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Abstract— This paper is concerned with the network-
based robust fault detection problem for a class of uncertain
discrete-time T-S fuzzy systems with stochastic mixed time-
delays and successive packet dropouts. The mixed time-
delays comprise both the multiple discrete time-delays and
the infinite distributed delays. A sequence of stochastic vari-
ables is introduced to govern the random occurrences of the
discrete time-delays, distributed time-delays and successive
packet dropouts, where all the stochastic variables are mu-
tually independent but obey the Bernoulli distribution. The
main purpose of this paper is to design a fuzzy fault detec-
tion filter such that the overall fault detection dynamics is
exponentially stable in the mean square and, at the same
time, the error between the residual signal and the fault
signal is made as small as possible. Sufficient conditions are
first established via intensive stochastic analysis for the ex-
istence of the desired fuzzy fault detection filters, and then
the corresponding solvability conditions for the desired filter
gains are established. Also, the optimal performance index
for the addressed robust fuzzy fault detection problem is ob-
tained by solving an auxiliary convex optimization problem.
An illustrative example is provided to show the usefulness
and effectiveness of the proposed design method.

Keywords— Discrete-time fuzzy systems; fault detection;
networked control systems; packet dropouts; randomly oc-
curring mixed time-delays.

I. Introduction

Over the past decades, the fault detection problem has
been an active field of research because of the ever increas-
ing demand for higher performance, higher safety and reli-
ability standards [3,24,28,33]. Generally speaking, a fault
detection process consists of constructing a residual signal
and computing a residual evaluation function which can
then be compared with a pre-defined threshold. When the
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residual exceeds the threshold, the fault is detected and an
alarm of fault is generated. As is well known, for a fault
detection problem, the residual signal should be made sen-
sitive to faults (in order to detect faults in a timely way)
and robust to modeling errors or disturbances (in order to
avoid false alarms). Recently, the model-based approaches
to fault detection problems have been widely adopted for
dynamic systems. The main idea of these approaches is to
introduce a performance index and then convert the fault
detection problem into an associated optimization prob-
lem. Accordingly, a variety of important results have been
reported in the literature. For example, the fault detec-
tion problems have been addressed in [39] for linear time-
varying systems, in [41] for singular systems, in [16,34] for
sampled-data systems, in [28] for stochastic systems, in [40]
for Markovian jump linear systems and in [12, 23] for net-
worked control systems. It is worth noting that most of the
above mentioned results are concerned with linear models.

Nonlinearities are recognized to exist universally in prac-
tical systems. Takagi-Sugeno (T-S) fuzzy models have
proven to be capable of approximating any smooth non-
linear systems to any specified accuracy within any com-
pact set, which is achieved by smoothly blending a family
of local linear models through fuzzy membership functions.
Based on this local linearity, many complex nonlinear sys-
tems can be represented by using T-S fuzzy models. As
a result, the last decade has witnessed a rapidly growing
interest in T-S fuzzy systems, and many important results
have been reported in the literature. To mention a few, the
stability and stabilization problems of the fuzzy systems
have been addressed in [4, 9, 11, 14, 32, 37]. The filtering
problems have been investigated in [8, 18] and the control
problems have been studied in [2,10,17,21,29]. Since non-
linear systems can be approximated by T-S fuzzy models,
an applicable design scheme of the fault detectors for non-
linear systems can be transformed into the fault detection
problem for T-S fuzzy systems [28].

On another active research front, networked control
systems (NCSs) have received a great deal of attention
in recent years owing to their successful applications in
a wide range of areas such as industrial automation,
aerospace, nuclear power station and internet-based control
[5, 6, 12, 13, 20, 25, 31, 35, 36]. The research into NCSs has
mainly focused on the networked-induced challenging prob-
lems, such as the communication delays and data packet
dropouts that could degrade the system performances or
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even cause fault. Over the past few years, compared with
the rich literature on filtering and control problems for
NCSs, only a limited number of results have been avail-
able on the fault detection problems of NCSs with time-
delays. For example, the fault detection problem has been
investigated for a class of discrete-time networked linear
systems with constant time-delays [12]. In [38], the fault
detection problem for NCSs has been studied where the
communication delays are described as a random Markov
jump process. It is worth mentioning that most of the re-
ported results have been concerned with the discrete time-
delays. Another kind of time-delays, namely, distributed
time-delays, has been largely overlooked due mainly to
the complexity and difficulty. The application insight of
the distributed delays has been widely recognized and a
number of results involving continuously distributed de-
lays have been published, see e.g. [15, 26, 30]. The dis-
tributed delays in the discrete-time setting, on the other
hand, have received little attention despite their applica-
tion significance in digital control systems [27]. Further-
more, it is fairly unrealistic to assume that the discrete-
time distributed delays is deterministic in a networked en-
vironment. Instead, due to the unpredictable changes of
the network conditions, the discrete-time distributed de-
lays may occur in a probabilistic way. As such, it makes
practical sense to investigate how the randomly occurring
phenomena (e.g. discrete time-delay, distributed time-delay
and packet dropout) affect the dynamic behavior of the
NCSs as well as the fault detection process.

A thorough literature review on the fault detection prob-
lems for NCSs and fuzzy control systems has revealed that,
up to now, little attention has been paid to the study of
fault detection for nonlinear NCSs with both communica-
tion delays and packet dropouts, especially when the ran-
domly occurred phenomena are taken into consideration.
Summarizing the above discussion, in this paper, we are
motivated to study the robust fault detection problem for
a class of uncertain discrete-time T-S fuzzy systems in-
volving stochastic mixed time-delays and successive packet
dropouts. By augmenting the state of the original system
and the fault detection filter, the addressed fault detec-
tion problem is converted into an auxiliary H∞ filtering
problem. Sufficient conditions are established for the ex-
istence of the desired fuzzy fault detection filter, and then
the corresponding solvability conditions for the desired fil-
ter gains are established. A practical simulation exam-
ple is provided to show the usefulness and effectiveness of
the proposed design method. The main contributions of
this paper, which lie primarily on the novelty of the re-
search problem and system models, are summarized as fol-
lows. 1) A model is proposed to describe the randomly oc-
curring multiple time-varying communication delays, ran-
domly occurring infinite distributed delays and successive
packet dropouts, all of which occur according to a specified
Bernoulli distribution. 2) The investigation on the T-S
fuzzy model is carried out for a class of complex systems
that account for the modeling errors, disturbance rejection
attenuation, probabilistic delay and packet dropouts within
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Fig. 1. The framework of the fuzzy fault detection filter design over
networks environments

the same framework. 3) Stochastic analysis is conducted
to enforce multiple requirements including the H∞-norm
constraints, the fault detection specification and the usual
mean-square convergence of the detection errors.
Notation The notation used in the paper is fairly stan-

dard. The superscript “T” stands for matrix transposition,
Rn denotes the n-dimensional Euclidean space, Rm×n is the
set of all real matrices of dimension m × n; The set of all
non-positive integers is denoted by Z−. 0 represents zero
matrix of compatible dimensions. The n-dimensional iden-
tity matrix is denoted as In or simply I, if no confusion is
caused. The notation P > 0 means that P is real sym-
metric and positive definite; l2[0,∞) is the space of square
summable sequences; tr(M) refers to the trace of the ma-
trix M ; the notation ∥A∥ refers to the norm of a matrix A

defined by ∥A∥ =
√

tr(ATA) and ∥ ·∥2 stands for the usual
l2 norm. In symmetric block matrices or complex matrix
expressions, we use an asterisk “∗” to represent a term
that is induced by symmetry, and diag{· · · } stands for a
block-diagonal matrix. In addition, E{x} and E{x| y} will,
respectively, denote expectation of the stochastic variable
x and expectation of x conditional on y. Prob{·}means the
occurrence probability of the event “·”. The symbol ⊗ de-
notes the Kronecker product; Matrices, if their dimensions
are not explicitly stated, are assumed to be compatible for
algebraic operations.

II. Problem Formulation

In this paper, we consider the fault detection prob-
lem for a class of uncertain discrete-time fuzzy system
with stochastic mixed time-delays and successive packet
dropouts in NCSs, where the framework is shown in Fig-
ure 1. The sensors are connected to the fault detection
filter via a network which is subject to possible successive
packet dropouts.

A. The Physical Plant

Consider a discrete-time nonlinear system with stochas-
tic mixed time-delays which can be represented by the fol-
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lowing T-S fuzzy dynamic model:
△ Plant Rule i: IF θ1(k) is Mi1 and θ2(k) is Mi2 and

. . . and θp(k) is Mip THEN

x(k + 1) = Ai(k)x(k) +Ad1i

h∑
m=1

αm(k)x(k − τm(k))

+ β(k)Ad2i

∞∑
d=1

µdx(k − d)

+D1iw(k) +Gif(k)

y(k) = Cix(k) +D2iw(k)

x(k) = ψ(k), ∀k ∈ Z−, i = 1, . . . , r

(1)

where Mij is the fuzzy set, r is the number of IF-THEN
rules and θ(k) =

[
θ1(k), θ2(k), . . . , θp(k)

]
is the premise

variable vector. x(k) ∈ Rn represents the state vector;
y(k) ∈ Rm is the process output; w(k) ∈ Rq is the un-
known disturbance input; f(k) ∈ Rl is the fault to be de-
tected; w(k) and f(k) belong to l2[0,∞); τm(k) denotes the
discrete communication delay that occurs according to the
stochastic variable α(k); d describes the distributed time
delay; Ai(k) = Ai +∆Ai(k) and (Ai, Ad1i, Ad2i, D1i, Gi,
Ci and D2i) are known constant matrices of compatible di-
mensions; ψ(k), k ∈ Z−are given random initial conditions
satisfying supk∈Z− E

{
∥ψ(k)∥2

}
<∞.

The real-valued matrix ∆Ai(k) represents the norm-
bounded parameter uncertainty of the following structure:

∆Ai(k) = HaiF (k)Ea, i = 1, . . . , r (2)

where Hai, Ea are known constant matrices of appropri-
ate dimensions, and F (k) is an unknown matrix function
satisfying

FT (k)F (k) ≤ I. (3)

The parameter uncertainty ∆Ai(k) is said to be admissible
if both (2) and (3) hold.
The variable τm(k) denotes the time-varying delay sat-

isfying
dmin ≤ τm(k) ≤ dmax

where dmin and dmax are constant positive integers repre-
senting the lower and upper bounds on the communication
delay, respectively. The constants µd ≥ 0 (d = 1, 2, . . . ,∞)
satisfy the following convergence conditions:

µ̄ :=
∞∑
d=1

µd < +∞ (4)

To account for the phenomena of randomly occurring
discrete time-delays and distributed time-delays, we intro-
duce the following stochastic variables αm(k) ∈ R (m =
1, 2, . . . , h) and β(k) ∈ R, which are mutually independent
Bernoulli distributed white sequences and also independent
with the premise variables θ(k). A natural assumption on
αm(k) and β(k) are as follows:

Prob {αm(k) = 1} = E {αm(k)} = ᾱm,

Prob {αm(k) = 0} = 1− ᾱm,

Prob {β(k) = 1} = E {β(k)} = β̄,

Prob {β(k) = 0} = 1− β̄.

Remark 1: In model (1), both the discrete time-delay
term x(k − τm(k)) and the distributed time-delay term∑∞

d=1 µdx(k − d) behave probabilistically due to the in-
troduction of the stochastic variables αm(k) and β(k).
As such, they are called randomly occurring mixed time-
delays. Note that the term

∑∞
d=1 µdx(k−d) may be consid-

ered as the discretization of the semi-infinite integral form∫ t

−∞ k(t − s)x(s)ds in the continuous-time system. It is
noted that distributed delays occur very often in practical
systems and have attracted much attention in the literature
(see, e.g., [15,30]). Most results have been concerned with
the continuous deterministic time-delays, and there have
been very few results for randomly occurring mixed time-
delays especially when the fault detection problem becomes
a research focus.
By using a center average defuzzifier, product interfer-

ence and a singleton fuzzifier, the global dynamics of the
T-S fuzzy systems (1) can be inferred as follows:

x(k + 1) =
r∑

i=1

hi(θ(k))

[
Ai(k)x(k)

+Ad1i

h∑
m=1

αm(k)x(k − τm(k))

+ β(k)Ad2i

∞∑
d=1

µdx(k − d)

+D1iw(k) +Gif(k)

]
y(k) =

r∑
i=1

hi(θ(k))[Cix(k) +D2iw(k)]

x(k) = ψ(k), ∀k ∈ Z−

(5)

where the fuzzy basis functions are given by

hi(θ(k)) =
ϑi(θ(k))
r∑

i=1

ϑi(θ(k))

with ϑi(θ(k)) =
p

Π
j=1

Mij(θj(k)). Where ϑi(θ(k)) ≥ 0, i =

1, 2, . . . , r,
r∑

i=1

ϑi(θ(k)) > 0, and Mij(θj(k)) represents the

grade of membership of θj(k) in Mij . Hence, we have

hi(θ(k)) ≥ 0, i = 1, 2, . . . , r,
r∑

i=1

hi(θ(k)) = 1.

In what follows, we write hi := hi(θ(k)) for brevity.

B. Communication Channel with Packet Dropouts

In this paper, we assume that an unreliable network
medium is present between the physical plant and the fault
detection filter, and the packet dropout phenomenon con-
stitutes another focus of our present research. The signal
received by the fault detection filter can be described by

yf (k) = γ̂(k)y(k) + (1− γ̂(k))yf (k − 1) (6)
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where yf (k) ∈ Rm is the actual measurement signal of y(k)
and γ̂(k) ∈ R is a binary distributed random variable with
Prob {γ̂(k) = 1} = E {γ̂(k)} = γ̄ and Prob {γ̂(k) = 0} =
1− γ̄. In this paper, we assume that the premise variables
θ(k) don’t depend on the stochastic variables α(k), β(k)
and γ̂(k). Also, all the stochastic variables are assumed
to be mutually independent Bernoulli distributed white se-
quences.

Remark 2: The dropout model (6) has been introduced
in [19] to describe the successive packet dropouts. For ex-
ample, if γ̂(k) = 1, we have y(k) = yf (k) which means that
there is no packet dropout; if γ̂(k) = 0 but γ̂(k − 1) = 1,
we have y(k) = yf (k − 1) which means that the measured
output at time point k is missing but one at time point
k − 1 has been received. As shown in [22], it is easy to
further confirm that (6) can be a model for multiple con-
secutive packet dropouts where the latest measurement re-
ceived in the buffers will be utilized if the current measure-
ment is lost during packet transmissions. Such a scheme is
certainly more realistic than the one setting the measure-
ment signals to zero when the current measurements are
lost [6, 8, 25].

C. Fuzzy Fault Detection Filter

As discussed previously, the key step of fault detection
schemes is the construction of a dynamic system called a
fault detection observer/filter, in which the residual signal
is generated in order to decide whether a fault has occurred
or not [28].

In this paper, for the physical plant represented by (1)
and (5), we adopt a fuzzy fault detection filter whose model
is described as follows:

△ Filter Rule i : IF θ1(k) is Mi1 and θ2(k) is Mi2 and
· · · and θp(k) is Mip THEN

x̂(k + 1) = Afix̂(k) +Bfiyf (k)

r(k) = Cfix̂(k) +Dfiyf (k) (7)

where x̂(k) ∈ Rn represents the filter state vector, r(k) ∈
Rl is the so-called residual that is compatible with the
fault vector f(k), and Afi, Bfi, Cfi, Dfi are appropriately
dimensioned filter matrices to be determined. Then, the
overall fuzzy fault detection filter can be represented in
the following form:

x̂(k + 1) =

r∑
i=1

hi

[
Afix̂(k) +Bfiyf (k)

]

r(k) =

r∑
i=1

hi

[
Cfix̂(k) +Dfiyf (k)

]
(8)

Our aim in this paper is to design a fault detection filter
of the form in (7) that makes the error between residual
signal r(k) and fault signal f(k) as small as possible. From
(5), (6) and (8), we have the overall fault detection dynam-

ics governed by the following system:

η(k + 1) =
r∑

i=1

r∑
j=1

hihj

[(
Āij(k) + γ̃(k)Âij

)
η(k)

+
h∑

m=1

(
Ād1mi + α̃m(k)Âd1i

)
η(k − τm(k))

+
(
Ād2i + β̃(k)Âd2i

) ∞∑
d=1

µdη(k − d) (9)

+
(
B̄ij + γ̃(k)B̂ij

)
v(k)

]
e(k) =

r∑
i=1

r∑
j=1

hihj

[(
C̄ij + γ̃(k)Ĉij

)
η(k)

+
(
D̄ij + γ̃(k)D̂ij

)
v(k)

]
(10)

where

η(k) =
[
xT (k) x̂T (k) yTf (k − 1)

]T
,

e(k) = r(k)− f(k), v(k) =
[
wT (k) fT (k)

]T
,

Ād1mi = diag{ᾱmAd1i, 0, 0}, Âd1i = diag{Ad1i, 0, 0},
D̄ij =

[
γ̄DfjD2i −I

]
, Ād2i = diag{β̄Ad2i, 0, 0},

Âd2i = diag{Ad2i, 0, 0}, D̂ij =
[
DfjD2i 0

]
,

C̄ij =
[
γ̄DfjCi Cfj (1− γ̄)Dfj

]
,

Ĉij =
[
DfjCi 0 −Dfj

]
,

Āij(k) =

 Ai(k) 0 0
γ̄BfjCi Afj (1− γ̄)Bfj

γ̄Ci 0 (1− γ̄)I

 ,
Âij =

 0 0 0
BfjCi 0 −Bfj

Ci 0 −I

 ,
B̄ij =

 D1i Gi

γ̄BfjD2i 0
γ̄D2i 0

 , B̂ij =

 0 0
BfjD2i 0
D2i 0

 (11)

with α̃m(k) = αm(k)− ᾱm, β̃(k) = β(k)− β̄, γ̃(k) = γ̂(k)−
γ̄. It is clear that E{α̃m(k)} = 0, E{β̃(k)} = 0, E{γ̃(k)} =

0 and E{α̃2
m(k)} = ᾱm(1 − ᾱm), E{β̃

2
(k)} = β̄(1 − β̄),

E{γ̃2(k)} = γ̄(1− γ̄).
Before formulating the problem to be investigated, we

first introduce the following definition which plays an im-
portant role in deriving our main results in the sequel.
Definition 1: With system (10) and every initial condi-

tions ψ, the fault detection dynamics in (10) is said to be
exponentially mean square stable if, in case of v(k) = 0,
there exist constants δ > 0 and 0 < κ < 1 such that

E
{
∥η(k)∥2

}
≤ δκk sup

i∈Z−
E
{
∥ψ(i)∥2

}
, ∀k ≥ 0

To this end, the fault detection problem to be addressed
in this paper can be described by the following two steps:
Step 1: Generate a residual signal. For system (1), design
a fuzzy fault detection filter in the form of (7) to generate a
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residual signal r(k). Furthermore, the filter is designed so
that the overall fault detection system (10) is exponentially
mean square stable with the following H∞ performance
constraint under zero initial condition:

∞∑
k=0

E{∥e(k)∥2} ≤ γ2
∞∑
k=0

∥v(k)∥2 (12)

where v(k) ̸= 0, and γ > 0 is made as small as possible in
the feasibility of (12).
Step 2: Set up a fault detection measure. In this paper, we
adopt a residual evaluation stage including an evaluation
function J(k) and a threshold Jth of the following form:

J(k) =

{
k=s∑

k=s−L

rT (k)r(k)

} 1
2

, Jth = sup
w∈l2,f=0

E{J(k)}

(13)
where L denotes the length of the finite evaluating time-
horizon. Based on (13), the occurrence of faults can be
detected by comparing J(k) with Jth according to the fol-
lowing rule:

J(k) > Jth =⇒ with faults =⇒ alarm,

J(k) ≤ Jth =⇒ no faults

III. Main results

In this section, the analysis and synthesis problem of
the desired fault detection filter for the T-S fuzzy stochas-
tic systems presented in the previous section is considered.
Before proceeding further, we give the following lemmas
which will be used in establishing our main results.
Lemma 1: [15] LetM ∈ Rn×n be a positive semidefinite

matrix, xi ∈ Rn, and constant ai > 0 (i = 1, 2, . . . ,∞). If
the series concerned are convergent, then we have( ∞∑

i=1

aixi

)T

M

( ∞∑
i=1

aixi

)
≤

( ∞∑
i=1

ai

) ∞∑
i=1

aixiMxi

(14)
Lemma 2: (S-procedure) Let L = LT and H and E be

real matrices of appropriate dimensions with F satisfying
FFT ≤ I, then L +HFE + ETFTHT < 0, if and only if
there exists a positive scalar ε > 0 such that L+ε−1HHT+
εETE < 0, or equivalently, L H εET

HT −εI 0
εE 0 −εI

 < 0 (15)

Lemma 3: [10] For any real matrices Xij for i, j =
1, 2, . . . , r, and Λ > 0 with appropriate dimensions, we have

r∑
i=1

r∑
j=1

r∑
k=1

r∑
l=1

hihjhkhlX
T
ijΛXkl ≤

r∑
i=1

r∑
j=1

hihjX
T
ijΛXij

(16)
For convenience of presentation, we first discuss the nom-

inal system of (10) (that is, without parameter uncertainty
∆Ai) and will eventually extend our main results to the
general case. We have the following analysis result that

serves as a theoretical basis for the subsequent design prob-
lem.
Theorem 1: Consider the nominal fuzzy system of (1)

with given filter parameters and a prescribed H∞ perfor-
mance γ > 0. The nominal fuzzy fault detection system in
(10) is exponentially mean square stable with a disturbance
attenuation level γ if there exist matrices P > 0, Qk > 0
(k = 1, 2, . . . , h) and R > 0 satisfying

ΨT
iiP̌Ψii + Ψ̂T

iiP̌ Ψ̂ii + P̄ii < 0, (17)

(Ψij +Ψji)
T P̌ (Ψij +Ψji) + (Ψ̂ij + Ψ̂ji)

T P̌

×(Ψ̂ij + Ψ̂ji) + 2(P̄ij + P̄ji) < 0 (18)

where

Ǎij =
[
gÂij 0 0 gB̂ij

]T
, Ψ̂ij =

[
ǍT

ij ČT
ij

]T
,

Āij =
[
Āij Ẑ1mi Ād2i B̄ij

]
, g2 = γ̄(1− γ̄),

Cij =
[
C̄ij 0 0 D̄ij

]
, Ψij =

[
ĀT

ij CT
ij

]T
,

Čij =
[
gĈij 0 0 gD̂ij

]T
, P̌ = diag{P, I},

P̄ij = diag{P̂ij ,−γ2I}, P̂ij = diag{Q̄k,Fij , Ǎd2ij},
P̃ = Ih ⊗ P, Ẑ1mi =

[
Ād11i · · · Ād1hi

]
,

Q̄k =
h∑

k=1

(dmax − dmin + 1)Qk + µ̄R− P,

Fij = ǍT
d1iP̃ Ǎd1j − Q̂, Ǎd2ij = g2βÂ

T
d2iPÂd2j −

1

µ̄
R,

Q̂ = diag{Q1, . . . , Qh}, Ǎd1i = ĝm ⊗ Âd1i,

ĝ2m = diag{ᾱ1(1− ᾱ1), . . . , ᾱh(1− ᾱh)},
g2β = β̄(1− β̄). (19)

Proof: Choose a Lyapunov functional candidate as

V (k) =
3∑

i=1

Vi(k) (20)

where

V1(k) = ηT (k)Pη(k),

V2(k) =

∞∑
d=1

µd

k−1∑
τ=k−d

ηT (τ)Rη(τ),

V3(k) =
h∑

j=1

k−1∑
i=k−τj(k)

ηT (i)Qjη(i)

+
h∑

j=1

−dmin∑
m=−dmax+1

k−1∑
i=k+m

ηT (i)Qjη(i)

with P > 0, R > 0, Qj > 0 (j = 1, 2, . . . , h) being matri-
ces to be determined. Then, along the trajectory of system
(10), we have

E{∆V1(k)}

= E

{
r∑

i=1

r∑
j=1

r∑
s=1

r∑
t=1

hihjhsht

[(
Āij + γ̃(k)Âij

)
η(k)

+
h∑

m=1

(
Ād1mi + α̃m(k)Âd1i

)
η(k − τm(k))
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+
(
Ād2i + β̃(k)Âd2i

) ∞∑
d=1

µdη(k − d)

+
(
B̄ij + γ̃(k)B̂ij

)
v(k)

]T
P

[(
Āst + γ̃(k)Âst

)
η(k)

+

h∑
m=1

(
Ād1ms + α̃m(k)Âd1s

)
η(k − τm(k)) +

(
Ād2s

+β̃(k)Âd2s

) ∞∑
d=1

µdη(k − d) +
(
B̄st + γ̃(k)B̂st

)
v(k)

]

−ηT (k)Pη(k)

}
(21)

Next, by applying Lemma 1, it can be derived that

E{∆V2(k)}

≤ E
{
µ̄ηT (k)Rη(k)− 1

µ̄

( ∞∑
d=1

µdη(k − d)

)T

R

×
( ∞∑

d=1

µdη(k − d)

)}
(22)

E{∆V3(k)}

≤ E
{ h∑

j=1

(
ηT (k)Qjη(k)− ηT (k − τ j(k))Qj

×η(k − τ j(k))

)
+

h∑
j=1

(dmax − dmin)η
T (k)Qjη(k)

}
(23)

For notational convenience, we denote

ξ̂(k) =
[
ηT (k) ηT (k − τ)

∑∞
d=1 µdη

T (k − d)
]T
,

ξ(k) =
[
ξ̂
T
(k) vT (k)

]T
, Pij = diag{P̂ij , 0},

η(k − τ) =
[
ηT (k − τ1(k)) · · · ηT (k − τh(k))

]T
,

Aij =
[
Āij Ẑ1mi Ād2i

]
, Âij =

[
gÂij 0 0

]
.

(24)
In the following, we first prove the exponential stability

of the fault detection dynamics system (10) with v(k) = 0.
Considering (20)–(24) and by using Lemma 3, we have

E{∆V (k)}

≤ E
{ r∑

i=1

r∑
j=1

r∑
s=1

r∑
t=1

hihjhshtξ̂
T
(k)

(
AT

ijP

×Ast + ÂT
ijP Âst + P̂is

)
ξ̂(k)

}
≤ E

{ r∑
i=1

h2i ξ̂
T
(k)
(
AT

iiPAii + ÂT
iiP Âii + P̂ii

)
ξ̂(k)

+
1

2

r∑
i,j=1,i<j

hihj ξ̂
T
(k)

[(
Aij +Aji

)T

P

(
Aij +Aji

)

+

(
Âij + Âji

)T

P
(
Âij + Âji

)
+ 2(P̂ij + P̂ji)

]
ξ̂(k)

}
.

(25)

By utilizing the Schur Complement Lemma [1], we know
that E{∆V (k)} < 0 if (17) and (18) are true. Furthermore,
along the same line of the proof for Theorem 1 in [25], it can
be concluded that the discrete-time nominal fuzzy system
of (10) with v(k) = 0 is exponentially mean square stable.

Now, let us establish theH∞ performance of the nominal
fuzzy system of (10). Assume zero initial condition and
introduce the following index:

J(n) = E
n∑

k=0

[
eT (k)e(k)− γ2vT (k)v(k)

]
≤ E

n∑
k=0

[
eT (k)e(k)− γ2vT (k)v(k) + ∆V (k)

]
Along the trajectory of the nominal system of (10) and
taking (11) and (24)–(25) into consideration, we have

J(n) ≤ E
{ n∑

k=0

r∑
i=1

r∑
j=1

r∑
s=1

r∑
t=1

hihjhshtξ
T (k)

(
ΨT

ijP̌Ψst

+Ψ̂T
ijP̌ Ψ̂st + P̄is

)
ξ(k)

}
≤ E

{
n∑

k=0

{
r∑

i=1

h2i ξ
T (k)

(
ΨT

iiP̌Ψii + Ψ̂T
iiP̌ Ψ̂ii

+P̄ii

)
ξ(k) +

1

2

r∑
i,j=1, i<j

hihjξ
T (k)

[(
Ψij

+Ψji

)T
P̌
(
Ψij +Ψji

)
+
(
Ψ̂ij + Ψ̂ji

)T
P̌

×
(
Ψ̂ij + Ψ̂ji

)
+ 2(P̄ij + P̄ji)

]
ξ(k)

}}
(26)

which leads to J(n) < 0 by considering Theorem 1. Letting
n→ ∞, we obtain

∞∑
k=0

E
{
∥e(k)∥2

}
≤ γ2

∞∑
k=0

∥v(k)∥2

which is equivalent to the inequality in (12), and therefore
the proof of Theorem 1 is complete.

Having established the analysis results, we are now in a
position to deal with the fuzzy fault detection filter design
problem.

Theorem 2: Consider the nominal fuzzy system of (10)
and let γ > 0 be a given scalar. A desired full-order fault
detection filter of the form (7) exists if there exist matrices
P > 0, R > 0, Qk > 0 (k = 1, 2, . . . , h), matrices Xi and
Ki satisfying

Ω1 =

[
P̄ii ∗
Γii −P̌

]
< 0, (i = 1, 2, . . . , r) (27)

Ω2 =

[
2(P̄ij + P̄ij) ∗
Γij + Γji −P̌

]
< 0,

(1 ≤ i < j ≤ r) (28)
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where

Γ11ij =

[
PÂ0i +XiR̂1j PẐ1mi

KiR̂1j 0

]
,

Γ12ij =

[
PĀd2i PB̄0i + γ̄XiR̂2j

0 Ê0 + γ̄KiR̂2j

]
,

Γ21ij =

[
gPÂ1i + gXiR̂4j 0

gKiR̂4j 0

]
,

Γ22ij =

[
0 gPD̂0i + gXiR̂2j

0 gKiR̂2j

]
,

R̂1j =

[
0 I 0
γ̄Cj 0 (1− γ̄)I

]
, Γij =

[
Γ11ij Γ12ij

Γ21ij Γ22ij

]
,

Â0i =

 Ai 0 0
0 0 0
γ̄Ci 0 (1− γ̄)I

 , Â1i =

 0 0 0
0 0 0
Ci 0 −I

 ,
B̄0i =

 D1i Gi

0 0
γ̄D2i 0

 , D̂0i =

 0 0
0 0
D2i 0

 ,
R̂2j =

[
0 0
D2j 0

]
, R̂4j =

[
0 0 0
Cj 0 −I

]
,

Ê0 =
[
0 −I

]
, Ê =

[
0 I 0

]T
, P̌ = I2 ⊗ P̌

and P̄ii, P̌ are defined in Theorem 1. Furthermore, if
(P,R,Qk, Xi,Ki) is a feasible solution of (27)–(28), then
the fault detection filter parameters in the form of (7) are
given as follows:[
Afi Bfi

]
=
(
ÊTPÊ

)−1
ÊTXi,

[
Cfi Dfi

]
= Ki (29)

Proof: In order to avoid partitioning the positive
definite matrices P , Qk and R, we rewrite the parameters
in Theorem 1 in the following form:

Āij = Â0i + ÊLiR̂1j , Âij = Â1i + ÊLiR̂4j ,

B̄ij = B̄0i + γ̄ÊLiR̂2j , B̂ij = D̂0i + ÊLiR̂2j ,

C̄ij = KiR̂1j , Ĉij = KiR̂4j ,

D̄ij = Ê0 + γ̄KiR̂2j , D̂ij = KiR̂2j (30)

where Li = [Afi Bfi]. Noticing (30), we can rewrite (17)
and (18) as follows:[

P̄ii ∗
Γ̂ii −P̌−1

]
< 0, (i = 1, 2, . . . , r) (31)[

2(P̄ij + P̄ij) ∗
Γ̂ij + Γ̂ji −P̌−1

]
< 0, (1 ≤ i < j ≤ r) (32)

where

Γ̂ij =

[
Γ̂11ij Γ̂12ij

Γ̂21ij Γ̂22ij

]
,

Γ̂11ij =

[
Â0i + ÊLiR̂1j Ẑ1mi

KiR̂1j 0

]
,

Γ̂12ij =

[
Ād2i B̄0i + γ̄ÊLiR̂2j

0 Ê0 + γ̄KiR̂2j

]
,

Γ̂21ij =

[
gÂ1i + gÊLiR̂4j 0

gKiR̂4j 0

]
,

(33)

Γ̂22ij =

[
0 gD̂0i + gÊLiR̂2j

0 gKiR̂2j

]
(34)

Pre- and post multiplying the inequalities (31) and (32) by

diag{I, P̌} and letting Xi = PÊLi, we can obtain (27) and
(28) readily, and the proof is then complete.
In the following, the results obtained for nominal systems

will be extended to fuzzy system with uncertainty described
in (1).
Theorem 3: Consider the uncertain fuzzy fault detection

system (10) and let γ > 0 be a given scalar. A desired full-
order fault detection filter of the form (7) exists if there
exist matrices P > 0, R > 0, Qk > 0 (k = 1, 2, . . . , h),
matrices Xi, Ki and positive constant scalars εij > 0 sat-
isfying  Ω1 ∗ ∗

H̄T
ai −εiiI ∗

εiiEa 0 −εiiI

 < 0, (i = 1, 2, . . . , r)(35)

 Ω2 ∗ ∗
H̄T

ai + H̄T
aj −εijI ∗

εijEa 0 −εijI

 < 0,

(1 ≤ i < j ≤ r) (36)

where

H̄ai =
[
0 0 0| 0 |ĤT

ai 0| 0 0
]T
,

Ea =
[
Êa 0 0| 0 |0 0| 0 0

]
,

Ĥai =
[
HT

ai 0 0
]T
, Êa =

[
Ea 0 0

]
(37)

Ω1 and Ω2 are defined in Theorem 2. Moreover, if
(P,R,Qk, Xi,Ki, εij) is a feasible solution of (35)–(36),
then the fault detection filter parameters in the form of
(7) are given as follows:[
Afi Bfi

]
=
(
ÊTPÊ

)−1
ÊTXi,

[
Cfi Dfi

]
= Ki (38)

Proof: Replace Ai in (27)–(28) with Ai+HaiF (k)Ea

and rewrite (27)–(28) in the following form

Ω1 + H̄aiF (k)Ea + E
T

a F
T (k)H̄T

ai < 0,

Ω2 + (H̄ai + H̄aj)F (k)Ea + E
T

a F
T (k)(H̄ai + H̄aj)

T

< 0

where the corresponding parameters have been defined in
(37). According to Lemma 2, we can easily obtain (35) and
(36), and the proof is then complete.
Remark 3: In Theorem 3, the fuzzy fault detection filter

is designed such that the overall fault detection dynamics is
exponentially stable in the mean square and, at the same
time, the error between the residual signal and the fault
signal is made as small as possible. Sufficient conditions
are first established for the existence of the desired fuzzy
fault detection filters, and then the corresponding solvabil-
ity conditions for the desired filter gains are established.
Also, the optimal performance index for the addressed ro-
bust fuzzy fault detection problem can be obtained by solv-
ing an auxiliary convex optimization problem. Note that
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the sufficient conditions involve the occurrence probabili-
ties of the discrete time-delays, distributed time-delays and
packet dropouts, thereby reflecting the nature of the ran-
domly occurring phenomena.

IV. An Illustrative Example

In this section, we use a nonlinear pendulum to demon-
strate the effectiveness and applicability of the proposed
method. The pendulum system is modified from [7] by
adding one damping term for stability of the system. It is
assumed that two components of the system (that is, an-
gle and angular velocity) are randomly perturbed by time
delays. The equations of motion of the pendulum are de-
scribed as follows:

θ̇(t) = λθ̄(t) + α1(t)(1− λ)θ̄(t− d(t)) + α2(t)(1− λ)

×θ(t− d(t)) + β(t)

∫ t

−∞
λ̄(t− s)θ(s)ds

˙̄θ(t) = −gsin(θ(t)) + (b/lm)[λθ̄(t) + (1− λ)θ̄(t− d(t))]
2
3 l −

a
2mlcos

2(θ(t))

− (aml/4)[λθ̄(t) + (1− λ)θ̄(t− d(t))]2sin(2θ(t))
2
3 l −

a
2mlcos

2(θ(t))

+w1(t)

y(t) = sin(θ(t)) + λθ̄(t) + w2(t) (39)

where θ denotes the angle of the pendulum from the ver-
tical, θ̄ is the angular velocity, g = 9.8 m/s2 is the gravity
constant, m is the mass of the pendulum, a = 1/(m+M),
M is the mass of the cart, l is the length of the pendulum,
b is the damping coefficient of the pendulum around the
pivot, and w1 and w2 are the disturbance applied to the
cart and measurement noise, respectively. In this simula-
tion, the pendulum parameters are chosen as m = 2 kg,
M = 8 kg, l = 0.5 m and b = 0.7 Nm/s, and the retarded
coefficient λ = 0.6.
Letting x1(t) = θ(t), x2(t) = θ̄(t), we linearize the plant

around the origin x = (±π/2) and x = (±π/3), and con-
sider the differences between the linearized local model and
the original nonlinear model as the uncertainties. By dis-
cretizing the plant with a sampling period 0.05 s, we obtain
the following discrete-time T-S fuzzy model:

x(k + 1) =
3∑

i=1

hi(θ(k))

[
(Ai +∆Ai(k))x(k) +Ad1i

×
h∑

m=1

αm(k)x(k − τm(k)) + β(k)Ad2i

×
∞∑
d=1

µdx(k − d) +D1iw(k)

]

y(k) =

3∑
i=1

hi(θ(k))[Cix(k) +D2iw(k)]

The model parameters are given as follows:

A1 =

[
1.000 0.0450
0.8558 0.7894

]
, A2 =

[
1.000 0.0450
0.6315 0.8018

]
,

A3 =

[
1.000 0.0450

−0.4679 0.8055

]
,

Ad11 = Ad12 = Ad13 =

[
0.14 0.02
0 0.094

]
,

Ad21 = Ad22 = Ad23 =

[
0 0.12
0.1 0.02

]
,

D11 = D12 = D13 =
[
0 1

]T
, C1 =

[
0.9949 0.9

]
,

C2 =
[
0.8270 0.9

]
, C3 =

[
0.6366 0.9

]
,

Ha1 = Ha2 = Ha3 =
[
0.2 0.01

]T
, Ea =

[
0 2

]
,

F (k) = sin(k), D21 = D22 = D23 = 1

and the membership functions are shown in Figure 2. As-
sume that the time-varying communication delays τ1(k)
and τ2(k) are random variables whose elements are uni-
formly distributed in the interval [2, 6], and

ᾱ1 = E {α1(k)} = 0.8, ᾱ2 = E {α2(k)} = 0.6,

β̄ = E {β(k)} = 0.9.

Choosing the constants µd = 2−3−d, we can easily find
that µ̄ =

∑∞
d=1 µd = 2−3 <

∑∞
d=1 dµd = 2−2 < ∞, which

satisfies the convergence condition (4).
Assume that there are faults on the angular velocity of

the pendulum, with fault matrices given by

G1 =
[
0.9887 −0.0180

]T
, G2 =

[
0.9033 −0.0172

]T
,

G3 =
[
0.6237 0.0180

]T
Let the probability of γ̂(k) be given by γ̄ = 0.7. Applying

Theorem 3, we can obtain the desired H∞ filter parameters
as follows:

Af1 =

[
−0.3879 −0.4043
−0.3840 0.4032

]
,

Af2 =

[
0.4279 −0.4243
−0.4840 −0.5132

]
,

Af3 =

[
0.3868 0.4093
0.5420 0.5132

]
,

Bf1 =
[
−0.4690 −0.4690

]T
,

Bf2 =
[
0.5679 0.4420

]T
,

Bf3 =
[
−0.3868 −0.3420

]T
,

Cf1 =
[
−0.7846 −0.6585

]
,

Cf2 =
[
−0.7579 −0.5664

]
,

Cf3 =
[
−0.5052 0.4335

]
,

Df1 = −3.5656, Df2 = −1.3585, Df3 = −0.1792

with the optimized performance index γ∗ = 1.1598.
Now, let us show how the probabilities in the measure-

ment equation (6) affect the H∞ performance of the fault
detection filtering process. In figure 3, after 100 Monte
Carlo simulations, the plot of the average optimal distur-
bance attenuation level γ∗ versus the probability of packet
dropouts is provided. It can be seen clearly that a better
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Fig. 3. The probability of packet dropouts versus the optimal per-
formance γ∗

performance can be achieved with less missing measure-
ments.
To further illustrate the effectiveness of the designed

fault detection filter, for k = 0, 1, . . . , 150, let the fault
signal f(k) be given as

f(k) =

{
1, 50 ≤ k ≤ 100
0, else

(40)

First, in the case that the initial conditions ψ(k), ∀k ∈
Z−, ψ ∈ R2 are 200 random state vectors whose elements
are uniformly distributed in the interval [0, 0.1], τ1(0) = 3,
τ2(0) = 4, x(0) = [π/8 0]T , x̂(0) = [0 0]T , yf (−1) = 0,
T = 20 and the external disturbance is w(k) = 0. The
residual signal r(k) and evolution of residual evaluation
function J(k) are shown in Figure 4 and Figure 5, respec-
tively, which indicate that the designed filter can detect the
fault effectively when it occurs.
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Fig. 4. Residual signal without w(k)
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Fig. 5. Evolution of residual evaluation function J(k) without w(k)

Next, assume that the disturbance is given by

w(k) =

{
0.5× rand[0, 1], 30 ≤ k ≤ 130

0, else
(41)

where the rand function generates arrays of random num-
bers whose elements are uniformly distributed in the inter-
val [0, 1].
The rand distribution of successive packet dropout num-

bers is shown in Figure 6 from which we can see that if the
number on the Y-axis is 0, it means that the current mea-
surement output of the physical plant is transmitted to
the fault detection filter successfully. Furthermore, when
the number is i (i = 1, 2, . . .), it means that we have ex-
perienced i successive packet dropouts and the received
measurement at the time k− i will be used for current esti-
mation. The residual signal r(k) and evolution of residual
evaluation function J(k) are shown in Figure 7 and Fig-
ure 8, respectively. It can be seen that the residual not
only can reflect the fault in time, but also detect the fault
without confusing it with the disturbance w(k).
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Fig. 7. Residual signal with w(k)

Remark 4: In the simulation, we increase the magnitude
of w(k) in equation (41) with hope to see how a larger dis-
turbance would influence the performance of the fault de-
tection filter. For example, we take w(k) as 1 × rand[0, 1]
and 2× rand[0, 1], and then show the corresponding evolu-
tions of residual evaluation function J(k) in Figure 9 and
Figure 10, respectively. For simulation purpose, the thresh-
old is selected as Jth = supf=0 E{

∑200
k=0 r

T (k)r(k)}1/2 and,
accordingly, it can be obtained that Jth = 1.2643 in Figure
9 after 200 Monte Carlo simulations with no faults. From
Figure 9, it can be seen that 1.1036 = J(111) < Jth <
J(112) = 1.3657, which means that the fault can be de-
tected in 12 time steps after its occurrence. Similarly, we
can conclude from Figure 10 that the fault can be detected
in 21 time steps after its occurrence. From simulation re-
sults, it can be clearly observed that, the smaller w(k) we
have, the smaller the threshold we obtain and the faster
the fault detection will take.
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Fig. 8. Evolution of residual evaluation function J(k) with w(k) in
equation (41)
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Fig. 9. Evolution of residual evaluation function J(k) with w(k) =
1× rand[0, 1], 30 ≤ k ≤ 130

V. Conclusions

In this paper, we have addressed the robust fault de-
tection problem for a class of uncertain discrete-time T-S
fuzzy systems comprising randomly occurred mixed time-
delays and successive packet dropouts. The mixed time-
delays involve both the multiple time-varying discrete de-
lays and the infinite distributed delays. The successive
packet dropouts are modeled by a stochastic variable sat-
isfying the Bernoulli random binary distribution. A fuzzy
fault detection filter has been designed such that the fault
detection dynamics is exponentially stable while preserving
a guaranteed performance. A practical simulation example
has been used to demonstrate the effectiveness of the fault
detection techniques presented in this paper.
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Fig. 10. Evolution of residual evaluation function J(k) with w(k) =
2× rand[0, 1], 30 ≤ k ≤ 130
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