
KDD Support Services Based on Data Semantics

Claudia Diamantini (Contact author), Domenico Potena, Maurizio Panti

Dipartimento di Ingegneria Informatica, Gestionale e dell’Automazione,
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Abstract. The identification of valid, novel and interesting models from
large volumes of data is the primary goal of Knowledge Discovery in
Databases (KDD). In order to successfully achieve such a complex goal,
many kinds of semantic information about the KDD and business do-
mains is necessary. In this paper, we present an approach to the charac-
terization of semantic domain information for a particular kind of KDD
process: classification. In particular we show how, by estimating the prop-
erties of the true but unknown classification model, one can derive do-
main information on the classification problem at hand. We discuss how,
by saving these properties with the data, users profit from this infor-
mation and save time for experimenting with a lot of classifiers and
parameters by accessing this knowledge.
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1 Introduction

Knowledge Discovery in Databases (KDD) emerged as a rapidly growing inter-
disciplinary field that merges together databases, statistics, machine learning
and related areas in order to extract valuable information and knowledge in
large volumes of data. KDD aims to overcome the limitations of traditional
database queries, and of the more recent OLAP techniques, in order to support
analysis and decision-making. These techniques can in fact help to extract in-
formation conforming to a predefined, previously known data model, but they
do not allow us to identify novel, interesting models in data. For instance, these
techniques cannot help in answering the following query: “Find network con-
nection records indicating an intrusion”, just because we do not have a model
of what an intrusion is. However, even if our model of connection (e.g., the set
of attributes ‘connection length’, ‘protocol’, ‘service’, ‘number of failed login at-
tempts’, ‘number of root accesses’ and ‘number of connections to the same host’)
does not explicitly contain a model of intrusion, we can assume that the latter
can be established from the former, in terms of typical patterns representing
relations among the basic model attributes. For instance, “If (‘number of con-
nections to the same host’ ≥ 10) and (‘protocol’ = UDP) and (‘service’ = echo)



and (‘number of pending connections’ = ‘number of connections to the same
host’) Then (Prediction = DoS)” can be the model of one type of intrusion.
This rationale underpins KDD, which studies techniques and methodologies to
reveal unknown relations from available data. More formally, we define KDD as
“the process of identifying valid, novel, potentially useful and ultimately under-
standable patterns/models in data”, where data are defined as a set of facts F
described by a database schema and patterns are defined as “an expression E in
some language L describing facts in a subset FE of F” [10, chap. 1]. Notice that,
since patterns should be valid and potentially useful, an expression E should
not limit itself to the description of the database instances, it should rather be
capable of describing any new instance that could at any time be added to the
database. In other words, the expression E describes the real phenomenon of
which database instances are particular realizations. We often synthesize this
by saying that KDD is a model induction activity. Different languages L define
different kinds of models that can be induced. Models can be basically split into
predictive ones (e.g., classification or regression models) and descriptive ones
(e.g., clustering models or association rules). In the following we will consider
classification models. Classification models give a description of a set of prede-
fined classes, like e.g. the ‘normal connection’ and ‘intrusion’ classes, which are
relevant for a given prediction or recognition task. Hence, in the same way a
database schema defines the semantics of its instances, the schema of a classi-
fication model defines the semantics of the classification problem, that is of the
set of classes chosen for the specific user goal (e.g., to detect intrusions).

Although a classification model is typically considered as the final result of a
KDD process, it has yet another important role. As a matter of fact, to be effec-
tive, the model induction process must be guided by different kinds of domain
information: information about how induction techniques work and how these
can be applied in the specific business domain, the kinds of regularities one can
expect to find in data and so on. In other words, we need to know the semantics
of the KDD domain as well as the semantics of the business domain and how
these interact. From this perspective, a classification model contains important
business domain information that could be profitably used to guide the model
induction process. In the next section, we will discuss the role of domain infor-
mation in KDD in general, and in the classification task in particular, in deeper
detail.

The contribution of this paper is an approach to characterize the semantics
of classification problems, in terms of geometric properties of the classification
model. The approach resorts on the relatively cheap Bayes risk weighted Vector
Quantization (BVQ) learning algorithm [8] to define the analytic form of a good
estimation of the true but unknown classification model. The analytical descrip-
tion is then used to derive some properties of the model that helps to choose
probably the best classification method for the given problem, to appropriately
prepare data and to train a classifier for the best classification method. By sav-
ing the analytical description of the classification model and its properties with
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Fig. 1. The KDD process.

the data, users profit from this information and save time in experimenting with
a lot of classifiers and parameters by having access to this knowledge.

The rest of the paper is organized as follows. In section 2, we briefly intro-
duce the KDD environment, highlighting the major sources of complexity in the
design of a KDD process, and introducing the main approaches proposed in the
literature to overcome this complexity by exploiting information about the KDD
and business domains. We then narrow the discussion on the classification prob-
lem. In section 3 we introduce the definition of nearest neighbor Vector Quantizer
(VQ) and its geometrical properties, and we show how to obtain the analytical
description of a VQ. Then, in section 4 we describe our VQ-based learning ap-
proach to obtain an approximation of a classification model and its analytical
description. Section 5 is devoted to the discussion on the possible types of de-
ductions on the geometry of the classification model which is derived from the
analytical definition, and how the accuracy of the approximation influences the
validity of the discovered knowledge. In section 6 we empirically demonstrate the
validity of the approach by means of real-world classification problems. Finally,
in section 7 we cast a look on the possible application of the derived informa-
tion regarding the classification model in the implementation of semantic KDD
support services over a net. We will come to a conclusion in Section 8.

2 The role of semantics in KDD process design

KDD as a discipline studies the definition of reference models of a process of
knowledge discovery from data. According to methodological standards [10, 27],
a process of discovery from data can be divided into six principal phases: Do-
main Understanding, Data Selection, Data Preprocessing, Transformation, Data
Mining, Interpretation/Evaluation (see the schema in Figure 1). The core phase
of the process is the Data Mining (DM) phase, where model induction is per-
formed by one of the many available techniques. These techniques largely have a
statistical foundation, and they require proper conditions of application. For this
reason, the DM phase is preceded in any process model by a data preparation
phase, that can be further split in data and attribute (feature) selection, data
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preprocessing (e.g., the cleaning of data), data transformation (e.g., by normal-
ization). Furthermore, it is known that, to be efficient and effective, statistical
techniques should be guided by some model-driven hypothesis. So, the starting
phase of the KDD process is devoted to domain and data understanding, where
one has to find out the best representation of the business goal in terms of data
mining goals, and envisage the best data structures and techniques to achieve
that goal. In practice, this means drawing a rough model of the business and
of the entities involved, to form some model-driven hypothesis on the kind of
regularities which can be found in data and focus the search towards the most
appropriate techniques. The ending phase is finally devoted to explanation and
evaluation of the discovered knowledge inside the domain.

The intrinsic complexity of the design of a KDD process is due to the nu-
merous degrees of freedom the user has to work with and to the goal-driven and
domain dependent nature of the problem. When an analyst starts the discovery
process, for example, she/he has to wonder: what are the database instances to
select? How can I discriminate the noisy data from the informative one? Are all
the data attributes equally important? Which is the best technique and algo-
rithm to apply, and how the choice of the algorithm influences previous choices?
How should one set the algorithm’s parameters? Of course, the answer to these
questions strictly depends on the problem and data at hand. On the other hand,
the existence of a great amount of techniques and tools increases the complexity
of choice, as it presupposes a certain degree of acquaintance with the mathemat-
ical theory underlying most of the techniques, so that they can be appropriately
applied all together to the problem at hand, correctly and effectively used. Then,
in order to design a KDD process, two kinds of expertise are needed: in the busi-
ness domain and in the KDD domain. However, the user is typically a domain
expert, but not a KDD expert, or viceversa. Another source of complexity is due
to the intrinsic features of any discovery process, namely the lack of knowledge
and consequently the difficulty to define the best plan to discover that knowledge
beforehand. This fact is recognized in all the existing process models by account-
ing for the need of repeated backtracking to previous phases and repetition of
certain actions: the knowledge acquired during a phase can suggest a revision of
the choices taken at previous steps to enhance their results.

If no support is given to the user, then a blind search over the joint space of
possible tasks, techniques, algorithms, parameters produces inevitably unsatis-
factory results with great effort. Basically, the kind of support that a user can
be given involves the following facilities:

– to understand the business domain and goal and to relate it to a suitable set
of KDD tasks;

– to choose the more suitable tools for the user goals and business domain, on
the basis of a number of characteristics:
• performance (complexity, scalability, accuracy),
• the kind of data they can be used for (textual/symbolic data, numerical

data, structured data, sequences, ...),
• the kind of goal they are written for (data cleaning, data transformation,

data mining, visualization, ...),
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• the kind of data mining task (classification, rule induction, ...);

this involves facilities to browse the tool repository and to obtain information
about the tools;

– to set algorithm parameters, especially for Data Mining algorithms, in the
appropriate manner with respect to the problem at hand;

– to manage all kinds of data involved in the KDD process, namely, raw and
structured data, intermediate data and models, in terms of access, selection,
preparation of data conforming to the tool input format, and so on;

– to design the KDD process by tool composition;

Most of the previous features rely on different forms of semantic information
about data, tools and business domains. In the literature, the use of domain
ontologies is largely proposed to guide the KDD process and to give support to
domain experts. In [18, chap.23] and [25] a business domain ontology supports
the extraction of novel features, by exploiting relations among domain concepts.
In [16, 32] the use of ontologies is proposed to refine the induced knowledge and
to correctly interpret the results. [5] discussed the use of ontologies in the whole
KDD process for the medical domain. Finally, in distributed environments, it
has to be pointed out the role of business domain ontologies both in the search
for appropriate data and in their integration [18, chap.23], [31]. A special kind of
domain ontology is the KDD ontology. A KDD ontology is a conceptualization
of the KDD domain in terms of tasks, techniques, algorithms, tools and tool
properties like performance and the kind of data that can be used for [3, 20, 33].
As such, a KDD ontology has a similar role with respect to the business domain
ontology: it helps the business expert to understand the KDD domain, so that
he can either effectively collaborate with a KDD expert in the design of a KDD
project, or design the KDD project on his own. In this case, it can support the
user in browsing a tool repository organized with respect to the KDD ontology.
Semantic description of tools is also adopted to support standardization and pro-
cess design by tool composition [11, 14]. However, to support the proper choice
and use of tools, the semantics of the problem is also needed. For instance, in the
classification task, it is known that different classification techniques work better
on certain classes of classification problems than others. Hence, the classification
model can be exploited as a fundamental domain information to semantically
guide the KDD process design. This principle is the basis of Meta-learning, that
refers to a bulk of techniques to discover domain semantics hidden in data, which
is then used to guide the choice of Data Mining algorithms [2, 17] or to form a
prototype domain model that guides further investigations [30]. In the following
subsection we examine this topic thoroughly, for the specific case of the classifi-
cation task, by giving a more formal definition of the nature of a classification
problem and discussing how it can support the user in dealing with each phase
of a KDD classification process. At the end of the paper, we will also discuss
the advantages of equipping data published over a net with this kind of domain
semantics, in order to build case-based support services.
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2.1 Evidence-Based Classification Process Design

Let us start with a formal definition of the classification problem:

Definition 1. Given a set Os = {o1, . . . , om} of observation n-tuples and a set
of classes C = {c1, . . . , ck}, the classification problem is to define a classification
rule, that is a mapping Φ : Os → C, where each n-tuple is assigned to a class.
A class cj contains precisely those tuples mapped to it; that is cj = {oi|Φ(oi) =
cj , 1 ≤ i ≤ m, oi ∈ Os}.

Note that classes are predefined, non overlapping and they partition the
entire set of n-tuples. In this sense, the classes of a classification problem are
indeed equivalence classes.

In order to model and characterize the properties of a classification problem,
we can take a geometric point of view. In a geometric model the observation n-
tuples are represented as points in a Rn vector space. In this way, the mapping
Φ defines a partition of the vector space, where each partition region defines
an equivalence class. These regions are called decision regions, while the border
between decision regions is called the decision border (see Figure 2).
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Fig. 2. A two dimensional vector space, with decision regions and the decision border
for a two-class problem.

The geometric properties of the decision regions have their natural interpre-
tation as properties of the true classes or, in other terms, classification problems
can be characterized in terms of the properties of the decision regions. For in-
stance, we speak of linearly separable classification problem, when it is possible
to separate classes without error by a hyperplane. On the other hand, when the
decision border is a generic (possibly non connected) curve, then we speak of
non linearly separable classification problems.

Let us illustrate how the decision regions (or, equivalently, the decision bor-
der) define an evidence that can guide the choices during the whole classifica-
tion process. To start with, it is straightforward to observe that a general (and
generic) knowledge of the shape of the decision regions and their localization in
the vector space can be very useful in the preliminary data analysis phase. As
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a matter of fact, one of the most useful techniques adopted during this phase
is visualization, since, it is said that, the most powerful data miner tool is the
human eye. Unfortunately, visualization techniques can be directly applied only
in problems of low dimensionality, say from one to three dimensions. The ana-
lytical form of the decision border could give important geometric information
about the problem that cannot be visually inspected.

A particular form of data selection is called data reduction in the literature.
It is a technique exploited in combination with non scalable algorithms, that is
algorithms whose high cost make them unsuitable for the management of large
amounts of data. Data reduction in classification problems can be performed by
eliminating those samples falling far from the decision border, as less informative
samples. This intuition dates back to the earliest work in Pattern Recognition,
forming the basis of the condensed nearest neighbor method [15].

The decision border can support feature selection: in [23], a feature selection
algorithm is shown which is based on the evidence that, following a direction
not parallel to the decision border, the classification changes. Then, the direction
normal to the decision border is the most informative one. By considering the
principal components of the decision border, one can decide suitable transforma-
tions of data and the elimination of the less informative features. Unfortunately,
the paper illustrates a method to derive the principal components that is com-
putationally heavy and does not scale well.

The selection of the classifier architecture and the learning algorithm is based
on the geometry of the decision border in the data mining step. For instance it
is known that, if the border turns out to be parallel to the axes, then one can
decide to use decision trees, that perform well on these problems and that have
the advantage of a simple rule extraction. Other kinds of linear borders can
suggest the use of Support Vector Machines (SVM) with linear kernel. Similarly,
closed and convex decision regions would turn the choice towards SVM with
gaussian kernel or Radial Basis Function (RBF) networks, while for open, non
linear decision borders SVM with polynomial kernel or Multi-Layer Perceptron
(MLP) would be preferable. To set the number of layers in MLP it is useful
to know the type of concavity of the decision regions as well as the number
of disconnected regions. One could even envisage a combined method where
different types of architectures are used in different regions of the vector space,
depending on the form of the border in that region. Finally, the initial state of
a learning algorithm can be set in the regions of space near the decision border.

In the elicitation of the classification rule, the analytical representation of
the decision border finds its natural application. It is known that one of the
perceived limits of inductive techniques such as neural networks is their “black-
box” nature: the classification rule is hidden in the structure of the network and a
human expert has no element to validate it. In the literature, different techniques
have been proposed to extract rules from MLP neural networks and decision
trees. The method described in section 4 defines the basis for the elicitation of
VQ-based classification rules.
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3 Generalities on Nearest Neighbor Vector Quantizers

Definition 2. A nearest neighbor Vector Quantizer (VQ) of dimension n and
order M is a function Ω : Rn →M, M = {m1,m2, . . . , mM},mi ∈ Rn,mi 6=
mj, which defines a partition of Rn into M regions V1,V2, . . . ,VM , such that

Vi = {x ∈ Rn : d(x,mi) < d(x,mj), j 6= i}, (1)

where d is some distance measure.

M is called the code. It is a finite set of vectors in Rn called code vectors or
reference vectors. The region Vi defined by (1) is called the Voronoi region of
the code vector mi.
Notice that, once the distance has been defined, M defines entirely the mapping
Ω. If we choose as distance measure the usual squared Euclidean distance

d(x, y) = ‖ x− y ‖2 = (x− y)T (x− y), x, y ∈ Rn, (2)

then it is particularly simple to describe the partition as a function of code vec-
tors. In practice, we can reduce the definition of the Voronoi region Vi to the
following system of constraints:

Vi :




‖ x−mi ‖2<‖ x−mci1 ‖2

...
‖ x−mi ‖2<‖ x−mcil

‖2,
(3)

where Neigh(mi) = {mci1 , . . . ,mcil
} ⊂ M is the set of nearest code vectors to

mi. Region borders are defined as the geometric locus of points equidistant from
at least a pair of code vectors. In particular, the region border is a piecewise
linear surface, where each piece of hyperplane (excluding the extreme points)
satisfies with the equal sign exactly one of the constraints in (3). Thus, if l is the
number of constraints, Vi is a polytope with l faces. Figure 3 gives an illustrative
example of a code of order 10 and of the relative Voronoi diagram in R2. Points

     (a) 
                                                                           

m i 

jm m j

i m 

S 
i,j 

(b) 

Fig. 3. (a) A code and (b) its Voronoi diagram.Si, j is the border between mi and mj .

satisfying two or more constraints with the equal sign define the vertices of the
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polytope Vi. Finally, let us notice that each constraint in (3) defines a half-space
of the type

Vi,j = {x ∈ Rn : uT
ij · (x− βij) ≥ 0},

with uij = mi − mj and βij = mj+mi

2 . Each region Vi is thus defined by the
intersection of a finite number of half-spaces, hence it is a regular, convex poly-
tope. It is also simple to see that each code vector mi belongs to the region Vi.
In fact, it holds ‖ mi−mi ‖2<‖ mi−mj ‖2 for each code vector mj 6= mi, then
mi ∈ Vi. Regular VQs of this type are called polytopal VQs.

3.1 Voronoi Diagrams in n-dimensional space

In spite of the simple and well known theory illustrated above, few or no software
for the practical calculus of Voronoi diagrams in spaces of general dimensionality
Rn, n > 2 exists (actually, the only one we found, which only approaches our
needs is reported in [7]).

We implemented such an algorithm, that is available as a web service at
http://babbage.diiga.univpm.it:8080/axis/services/voronoiWrapped. The WSDL
of the service can be downloaded at http://babbage.diiga.univpm.it:8080/axis/-
WSDL/voronoiWSDL.xml. Definitions and technical details are given in Ap-
pendix A.

In Figure 4 a graphical example of a Voronoi diagram in R2 and the corre-
sponding output of the algorithm is given . For each code vector mi the equa-
tions of the pieces of lines and their extremes is reported (the points in the
from . . . to . . . expression). X(i) represents the i-th dimension of the feature
space. Notice the existence of extremes with very big values not comparable
to values of the code vectors. These represent the approximation of “points at
infinite” that are introduced for computational purposes and which are called
fictitious code vectors in the Appendix. Notice that the use of fictitious code
vectors introduces approximation errors in some equation (e.g., the 3rd equation
of m2 should be X(1)-2*X(2)=-0.5).

4 An Approach to Decision Border Characterization

Statistical pattern classification is modeled by considering a pair (x, c) of random
variables with values in Rn × C. The continuous vector x is the observed vector
(or feature vector), while the discrete random variable c ∈ C = {c1, c2, . . . , ck}
is the class the observed vector belongs to. Each class ci is characterized by a
conditional density function px|c(x = x|c = ci), and by an apriori probability
Pc(ci),

∑k
i=1 Pc(ci) = 1. The best theoretical rule to assign a feature vector to

a class is known as the Bayes rule. It reads:

c∗ = argmaxci{Pc(ci) ∗ px|c(x = x|c = ci)}.
This rule produces in fact the minimum misclassification rate. For this reason,
decision borders defined by the Bayes rule are considered the true (Bayes) deci-
sion border for the problem.
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The Region of code vector m1 (0.000,0.000) label 2:
1.000*X(1) + -1.000*X(2) = -1.000 from (-0.000,1.000) to (-1.500,-0.500)
1.000*X(1) + 1.000*X(2) = 1.000 from (-0.000,1.000) to (1.500,-0.500)
0.000*X(1) + 1.000*X(2) = -0.500 from (-1.500,-0.500) to (1.500,-0.500)
The Region of code vector m2 (-1.000,1.000) label 2:
1.000*X(1) + -1.000*X(2) = -1.000 from (-0.000,1.000) to (-1.500,-0.500)
1.000*X(1) + 0.000*X(2) = -0.000 from (-0.000,1.000) to (-0.000,1001.000)
1.000*X(1) + -2.001*X(2) = -0.499 from (-1.500,-0.500) to (-667.059,-333.274)
The Region of code vector m3 (1.000,1.000) label 1:
1.000*X(1) + 1.000*X(2) = 1.000 from (-0.000,1.000) to (1.500,-0.500)
1.000*X(1) + 0.000*X(2) = -0.000 from (-0.000,1.000) to (-0.000,1001.000)
1.000*X(1) + 2.001*X(2) = 0.499 from (1.500,-0.500) to (667.059,-333.274)
The Region of code vector m4 (0.000,-1.000) label 1:
0.000*X(1) + 1.000*X(2) = -0.500 from (-1.500,-0.500) to (1.500,-0.500)
1.000*X(1) + -2.001*X(2) = -0.499 from (-1.500,-0.500) to (-667.059,-333.274)
1.000*X(1) + 2.001*X(2) = 0.499 from (1.500,-0.500) to (667.059,-333.274)

Fig. 4. An example of analytical description of a Voronoi Diagram and its graphical
representation.

The form of the true decision border is generally unknown, since the Bayes
rule is based on the definition of the unknown class conditional distributions. In
the following we describe a method to estimate the form of the true but unknown
decision border. It relies on the Labeled Vector Quantizer (LVQ) architecture
as a classification architecture and on the BVQ algorithm [8] to design an LVQ
approaching the Bayes rule.

Definition 3. A Labeled Vector Quantizer (LVQ) is a pair LV Q =< Ω,L >,
where Ω : Rn →M is a vector quantizer, and L : M→ C is a labeling function,
assigning to each code vector in M a class label.

An LVQ defines a decision rule:

Definition 4. The decision rule associated with a Labeled Vector Quantizer
LV Q =< Ω,L > is:

ΦLV Q : Rn → C, x 7→ L(Ω(x)).

Notice the nearest neighbor nature of this decision rule: each vector in Rn

is assigned to the same class as its nearest code vector. Thus, decision regions
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are defined by the union of Voronoi regions of code vectors with the same label.
Notice also that decision borders are defined only by those hyperplanes Si,j such
that mi and mj have different labels.

The design of an LVQ decision rule approaching the Bayes rule is practically
realized by supervised inductive learning algorithms, based on a set of examples
of known class. Among the learning algorithms for LVQ classifier design, BVQ
turns out to be the one with the best overall performances [8].

In the following we summarize the steps of the proposed method to extract
the analytical description of the decision border. The method is valid, and we
tested it, in general Rn space and for k-class problems. However in the following,
for sake of simplicity and to give a visual support to the reader, the examples
are given considering two-class problems in a two-dimensional space.

Let T = {(x1, l1), . . . , (xN , lN )} be a set of N labeled samples, where xi is
the feature vector and li ∈ {c1, . . . , ck} is its class.

1. BVQ Training: Use the N samples to train an LVQ. In this phase we have
to set up the parameters of the LVQ and BVQ algorithm, that are principally
the number of code vectors, the width of the windows ∆, the learning rate γ
and the number of iterations. The tuning of the BVQ parameters is usually
done experimentally, by trying different n-tuples of parameter values and
evaluating the classification error for each. The total time and effort we put
into the parameter setting depends on the quality of the classifier that we
want to design and, of course, on the difficulty of the classification problem.
The output of this step is the set of code vectors used to approach the Bayes
border.

2. Analytical Voronoi Description: Apply the algorithm described in Sec-
tion 3.1 and Appendix A to the trained code vectors, to obtain the equations
of hyperplanes and circumcenters representing the Voronoi border surfaces
and their vertices respectively.

3. Decision border extraction: Starting from the equations of the Voronoi
diagram, obtain the decision border description by deleting all the borders
dividing two regions with the same label. This can be done in practice by
merging the pieces of hyperplane of all the code vectors with the same label,
deleting those appearing twice. The result of this step for the example in
Figure 4 is reported in Figure 5.

5 Analysis

Having the analytical definition of decision borders, one can develop any kind
of geometrical analysis. We hasten to point out that the results of the analysis
depend on the quality of the classifier w.r.t. (1) correctness and (2) simplicity.
Correctness is related to the accuracy in Bayes decision border approximation.
We will show that valid analysis can be carried out, even if the classifier is not
accurately designed. More refined analysis cannot be guaranteed to be valid
unless the classifier is near-optimal. Simplicity of the classifier depends on the

11



Decision Border:
1.000*X(1) + 0.000*X(2) = 0.000 from (-0.000,1.000) to (-0.000,1001.000)
1.000*X(1) + 1.000*X(2) = 1.000 from (-0.000,1.000) to (1.500,-0.500)
0.000*X(1) + 1.000*X(2) = -0.500 from (-1.500,-0.500) to (1.500,-0.500)
1.000*X(1) + -2.001*X(2) = -0.499 from (-1.500,-0.500) to (-667.059,-333.274)

Fig. 5. An example of Decision Border equations.

number of constraints used to describe the decision border, and hence indirectly
on the number of code vectors. Of course, following the Occam’s razor principle,
such number should not be greater than the minimum number of constraints
necessary to guarantee a given level of correctness, since each constraint beyond
this number contributes reducing the human understanding of the model. In the
following we will consider different types of analysis drawing attention to these
issues.

5.1 Topological Properties of Regions

One simple analysis is that on the qualitative shape of the curve, that is of
topological properties such as the Connected/Disconnected and the Open/Close
properties of the decision regions. This information is derivable simply from the
analysis of vertices. A decision region is Connected (Disconnected) if, denoted
by V any of its vertices, it is (not) possible, starting from V , to pass along all the
other vertices, moving along the pieces of hyperplanes of the region surface. To
evaluate the connected property of a decision region we can use any algorithm to
evaluate the connection of a graph. To evaluate the open/close property of the
region (or of its sub-regions, if it is disconnected), it is sufficient to evaluate if a
fictitious vertex exists in the set of its vertices. Since this vertex does not really
exist, the region turns out to be unlimited (for instance, Figure 10 shows an
example of two closed decision regions, while Figure 7 shows an example of open
decision region). We illustrate the method for extracting the open and connected
properties by the following simple algorithm:

let S be the list of all vertices Vi, i ∈ {1, . . . , M} of the decision regions.
With a little abuse of notation, S[i] will denote the i-th element of the list S,
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while |S| will denote the number of elements in S. Let A be the matrix of links
between any pair of vertices, such that A[i, j] = 1 iff S[i] and S[j] both belong
to a piece of hyperplane delimiting the decision region and i 6= j. Finally, let C
be an array such that C[t] contains the list of vertices of the region analysed at
the t-th iteration.

1. t = 0;
2. t = t + 1;
3. Set X = S[1] and set l[t] =‘close’;
4. i = 0;
5. While ((i < |S|) and (l[t] =‘close’)) do

(a) i = i + 1;
(b) if S[i] is a fictitious vertex then X = S[i] and l[t] =‘open’;

6. if (X 6∈ C[t]) then insert X in C[t];
7. j = 1;
8. While (j ≤ |S|) do

(a) if A[i, j] = 1 then do

i. A[i, j] = 0 and A[j, i] = 0;
ii. X = S[j];
iii. i = j and j = 1;
iv. if (X 6∈ C[t]) then insert X in C[t];

(b) else j = j + 1;

9. delete from S vertices in C[t];
10. If S is not empty go to step 2;

If t = 1 the decision region is connected, otherwise it is disconnected and
formed by t sub-regions. The pairs (C[i], l[i]), with i = 1, . . . , t individuate the
t sub-regions and if they are closed or open. For the example shown in Figure 5
the input to the algorithm can be

S[1] = (−0.000, 1.000),
S[2] = (−0.000, 1001.000),
S[3] = (1.500,−0.500),
S[4] = (−1.500,−0.500),
S[5] = (−667.059,−333, 274)

, A =

0BBB@
0 1 1 0 0
1 0 0 0 0
1 0 0 1 0
0 0 1 0 1
0 0 0 1 0

1CCCA ,

while C is empty. At the end, the algorithm produces the following structure:0BBB@C[1] =

(−0.000, 1001.000)
(−0.000, 1.000)
(1.500,−0.500)
(−1.500,−0.500)
(−667.059,−333, 274)

, l[1] = ‘open′

1CCCA,

so we get an open, connected decision region (the grey region in Figure 5). The
other decision region (the white one) is obviously obtained by complement.

For this analysis even rough classifiers allow us to obtain correct deductions.
Figures 6-10 show five classification problems characterized each by a different
topology of the true decision regions. In the figures the thin lines represent
the true Bayes decision borders, while the thick lines are the borders found
without stressing the design of the classifier by the BVQ, that is, by choosing
a uselessly high number of code vectors, by running the BVQ for a limited
number of iterations and without tuning the parameters γ and ∆. We can notice
that the decision borders found by BVQ differ considerably from the true ones,
nevertheless, topological properties are preserved. This is especially evident in
Figures 7, 8 and 10.
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Fig. 6. A problem with a linear decision
border.
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Fig. 7. A problem with a hyperbolic deci-
sion border.
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Fig. 8. A problem with a circular decision
border.
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Fig. 9. The XOR problem.
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Fig. 10. A problem with a decision border
formed by two disconnected circles.

14



5.2 Extraction of Geometrical Properties of Regions

For any (sub)regions, and specially for closed ones, we can extract a number of
geometrical features to refine the regions characterization. These features include
the surface area, volume, principal components ratio, convexity, volume/surface
ratio, position in Rn and so on. Principal component analysis, in the classifica-
tion domain, aims to measure the most informative direction for the classification
task. Following [23], it is quite simple to calculate principal components for the
piecewise linear borders of an LVQ. Convexity of decision regions can be estab-
lished if, for each pair of vertices a, b their convex combination αa + (1 − α)b
belongs to the decision region, or to the decision border, for each 0 ≤ α ≤ 1.
For lack of space, we omit the description of the algorithms to calculate all these
geometrical features.

The precision of most of the geometrical features depends on the quality of
the classifier. Consider for example the convexity property: from Figures 7 and
10, we can deduce that convexity is not easily preserved. Notice however that in
Figures 7 and 10 convexity is not preserved only in limited and local regions of
space, so that in a global analysis they can be ignored. This is true in general:
further elaborations and approximations of a rough classification would allow us
to enhance the quality of the deductions. Notice also that comparison between
regions properties, like the relative dimensions and the relative positions of the
(sub)regions remains valid (see Figure 8, 9 and 10).

6 Case Studies

In this section we show how the knowledge given by the decision border can be
exploited to support the user in the design of classification KDD processes. To
this end, we consider two classification problems, the gaussian signals and the
echocardiogram from the Irvine “UCI Machine Learning Repository” [1].

The former problem is to classify between two bivariate gaussian signals
having the same mean and different covariance matrices. This model describes
the non coherent reception of two equiprobable, noisy, binary modulated signals,
and in the past years it was widely adopted as a benchmark for many recognition
tasks, like feature selection [24] and classification [19]. We set the following values
for means and covariance matrices:

µ1 = µ2 = (
0
0 ), Σ1 = I =

(
1 0
0 1

)
Σ2 = I ∗ 0.01

The Bayes border is a circle centered in the origin of axes with radius around
0.2, Bayes error probability is 2.7%. From this population, a training set TS of
size 100.000 is used to design the classifiers: 50.000 to generate the model and
the leftover instances to test it. First, we apply the proposed approach to extract
a rough analytical description of the decision border. The outcomes are showed
in Figure 11, where the BVQ is trained with 4 code vectors.

The database of the latter classification problem, extracted from the UCI
repository, represents patients who suffered heart attacks at some point in the
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Decision Border:
1.000*X(1) + 0.334*X(2) = 0.302 from (0.42767,-0.37584) to (0.13028,0.51438)
1.000*X(1) + 4.457*X(2) = -1.247 from (0.42767,-0.37584) to (-0.6852,-0.12613)
1.000*X(1) + -1.273*X(2) = -0.525 from (0.13028,0.51438) to (-0.6852,-0.12613)

Fig. 11. The Decision Border equations related to the two bivariate gaussian signals
problem.

past. The goal of this problem is to predict whether or not the patient will
survive. The most difficult part of this problem is related to the size of the data
set. In fact, after the data cleaning phase, the database consists of 9 features
plus the class, and it contains only 132 instances. In this case, the analytical
form of the decision border is obtained initializing the BVQ with only 2 code
vectors. The results are shown in Figure 12.

Decision Border:
-0.981*X(1)+ 0.130*X(2)+ -0.045*X(3)+ -0.092*X(4)+ 0.038*X(5)+
-0.004*X(6)+ -0.060*X(7)+ 0.021*X(8)+ -0.064*X(9) = -0.174

Fig. 12. The Decision Border equations related to echocardiogram database.

In the following, we show how the knowledge of the decision border helps
the user in the choice of the appropriate classification algorithm, in the data
selection phase and for feature selection.

6.1 Choosing the Data Mining Algorithm

Support Vector Machines is a kernel-based learning methodology introduced by
Vapnik [29] that finds many important applications in the Data Mining field.
Varying the form of the kernel parameter, the algorithm can simulate differ-
ent classifiers, from linear classifiers, to RBF and MLP neural networks. If no
knowledge about the data is given, the different kernels have to be evaluated
extensively, while some knowledge about the border could limit the search to
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training instances 50000 5000 2000 1000 500 100

runtime in seconds 87.44 3.38 0.65 0.22 0.07 0.03

number of support vectors 4335 1812 790 520 279 135

Accuracy on test set 97.14% 97.02% 96.95% 95.48% 94.02% 02.54%

Table 1. Using the decision border characterization for data selection.

the most promising ones. To prove this statement, let us consider the bivariate
gaussian signals problem. Analyzing the equations of the decision border we see
that it is a connected closed one (see Figure 11), so we deduce that it is not
convenient to use a linear classifier, but we have to train a classifier by an al-
gorithm that builds a non-linear decision rule. As a matter of fact, training the
SVM algorithm with RBF kernel, we obtained an accuracy of 97.14% on the
test set, and the training was carried out in 87.44 seconds. On the other hand,
using a linear kernel, the same implementation of the algorithm runs on the same
machine in 13683.82 seconds with an accuracy on the test set of 49.90%.

6.2 Data Selection

Data reduction techniques are exploited in combination with not scalable al-
gorithms, that is algorithms whose high cost makes them unsuitable for the
management of large amounts of data. The major information for the classifi-
cation task is concentrated in the instances close to the decision border. Thus,
data reduction can be performed by eliminating those samples falling far from
the decision border, as less informative samples. This intuition dates back to the
earliest work in Pattern Recognition, forming the basis of the condensed nearest
neighbor method [15]. In the following, we show that SVM could also gain from
the application of this data reduction technique. To this end, we consider again
the bivariate gaussian signals problem, and we build six different experiments
by training a SVM with a RBF kernel on the whole training set and on the
first 100, 500, 1.000, 2.000 and 5.000 samples falling close to the decision border
found by the BVQ algorithm. The results are shown in Table 1. It is noted that
reducing the number of training instances from 50.000 to 2.000, the accuracy
on the test set does not substantially change (it varies from 97.14% to 96.95%).
On the other hand, the number of support vectors is reduced from 4.335 to 790,
considerably reducing the model complexity.

Reduction in model complexity has a great impact on the training time,
as shown in the Table, and also in the time needed to classify a new sample.
Furthermore, the simpler the model is, the simpler it is to try to validate it and
to extract symbolic rules from it.

6.3 Feature Selection

The echocardiogram database allows us to show how the characterization of
the decision border provides information about the most informative features.
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# Feature Weight (%) Acc. W.

1 survival 0.684 0.684
2 age-at-heart-attack 0.090 0.775
4 fractional-shortening 0.064 0.839
9 mult 0.045 0.884
7 wall-motion-score 0.042 0.925
3 pericardial-effusion 0.031 0.956
5 epss 0.026 0.983
8 wall-motion-index 0.015 0.997
6 lvdd 0.003 1.000

Table 2. Weight of the features, of echocardiogram database, with respect to the
classification task. Acc. W. is accumulation of weights.

Starting from the equations of the decision border (see Figure 12), we are able to
extract the weight of any feature with respect to its contribution to classification
accuracy. According to the EDBFE method [23], these weights can be obtained
simply, by analyzing the vector normal to the decision border, that represents
the most informative direction. Table 2 reports the feature information weights
in decreasing order, together with the cumulative weights for all the features.
Notice that, even with the simple linear border found by the BVQ, it is possi-
ble to derive results that are consistent with the domain knowledge: the most
important feature to predict whether or not the patient will survive is the num-
ber of months that the patient survived immediately after the attack (the first
period is clearly the most critical), while the second one is the age at which the
heart attack occurred. This can be observed also empirically, since experiments
performed show that training a classifier on the whole vector space and on the
space formed by the ‘survival’ and ‘age-at-heart-attack’ features only, leads to
the same classification accuracy.

Note that the EDBFE method extracts the information analyzing the whole
data set, thus requiring a lot of computational resources, while extracting this
information from the analytical form of the decision border is a straightforward
and cheap operation.

The knowledge derived from this analysis can be useful for itself, giving
information as to which variables mainly influence the problem, or it can be
exploited to train a classifier on a limited set of features, thus reducing the so
called curse of dimensionality.

7 Semantic Annotation of Data on a net

Business and scientific organizations can have numerous advantages in the defi-
nition of distributed KDD processes over a network: they can share data, algo-
rithms and computational resources, as well as methodological practices. Also
isolated users can exploit the network environment to retrieve and reuse useful
algorithms, tools, data and discovered models.
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In this perspective, a number of proposals have been made, to define effec-
tive infrastructures for KDD process design over a net. Data and Knowledge
Grids have been defined as a means to support high-performance distributed
data mining in federated environments [4, 6]. The service oriented paradigm is
the natural extension to open environments [28, 13, 9, 22, 26, 21]. This calls for
languages and standards to describe resources, in order to facilitate their discov-
ery, comprehension, exploitation, interoperability. For instance, Grossman intro-
duced the Predictive Model Markup Language (PMML) [14] that, in its latest
version, supports the description of a classification model, as well as of data
transformation activities that precedes model induction in KDD. For a survey
on the development of data mining related standards see [12].

The annotation of data with semantic information about the decision border
can leverage the development of a class of services of particular interest in the
field of KDD, that of high-level services to give support to the users in the map-
ping between his business goal and the Data Mining tasks, in the choice, retrieval
and correct use of techniques and tools, in their efficient composition and in the
understanding of the final results. In fact, the sharing of such data, together with
adopted techniques and experimental results allow us to accumulate knowledge
to build the knowledge-base of an intelligent support system. In the envisaged
scenario, such knowledge-base manages the relationships among three different

Fig. 13. The knowledge-base registry and the intelligent services of an KDD support
system.

registries, representing information about the business, the data mining task and
the data (Figure 13). In particular, for any performed classification experiment
the knowledge-base registry stores information about the business domain, the
business goal, the dataminer and his annotations, the data structure and the
feature semantics, the properties of the decision border and the relations with
both the methods, the algorithms and the tools used for the classification task,
in accordance with a data mining ontology. The information on the decision bor-
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der represents its analytical form, its geometrical and topological properties and
the accuracy of the BVQ classifier used for the decision border definition. The
accuracy of describing the decision border can be measured by the classification
error, so if it turns out to be close to the Bayes classification error, then we can
be quite confident that the decision border found is close to the Bayes border.
Furthermore, the knowledge-base registry contains information about the quality
of the experiment, in terms of performances of the classification algorithm: error
probability, precision, recall, dimension of the inducted model, computation time
and used memory. The accuracy of proposed method, the dataminer reliability
and the performances of the algorithm are a measurement of the quality of the
data semantic annotations. This information can be available over a network
of virtual organizations as results of a single classification process or as similar
distributed knowledge-base registries. Then, Meta Learning Service can collect
and analyze this information to find similarities between data, by clustering the
input datasets on the basis of their decision border characteristics. By map-
ping a cluster to the classification methods and algorithms used for the datasets
belonging to the cluster, the meta-learning service can establish a relationship
between data characteristics and algorithms performances. The results of the
analysis performed by this service is also stored in the knowledge-base reposi-
tory. In turn, this information can be exploited by another class of intelligent
services, that of Case-Based Support Services which, querying the knowledge-
base repository for Meta Learning information, can return the set of algorithms,
or the typical parameter setting for a given algorithm, that have demonstrated
the best performances on the data cluster similar in characteristics to a given
dataset.

8 Conclusions

This work investigated the utility to exploit data semantics in the development
of KDD processes. We considered a special kind of semantics for classification
problems, given by the decision border. We showed that it is possible to derive
some knowledge about the characteristics of the decision border and decision
regions of a classification problem, starting from the geometrical properties of
Vector Quantizers. Then, we showed that this knowledge can effectively help the
user to take decisions and to limit the efforts in the implementation of inductive
classification methodologies. We also discussed the introduction of intelligent
services to collect, to analyze and to manage the semantics of data distributed
over a network of virtual organizations.

An important issue related with this approach is the accuracy of the decision
border needed for the different applications. By the term knowledge, it is com-
monly meant “a set of assertions about a phenomenon which are true to some
extent and which are useful to take decisions”. The set of true assertions repre-
sents a model for the phenomenon. Different models for the same phenomenon
can exist, which are valid as long as they are applied to take certain kinds of
decisions. Consider for instance the Earth model given by the most common
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cartography. This model approximates pieces of the globe as it was flat. This is
a useful model to trace the shortest route between two points which are not too
far from each other, however in an Atlantic crossing it would introduce a non
negligible error, and the Earth sphericity should be taken into account. A sim-
ilar situation applies to our approach. The experiments reported showed that,
in an evidence-based methodology to support the user in a classification KDD
process, an accurate model of the decision border is not needed to understand
and to pre-process the input data. We obtained interesting experimental results
for data selection, feature reduction and for the selection of the kernel parameter
of the SVM algorithm even with a rough model of the classification problem.
However, it is clear that, at least for the definition of the correct classification
rule an accurate decision border is needed. Also, in order to build up a valid
knowledge-based registry, the decision border description should guarantee an
good accuracy. We plan to deeply analyze the issue of decision border accuracy
in future works.
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A Algorithm for the Calculus of Voronoi Diagrams

The Appendix illustrates the algorithm for the analytical description of a Voronoi
diagram, starting from the set of code vectors in general dimensional spaces Rn.
The algorithm is based on the notion of Delaunay triangulation.

Definition A-1. Given a set of points S in R2, the convex hull of S is the
smallest convex set in R2 containing S.

Definition A-2. Given a set of points S in R2, and its convex hull H, the
Delaunay triangulation of S is defined as the the unique triangulation of H such
that the points in S are the vertices of the triangles, and no point of S falls inside
the triangle’s circumcircle.

The definition of Delaunay triangulation can be extended to any space Rn. In
this case, it is also called Complex of Delaunay, and triangles are called simplices.
The circumscribing spheres are called circospheres, and their centers are named
circumcenters.

The following algorithm, starting from the Complex of Delaunay, allows to
calculate the Voronoi diagram of the convex hull of a given set S.

Let be given the set S = S1 ∪ S2, where S1 = {m1,m2, . . . , mM} ⊆ Rn and
S2 = {mM+1,mM+2, . . . , mM+2n} ⊆ Rn, where the elements of S2 are the ver-
tices of an hypercube Φ, such that mi ∈ Φ and the side of Φ À‖ mi − mj ‖2
,∀i, j ∈ [1,M ].

1. Calculate all the hyperplanes

Si,j :‖ x−mi ‖2=‖ x−mj ‖2, i, j = 1, . . . , M

2. Extract all the
(
M+2n

n+1

)
permutations of n + 1 points belonging to S1;

3. For each permutation Pi = {mPi1 , . . . ,mPin+1}, if its elements satisfy the
definition A-2, calculate the circumcenter CPi and the radius rPi of the cir-
cosphere. Let H be the number of different circospheres found;

4. For each point mi ∈ S:
(a) The vertices of the Voronoi region Vi are all the circumcenters Ch,

h = 1, . . . , H, such that: ‖ Ch −mi ‖2= rh
2;

(b) Extract all the
(
H
n

)
permutations of n vertices of Vi; 2

1 Notice that n + 1 points in Rn univocally define a simplex.
2 The choice of the set S guarantees that n such circumcenters always exist.
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(c) For each permutation Qi = {CQi1 , . . . , CQin
}, calculate the hyperplane

including the points CQi1 , . . . , CQin . If this hyperplane belongs to the set
of hyperplanes generated in step 1, this is a piece of the border of the Vi

region, that is bounded by the circumcenters in Qi.

Notice that we define the set S of input points as the union of two sets: S1,
which represents the code vectors of the VQ we want calculate the Voronoi dia-
gram of, and S2, which represents the 2n vertices of a hypercube containing the
real code vectors and having the side much wider than the maximal dimension of
the convex hull of S1. These points represent “points at infinite” and are named
fictitious code vectors. In this way, the convex hull of S is an expansion of the
convex hull of S1 and the outcome diagram contains all the Voronoi borders of
S1. However, by introducing S2 we get also fictitious circumcenters and fictitious
hyperplanes. It is not difficult to individuate and eliminate fictitious circumcen-
ters and hyperplanes: the former are represented by values which are closer to
the values of fictitious code vectors than to real code vectors. The latter are
identified as the hyperplanes separating the Voronoi regions of two code vectors
at least on of which is a fictitious code vector. Finally, notice that the result is
affected by an error which depends on the distance between the elements of S2

and S1. For these reasons, it is important that fictitious code vectors are chosen
to be very far from the real code vectors.
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