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Jump-sparse and sparse recovery using Potts
functionals

Martin Storath, Andreas Weinmann, Laurent Demaret

Abstract—We recover jump-sparse and sparse signals from
blurred incomplete data corrupted by (possibly non-Gaussian)
noise using inverse Potts energy functionals. We obtain analytical
results (existence of minimizers, complexity) on inverse Potts
functionals and provide relations to sparsity problems. We
then propose a new optimization method for these functionals
which is based on dynamic programming and the alternating
direction method of multipliers (ADMM). A series of experiments
shows that the proposed method yields very satisfactory jump-
sparse and sparse reconstructions, respectively. We highlight the
capability of the method by comparing it with classical and recent
approaches such as TV minimization (jump-sparse signals),
orthogonal matching pursuit, iterative hard thresholding, and
iteratively reweighted /' minimization (sparse signals).

Index Terms—Jump-sparsity, sparsity, inverse Potts functional,
piecewise constant signal, denoising, deconvolution, incomplete
data, segmentation, ADMM.

I. INTRODUCTION

In this article we aim at reconstructing jump-sparse (and
sparse) signals * € R™ from linear noisy measurements b €
R™ (or C™) given by

b = AT + noise,

where A is a (general) m x n matrix. The reader may think
of A being a Toeplitz matrix modeling blur or a Fourier
matrix, or a combination of both. In particular, we deal with
incomplete data meaning that the number of measurements
m 1is significantly smaller than the size n of the original
signal. Since this reconstruction problem is in general ill-
posed it requires regularization. This is usually achieved by
minimizing a suitable energy functional which expresses a
tradeoff between data-fidelity and regularity. In view of the
jump-sparsity of the underlying signal, the number of jumps
IVzllo = |{¢ : @i # =z;y+1}| is a natural and powerful
regularizing term [1], [2], [3], [4], [5]. The corresponding
minimization problem, called inverse Potts problem (iPotts),
reads

P, (z) =v||Vzllo + ||Az — b[|) — min. (1)

Here the parameter v > 0 controls the tradeoff between jump-
sparsity and data fidelity which is measured by some ¢P norm,
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p > 1. If the noise is Gaussian then p = 2 is the natural
choice whereas p = 1 is the better choice for Laplacian or
impulsive noise. (We use the notation F'(x) — min to denote
the minimization problem for the functional F.)

The inverse Potts functional is not convex. To avoid the
resulting difficulties, frequently the total variation (TV) penalty
V|1 = >, |#i11—x;| is used instead for piecewise constant
signal restoration [6], [7], [8], [9], [10], [11], [12]. The TV
problem can be solved using convex optimization and the
algorithms converge to a global minimum [13], [14], [15].
However, the minimizers of the TV problem in general differ
from those of the inverse Potts problem. It turns out that min-
imization of the Potts functional yields genuine jump-sparse
signals whereas TV minimization does so only approximately,
see for instance Figure 1.

In this work, we are first concerned with the question of
existence of minimizers which is more involved than it seems
at first glance. In fact, we will see that the finite dimensional
inverse Potts problem (1) has a minimizer whereas its contin-
uous time counterpart in general need not have a minimizer
at all. We further show that the inverse Potts problem is NP-
hard; thus exact minimizers cannot be computed efficiently.
Accepting this fact, we develop an ADMM optimization strat-
egy which shows very good recovery performance in practice.
Furthermore, we shed light on the relation between the jump-
sparsity problem (1) and the sparse recovery problem. Let us
be more precise.

A. Proposed ADMM approach to the inverse Potts problem

We approach the inverse Potts problem (1) using the al-
ternating direction method of multipliers (ADMM). ADMM
strategies have recently become very popular in convex op-
timization especially TV minimization [16], [17], [18], [19],
[20]. They have also shown their usefulness in non-convex
optimization [18], [21]. We propose the iteration
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where the parameter py, is updated by pg41 = 7 with fixed
7 > 1. The key point is that each subproblem of this iPotts-
ADMM algorithm is numerically tractable. The first one is
a classical Potts problem (equation (1) with A = id) which
can be solved fast and exactly in the univariate case. For
multivariate data, such as images, we use the strategy of [2],
[3]. The second subproblem consists of minimizing a classical
Tikhonov functional. When p = 2, we solve a normal equation



and, for p = 1, we use a fast semismooth Newton method
[22]. We further show that our algorithm converges. Since
the inverse Potts problem is NP-hard, we cannot expect that
it converges to a global minimizer of (1) in general, but the
numerical results are very satisfactory.

B. Inverse Potts problems and sparsity

The inverse Potts problem is closely connected to the
“Lagrangian formulation” of the sparse recovery problem

Sy(@) =7 llzllo + [[Az = bl[}; — min. )

The formulation (2) has been considered in [23], [24], for
instance. General references concerning sparsity are the books
[25], [26], [27] where also a variety of applications may be
found in.

As with the inverse Potts problem and TV minimization,
one can replace the number of non-zero entries ||x||o by the
absolute sum ) . |x;| to obtain a convex relaxation of the
sparsity problem (2) called basis pursuit denoising (BPDN) or
¢'-minimization. It is one topic of compressed sensing [28],
[29], [30] to clarify under which conditions a minimizer of
the ¢!-functional minimizes the sparsity problem (2). Positive
answers (with a high probability) are obtained under quite
restrictive assumptions on the matrix A such as the restricted
isometry property [31]. If such conditions are not met the
solutions of BPDN are in general not minimizers of (2).
Further related work replaces the jump-penalty ||z|/o by the
non-convex functionals [|z||¢ with 0 < ¢ <1 [24], [32], [33].

In this work, instead of using relaxations, we transform the
sparsity problem (2) to an inverse Potts problem of the form
(1). We show that this can be done for all data fidelity terms
based on the p-norm with p > 1. Thus we may approach
the sparsity problem (2) using the proposed iPotts-ADMM
algorithm.

An approach based on a transformation which is in a certain
sense converse to ours is the one in [34]. There, Blake-
Zisserman problems (which are certain discrete Mumford-
Shah problems) with ¢2 data terms are transformed into
separable sparsity type problems which are then approached
by iterative thresholding algorithms.

C. Applications and numerical experiments

We apply the proposed iPotts-ADMM algorithm to recon-
struct jump-sparse signals, which arise in various applications
such as stepping rotations of bacterial flagella [35], the cross-
hybridization of DNA [36], [37], [38], single-molecule fluo-
rescence resonance energy transfer [39], and MALDI imaging
[40]. Here, we recover jump-sparse signals from indirect
measurements, for example from blurred data or Fourier data.
The measurements are incomplete and corrupted with noise.
The noise in our examples is Gaussian noise, Laplacian
noise, or impulsive noise. The iPotts-ADMM algorithm is
capable of recovering jump sparse signals almost perfectly
from a reasonable level of noise, and gives in average higher
reconstruction qualities than TV minimization.

We further apply the iPotts-ADMM based method to sparse
recovery problems, which for example appear in source lo-
calization [41] or neuroimaging [42]. As for jump sparse
signals we consider blurred data under different types of
noise. In our numerical experiments, we achieve similarly
good results as for jump-sparse signals. We highlight the
capability of our method by comparing it with orthogonal
matching pursuit [43], [44], [45], basis pursuit denoising [46],
iterative hard thresholding [23] and iteratively reweighted /!
minimization [5], which are the state-of-the-art approaches to
sparse recovery.

In order to guarantee reproduciblity an implementation of
our algorithms is freely available at http://pottslab.de.

D. Outline of the paper

We start out to formulate our theoretical results on the
inverse Potts problem in Section II. In Section III, we derive an
ADMM algorithm for the inverse Potts problem. In Section IV
and Section V, we provide numerical experiments; Section IV
deals with jump-sparse signals whereas, in Section V, we
consider sparse signals. Finally, we supply the proofs in
Section VI.

II. INVERSE POTTS PROBLEMS AND THEIR RELATION TO
SPARSITY

We start our analysis of the inverse Potts problem by
considering the question of existence of minimizers. It is
remarkable that there is a significant difference between the fi-
nite dimensional discrete time case and its infinite dimensional
continuous time counterpart. More precisely, we obtain a
positive answer for the discrete time problem (1) but a negative
answer for the corresponding continuous time problem.

Theorem 1. The inverse Potts problem (1) has a minimizer.

The proof of Theorem 1 is given in Subsection VI-A. It
uses the compactness of the closed unit ball and the lower
boundedness of an injective linear mapping which are features
of finite dimensional spaces. Thus it does not carry over to
the infinite dimensional continuous time case. We note that
the existence of minimizers for Blake-Zisserman functionals
with ¢2 data term has been shown in [34]. For ¢2 data terms,
modifications of the proofs of [34] would also apply to our
setting. However, for general /P data term, the approach of
[34] does not carry over.

The next theorem states that the continuous time counterpart
of Theorem 1 is false in general. The continuous time coun-
terpart of (1) is obtained by replacing the finite dimensional
signal and data spaces by LP function spaces and the matrix
A by a bounded operator A between those function spaces.

Theorem 2. There are linear operators A and data b in LP,
1 < p < oo, such that the continuous time inverse Potts
problem with respect to A and b does not have a minimizer.

The proof of Theorem 2 is given in Subsection VI-A. The
explicit counter-examples we give are convolution operators
which are in fact important from a practical point of view.
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Fig. 1: The original signal (dashed line) is convolved by a Gaussian kernel of standard deviation 6 which m = 138 measurements are randomly selected from.
The resulting data is corrupted by different types of noise (left). The total variation method (TV) mainly reconstructs the constant parts but adds transitional
points in between the plateaus for Gaussian and Laplacian noise. The iPotts-~ADMM recovers the true signal almost perfectly; in particular, the correct number
of jumps. For impulsive noise, the iPotts-ADMM and the TV method perform equally well.

The next natural step after showing the existence of min-
imizers (in the discrete case) is to clarify the complexity of
computing such a minimizer. We obtain the following result.

Theorem 3. The inverse Potts problem (1) is NP hard.

As a consequence, a fast exact algorithm is not available
(unless P = NP) and one has to resort to approximative
strategies (see Section III). The proof of Theorem 3 is given
in Subsection VI-B.

Finally, we are interested in the relations between sparsity
problems and univariate inverse Potts problems. We first
consider the sparsity problem (2). We find a corresponding
univariate inverse Potts problem whose minimizers are directly
related to the minimizers of the initial sparsity problem. We
use this relation in Section V to apply our algorithm to sparsity
problems.

Theorem 4. Let z* € R"" be a minimizer of the inverse
Potts functional associated with the matrix B = AV, i.e.,

o” €arg min 7|[Vallo + || Bz — bl 3)

Then u* = Vx* minimizes the sparsity problem (2) related to
the matrix A and data b.

We obtain a converse result for p = 2 (still for the univariate
setting). The relations between the matrices A and B and
between the data can be given explicitly but are not as simple
as above. A similar relation has been used in [34] in the
context of Blake-Zisserman functionals. The construction does
not work for general p # 2 and it is not clear to us how to
get a converse result when p # 2.

Theorem 5. For the inverse Potts problem (1) associated with
the matrix A and data b we consider the sparsity problem
associated with the matrix B = A’ T and data b'. Here V+
is the pseudo-inverse of the discrete difference operator given
by (24). The modified data A’ and V' are given in terms of A
and b by (29) and (31), respectively. Let u* be a minimizer of
the sparsity problem with respect to B,V ,i. e.,

u* € arg min vllullo + | Bu —V'[[3. €
u€eRn—1

Then z* = Vtu* + pu(VTu*)e (with u given by (27)) is a
solution of the inverse Potts problem (1) associated with A, b.

The proofs of Theorem 4 and Theorem 5 are given in
Subsection VI-B.



III. MINIMIZATION OF THE POTTS FUNCTIONAL USING
THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS

In this section, we present our iterative approach to the
inverse Potts problem (1).

A. A new ADMM algorithm for the inverse Potts problem

The inverse Potts problem is equivalent to the bivariate
constrained optimization problem

Y Vullo + || Av —bl|7

u—v=0.

minimize
: ®)

subject to
We incorporate the constraint v — v into the target functional
to obtain the unconstrained problem

L/;(’LL,’U, )‘) :’-YHVUHO + <A7u - U>

. 6)
—|—%Hu—v|\§+ HAv—ng—>m1n. (

The parameter ;1 > 0 regulates the coupling of u and v.
The dual variable A is an n-dimensional vector of Lagrange
multipliers. Equation (6) is called the augmented Lagrangian
of (5). Completing the square in the second and third term of
(6) yields

Ly (u, v, A) =3[ Vullo = 511513

u \ » (N
+ Ellu—v+ EHQ + | Av — [P,

In order to minimize the augmented Lagrangian (7) we use the
alternating direction method of multipliers (ADMM), see e.g.
[18]. In the ADMM iteration we first fix v and A and minimize
L, (u,v, X) with respect to w. Then we minimize L, (u, v, \)
with respect to v, keeping u and A fixed. The third step is the
update of the dual variable A. Thus, the alternating direction
method of multipliers for the inverse Potts problem (1) reads

k
v =20,

k
(W 4+ 23,

Le argm&n’y”VUHo + Ellu—(
oFt! = argmin [[Av — |2 + 4o —
v

)\k+1 _ /\k +u(uk+1 —

k+1).
®)
The crucial point is that both subproblems appearing in the
first and the second line of (8) are computationally tractable
(for p € [1,00]). The first subproblem is the minimization
of a classical Potts problem which we elaborate on in Sub-
section III-B. The second subproblem is the minimization
of a classical Tikhonov-type problem which we explain in
Subsection III-C.
We initialize the iteration with a small positive coupling
parameter o > 0 and increase it during the iteration by a
factor 7 > 1. Hence, p is given by the geometric progression

N:/ik;ZTk'/iu

This assures that u and v can evolve quite independently at
the beginning and that they are close to each other at the end
of the iteration. We stop the iteration when the norm of u —v
falls below some tolerance. Our approach to the inverse Potts
problem is summed up in Algorithm 1.

We have the following convergence result, whose proof is
given in Subsection VI-C.

Algorithm 1: iPotts-ADMM
Input: Data b € R™, model parameter v > 0, measurement
matrix A € R™*"
Output: Computed result © € R™ to the inverse Potts problem

ey

begin
v A"b; o po; A+ 0;
repeat
u < Minimizer of classwal L?-Potts functlonal ©)
with data d = v — ; and parameter § = —;
v < Solution of Tikhonov problem (11) w1th data b,
offset vector w = u + % and parameter £;
A= A4 p(u—v);
BT
until [|u — v[|3 < TOL;

end

Theorem 6. The ADMM iteration (8), and thus Algorithm 1,
converges.

Although we cannot expect convergence to a global min-
imum for the NP-hard inverse Potts problem, we see in the
experimental section that Algorithm 1 gives very satisfactory
reconstruction results.

In our experiments, reasonable numerical values for the
parameters in Algorithm 1 are ;1o = -107% as initial coupling,
7 = 1.05 for the increment of the coupling, and TOL = 10~
for the stopping tolerance.

B. Minimization of the classical Potts subproblem

The first subproblem of the ADMM iteration (8) is a
classical L2-Potts problem of the form

Pi(u) =6 [[Vullo +[lu— f[|3 — min ©)

for parameter § = T and data f = v* — )‘k
For univariate data this problem can be solved fast and
exactly using dynamic programming [47], [48], [49], [S0]. The
basic idea is that a minimizer of the Potts functional for data
(f1, ..., fr) can be computed in polynomial time provided that
minimizers of the partial data (f1), (f1, f2), <oy (f1,0s fr—1)
are known. The corresponding procedure works as follows.
We denote the respective minimizers for the partial data by
u', u2, ..., "' In order to compute a minimizer for data
(fi,..., fr), we create a set of r minimizer candidates v?, ...,
v", each of length r. These minimizer candidates are given by

U (10)

v =u 7M[£,T])7

Length r—/¢41

y e,r]s -

where u® is the empty vector and Hpe,r) denotes the mean

value of data fi,; = (fe, ..., f). Among these candidates vt
one with the least Potts functional value is a minimizer for
the data f[; ,). The dynamic program for the classical Potts
problem (i.e., the recursive computation of u™ using (10)) can
be performed in O(n?) time and O(n) space complexity [49].
There are strategies to prune the search space which speed up
the algorithm in practice [S1], [52].

For multivariate data, we cannot solve the first subproblem
of our ADMM algorithm exactly in reasonable time because
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Fig. 2: Reconstruction of a jump-sparse signal using only every second frequency of the Fourier spectrum. Data is corrupted by Gaussian noise (¢ = 0.05).
The peak signal-to-noise-ratio of inverse Potts reconstructions are significantly higher than those of the TV reconstructions. The two plots on the righthand
side show the reconstruction results corresponding to the optimal regularization parameter with respect to the PSNR (v = 0.21 for TV and v = 0.02 for

iPotts).

the classical Potts problem (9) is NP-hard in two dimensions
[3]. However, there exist well-working practical approaches
based on graph cuts. We here use the max-flow/min-cut based
algorithm of the library GCOptimization 3.0 [3], [53],
[54].

C. Minimization of the Tikhonov subproblem

The second subproblem of the ADMM iteration (8) is a
classical Tikhonov problem with LP data fitting of the form

(1)

where the offset vector w is given by w = uf*t1 + Z\TIZ
The problem is convex for all p € [1,00]. Thus it can
be solved efficiently using convex optimization. We briefly
describe minimization strategies for the most relevant cases
p=1and p=2.

For p = 2, the solution is explicitly given by the solution
of the normal equation

A*A 4 B jd)y = Beyftl 4 1R 4 A%,
2 2 2

Bellv — w||§ + || Av — b||£ — min,

12)

Here id denotes the identity matrix and A* denotes the
transposed of the conjugate. As the time complexity of solving
(12) is O(n?) in general, the solution of (12) is the most
expensive step in the ADMM iteration since the classical
univariate Potts problem is in O(n?). However, if A*A is
a bandmatrix or if A*A can be diagonalized efficiently then
the system (12) can be solved fast and we are thus able to
deal with large data sizes. For instance, if Ax describes the
(circular) convolution of x with some vector h, i.e., Ax = hxx
then the solution of the normal equation is given by

~

1 T
[Bf? + 2
where r denotes the right hand side of (12).

For p = 1 the minimization of the Tikhonov problem
(11) is more challenging because the L' data term is not
differentiable. Nevertheless, the problem can be treated by
convex optimization. We use the approach proposed in [22].
There, the dual problem of (11) is solved iteratively by a
semismooth Newton method, which converges superlinearly.
The time complexity of every iteration depends on the number
of measurements since an m x m linear system is solved in
each iteration.

IV. APPLICATIONS TO JUMP-SPARSE RECOVERY AND
NUMERICAL EXPERIMENTS

In this section, we apply the inverse Potts ADMM (Algo-
rithm 1) to the reconstruction of jump-sparse signals from
blurred, noisy data. We consider both reconstruction from
Fourier data and deconvolution under Gaussian, Laplacian
or impulsive noise. (We refer to Appendix A for a formal
description of the noise models.) We compare the results with
the minimizers of the rotal variation (TV) problem given by

WVl + [[Au = flI§ — min. (13)

For the solution of this convex problem, we use the primal-
dual method of [14] with 10 000 iterations.

The experiments were conducted on an Apple MacBook
Pro, with Intel Core 2 Duo 2.66 GHz and 8 GB RAM.
Typical runtimes are between 1 and 5 seconds for the one-
dimensional experiments, and between 5 and 10 minutes for
two dimensions.

A. Deconvolution of blurred incomplete data contaminated by
Gaussian and non-Gaussian noise

Here, the measurement matrix A models the convolution
with some kernel » = (h_,,..., ho, ..., ;) of non-vanishing
mean. We assume that only m measurements {ji,..., im},
m < n, are given. Hence, A is a reduced m x n Toeplitz
matrix of the form

if [k—jl<r

0, else.

ks, (14)

Ajr =
where j = j1,...,Jm, and k = 1, ..., n. In our experiments, h
is a Gaussian convolution kernel of standard deviation 6.

In Figure 1, data b = AZ is corrupted by Gaussian,
Laplacian and impulsive noise (from top to bottom) and
m = 4 random measurements are available. The noise
variance is 0 = 0.05 for Gaussian and Laplacian noise; in
the impulsive noise case, 30% of the convolved signal is set
to a random value between 0 and 1 (uniformly distributed). For
data contaminated by Gaussian noise we use the L? data term,
and for the other cases the L' data term. In the experiment
(Figure 1) we observe that the inverse Potts ADMM algorithm
performs as well as the total variation for impulsive noise.
For Gaussian and Laplacian noise, the minimizers of the



(b) Data

(c) L%-iPotts ADMM

(a) Original

Fig. 3: Deconvolution of a geometric image (256 X 256 pixels), convolved by
a Gaussian kernel of standard deviation 12 and corrupted by Gaussian noise
(o = 0.05). Our method nicely removes the blur. The result is in particular
piecewise constant as the original image.

total variation problem have additional plateaus as well as
transitional points between the plateaus. In contrast, the iPotts-
ADMM algorithm almost perfectly recovers the jump-sparse
signal, and, in particular, the correct number of jumps.

B. Reconstruction of jump-sparse signal from noisy and in-
complete Fourier spectrum

We measure an incomplete set of m frequency components
of a jump-sparse signal * € R™. Hence, our measurement
matrix is a reduced (m X n) Fourier matrix of the form

A e = ie—%rijk/n

=
where k = 1, ...,n and j belongs to a set of m indices between
1 and n. Such reconstruction problems have been considered
for example in [55], [56], [57]. Here, we measure every second
frequency component, i.e., 7 = 2,4, ...,n. We further assume
that the complex valued Fourier data is corrupted by additive
noise, i.e.,

b= AT + 1, + in,

where 75,7, are m-dimensional vectors of i.i.d. Gaussian
random variables of variance o.

In Figure 2, we compare the performance of the inverse
Potts algorithm (Algorithm 1) with that of TV minimization
(13). We see that our method yields significantly higher peak
signal-to-noise-ratios (PSNR) than minimizers of the total
variation problem. The PSNR is given by

PSNR(z) = 10log;, (n7L; ) (15)

7=l

where T denotes the groundtruth. We further observe that
minimizers of the total variation problem have small varia-
tions within the plateaus and underestimate the jump heights
(“contrast reduction”). The proposed inverse Potts ADMM
algorithm reconstructs the original signal almost perfectly.

C. Reconstruction and segmentation of blurred images

We use the inverse Potts functional in two-dimensions for
the reconstruction of cartoon-like, i.e., piecewise constant,
images. Such images serve as models in many applications,
for instance in computed tomography [58]. In Figure 3, we
reconstruct a cartoon-like image from blurred and noisy data.
Our approach recovers the piecewise constant image up to
rounding off the corners.

(a) Original

(b) Data

(¢) Classical L?-Potts

-

(d) L2-iPotts ADMM

Fig. 4: Segmentation using the classical (9) and the inverse Potts functional (1)
of a blurred and noisy natural image (size 241 x 161, image source [59]). Due
to the blurring, the classical Potts segmentation exhibits additional segments at
the boundaries, whereas segmentation with our inverse Potts ADMM detects
sharp boundaries.

For natural images, the Potts functional is classically used
for (multi-label) segmentation [2], [3]. (The Potts problem
is sometimes called the piecewise constant Mumford-Shah
problem.) We see in Figure 4 that the inverse Potts functional
(1), which incorporates the blurring operator A, performs
better than the classical Potts functional (9) for this task.
Here, we segment a blurred and noisy image using the inverse
and the classical Potts functional. Due to the blurring, the
segmentation using the classical Potts model introduces extra
segments at the boundaries. Minimizing the inverse Potts prob-
lem, in contrast, detects sharp boundaries without producing
additional boundary segments.

V. APPLICATIONS TO SPARSE RECOVERY AND NUMERICAL
EXPERIMENTS

Theorem 4 asserts that solutions of the inverse Potts problem
associated with AV yield solutions of the sparsity problem
Sy(@) = vlzllo + [[Az — b][; — min.

Thus, we may apply the inverse Potts ADMM (Algorithm 1)
to the sparsity problem. The corresponding method is depicted
in Algorithm 2.

Algorithm 2: iPotts-ADMM for the sparsity problem

Input: Data b € R™, model parameter v > 0, measurement
matrix A € R™*"
Output: Computed result x € R™ of the sparsity problem (2)
begin
gy < Solution of iPotts-ADMM (algorithm 1) with matrix
AV, data f, and model parameter ~;
z < Vy;

end

We compare our method (Algorithm 2) with the following
approaches to sparse recovery problems, which include the
state-of-the-art methods.



o Basis pursuit denoising (BPDN) is the convex optimiza-
tion problem

vzl + || Az — b[|) — min.

For the experiments, we use the toolbox YALL1 [46].
o Iteratively reweighted ¢* minimization (IRLI) [5] solves
a sequence of constrained optimization problems

st Az —bl2 <6, (16)

l|#]|1,,0 — min,

where ||z]1,, = >, w;|z;| is a weighted ¢* norm.

The weights are initialized by w; = 1 and are updated

depending on the solution of the previous iteration by

w; = 4_11 We perform five iterations and choose

e = 1073. We use the toolbox YALL1l [46] for the
minimization of (16).

e Orthogonal matching pursuit (OMP) [45] greedily
searches for minimizers of the constrained formulation
of the L? sparsity problem

min || Az — b||3, st [|z|o < k.

We use the implementation OMP .m of Stephen Becker
available at Matlab’s file exchange.

e lterative hard thresholding [23] uses surrogate functionals
(forward backward splitting) for the sparsity problem.
We here use the two variants hard_10_reg.m (IHT-
R) and hard_10_Mterm.m (IHT-M) of the toolbox
sparsify 0.5.

o« An ADMM method based on a “direct” splitting of (2)
which we explain in Subsection V-B.

A. Reconstruction of noisy and blurred sparse signals

Our goal is to reconstruct sparse signals from noisy, blurred
and incomplete measurements. We model this reconstruction
task by (2) where A is a reduced Toeplitz matrix. In our
experiments, data is blurred by a Gaussian kernel and m = %
measurements are taken. Thus, we are in the setup of Sub-
section IV-A except that now the underlying signal is sparse
instead of jump-sparse.

Our first example is the reconstruction of blurred and
incomplete data under Gaussian noise (Figure 5). The noise
distribution suggests to employ the L? data penalty. In the
experiment, basis pursuit denoising (BPDN) underestimates
the height of the spikes, the Lagrangian variant of iterative
hard thresholding (IHT-R) reconstructs too many non-zero
entries and the “direct” splitting (Subsection V-B) has to
many additional non-zero entries. Orthogonal matching pursuit
(OMP), iteratively reweighted ¢! minimization (IRL1), hard
thresholding (IHT-M) and the proposed iPotts-~ADMM based
approach approximate the original signal quite well; in partic-
ular, they reconstruct the precise number of non-zero entries.
Towards a deeper comparison of these four algorithms we
quantify the reconstruction quality by looking at the average
approximation error ||Az — f||2 in dependence on the number
of non-zero entries ||z||o of a solution x; cf. Figure 6. Here,
the average values of a series of 100 runs is depicted where
we used the setup of the experiment in Figure 5. We observe

os —o— iPotts based
1077 1 —— OMP ||
o —+— IRLL
= —+— IHT-M
|
3 10° - =
=
= >
1079-° = | | | —
0 2 4 6 8 10
llzllo

Fig. 6: Approximation error in dependence of the number of non-zero entries
of solutions computed by state-of-the-art algorithms. Our iPotts-based method
(Algorithm 2) yields lower approximation errors for any number of jumps.
Here, the average values of 100 experiments are depicted.

that the iPotts based solutions have the least approximation
errors in average.

In Figure 7, we drive the same experiment as in Figure 5
replacing Gaussian noise by impulsive noise. Due to this noise
model, we employ the L' data term for our iPotts-based
algorithm. For the other methods we also use the L' variant
whenever it is available; to the best of our knowledge, this is
the case for basis pursuit denoising and the direct splitting
(Subsection V-B). We observe that the proposed algorithm
yields an almost perfect reconstruction also in presence of
impulsive noise and that it performs significantly better than
the other methods in this case.

B. Comparison with a “direct” ADMM approach to the spar-
sity problem

In analogy to (5), we consider the consensus form of the
sparsity problem

Yullo + [[Av = b||F — min, st u—v=0. (17)
This leads to the augmented Lagrangian
ullo + (A, u—wv
Yllullo + ) (18)

+ Bllu — vH% + || Av — ng — min.

Proceeding as in Section III we obtain a “direct” ADMM
algorithm for the sparsity problem. This algorithm is given by
replacing ||Vullp by ||ullo in the first line of (8). This leads
to alternately solving a hard thresholding problem (instead of
a Potts problem) and a classical Tikhonov problem associated
with matrix A.

The difference between the “direct” ADMM approach and
our iPotts-ADMM based method (Algorithm 2) is that they
are based on different augmented Lagrangians. Indeed, when
applying the iPotts-ADMM to the sparsity problem, we con-
sider the inverse Potts problem associated with AV instead
of A. Then, the augmented Lagrangian of the corresponding
problem is obtained by replacing A by AV in (6). With the
substitutions Vu = ' and Vv = v’, equation (6) reads

' llo + (A V(' =)

19
F AV = )3+ AV — B2 > min, )
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Fig. 5: The original signal (dashed stem plot) is blurred by a Gaussian kernel of standard deviation 5 and corrupted by Gaussian noise of standard deviation

o = 0.05. We took m = %

= 128 measurements. Orthogonal matching pursuit (OMP), iteratively reweighted ¢! minimization (IRL1) and our iPotts based

approach have the best reconstruction quality (with respect to visual inspection), followed by iterative hard thresholding (IHT-M) and the “direct” splitting (cf.
Subsection V-B). Basis pursuit denoising (BPDN) underestimates the heights of the spikes and the Lagrangian variant of iterative hard thresholding (IHT-R)

reconstructs too many non-zero entries.

“Direct” ADMM (L')
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Fig. 7: The same setup as in Figure 5 replacing Gaussian noise by impulsive noise (25% of data were set to a random value between —0.5 and 0.5). For
the direct splitting (cf. Subsection V-B), basis pursuit (BPDN), and the iPotts based method we use L' data terms. We see that the proposed L!-iPotts based
algorithm performs significantly better than the other methods. It is able to recover the original signal almost perfectly.

Comparing (18) and (19), we see that the direct method
couples v and v directly whereas the iPotts based method
involves the antiderivatives of u and v.

From the experiments (Figures 5, 7, 8) we conclude that the
iPotts-based method (Algorithm 2) is advantageous over the
direct ADMM. In particular, the solutions of the iPotts-based
method have lower energy than the “direct” method for the
whole range of parameters +; cf. Figure 8.

C. Sparse image recovery

We also use our method to reconstruct sparse images. One
may think of an image of small particles or of an astronomic
image. We apply our procedure to images by reshaping the
image to a vector and adapting the matrix A accordingly.
Figure 9 shows the deconvolution of a sparse image using our
iPotts-ADMM based method (Algorithm 2). In the experiment
we see that almost all spikes are recovered while only few false
positives are reconstructed.
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Fig. 8: Final total energy S~ () of the sparsity problem using the iPotts based
method (Algorithm 2) and the “direct” ADMM method (Subsection V-B) for
different parameters ~y. The iPotts-ADMM algorithm reaches lower energies
over the whole parameter range. This indicates the superiority of the first
method. Computed values are averages over 50 experiments.

(c¢) iPotts based re-
construction

(a) Original

(b) Blurred, noisy
data

Fig. 9: Sparse image of size 30 x 30 blurred by a 7 x 7 Gaussian kernel
(standard deviation 1) and corrupted by Gaussian noise (¢ = 0.05). Data
consists of 50 % randomly selected pixels of the middle image. The iPotts
based method recovers almost all spikes correctly. (For visualization purposes,
the contrast of the middle image was increased.)

VI. PROOFS

Here we provide the proofs of the theorems stated in the
course of this paper.

A. Existence of Minimizers

We start out showing Theorem 1 which asserts that the
inverse Potts problem (1) has a minimizer.

Proof of Theorem 1: In order to deal with the general case
of a (possibly) singular matrix A we decompose the domain
into ker A and a corresponding algebraic complement U. This
means that U + ker A = R™ (or C") and U Nker A = {0}.
(In the following we proceed without drawing attention to C"
when writing R™, but the arguments work for the complex
case as well.) For x € R™ we frequently use the decomposition
r = u + v, where u = Qux is the projection Qy of = to U,
and v is the corresponding projection onto ker A.

The matrix A restricted to the subspace U is invertible, and
since we are in finite dimensional space, there is a positive
constant ¢ such that

[|Au|| > ¢||lu|| for any u € U.

(Due to the finite dimension all norms are equivalent and
the above inequality holds for any norm.) As a consequence,
whenever, for a sequence uy, in U, the norm ||ug|| tends to co,
the inverse Potts functional P, (uy) defined by (1) tends to oo
as well. Therefore, for any sequence of vectors zj in R™ (not

only in U,) we obtain the implication:

P, (x) is bounded

= u = Quxy has a converging subsequence. (20)

This is a consequence of Axy = AQuxk.

Our next preparatory step introduces the mapping s on U
which assigns to each v € U the minimal number of jumps
of all vectors in u + ker A, i.e.,

min

vEu-+ker A HVUHO

s(u) =
We show that this mapping s is lower semicontinuous which,
in our context, means that the preimages of the sets {0, ..., k}
are closed for all £ € N. To see this, we first observe that the
set M, of all vectors in R™ with at most k jumps is structurally
a finite union of vector spaces (of dimension k£ + 1.) More
precisely,

My ={zeR": ||Vl <k} = U
Jc{1,....n—1},|J|=k

XJa

where X ; are those vectors whose jump sets are contained
in J C {1,...,n — 1}. Furthermore, a vector « € U has the
property s(u) < k if and only if there is a vector x € M}
(i.e., with at most £ jumps) such that Q2 = u. Summing up,

sTH{0,.. . K} = Qu(My) = U Qu(X,).
JC{l,....,n—1},|J|=k
@1

We discuss the right hand side of (21) to see the lower
semicontinuity of s. Each Qu(X) is a finite dimensional
linear subspace and thus closed; so as a finite union of closed
sets the right hand side of (21) is closed. Therefore the left
hand side of (21) is closed which by definition implies the
lower semicontinuity of s.

Now we can show the assertion of the theorem. We consider
a sequence x, such that the values P, () of the inverse Potts
functional P, tend to an infimum, i.e.,

Jim, Py() = jof Pr).

For every member of the sequence, we write x; = uy + vk
with uy € U and vy, € ker A. By (20) we find a subsequence
xk, such that uy, = Quxk, converges to some v € U. Since
P, (zy,) converges and Auy, = Axy, we have that

IV llo = Var, llo] < [Py (xk,) — Py(xk, )]
+ [[[Aug, — bl|p — || Aug, —b|[P| — 0 as I,7 — oo.
This means that, for sufficiently large [, the number of jumps
IV2k, |lo becomes constant; let us denote this constant by j.
As a consequence, s(ug,) < ||Vay,|lo = j, and thus, by the
lower semicontinuity of s, s(u) < j. Hence, by the definition
of s, there is a vector * € u + ker A such that the number
of jumps of x* is smaller than or equal to j. Then,
Py(27%) = [[Va*{lo + [[Az™ = bl[} = y[[Va™{lo + [|Au — b][}
< -l | Aug, — b} = lim P, (2,)

which shows that x* is a minimizer as desired. |



Next we show Theorem 2 which states that the continuous-
time analogue of Theorem 1 is wrong. We give counterexam-
ples, i.e., we find bounded operators A and data f such that
the continuous-time inverse Potts functional

Py(u) =y [IVulo + [|Au = fI7,

if u is a piecewise constant function on the interval [0, 1], and
P, (u) = oo otherwise, has no minimizer.
Proof of Theorem 2:

We consider a positive function g € LP[0, 1] with total mass
1 which is supported in the interval [§ —¢, 1 +¢] with positive
e < 3. We use the symbol g for its left-shift by 3. Our
counterexamples are the (cyclic) convolution operators with
functions g as above, i.e., operators A defined by Au = g*u,
and the data given by f = g.

We claim that, for Potts parameter v with v < 7y (defined
in (23) below,)

irq}f P,(v) =2y < Py(u) forall u. (22)
This means that there is no minimizer in that case and thus
shows the assertion of the theorem. In order to show the
equality in (22), we consider the sequence of characteristic
functions w,, = g1 1 . We have that |Vuy,llo =
and ||Au, — f|] — 0. Thus P,(u,) — 2v. This y1clds
inf, P,(v) < 2v. It remains to show the inequality in (22)
(which in turn implies the equality in (22).) To this end, we
have to consider the set of functions v with at most one jump
and find v > 0 such that d(u) = [[Au— f||} > 2v for all such
u. The set B = {z € [0,1] : f(z) > 2} has positive Lebesgue
measure A(B) since f has total mass 1 and is supported on an
interval of length bounded by 1. If u < 1, then d(u) > A(B).
So in order to obtain d(u) < A(B), we need that u > 1
either to the left or to the right of its (sole) jump location.
Then Au > 1 on at least one of the intervals [¢, 1 — ¢] and
[1 +,1 —¢]. Both of these intervals have length 1 — 2¢,
and, on both intervals, f = 0. Therefore, if d(u) < A(B), we
necessarily have d(u) > £ — 2 > 1. Then, for any u with at
most one jump,

d(u) > min(A(B), 1) =: 2. (23)

If w has two or more jumps then trivially P,(u) > 2v.
Together, this implies that, for any v with v < 7y, the inverse
Potts functional P, fulfills P,(u) > 2+ for all uw € LP[0,1].
This shows (22) which completes the proof. ]

B. Relations to sparsity

We first prove Theorem 4 which shows how to transform a
sparsity problem into a jump-sparsity problem.
Proof of Theorem 4: For x* satisfying (3), we define
u* = Vaz*. Towards a contradiction we assume that there is
u € R™ such that y||ullo 4[| Au—0b||5 < y|lu*|lo+ || Au* —b][5.
Then, for u, there is z € R**! such that ©w = Vz. Then,

NVlo + 1AVE = blI7 < ~flu*llo + | Au” = bl|7
=7lIVa*flo + [[AVZ™ — b7

which is a contradiction. [ |

For p = 2 we show a converse statement. It is formulated
as Theorem 5 and proved next. In its proof we make use of
the decomposition of R™ into the orthogonal direct sum R™ =
V @ Re, where e denoted the constant vector (1,...,1)7 and
V' is the linear space of vectors with zero mean. Observing
that the linear operator V is bijective from the linear space V'
to R"~!, we use the symbol V* for the mapping R"~! — V,

VT =(V|y)™, (24)

for the inverse of the mapping V restricted to the subspace V.

Proof of Theorem 5: We consider the inverse Potts
functional given by (1) for p = 2. We decompose z € R"
according to x = zo + Z, with g € V, = € Re. Applying this
decomposition to (1) yields

Py(x) =4IV (2o +T)llo + | Azo + AT — b]3

=/ Vaollo + [[Azo + Az — b]3.
We write T = pe to obtain

Py(x) = 9l[Vaollo + [[Azo + pde = b3 (25)

Let us fix xg for the moment and let us look for p = u(xg)
which minimizes the function p — P,(zg + pe). Since
IV(zo + pe)llo = |V(zo + p'e)|lo for all u, ' we have to
minimize (W.r.t. ()

2

m n n
Z IU‘ZAU+ZAUIOJ b; | — min.

i=1 j=1 j=1

(26)

The corresponding minimizer ;(xg) can be computed explic-
itly (e.g., by derivating). It is given by

M(x ) Zz 1 A b; — Z?Ll A 2?21 Aijﬂco,j
0 2 ,
Zi:l A

where fAvl is the sum of the i*” row of the matrix A given by
(30). In particular, u(xo) depends affine linearly on g, i.e. is
of the form d — Exy where d is a constant and F is a row
vector of length n, both not depending on x(. Plugging the
expression (27) for u(zg) into (25), we obtain a minimization
problem in xg. It is given by

27)

7lIVzollo + [|A"wo — b'[|3 — min, (28)
where A’ is the matrix given by
A Y™ A A
= Ay — —k Z:n Loy (29)
Dim
with N
A; = > Ay (30)
j=1
and b’ is the vector given by
A A;b
b, = by, — 7&:1 1 31)

ZL IA

After these preparations we show the theorem; we consider
a minimizer u* of the sparsity problem (4) w.r.t. the matrix



B = A’V and data b'. The crucial point is that V is an iso-
morphism from V onto R™~! which implies the equivalence

u* minimizes (4) < z$ = V7u* minimizes (28) .

Applying this equivalence, 2§ = VT u* is a minimizer of (28),
and, using (27), the vector 2* = z§ + p(zg) is a minimizer
of the original Potts problem (1) for A, b. ]

Using the relation between inverse Potts and sparsity prob-
lems we are now able to show the complexity statement
Theorem 3 which asserts NP-hardness of the inverse Potts
problem.

Proof of Theorem 3: The sparsity problem (2) is NP-
hard by [32, Theorem 3] (p > 1, v > 0.) According to
Theorem 4 each instance of the sparsity problem (2) defines an
instance of the inverse Potts problem (1). In particular, for any
NP-hard instance of the sparsity problem (with matrix A and
data b) there is a corresponding inverse Potts problem (with
matrix AV and data b.) The transformation of the functionals
and the transformation of the corresponding minimizers given
by Theorem 4 can obviously be done in polynomial time.
Therefore the Potts problem is NP-hard. [ |

C. Convergence

In our presentation we have assumed that the sequence iy
is a geometric progression. What we actually need is that uy
is a non-decreasing sequence fulfilling

> 1w (32)
W VHE
which is obviously satisfied for geometric progressions. So we
show Theorem 6 assuming (32) instead.
Proof of Theorem 6: We consider the Potts ADMM
iteration for u*,v* and \* given by (8). We show that
)\k

e

(uf,v*) = (u*,v*) with u* = v*,  and —0, (33)

which is a qualitative version of the assertion of the theorem.
We denote the functional occurring in the first line of (8)
by Fj, i.e.,

Pk . A
Fu(w) =29l + 5= (o = 2 ) 2
HE

Using this notation, the first line of (8) reads u**! ¢
. . k
arg min, Fj,(u). In order to estimate [[u*™" — (0¥ — 25|
k . .
we observe that Fj(uFt1l) < Fp (o* — ﬁ) which is a
consequence of the minimality of u*+!
of F}, yields

k
k A
AV ok 2+t = (o= )

)\k
<v||V (v’“ — Hk> o < yn,

. Using the definition

where n is the length of v. Since the first summand on the
left hand side is non-negative we get that

)\k
||uk:+1 . <’Uk . > ||§ < ’YTL
Kk Hk

(34)

In particular,

k
lim w**t — (M - ’\> =0. (35)

k—oc0 i

Now we draw our attention to the second line of (8). We
denote the corresponding functional by

Grlv) = Av— b2+ o — (w41 4 25 2
k - j2 2 /J/k; 2

The  minimality of  v**!  implies  Gp(v**1)

< Gy (uk+1+27:'). We apply the definition of Gy
and estimate

R A
P2 i 2
)\k
<l (w425 <ol
Kk
)\k
<JA@WF + 2= = oF) 4+ Aok — P
22
AP P
< (A 2 = ¥+ a0k o, )
M
(36)
Here ||A| is the norm of A viewed as an operator from ¢>

to /P. We combine the inequalities (36) and (34) in order to

obtain that
Allyn
[ AvF* — b)), < ”u”: + || Av* — b,

Solving this recursion yields

k
1
1AV = b, < Ay Y — + (|40 = bl
1 M
J
which shows that the sequence (|| Av¥1—b||,,)ken is bounded.
Together with (36) this implies

k+1 k+1 AP 2 k+1 AF k
Beflo™ —{ w t o 12 < (IAll][w o l24C)?,

where C' is a positive constant independent of k. Using (35)
we get that

)\k
po || — (u’erl + ) |3 is bounded. (37)
Mk

We show the convergence of the sequence v* by showing
that it is a Cauchy sequence. To this end we estimate

Ak AP
Hvkﬂ _ Uk” < Hvk-‘rl o uk-‘rl o ” + ”uk-‘rl + . ,UkH
125 HEk

Now we apply (34) and (37) which yield

b+ — ok <
M
for some constant C' > 0 which is independent of k. Assump-
tion (32) on s, guarantees that v* is a Cauchy sequence and
hence that v* converges to some v*.
We use the third line of (8) to obtain the equality

>\k+1

Pk Nk ko ktl
Mk+1:Mk+1 E—Fu T /) 9



By (35) and (37) each term in parenthesis converges to O.
Since py, is non-decreasing, we have that py/pgy+1 < 1 and,
therefore, (38) implies that
A\F AR+

lim — =0, and lim —— =0.

k—oo ) k—oo U
We rewrite the third line of (8) as u*+! — vkl = (\F+1 —
AF)/jux to obtain the inequality

k k
||uk+1 _ vk+1|| < HAMZIH + Hikll 0.

This means that ¥ — v* — 0 and, since v, converges, also
uy, converges and the corresponding limit u* equals v*. This
shows (33) and completes the proof. [ |

VII. CONCLUSION AND OUTLOOK

We have shown that the inverse Potts problem has a
minimizer in the discrete setting but that the time continuous
counterpart does not have minimizers in general. We further
have shown that the computation of minimizers is an NP-
hard problem. Having accepted that the computation of exact
solutions are unfeasible, we have proposed a new approach to
the inverse Potts problem based on the alternating direction
method of multipliers. In our experiments we have compared
the iPotts-ADMM algorithm with total variation minimization
for jump-sparse reconstruction. We have observed that our
method often performs better than but at least as well as
TV minimization. We further have shown that the sparsity
problem can be reduced to an inverse Potts problem for p > 1.
The experiments indicate that the iPotts-based approach to the
sparsity problem performs as least as well as the state-of-the-
art algorithms in presence of Gaussian noise and significantly
better in presence of impulsive noise.

Future research aims at faster algorithms for the multivariate
inverse Potts problem and at Potts problems with manifold
valued data.

APPENDIX A

We consider Gaussian, Laplacian, and impulsive noise. The
first two types of noise are additive. Thus the measurement is
given by

b= AZ + 1,,

where 7, is a m-dimensional vector of i.i.d. random variables
of standard deviation o. In case of Gaussian noise, the prob-
ability density function is given by

1 2

e 202,

p(@) = oV 2w

In the case of Laplacian noise, the density is defined by
1 vz
- =22 x|
T) = e .
px) = 7
In the case of impulsive noise, we randomly choose a pre-
scribed percentage of indices I between 1 and n and set each
data point belonging to that index set to a random number, i.e.
(Ax);, ifi¢l,
&, else.

bi =

Here, £ is a random variable which is uniformly distributed in
the interval [0, 1] for the jump-sparsity experiments and in the
interval [—3, 1] for the sparsity experiments.
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