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ABSTRACT

This paper investigates the efficacy of several popular denoising
methods in the previously unconsidered context of Computed To-
mography (CT) baggage imagery. The performance of a dedicated
CT baggage denoising approach (alpha-weighted mean separation
and histogram equalisation) is compared to the following popular
denoising techniques: anisotropic diffusion; total variation denois-
ing; bilateral filtering; translation invariant wavelet shrinkage and
non-local means filtering. In addition to a standard qualitative per-
formance analysis (visual comparisons), denoising performance is
evaluated with a recently developed 3D SIFT-based analysis tech-
nique that quantifies the impact of denoising on the implementation
of automated 3D object recognition. The study yields encouraging
results in both the qualitative and quantitative analyses, with wavelet
thresholding producing the most satisfactory results. The results
serve as a strong indication that simple denoising will aid human
and computerised analyses of 3D CT baggage imagery for transport
security screening.

Index Terms— Image denoising, baggage CT, 3D SIFT

1. INTRODUCTION

Traditionally, X-ray based 2D imaging technologies have been used
for the real-time scanning of bags in the airport security and/or par-
cel handling settings. Recent technological advances however, have
allowed for the employment of dual-energy CT scanners and hence
the availability of 3D imagery for these purposes [1, 2] (see Figure
1). For both technologies (X-ray and CT), screening for weapons
and complex contraband objects is performed by human operators,
while automated detection is generally limited to materials-based ex-
plosives discrimination [2]. Recent studies have investigated the im-
plementation of computer vision techniques, such as automatic ob-
ject recognition, in the domain of 3D baggage screening [3–5]. Such
techniques however, have been shown to be severely hindered by the
high degrees of noise and artefacts common in CT baggage imagery
[3, 6].

Despite the abundance of image-processing literature in the area
of medical CT, similar research related to industrial applications and
baggage screening in particular, are very limited [3, 6, 7]. Medical
CT images are generally of a much higher quality than those ob-
tained in the security screening sector. This is primarily due to the
fact that the CT scanners used to capture CT volumetric baggage
imagery, are aimed at dual energy explosives detection and not at
object recognition, as is the case in the medical setting [2]. Sub-
sequently, the CT baggage images present with substantial noise,
streaking artefacts (resulting from the presence of metal items) and
poor resolution [6].

Zhou et al. [7, 8] examine the noise properties of CT baggage
scans in particular. They observe that due to the very high dynamic
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Fig. 1. Example volumetric CT scan of a piece of baggage contain-
ing two firearms in a cluttered environment.

range of the images, the non-object (i.e. background) regions often
appear dark, despite exhibiting non-zero pixel values. As a result,
much of the background noise in the images is not visible under nor-
mal circumstances. Image enhancement, using Histogram Equali-
sation (HE) [9] however, reduces the effective dynamic range of the
image and often reveals high degrees of background projection noise
(see Figure 2). The authors proceed to use image enhancement to re-
move this noise and improve the resolution in CT baggage imagery.
Performance analysis however, seems to be focussed predominantly
on the improvement in image contrast and little mention is made
regarding the effectiveness of the denoising stage of the technique
(particularly from a quantitative perspective). It is also worth not-
ing that the images used in the study [8] are largely free of streaking
artefacts, and the efficacy of the method in the presence of metal
artefacts is thus unclear.

Besides this work of Zhou et al. [7, 8], previous studies re-
garding the denoising of complex baggage imagery of this nature,
containing dense collections of man made objects scanned at low
resolution and in the presence of noise and metal artefacts, are ex-
tremely limited. There is evidence in the medical literature however,
that simple denoising operations can significantly improve the qual-
ity of CT images and benefit subsequent, more complex operations
[10–13]. The value of such techniques when applied to CT baggage
imagery has not been considered previously and is worth investigat-
ing.

This work thus extends the previous work of Zhou et al. [7, 8] by
comparing the performance of several popular denoising techniques
within the previously unconsidered context of CT baggage imagery.
In particular, the potential benefits of denoising on the application of
more complex operations within this context, including volume ren-
dering and automatic object recognition algorithms, are evaluated.

2. 3D CT BAGGAGE IMAGERY

As the vast majority of CT-based literature considers medical ap-
plications, it is important to emphasise that several key differences
between typical medical CT data and baggage CT data mean that
image processing techniques which have been successfully applied
to medical images will not necessarily be successful when applied to
non-medical CT images.



Fig. 2. CT baggage image slice before (a) and after (b) histogram
equalisation. Histogram equalisation reveals the high degree of
background projection noise, previously not visible.

While sub-millimetre isotropic resolutions in all three dimen-
sions has become the norm in medical CT scanners [15, 16], the
volumetric CT baggage data used in this study was obtained using a
CT-80 baggage scanner manufactured by Reveal Imaging Inc. and
yields an optimal spatial resolution of 1.56x1.61x5.00mm. Further-
more, the demand for a higher scan speed in the security screening
setting (compared to the medical setting), leads to compromises in
image quality in both resolution and noise [2]. The resolution of bag-
gage data is thus anisotropic and significantly worse than the state of
the art medical data. Anisotropic voxel resolution and poor resolu-
tion in the axial plane in particular, compound the effects of image
noise and artefacts [17].

While medical CT scans generally present with relatively low
degrees of complexity and contain minimal clutter, the content of a
typical CT baggage scan is highly unpredictable and often extremely
complex, exhibiting high degrees of clutter and artefact corruption
[18] (see Figure 1). It is widely accepted that both human and com-
puter detection rates are severely affected by complexity and clutter
[2].

Previous studies, investigating the efficacy of denoising tech-
niques when applied to low resolution imagery of this nature, con-
taining dense collections of man made objects scanned in the pres-
ence of noise and metal artefacts, is extremely limited.

3. TECHNIQUES COMPARED

In addition to the approach of Zhou et al. [8], we use the recent
denoising survey of Buades et al. [19] as a reference for selecting
the denoising algorithms to compare. The following methods are
thus selected for investigation: anisotropic diffusion; total variation
denoising; bilateral filtering; translation invariant wavelet shrinkage;
non-local means filtering and alpha-weighted mean separation and
histogram equalisation.

Anisotropic diffusion: Anisotropic diffusion is a shape-
adaptive filtering technique whereby an image is evolved under
an edge controlled diffusion operator where the orientation of the
filter is determined by the local gradient in the image. Image details
such as edges and lines are thus preserved or even enhanced, while
regions within edges are smoothed [20]. The generalised diffusion
equation is given by:

δ

δt
I(x, y, t) = div(c(x, y, t)∇I(x, y, t)) (1)

I(x, y, 0) = I0(x, y) (2)

where ∇ denotes the image gradient, div(...) is the divergence op-
erator and c(x, y, t) is the diffusivity function, controlling the rate
of diffusion [20]. Perona and Malik [20] proposed that c(x, y, t) be
chosen as a function of the image gradient, such that image edges
are preserved:

c(x, y, t) = 1/(1 +
|∇I|2

K2
) (3)

where K is a contrast parameter and is determined automatically
using the noise estimator described by Canny [21].

Total Variation (TV) denoising: TV denoising exploits the
prinicple that reducing the total variation [22] of an image, while
maintaining a close match to the original image, removes image
noise, whilst simultaneously preserving important details such as
edges [23–25]. Rudin et al. [22] define the total variation of an
image, u, as:

J(u) =
∑

1≤x,y≤N

|(∇u)x,y| (4)

where |u| :=
√
u2
1 + u2

2 for every u = (u1, u2) ∈ <2. The total
variation denoising problem can then be described as:

min
u∈X

‖u− g‖2

2λ
+ J(u) (5)

where ‖.‖ is the 2D Euclidean norm and λ > 0 is a regularisation pa-
rameter. This study utilizes the iterative TV minimisation approach
developed by Chambolle [25] to solve the above minimisation prob-
lem.

Bilateral filtering: The bilateral filter is another edge-preserving
smoothing filter. The filter is defined by a Gaussian weighted av-
erage of pixels in a predefined local neighbourhood [26–28]. The
technique is based on the principle that two pixels are similar not
only if they are close to one another spatially but also if they ex-
hibit some similarity in their photometric range or intensity [29].
The output pixel is thus computed as a weighted combination of its
neighbouring pixels according to:

g(x, y) =

∑
k,l u(k, l)w(x, y, k, l)∑

k,l w(x, y, k, l)
(6)

where the weighting coefficient w(x, y, k, l) is computed as the
product of a domain kernel d(x, y, k, l) and range kernel r(x, y, k, l):

d(x, y, k, l) = exp(− (x− k)2 + (y − l)2

2σ2
d

) (7)

r(x, y, k, l) = exp(−‖u(x, y)− u(k, l)‖
2

2σ2
r

) (8)

Translation-invariant wavelet shrinkage: Coifman et al. [30]
show that due to the lack of translation invariance of the wavelet
basis, traditional wavelet denoising via thresholding, leads to visual
artefacts in the denoised image. They present a modified approach to
reduce these artefacts using a technique termed cycle spinning which
averages out the translation dependence of the wavelet basis.

Non-Local Means (NLM) filtering: The NLM filter of Buades
et al. [19, 31] computes the mean of the values of all points whose
Gaussian neighbourhood looks like the neighbourhood of the cur-
rent pixel. In a recent survey on image denoising techniques [19],
the NLM filter outperformed several state of the art denoising tech-
niques. In the NLM algorithm, the estimated value for a pixel at
coordinates (x, y) is computed as a weighted average of all the pix-
els in the image:

g(x, y) =

∑
k,l w(x, y, k, l)u(k, l)∑

k,l w(x, y, k, l)
(9)

where the weights, w(x, y, k, l), are computed based on the similar-
ity of pixels u(x, y) and u(k, l):

w(x, y, k, l) = exp(−‖u(x, y)− u(k, l)‖
2
a

h2
) (10)



where ‖u(x, y)− u(k, l)‖2a is a Gaussian weighted Euclidean norm
and a is the standard deviation of the Gaussian kernel. The parameter
h is a constant proportional to the estimated noise in the input image.

Alpha-Weighted Mean Separation and Histogram Equalisa-
tion (AWMSHE): Zhou et al. [8] present an image enhancement
algorithm that combines alpha-weighted mean separation and his-
togram equalisation to remove background noise and improve the
resolution in CT baggage imagery. The proposed algorithm is com-
prised of two stages: noise removal and image enhancement. The
noise removal step exploits the fact that much of the projection noise
present in CT baggage imagery is characterised by very low pixel
values relative to the high dynamic range of the image. A simple
threshold-type noise removal procedure thus seems promising. An
initial 2D CT image I is separated into an object image IO (con-
taining the valuable information in the image) and a noise image IN
(comprised of only noise) via Alpha-Weighted Mean (AWM) thresh-
olding:

IO(x, y) = I(x, y) for I(x, y) ≥ th1 (11)
IN (x, y) = I(x, y) for I(x, y) < th1 (12)

where the noise threshold th1 = α1Imean and Imean is the
mean pixel value of I . The noise image IN is then discarded and
the object image IO is subdivided again into upper and lower im-
age sub-images (IU and IL) by applying a second threshold th2 =
α2IO−mean:

IU (x, y) = IO(x, y) for I0(x, y) ≥ th2 (13)
IL(x, y) = IO(x, y) for IO(x, y) < th2 (14)

The upper image IU contains the brighter regions of the object
image, while the lower image IL contains the darker (yet still infor-
mative) regions. IL is enhanced via Histogram Equalisation (HE)
[9] yielding an enhanced image EL and IU is clipped to the max-
imum value of IL (to compress the data range without introducing
new artefacts) yielding the upper enhanced image EU . The final
image E is then created by combining EU and EL via addition:

E(x, y) = EU (x, y) + EL(x, y) (15)

4. METHODOLOGY

Evaluating the performance of a denoising algorithm is an essen-
tial yet challenging task. In reality, baggage screening is a human-
operated task whereby a security official visually inspects every scan
[18]. In other words, it is a qualitative problem. Therefore, em-
phasis should be placed on the qualitative analysis of the denoising
algorithms.

The visual quality of the volumes before and after denoising are
compared; this is done for both the original volumes as well as the
original volumes corrupted with Gaussian noise of known standard
deviation. An iso-surface based volume rendering technique [32], is
applied to the data before and after filtering and the visual quality of
the resulting volumes is used as an indication of the efficacy of the
denoising technique.

Despite the importance of the qualitative analysis of the denois-
ing algorithms, some form of quantitative analysis is still valuable.
Traditionally, the mean-squared error (MSE) has been used to quan-
tify the performance of reconstruction algorithms [9]. A recent
study, however, has highlighted the limitations of using the MSE in
the context of image processing [33]. The authors go as far as to say
that the MSE is unreliable when used to predict human perception of
image fidelity and quality. An alternative approach is thus desired.

A predominant motivation for effectively denoising CT baggage
images is to aid the implementation of subsequent automated 3D

object recognition. Flitton et al. [3] have investigated the imple-
mentation of object recognition in complex CT volumes based on
3D SIFT features. The study shows that the presence of CT artefacts
and noise is the predominant factor contributing to false positives.

The recent quantitative performance analysis technique of Mou-
ton et al. [34], which is based on 3D SIFT keypoints [3], is thus
used to quantify the results of the denoising algorithms. The tech-
nique uses the recent 3D extension [3] to the traditional SIFT algo-
rithm [35] to determine the locations of keypoints in the volumes
before and after denoising. Keypoint locations are determined in
a similar manner to their 2D counterparts. An initial candidate set
of keypoints is taken as the local extrema of multi-scale Difference
of Gaussian (DoG) volumes, where the DoG volumes are created
by convolving the input volume I(x, y, z) with 3D Gaussian filters
G(x, y, z, kσ) at different scales:

DoG(x, y, z, k) = I(x, y, z) ? G(x, y, z, kσs)

− I(x, y, z) ? G(x, y, z, (k − 1)σs) (16)

where k is an integer representing the scale index. A voxel is then
considered a local extrema if it is a minimum or maximum in its lo-
cal 3 x 3 x 3 (i.e. 26 voxels) neighbourhood at the current scale k
as well as in the 27 voxel neighbourhoods in the two adjacent scale
space DoG volumes (i.e. at scales (k + 1) and (k − 1)). This ini-
tial candidate set of keypoints is then refined by discarding unstable
keypoints caused by poor contrast if their densities are below a given
threshold τc. The candidate set is refined further by discarding the
keypoints related to poor localisation on edges - determined by a
second threshold τe related to the Trace and Determinant of the 3 x
3 Hessian matrix of the DoG volume [3].

This 3D SIFT point detector is run on the volume before and
after denoising and the number of object and noise SIFT points are
manually recorded. An object feature point is identified as one lo-
cated on an object of interest within the CT image whilst a noise
feature point is considered as one which is not on the primary object
within the CT image (i.e. assumed to be caused by noise or arte-
facts). The ratio of object feature points to total feature points (ob-
ject + noise) is used as an indication of the performance of the given
technique. It is assumed that an increase in this ratio will ultimately
correspond to improved object recognition results [34].

5. RESULTS

The aforementioned methods were tested on several scans obtained
from a CT-80 model baggage scanner manufactured by Reveal Imag-
ing Technologies. Since CT volumes are essentially composed of
a set of CT slices, where each individual slice is a 2D image, the
denoising algorithms could be implemented in the 2D domain by
applying them on a ‘per-slice’ basis. The volumes were then recon-
structed from the denoised slices. The optimal parameters for each
of the denoising algorithms were determined empirically.

Figure 3 shows the results of applying the denoising algorithms
to a scan of a container containing a single firearm. The first image
in the figure displays the original, unfiltered volume and subsequent
images (b) - (g) display the results of each of the denoising tech-
niques. In Figure 3(a) the streaking artefacts surrounding the firearm
in the centre of the container are clear. Each of the denoising meth-
ods yielded a significantly cleaner image. While the streaking arte-
facts are considerably reduced they are not completely removed. A
greater degree of filtering would be required to remove more of the
streaks but this would likely result in an undesired loss in valuable
image information. It is thus apparent that denoising alone is not suf-
ficient for removing all of the streaking artefacts without destroying
image detail. This is especially evident for the AWMSHE approach



Fig. 3. (a) Original (b) Anisotropic diffusion (c) Bilateral filter (d) TV filter (e) Wavelet thresholding (f) NLM filter (g) AWMSHE

Fig. 4. (a) Original image with Gaussian noise, σ = 15 (b) Anisotropic diffusion (c) Bilateral filter (d) TV filter (e) Wavelet thresholding (f)
NLM filter (g) AWMSHE

Fig. 5. Single slice analysis with Gaussian noise corruption. (a) Original image with Gaussian noise, σ = 15 (b) Anisotropic diffusion (c)
Bilateral filter (d) TV filter (e) Wavelet thresholding (f) NLM filter (g) AWMSHE

(Figure 3 (g)) where the loss of edge information is clear. Recall that
the AWMSHE approach relies on the noise being characterised by
much lower pixel values than the ‘valuable’ image regions (contain-
ing important details) for denoising to be successful. Therefore, such
a threshold-based denoising approach is bound to be insufficient for
dealing with streak-like artefacts and heavy noise corruption as the
required threshold will lead to significant destruction of edge infor-
mation.

Figure 4 displays the same scan (in a different orientation), cor-
rupted with Gaussian noise of standard deviation of 15 and then pro-
cessed with each of the denoising methods. Figure 5 illustrates a
single slice from each of the volumes in Figure 4. The variation in
performance of the different algorithms is clearer in these two sets of
figures. While this degree of noise corruption is unlikely in reality,
it illustrates the efficacy of the denoising algorithms well. The NLM
filter and wavelet shrinkage approach produced the most pleasing vi-
sual results, with the majority of the noise removed and a clear image
of the firearm and container remaining. The limitations of simple de-
noising in terms of artefact removal are also illustrated clearer here:
while the background noise is significantly reduced, considerable
streaking artefacts remain - even for the two most effective methods
(NLM filtering and wavelet thresholding). Interestingly, despite the

fact that the AWMSHE approach is the only dedicated baggage CT
denoising technique the results are perhaps the poorest - with con-
siderable degrees of noise and artefacts remaining (Figure 4 (g) and
Figure 5 (g)).

Figure 6 displays the results of the iso-surface based volume ren-
dering algorithm [32], on the original scan and after applying each of
the denoising algorithms. Wavelet thresholding and the NLM filter
again yielded the most satisfactory results. To illustrate the effects
of denoising on the rendering results more clearly, Figure 7 shows a
magnified region of the rendered volumes before and after applying
the NLM filter, which produced the most pleasing results. Denois-
ing resulted in a considerably cleaner result, as is indicated by the
demarcated regions.

Finally, Table 1 and Figure 8 display the results of the quantita-
tive analysis discussed earlier. As mentioned, the SIFT point detec-
tion algorithm includes a refinement procedure whereby candidate
SIFT points are rejected due to poor contrast and/or poor localisation
on edges [3]. These rejections are governed by two thresholds which
were set according to the optimal values recommended by Flitton et
al [3]. The number of object and noise SIFT points was manually
recorded across three scale-space levels. The results in Table 1 left
indicate that there was no significant variation in the number of ob-



Fig. 6. Volume rendering on: (a) Original (b) Anisotropic diffusion (c) Bilateral filter (d) TV filter (e) Wavelet thresholding (f) NLM filter (g)
AWMSHE

Fig. 7. Magnified region of rendered volumes for with regions of
interest marked: (a) Original volume (b) NLM filtered volume

ject feature points detected for each of the volumes. For the unfil-
tered volume a total of 19 noise feature points was detected, yielding
a ratio of 0.66. In every case, excluding TV filtering, denoising re-
sulted in significantly fewer noise feature points and subsequently
much higher ratios. Wavelet thresholding (indicated in bold in Table
1) yielded the optimal results with 0 noise feature points and thus a
perfect ratio. The bilateral filter (2 noise feature points and ratio =
0.94) and NLM filter (1 noise feature point and ratio = 0.97) also re-
turned statistically significant improvements. As was the case with
the quantitative analysis, the AWMSHE was outperformed by the
majority of the standard denoising techniques, indicating that this
approach is of limited benefit in environments characterised by high
degrees of artefacts and noise (the technique was tested on images
with a much lower degree of artefacts and noise in the original work
[8]).

For illustrative purposes, the SIFT point locations at the first
scale-space level on the volumes before and after applying each of
the denoising techniques are shown in Figure 8. The reduction in
the number of noise feature points post-denoising is clear. These
images illustrate keypoint locations at the first scale-space level only
and so the numbers of object and noise feature points do not corre-
spond directly with those in Table 1, which represent the numbers
of keypoints across all three scale-space levels. The significant im-
provement in the ratio of object to total feature points, with little to
no decline in the number of object feature points, is a strong indica-

Method
Object
points

Noise
points Ratio

Unfiltered 37 19 0.66
Anisotropic 27 8 0.77
Bilateral 33 2 0.94
TV 36 20 0.64
Wavelets 35 0 1.00
NLM 33 1 0.97
AWMSHE 26 8 0.76

Table 1. Results of quantitative analysis of denoising techniques
showing: number of object and noise feature points and resulting
ratios. The best performing method indicated in bold.

tion that simple denoising will lead to improved object recognition
results using techniques such as those implemented in [3].

6. CONCLUSIONS

This paper has compared the performance of several popular image
denoising techniques in the previously unconsidered context of CT
baggage imagery. In particular, images characterised by high de-
grees of background noise and streaking artefacts are considered.
Previous studies considering the denoising of CT baggage scans are
limited to the work of Zhou et al. [7, 8], where images with relatively
low degrees of noise and artefacts are considered and no compara-
tive analyses is performed. The major contribution of this study has
thus been the extension of these previous works by considering low
quality CT baggage imagery; by comparing the performance of a va-
riety of simple, yet popular denoising algorithms, which have been
met with success in other areas of image processing and by consider-
ing the impact of denoising on subsequent feature-based automated
object recognition in this environment.

A comprehensive qualitative analysis indicated that all of the
standard 2D denoising techniques yielded improvements in the vi-
sual quality of the volumes and significantly outperformed the dedi-
cated CT baggage denoising approach of Zhou et al. [8].

A quantitative performance analysis using the technique of
Mouton et al. [34] was used to quantify the impact of denoising



Fig. 8. SIFT point locations at the first scale space level (cross = object; dot = noise): (a) Original (b) Anisotropic diffusion (c) Bilateral filter
(d) TV filter (e) Wavelet thresholding (f) NLM filter (g) AWMSHE

on subsequent feature-based automated object recognition. Per-
formance evaluation using this technique showed considerable im-
provements, particularly for wavelet thresholding. The improve-
ments observed in the quantitative analysis and improved volume
rendering results for the NLM filter and wavelet thresholding, is a
strong indication that these standard 2D denoising techniques will be
benefit the implementation of complex computer vision techniques
to CT baggage scans [3–5].

Future work will focus on a more detailed analysis of the im-
pact of denoising on the performance of subsequent computer vision
techniques such automated object recognition and segmentation in
the CT baggage imagery domain.

7. REFERENCES

[1] B. R. Abidi, Y. Zheng, A. V. Gribok, and M. A. Abidi, “Improving weapon de-
tection in single energy x-ray images through pseudocoloring,” IEEE Trans. on
Systems, Man, and Cybernetics, vol. 36, no. 6, pp. 784–796, 2006.

[2] S. Singh, “Explosives detection systems (EDS) for aviation security,” Signal
Processing, vol. 83, no. 1, pp. 31–55, Jan. 2003.

[3] G. Flitton, T.P. Breckon, and N. Megherbi, “Object recognition using 3D SIFT
in complex CT volumes,” in Proc. British Machine Vision Conference, 2010, pp.
11.1–11.12.

[4] N. Megherbi, G. T. Flitton, and T. P. Breckon, “A classifier based approach for the
detection of potential threats in CT based baggage screening,” in ICIP, 2010, pp.
1833–1836.

[5] G.T. Flitton, T.P. Breckon, and N. Megherbi, “A 3D Extension to Cortex Like
Mechanisms for 3D Object Class Recognition,” in IEEE Proc. Inter. Conf. on
Computer Vision and Pattern Recognition, June 2012, pp. 3634–3641.

[6] J. F. Barrett and N. Keat, “Artifacts in CT: Recognition and avoidance,” Radio-
graphics, vol. 24, no. 6, pp. 1679, 2004.

[7] Y. Zhou, K. Panetta, and S. Agaian, “3D CT baggage image enhancement based
on order statistic decomposition,” in Technologies for Homeland Security (HST),
2010 IEEE Inter. Conf. on, 2010, pp. 287–291.

[8] Y. Zhou, K. Panetta, and S. Agaian, “CT baggage image enhancement using a
combination of alpha-weighted mean separation and histogram equalization,” in
Proc. SPIE, 2010, vol. 7708, p. 77080G.

[9] C.J. Solomon and T.P. Breckon, Fundamentals of Digital Image Processing: A
Practical Approach with Examples in Matlab, Wiley-Blackwell, 2010.

[10] J. Hsieh, Computed tomography: principles, design, artifacts, and recent ad-
vances, SPIE and John Wiley and Sons, 2003.

[11] E. Seeram, Computed tomography: physical principles, clinical applications, and
quality control, WB Saunders, 2001.

[12] H. Yu, K. Zeng, D. K. Bharkhada, G. Wang, M. T. Madsen, O. Saba, B. Policeni,
M. A. Howard, and W. R. K. Smoker, “A segmentation-based method for metal
artifact reduction,” Academic Radiology, vol. 14, no. 4, pp. 495–504, 2007.

[13] X. Duan, L. Zhang, Y. Xiao, J. Cheng, Z. Chen, and Y. Xing, “Metal artifact re-
duction in CT images by sinogram TV inpainting,” in Nuclear Science Symposium
Conference Record, 2008, pp. 4175–4177.

[14] G. van Kaick and S. Delorme, “Computed tomography in various fields outside
medicine,” European Radiology Supplements, vol. 15, pp. 74–81, 2005.

[15] “Toshiba Medical Systems Corporation Aquilion 32 http://www.
toshiba-medical.co.uk/ct-systems.asp [Jan. 01, 2012],” .

[16] “GE Healthcare discovery CT750 HD http://www.gehealthcare.com/
euen/ct/products/ [Jan. 01, 2012],” .

[17] A. F. Kopp, K. Klingenbeck-Regn, M. Heuschmid, A. Kuttner, B. Ohnesorge,
T. Flohr, S. Schaller, and C. D. Claussen, “Multislice computed tomography:
basic principles and clinical applications,” Electromedica-Erlangen, vol. 68, no.
2, pp. 94–105, 2000.

[18] N. E. L. Shanks and A. L. W. Bradley, Handbook of Checked Baggage Screening:
Advanced Airport Security Operation, John Wiley and Sons, 2004.

[19] A. Buades, B. Coll, and J. M. Morel, “On image denoising methods,” SIAM
Multiscale Modeling and Simulation, vol. 4, no. 2, pp. 490–530, 2005.

[20] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffu-
sion,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 12, no. 7,
pp. 629–639, 1990.

[21] J. Canny, “A computational approach to edge detection,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, , no. 6, pp. 679–698, 1986.

[22] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise re-
moval algorithms,” Physica D: Nonlinear Phenomena, vol. 60, no. 1-4, pp. 259–
268, 1992.

[23] A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained to-
tal variation image denoising and deblurring problems,” IEEE Trans. on Image
Processing, vol. 18, no. 11, pp. 2419–2434, 2009.

[24] G. Gilboa, N. Sochen, and Y. Y. Zeevi, “Texture preserving variational denoising
using an adaptive fidelity term,” in Proc. Variational and Level Set Methods, 2003,
vol. 5, pp. 137–144.

[25] A. Chambolle, “An algorithm for total variation minimization and applications,”
Journal of Mathematical Imaging and Vision, vol. 20, no. 1, pp. 89–97, 2004.

[26] M. Zhang and B. K. Gunturk, “A new image denoising framework based on
bilateral filter,” in Proc. SPIE, 2008, vol. 6822, pp. 68221B–68221B–8.

[27] B. K. Gunturk, “Bilateral filter: Theory and applications,” Computational Pho-
tography: Methods and Applications, vol. 2, pp. 339, 2010.

[28] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in
Computer Vision, 1998. Sixth Inter. Conf. on, 1998, pp. 839–846.

[29] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, “A gentle introduction to
bilateral filtering and its applications,” in ACM SIGGRAPH 2007 courses, 05-09
August 2007.

[30] R. R. Coifman, D. L. Donoho, A. Antoniadis, and G. Oppenheim, “Translation-
invariant de-noising,” Wavelets and Statistics, pp. 125–150, 1995.

[31] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image denoising,”
in Proc. Conference on Computer Vision and Pattern Recognition, 2005, vol. 2,
pp. 60–65.

[32] B. Lichtenbelt, R. Crane, S. Naqvi, and Hewlett-Packard Company, Introduction
to volume rendering, Prentice Hall PTR Upper Saddle River, NJ, 1998.

[33] Zhou Wang and A.C. Bovik, “Mean squared error: Love it or leave it? a new look
at signal fidelity measures,” Signal Processing Magazine, IEEE, vol. 26, no. 1, pp.
98 –117, jan. 2009.

[34] A. Mouton, N. Megherbi, G.T. Flitton, and T.P. Breckon, “A novel intensity lim-
iting approach to metal artefact reduction in 3D CT baggage imagery,” in Proc.
International Conference on Image Processing. September 2012, IEEE, to appear.

[35] D. G. Lowe, “Object recognition from local scale-invariant features,” in Computer
Vision. IEEE Inter. Conf. on, 1999, vol. 2, pp. 1150–1157 vol. 2.


