate p € P is given by (5;)° = (a; + my)s/(la + m|)s,
where |a] ==Y, a; and (a)y := T'(a+b)/I'(a). In particular, p; = (a;+m;)/|a+m|
for 6 =1, and p; = exp (V(a; + m;) — ¥(|la + m|)) for 6 = 0, where ¥ is the the
digamma function. The é-estimate § € P is given by normalising p.

Exzample 2

Let z,p e R, he Ry, a € R, n € R,. Consider the Gaussian family of distribu-
tions f(z|u) = N(z—p|h), with fized variance 0* = 1/h. Let the prior be another
Gaussian f(p) = N(u—a|nh), Then the posterior after seeing a sample z of size k,
is also a Gaussian f(p|z) = N(p—ag|nyh), where ny = n+-k, a, = (na+3_ z)/ny,
which is also the posterior least squares estimate. The §-estimate ¢ € P is given

by the density f(Z'|q) = N (2 — ax|h/(1 4 6/ny)).

The entities |a| for the multinomial model and n for the Gaussian model are
effective previous sample sizes, a fact known since Fisher’s time. In a restricted
model, the sample size might not be well reflected, and some ancillary statistics
may be used for information recovery [2].

Example 3

In some Bayesian methods, such as the Monte Carlo method [10], no estimator
is explictly given. Instead, the posterior is directly used for sampling p. This
produces a prediction distribution on test data which is the posterior marginal
distribution. Therefore these methods are implicitly 1-estimators.

Example }

Multilayer neural networks are usually not 6-convex for any 6, and there may exist
local optima of Es(-|z) on Q. A practical learning rule is usually a gradient descent
rule which moves w in the direction which reduces Fs(q|z). The 1-divergence can
be minimised by a supervised learning rule, the Boltzmann machine learning rule
[1].  The 0-divergence can be minimised by a reinforcement learning rule, the
simulated annealing reinforcement learning rule for stochastic networks[13].

(11) Mqin K(p,q) <= Aw ~ (0,900(q)), — (0.90l(q)),

(12) Mqin K(q,p) <= Aw ~ (0,90l(q), 90l(p)— 00i(q)),
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5 Conclusions

The problem of finding a measurement of generalisation is solved in the framework
of Baysian decision theory, with machinery developed in the theory of information
geometry.

By working in the Bayesian framework, this ensures that the measurement is
internally coherent, in the sense that a learning rule is optimal if and only if it
produces optimal estiamtes for almost all the data. By adopting an information
geometric measurement of divergence between distributions, this ensures that
the theory is independent of parameterisation. This resolves the controversy in
[8, 12, 9].

To guarantee a unique and well-defined solution to the learning problem, it is
necessary to generalise the concept of information divergence to the space of finite
positive measures. This development reveals certain elegant relations between
information geometry and the theory of Banach spaces, showing that the dually-
affine geometries of statistical manifolds are in fact intricately related to the dual
linear geometries of Banach spaces.

In a computational model, such as a classical statisitical model or a neural
network, the optimal estimator is the projection of the ideal estimator to the
model. This theory generalises the theory of linear Gaussian regression to general
statistical estimation and function approximation problems. Further research may
lead to Kalman filter type learning rules which are not restricted to linear and
Gaussian models.
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