
THE COMPLEXITY and the short time to mar-

ket of embedded systems require the use of auto-

mated techniques during the specification,

implementation, and testing phases of such sys-

tems. Due to the cost requirements and the timing

constraints of such systems, application-specific

hardware solutions are often needed, making the

codesign of hardware and software a major topic

for the design automation of embedded systems.

Often, simulation tools are used for explor-

ing the design space and for validating the func-

tional and timing behaviors of embedded

systems. During the last few years, a lot of dif-

ferent approaches for simulation have been

developed. Hardware can now be simulated at

different levels (e.g., electrical circuits, logic

gates, or register-transfer level) or behavioral

very high speed integrated-circuit (VHSIC) hard-

ware description language (VHDL) descrip-

tions. Furthermore, cosimulation environments

have been formed to support the codesign of

embedded systems. In some environments, soft-

ware development tools can be coupled with

hardware simulators, while in others, the soft-

ware is executed on the simulated hardware.

The latter approach is feasible only for small

parts of the embedded system (like device dri-

vers together with their related hardware). With

a formal specification language like Statecharts

or Specification and Description Language

(SDL), it is possible to validate the functional

behavior of an embedded system on a high

abstraction level. But on this level, it is impossi-

ble to consider the timing behavior of the sys-

tem and the interaction application-specific

device drivers with the hardware.

In order to close the gap between specifica-

tion and implementation and to support the

codesign and validation of large embedded sys-

tems, rapid prototyping with configurable and

programmable hardware/software systems

allows us to validate the complete system in the

Hardware/Software
Codesign and Rapid
Prototyping of Embedded
Systems

Embedded Systems with SDL/MSC

28

This article describes tools for the analysis,

synthesis, and rapid prototyping of distributed

embedded real-time systems and presents a

complete design flow from specification to

implementation.

Frank Slomka

Matthias Dorfel

Ralf Munzenberger

Richard Hofmann
University of Erlangen-Nuremberg

0740-7475/00/$10.00 © 2000 IEEE IEEE Design & Test of Computers

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 7, 2009 at 22:25 from IEEE Xplore. Restrictions apply.

real environment. Typical examples of today’s

complex embedded systems are ATM switch-

ing fabrics, Internet Protocol network routers

with Quality of Service requirements or switch-

ing centers, and base stations for mobile com-

munication. A prototyping system can interact

with the real environment in real time, and the

observed time frame for testing is larger than

when using simulation.

Shortening the design cycles for such large

embedded systems is the goal of our integrated

framework Codesign and Rapid-Prototyping

System for Applications with Real-Time

Constraints (known as Corsair) that we are cur-

rently developing. Corsair supports the formal

specification of embedded systems with the

widely used specification languages SDL9 and

Message Sequence Chart (MSC).10 SDL and MSC

are well-supported by commercial CASE tools

for the analysis, design, and verification of real-

time systems. These commercial tools also sup-

port the automatic generation of software

descriptions for the implementation of the sys-

tem. Codesign and hardware aspects are not

covered yet. These two languages are chosen for

our framework because the focus of our

research is the development of real-time com-

munication systems (like base stations for

mobile communication). In contrast to lower-

level description languages such as C/C++, Java,

or VHDL, SDL has a formal semantic, and it is

possible to use standard verification techniques

like deadlock or lifelock analysis on the state

space. SDL and MSC have been used in the

telecommunication industry during the last few

decades for the specification of reactive systems.

The focus of SDL is the specification of typical

communication protocol automata that use sig-

nals with parameters of data to communicate.

To be able to describe the particular require-

ments of real-time embedded systems, we

extended these specification languages to SDL*

and Performance MSC (PMSC).12 After an auto-

matic optimization and partitioning step, the

resulting specification will be synthesized to the

hardware description and software implemen-

tation of the system. In contrast to former SDL

codesign frameworks like Cosmos13 and ODE,8

Corsair supports the full development cycle

from early performance evaluation (using

PMSC) to the final implementation (with inte-

grated measurement and validation on a pro-

grammable rapid-prototyping platform).

Design process
In order to reduce complexity, the design

process is divided in four major steps: specifi-

cation, system synthesis, implementation syn-

thesis, and performance evaluation of the

prototype (see Figure 1, next page).

Specification
During this part of the design process, the

informal requirements of the analysis are trans-

formed to a formal specification. The formal

specification comprises use case descriptions

given in MSC and a full functional specification

in SDL. PMSC describes timing requirements

together with supplemental information, such

as traffic sources and resource requirements.

An automated transformation of all PMSC

requirements to SDL leads to an integrated

codesign specification in SDL*.

System synthesis
For performing an automatic hardware/soft-

ware partitioning, the system synthesis step

translates the SDL* specification to an internal

system model. This system model contains two

graphs: a problem graph (PG) describing the

functional system behavior and an architecture

graph (AG) describing the prototyping plat-

form. The PG is derived from the SDL* specifi-

cation, while the AG is loaded from the Library.

For each possible mapping of a problem node

to a processing element of the AG, the cost and

the timing behavior are estimated by the

Estimator. Based on this estimation, the

Optimizer searches for a hardware/software

implementation of the system. The goal is to

find an implementation with a minimum cost,

which we discuss later in this article. After sys-

tem synthesis, the resulting system model is

translated back to SDL*.

Implementation synthesis
The SDL* specification is then translated

into conventional implementation languages

(such as VHDL for the hardware modules and

C for the software parts of the system). This is

29April–June 2000

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 7, 2009 at 22:25 from IEEE Xplore. Restrictions apply.

done by the implementation synthesis tool,

which is called Codesign Generator (CoGen).

CoGen translates the behavior of the SDL*

processes into an implementation description

and adds the SDL Run-Time-Support-System

(RTSS) to this implementation. The RTSS sup-

ports all functions of the computational model

of SDL (such as communication mechanisms

and timers). The RTSS contains different hard-

ware (VHDL) and software modules (C) stored

in the framework’s Library. To perform an auto-

matic implementation of the system, the CoGen

additionally generates configuration descrip-

tions for implementation and measurement.

Prototyping
On a prototyping platform, the implementa-

tion of the system under development is exe-

cuted, with the software parts running on a

multiprocessor unit and the hardware parts run-

ning on a field-programmable gate array

(FPGA) board known as Phoenix (Prototyping

Hardware for Embedded Network Interface

Accelerators). Phoenix contains four Altera

FPGAs supported by large memory modules to

implement the computational model of SDL

and programmable clock generators to test dif-

ferent architectures. Another important step in

Corsair is the automatic performance evaluation

Embedded Systems with SDL/MSC

30 IEEE Design & Test of Computers

PMSC

SDL*

C

Library

Phoenix MP

Model gen.

Optimizer

Req. integ . PMSC parser

Implementation
synthesis

Estimator

System synthesis

Configuration

ZM4

Performance evaluation

System model
AG+PF

Implementation
specification

SDL

Specification

Requirement analysis

Model

System specification
+

Time requirements

SDL* RTSS

AG

Analysis

RP configuration

SDL* gen.

HW synthesis Compiler

CoGen

VHDL

Simple

Performance evaluation

Rapid prototyping platform

Figure 1. Design flow.

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 7, 2009 at 22:25 from IEEE Xplore. Restrictions apply.

of the resulting system. The data of the mea-

surements are back-annotated to the Library to

support the Estimator and the System Synthesis.

Specification techniques
The greater the complexity of a modern

embedded system, the more its design requires

a systematic approach based on formal descrip-

tion techniques. Therefore, Corsair supports the

extended languages PMSC and SDL*. These

languages are based on the ITU languages

MSC10 and SDL.9

PMSC
As a system specification represented in SDL

necessarily contains all internal details, it is

often difficult to see how it works. Therefore,

MSC is used to display the interactions between

communicating processes. The MSC use cases

define the external behavior of processes and

can be used to cross-check the implementation

with the specification.

For real-time systems, the sequence of the

interactions between processes clearly has to

be obeyed, too. Timing requirements, resource

requirements, and traffic sources need to be

specified to deduce the performance of the sys-

tem. Therefore, MSC has been extended by

annotations that allow us to express these non-

functional aspects, resulting in PMSC.

SDL
SDL allows the specification of functional

aspects of systems and supports a variety of for-

mal checks on the specification level. This

helps prevent severe design errors in early

design stages. In SDL, a system can be decom-

posed into blocks with communication via sig-

nal channels. Blocks themselves are divided

into subblocks, which are further refined to

processes that are specified as extended finite-

state machines that send and receive signals

asynchronously and that perform transitions.

This asynchronous execution model implies

that each process has an implicit message

queue from which it receives its messages.

Correspondingly, its signals to other processes

go to the input queue of the destination

process. Because SDL abstracts from imple-

mentation details like the scheduling of

processes on processing units or limited mes-

sage queue lengths, pure SDL is not feasible for

an automated codesign framework for embed-

ded systems.

To remedy this restriction, we have devel-

oped an extension to SDL that uses comments

in a special syntax that our own compiler rec-

ognizes. With these annotations, SDL migrates

to SDL*, which allows us to express the non-

functional and implementation-specific aspects

of system design in real-time environments.

Methodology
The development cycle starts with the for-

mal system specification of the embedded sys-

tem. During this phase, the functional and

timing requirements of the system are deter-

mined. The interaction between different sys-

tem components is described formally with

PMSC, which also describes the estimated tim-

ing behavior of the system to perform an early

performance analysis.7 This can be a stochastic

graph analysis using the analysis tool PEPP2 or a

real-time schedulability analysis, as described

in Slomka et al.14

If the designer finds performance bottle-

necks during this analysis, he or she can man-

ually change the system’s interaction diagrams.

After exploring the PMSC use cases, the design-

er starts with the specification of the function-

al structure with SDL. Next, the designer

specifies the complete functional behavior of

the different SDL processes. After the system is

fully specified in SDL, the designer starts the

functional evaluation of the system. If the SDL

specification does not contain more design

errors (like deadlocks or livelocks), the perfor-

mance requirements specified with PMSC must

be inserted into the SDL specification, resulting

in an SDL* specification. This transformation is

performed by the Requirement-Integrator,

which is based on a technique called specifi-

cation-driven monitoring.3

Synthesis
System synthesis
System model. An embedded system’s speci-

fication, given in SDL*, is translated into a PG,

an extended directed control-data-flow graph

(CDFG). The extensions of the CDFG are addi-

31April–June 2000

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 7, 2009 at 22:25 from IEEE Xplore. Restrictions apply.

tional node types (like sending or receiving

nodes) to model the asynchronous communi-

cation model of SDL and a concept called

supernodes to model the SDL processes. Each

supernode is a set of CDFG nodes with the

same priority related to the scheduling mecha-

nism of the underlying RTSS.

The nodes of the PG can be mapped to pro-

cessing elements (PE) of an AG, with the differ-

ent types of PEs being used to model different

scheduling strategies of the RTSS (preemptive,

nonpreemptive, and parallel execution) and dif-

ferent PE classes modeling different architec-

tures and technologies of processors. Each PG

node has a set of attributes related to the differ-

ent classes of the AG nodes to model the differ-

ent costs of mapping or binding a PG node to

different PEs (e.g., the costs of the program code

and the timing behavior of the node). The over-

all system cost is calculated by adding the bind-

ing costs of all PG nodes to the fixed costs of all

PEs that are allocated by at least one PG node.

Estimation of e xecution times and costs. For

each node of the PG, the software and hard-

ware execution times and the costs of the allo-

cated architecture components are estimated.

The internal graph representation contains two

different types of nodes: nodes with an under-

lying data flow graph (DFG) and nodes that

must be mapped on library components (e.g.,

signal queues, timer modules, and communi-

cation interfaces). The software and hardware

execution times as well as the costs of elements

are loaded from the Library.

For each node with a DFG, the Estimator cal-

culates the execution time and costs with the

left-edge algorithm in case of hardware map-

ping. This algorithm calculates the number of

resources needed to guarantee the shortest

latency. Based on the calculated hardware

resources, the area of the application-specific

circuit is estimated. In case of a software imple-

mentation of a PG node, the latency, depending

on the given execution resources like registers

and arithmetic logic units, is calculated.

The estimated execution times and imple-

mentation costs are further refined in steps: dur-

ing implementation synthesis by Caddy-II1 and

the floorplanning tools for the FPGAs and dur-

Embedded Systems with SDL/MSC

32 IEEE Design & Test of Computers

Initial system architecture

System
architecture

Level 1

Priority assignment

Binding of super nodes

Binding of nodes

Scheduler

Level 3

Level 2

Tabu search

Ta
bu

-li
st

 1
Ta

bu
-li

st
 2

Ta
bu

-li
st

 3

Figure 2. Three-level tabu-search algorithm.

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 7, 2009 at 22:25 from IEEE Xplore. Restrictions apply.

ing the evaluation phase on the prototype by

the hardware monitor ZM4 and the perfor-

mance evaluation tool Simple, which we will

discuss later.

Optimization. The Optimizer searches for a sys-

tem architecture with a minimum cost that

meets all given constraints. To perform this

search, the optimizer calculates the mapping

of nodes of the PG to nodes of the AG. Thus, the

optimizer subsequently modifies the system

architecture to improve its quality. The search

for an optimized implementation of the system

is based on a tabu-search method. If a solution

does not meet the constraints, the Optimizer

allocates new hardware components and/or

changes the mapping of the PG nodes.

The evaluation of the system quality is per-

formed using two different tools: a schedulabil-

ity analysis14 and a modified list-scheduling

algorithm (see Figure 2). While tabu-search itself

can be optimized if the neighborhood of moves

that changes the system architecture is well-

defined, each PG node will be attributed by

quality analysis tools. For example, if a node or a

set of nodes does not satisfy their timing con-

straints, the node is marked. The node with the

highest number of violations is the first to be cho-

sen for changing by the optimization heuristic.

To reduce the complexity of the problem, a

three-stage heuristic for optimizing the systems

architecture has been developed. The first stage

optimizes the priorities of supernodes to search

for a possible scheduling strategy. The second

stage changes the mapping of complete supern-

odes to processing elements, while the third

stage allows us to change the mapping of each

PG node itself. Each stage of the heuristic has its

own tabu-list to avoid cycles during the search.

Implementation synthesis
Software . A commercial CASE tool is used to

translate SDL specifications to software imple-

mentations in C. Each SDL process is mapped

to exactly one operating system process.

Process communication is supported by the

mechanisms of the operating system. As we

describe below, the communication between

software and hardware processes is performed

by library components. While the commercial

SDL software compiler does not support the full

set of SDL constructs for such a tight integration

of processes and also does not support the

functionality of our partitioning algorithm, an

SDL CoGen is under development. This tool will

integrate hardware and software generation

using a single SDL compiler.

Hardware . The hardware part of the system is

translated to VHDL by the code generator

SDL2VHDL.1 For the implementation of an SDL

process, there are two alternatives: In one case,

the SDL process contains more than a few data

operations, so behavioral VHDL is generated.

The hardware architecture is synthesized by the

high-level-synthesis system Caddy-II that gener-

ates an application-specific data path with a

hard-wired controller. In the other case, Caddy-II

would produce too much hardware overhead.

For this, register transfer level VHDL descriptions

generate more-efficient implementations. In

addition to the VHDL descriptions of the SDL

processes, the system architecture is described

by a structural VHDL description that is also gen-

erated by the code generator SDL2VHDL.

RTSS. For facilitating the work of code genera-

tors, a set of library functions has been devel-

oped that forms the RTSS in hardware and

software and the communication between hard-

ware and software. The software RTSS is based

on the real-time operating system RTEMS. All

functions needed to implement the model of

computation of SDL (e.g., receive/send or timer

functions) are resolved to corresponding func-

tions of the operating system.

To implement the hardware RTSS, a set of

scalable library components has been devel-

oped.6 Such a component encapsulates the

needed functionality (like message queues and

timers) and connects each SDL process with

one or more communication links (e.g., global

buses with different bus protocols). Using such

components, it is also possible for SDL process-

es to share SDL functionality and memory

resources. The connection between SDL

processes and the library components is per-

formed by VHDL functions belonging to the

component, which are resolved by Caddy-II

during the high-level synthesis step.

33April–June 2000

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 7, 2009 at 22:25 from IEEE Xplore. Restrictions apply.

Rapid prototyping environment
The main goal of the prototyping platform

(see Figure 3) is the realization of large embed-

ded systems as distributed applications.

According to the optimizing model, several exe-

cution units are needed for both the software

and the hardware parts. Thus, the prototyping

system consists of a multiprocessor system and

the FPGA board Phoenix5 connected by four par-

allel links with 16 megabytes per second band-

width per link. Both parts have been designed to

implement large systems with high computa-

tional power and high-bandwidth demands.

FPGA board
The FPGA board Phoenix shown in Figure 3

contains four Altera Flex10k100 FPGAs. They

are interconnected with high-bandwidth links

between every two chips, which can be used to

communicate between processes in different

FPGAs but also to split SDL processes among

multiple FPGAs. The realization as a single mul-

tilayer board gives a total communication

bandwidth between the FPGAs of up to 2 giga-

bytes per second.

To aid the implementation of SDL systems,

we added memory modules for the implemen-

tation of signal queues. Each FPGA has its own,

fast SRAM of 1 megabyte size and a bandwidth

of 100 megabytes per second. A second mem-

ory array of up to 512 megabytes and a band-

width of 133 megabytes per second is

connected to a global bus that is shared among

all FPGAs. Phoenix supports two PCI slots for

extension cards and a high-speed link to a host

PC. The configuration logic, programmable

clock generators, and interfaces to the hard-

ware monitoring system ZM4 assist the auto-

mated execution of different design alternatives

of the application under development.

Multiprocessor system
The multiprocessor system is based on a

VME bus to connect the individual processor

nodes. This lowers the cost of the total system

by the use of standard processor boards while

enabling the use of different processor archi-

tectures at the same time.

In the cage, a total of 10 processor nodes can

be used with two currently installed. These

boards are diskless industrial Pentium boards

with 32 megabytes of memory, a network inter-

Embedded Systems with SDL/MSC

34 IEEE Design & Test of Computers

Multiprocessor Phoenix

MEM

IDE

CPU

VME/PCI

Altera
10K100

Altera
10K100

Altera
10K100

Altera
10K100

1MB
SRAM

PCI-Slots

i960/PCI
bridge

VME-Bus

Clock and
config.

512 MB
DRAM

MEM

IDE

CPU

VME/PCI

MEM

IDE

CPU

VME/PCI

MEM

IDE

CPU

VME/PCI

i960/PCI
bridge

Figure 3. The prototyping platform.

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 7, 2009 at 22:25 from IEEE Xplore. Restrictions apply.

face for the system boot loader, and the standard

interface ports. The bridge between the PCI and

the VME bus offers memory access, interrupt

generation and acception, and memory trans-

fers without processor interaction (direct mem-

ory access). These features are used by the

communication routines defined in the RTSS.

Performance evaluation
To support the automatic performance eval-

uation of the system under development and

the back annotation for the refinement of the

estimated execution times of the PG nodes, we

used the performance evaluation environment

ZM4/Simple.11 These companion tools com-

prise the universal distributed hardware moni-

tor system ZM4 and the monitor-independent

trace evaluation environment Simple. Both of

them have been elaborated with the goal of

universal applicability, which now allows us to

tailor them to this novel application area by

configuration files. Based on instrumentation

specifications given in SDL*, which can be per-

formance requirements of the specification or

directives of the system synthesis, the CoGen

generates the configuration files for

ZM4/Simple and inserts instrumentation com-

mands into the resulting C and VHDL code of

the application. This information is automati-

cally propagated to the software and hardware

parts of the system generated through the steps

in the design cycle described below.

The measurement is performed by ZM4, a

universal distributed hardware monitor system.

In contrast to measurement tools like logic ana-

lyzers, ZM4 supports a synchronized global

clock that allows the exact causal relationship

of events in a distributed system. This includes

the system under test and its environment. ZM4

is based on off-the-shelf personal computers that

serve as monitor agents. Every monitor agent

can be equipped with up to four event

recorders that perform the actual monitoring

task. Connected to Phoenix and the multi-

processor system by simple interfaces, the event

recorders recognize the events, equip them with

global time stamps of high resolution (100 ns),

and store them in a 32,896-entry FIFO buffer.

During a monitoring session, the monitor agent

can read the measured data from the FIFO

buffer, store them to the local hard disk or to a

network device, or perform online evaluation.

In addition to serving as the source for instru-

menting the generated system, the require-

ments, as denoted in the SDL* specification,

are used for configuring the evaluation envi-

ronment Simple. As Simple uses an abstraction

layer for accessing the event trace files, it can

be configured to work with arbitrary monitor

systems (e.g., logic analyzers, software moni-

tors, event-driven simulators, and ZM4).

Above the abstraction layer are several sep-

arately configurable evaluation tools. Among

them are the following tools:

■ the general tools Merge for merging local

traces to a global trace and Glesti for esti-

mating a global time base from local event

traces

■ the statistical tools Tracestat for computing

overall trace statistics and Fact for deter-

mining sequences of events as described in

the fact definition language

■ the model-based tool Varus (validating rules

checking system) that checks user-definable

assertions on the trace

■ the graphical tools Gantt for a flexible dis-

play of state-time diagrams and Hasse for

representing causal relationships

All of these tools can be configured by a config-

uration file, written in the appropriate language.

Case study: multimedia terminal
For evaluating the methodology and the

tools, a terminal of a real-time multimedia con-

ference system was specified in SDL*/PMSC.

Such a terminal has high computing require-

ments and hard real-time constraints. The

Multimedia Protocol Suite (MMPS) is a scalable

protocol architecture to guarantee Quality of

Service requirements for delivering real-time

traffic in Internet Protocol (IP) networks.

An important part of the MMPS is the

Integrated Service Architecture (IntServ) devel-

oped by the Internet Engineering Task Force.

The IntServ includes two sorts of services: con-

trolled load service and guaranteed service. In

order to be able to guarantee Quality of Service

requirements (such as delay and bandwidth)

35April–June 2000

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 7, 2009 at 22:25 from IEEE Xplore. Restrictions apply.

in IP networks, resource reservations in each

router and the terminals are required.

Therefore, the MMPS includes the Internet

Engineering Task Force’s Resource Reservation

Setup Protocol. The Real Time Transport

Protocol reconstructs the ordering of packets,

identifies the payload type, detects the loss of

packets, and synchronizes data streams.

Usually, the Real Time Transport Protocol is

used as a part of the application on top of the

user datagram protocol. The interaction with

the user is done by the Application Layer,

which is split into parts: a part for the

man–machine interface (Control), a part for

coding and encoding speech data (Audio),

and a part for whiteboard data (Text). After a

user starts a multimedia session, Control ini-

tializes the session, including the sending of

path and reservation messages. After a path in

an IP network is reserved, the server terminal

starts to send packets.

At first, PMSC diagrams were made in accor-

dance with our methodology during the devel-

opment of the MMPS. Therefore, in an early

stage, it was possible to understand the inter-

faces and to avoid specification errors. Starting

with PMSC diagrams, all protocols and compo-

nents of the MMPS were specified in SDL*,

including IP as well as the components admis-

sion control, packet classifier, and packet

scheduler of the IntServ (see Figure 4). During

the simulation of the SDL specification, the

functional behavior of the MMPS was validat-

ed. After specifying the hardware/software par-

titioning by hand, the software parts of the

system were translated with a commercial code

generator, and the hardware parts were trans-

lated with the code generator SDL2VHDL.

Embedded Systems with SDL/MSC

36 IEEE Design & Test of Computers

UI

System MultimediaProtokollSuite 1(5)

Control

Audio TextBlock

UDP

IP

Layer2

RSVP

AdmissionControl

EC

PlayAudioEnv,
RecAudioEnv,
ReleasePlayAudioEnv,
ReleaseRecAudioEnv,
ReadTextEnv,
WriteTextEnv,
ReleaseReadTextEnv,
ReleaseWriteTextEnv

CA

PlayAudioControl,
RecAudioControl,
ReleasePlayAudioControl,
ReleaseRecAudioControl

AE

InitPlayAudio,
ReleasePlayAudio,
RecAudioPacket

EnvPIDAudio,
SendAudioPacket

Sync

SyncAudioText

TC

InitReadText,
WriteTextPacket,
ReleaseReadText

EnvPIDText,
SendTextPacket

TU

Socket,
Bind,
BindFlow,
SendTo,
Close

SocketIDx,
SocketRej,
BindAck,
BindRej,
BindFlowAck,
BindFlowRej,
ReceiveFrom

SendIP

ReceiveIP

IL
SendLLC

ReceiveLLC LE

SendEnvEnvPIDLayer2,
ReceiveEnv,
SetTrafficParameter

AU

Socket,
Bind,
BindFlow,
SendTo,
Close

SocketIDx,
SocketRej,
BindAck,
BindRej,
BindFlowAck,
BindFlowRej,
ReceiveFrom

CT

ReadTextControl,
WriteTextControl,
ReleaseReadTextControl,
ReleaseWriteTextControl

CR

SessionReq,
PathReq,
ReserveReq,
ReleaseReq,
ReserveConfirm

SessionInd,
PathInd,
ReserveInd,
PathErrorInd,
ReserveErrorInd,
ReleaseInd

RA

TC_AddFlowspec,
TC_ReleaseFlowspec

TC_AddFlowspecAck,
TC_AddFlowspecRej

AL

ReserveFlowScheduler,
ReleaseFlowScheduler,
ReserveFlowClassifier,
ReleaseFlowClassifier,
GetTrafficParameter

TrafficParameter

RI

SendIP

ReceiveIP

/**** SDL* implementation directives *****
${implement system MultimediaProtokollSuite,
define processor [component VMEPentium]
define port audio_port [in width 16 Bit, out width 16 Bit, module I2SModule],
define port env_port [in module DataIn(), out module DataOut()],
define port console [in module ExternelTask(), out module ExternelTask()],
map channel TC, EC on console,
map channel AE on audio_port,
map system MultimediaProtokollSuite on processor,
map channel LE on port env_port}
*/

Figure 4. SDL* specification on system level of the Multimedia Protocol Suite. RSVP = Reservation Setup

Protocol. RTP = Real-Time Transport Protocol. UDP = User Datagram Protocol.

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 7, 2009 at 22:25 from IEEE Xplore. Restrictions apply.

Additional software modules were required to

perform the communication of the SDL system

and the environment. Because it is not possible

to simulate either such software modules or the

runtime environment at specification level,

monitoring and performance evaluation of the

running system are inevitable.

During the execution of the MMPS with real

audio data, unacceptable audio quality was per-

ceived from the prototype. Systematic monitor-

ing of this system isolated a performance

bottleneck that was critical for the real-time

behavior, which resulted from IP messages frag-

mented into too-small pieces. After the perfor-

mance bottleneck was fixed, the communication

time on the VME backplane was one third that

before the bottleneck was fixed.

An important advantage of the Corsair

methodology is that specifications can be

implemented on real hardware (i.e., the proto-

typing platform) and do not stop at the level of

cosimulation. As described in Daveau et al.,4 a

complete cosimulation cycle of a full IP/ATM

stack requires 120 minutes. Because of the long

simulation times, it is not possible to simulate

the transfer of a real-time data stream and to

evaluate the audio quality of the stream. As a

result, our methodology combines the strength

of hardware/software codesign with rapid pro-

totyping of embedded systems.

THE FRAMEWORK Corsair contains several tools

for the automatic implementation of formal

specified embedded systems. Based on the

extended specification languages SDL/MSC, the

methodology supports system synthesis, imple-

mentation synthesis, and performance evalua-

tion for rapid prototyping. The framework

contains standard tools (such as high-level syn-

thesis and a software compiler) for the synthe-

sis of hardware and software modules.

Using a configurable heterogeneous hard-

ware platform that includes standard industri-

al multiprocessor cards and four FPGAs, the

validation of an embedded system in real time

in its real environment is possible. Specifying

and implementing a multimedia terminal on

the rapid-prototyping platform, we tested the

methodology and the framework. The case

study shows the importance of rapid prototyp-

ing in addition to formal verification and cosim-

ulation to prove the functional and

performance correctness of large embedded

systems with high computational requirements,

hard real-time constraints, and quality-sensitive

data traffic.

Within the presented framework, the fol-

lowing key tools have been implemented as

prototypes: The SDL2VHDL code generator is

operational in a first version, the prototyping

hardware is ready to use, and the system syn-

thesis tool is still under test and tuning. Further

work in the project is to perform an automatic

hardware/software partitioning of the multi-

media terminal and to integrate the tool set to

a user-friendly framework. We also plan the

specification, implementation, and evaluation

of different queueing and scheduling strategies

for real-time traffic in IP-based networks. ■

Acknowledgment
This work has been funded by the Deutsche

Forschungsgemeinschaft (DFG) under grant

He1408/4-2 as part of the program Rapid

Prototyping of Embedded Control Systems with

Real-Time Constraints.

References
1. O. Bringmann, W. Rosenstiel, A. Muth, G. Farber,

F. Slomka, and R. Hofmann, “Mixed Abstraction

Level Hardware Synthesis from SDL for Rapid Pro-

totyping,” 10th IEEE Int’l Workshop on Rapid Sys-

tem Prototyping, Clearwater, Florida, June 1999.

2. P. Dauphin and A. Quick, “PEPP: Performance

Evaluation of Parallel Programs,” 7th ITG/GI-Fach-

tagung Messung, Modellierung und Bewertung

von Rechen- und Kommunikationssystemen,

RWTH Aachen, Short Papers and Tool Presenta-

tion, B. Walke, ed., Aachen, Germany, Sept. 1993.

3. R. Hofmann and F. Lemmen, “Specification-Dri-

ven Monitoring of TCP/IP,” 8th Euromicro Work-

shop on Parallel and Distributed Processing,

Rhodes, Greece, Jan. 2000.

4. J.M. Daveau, G. Marchioro, and A.J. Jerraya,

“Hardware/Software Co-Design of an ATM Network

Interface Card: A Case Study,” 6th Int’l Workshop

on Hardware/Software Codesign, Seattle, 1998.

5. M. Dorfel and R. Hofmann, “A Prototyping System

for High Performance Communication Systems,”

37April–June 2000

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 7, 2009 at 22:25 from IEEE Xplore. Restrictions apply.

9th IEEE Int’l Workshop on Rapid System Proto-

typing, June 1998.

6 M. Dorfel, F. Slomka, and R. Hofmann, “A

Scalable Hardware Library for the Rapid Prototyp-

ing of SDL Specifications,” 10th IEEE Int’l Work-

shop on Rapid System Prototyping, Clearwater,

Florida, June 1999.

7. N. Faltin, L. Lambert, A. Mitschele-Thiel, and F.

Slomka, “An Annotational Extension of Message

Sequence Charts to Support Performance Engi-

neering,” SDL 97, Time for Testing, SDL, MSC

and Trends, Proc. 8th SDL Forum, Elsevier

Science Publishers, 1997.

8. T. Hadlich and T. Szczepanski, “The ODE-

System—a SDL-Based Approach to

Hardware/Software-Codesign,” Embedded Sys-

tems, OMI, 1995.

9. ITU-T, “Z.100, Appendix I,” ITU, SDL Methodology

Guidelines. ITU, 1993.

10. ITU-T, Z.120, Message Sequence Chart. ITU, 1996.

11. R. Hofmann, R. Klar, B. Mohr, A. Quick, and M.

Siegle, “Distributed Performance Monitoring:

Methods, Tools, and Applications,” IEEE Trans.

Parallel and Distributed Systems, vol. 5, no. 6,

June 1994.

12. A. Mitschele-Thiel and F. Slomka, “Codesign with

SDL/MSC,” K. Buchenrieder and A. Sedlmeier,

eds., CONSYSE 97, Int’l Workshop on Conjoint

Systems Engineering. Chicago: IT Press, 1999.

13. J. Rozenblit and K. Buchenrieder, Codesign—

Computer-Aided Software/Hardware Engineering.

Los Alamitos, Calif.: IEEE CS Press, 1995.

14. F. Slomka, J. Zant, and L. Lambert, “Schedulabili-

ty Analysis of Heterogeneous Systems for Perfor-

mance Message Sequence Chart,” 6th Int’l

Workshop on Hardware/Software Codesign, Seat-

tle, Mar. 1998.

Frank Slomka has been a
member of the Rapid
Prototyping Group at the
University of Erlangen since
1996. He received the diplo-
ma degree in electrical engi-

neering and microelectronics at the Technical
University of Braunschweig in 1993. The focus of
his work is the system-level synthesis of distrib-
uted embedded real-time systems.

Matthias Dorfel joined the
Computer Architecture and
Performance Evaluation
Group at the University of
Erlangen-Nuremberg in
1996. He studied computer

science at the Technical University of Munich.
His main interests are the design of embedded
real-time systems and their performance evalu-
ation.

Ralf Munzenberger has
been a member of the Rapid
Prototyping Group at the
University of Erlangen since
1996. He holds a degree in
electrical engineering from

the University of Kaiserslautern. He works on for-
mal specifications of distributed embedded real-
time systems and their implementations.

Richard Hofmann heads
the Rapid Prototyping and
Performance Evaluation
Group at the University of
Erlangen, where he received
his diploma degree in electri-

cal engineering and his doctoral degree in com-
puter science. His research interests include
HW/SW codesign, monitoring, and parallel and
distributed systems.

Direct comments and questions about this
article to Frank Slomka, University of Erlangen-
Nuremberg, Department of Computer
Architecture and Performance Evaluation,
Martensstr. 3, 91058 Erlangen, Germany; slom-
ka@informatik.uni-erlangen.de.

Embedded Systems with SDL/MSC

38 IEEE Design & Test of Computers

Authorized licensed use limited to: HOSEO UNIVERSITY. Downloaded on October 7, 2009 at 22:25 from IEEE Xplore. Restrictions apply.

