
On Combining Temporal Partitioning and Sharing of

Functional Units in Compilation for Reconfigurable

Architectures*

João M. P. Cardoso

Faculty of Sciences and Technology/University of Algarve

Campus de Gambelas

8000 – 117 Faro

Portugal

Phone: +351 936064195

Fax: +351 289819403

Email: jmpc@acm.org

Also with INESC-ID, Lisboa

Submitted for a Regular Paper

* this paper is an improved version of the preliminary following paper:

João M. P. Cardoso, “A Novel Algorithm Combining Temporal Partitioning and

Sharing of Functional Units,” In IEEE 9th Symposium on Field-Programmable Custom

Computing Machines (FCCM'01), Rohnert Park, California, USA, April 30 – May 2,

2001, IEEE Computer Society Press, Los Alamitos, CA, USA (to appear).

 1

On Combining Temporal Partitioning and Sharing of

Functional Units in Compilation for Reconfigurable

Architectures

João M. P. Cardoso

Faculty of Sciences and Technology/University of Algarve

Campus de Gambelas

8000 – 117 Faro

Portugal

Phone: +351 936064195

Fax: +351 289 819403

Email: jmpc@acm.org

Also with INESC-ID, Lisboa

Abstract

Resource virtualization on FPGA devices, achievable due to its dynamic reconfiguration

capabilities, provides an attractive solution to save silicon area. Architectural synthesis for

dynamically reconfigurable FPGA-based digital systems needs to consider the case of

reducing the number of temporal partitions (reconfigurations), by enabling sharing of some

functional units in the same temporal partition. This paper proposes a novel algorithm for

automated datapath design, from behavioral input descriptions (represented by a dataflow

graph), which simultaneously performs temporal partitioning and sharing of functional units.

The proposed algorithm attempts to minimize both the number of temporal partitions and the

execution latency of the generated solution. Temporal partitioning, resource sharing,

scheduling, and a simple form of allocation and binding are all integrated in a single task.

The algorithm is based on heuristics and on a new concept of construction by gradually

enlarging timing slots. Results show the efficiency and effectiveness of the algorithm when

compared to existent approaches.

Index Terms: FPGA, Reconfigurable Computing, Scheduling, Temporal Partitioning

 2

1 Introduction

The availability of multiprogrammable logic devices (such is the case of FPGAs - field

programmable gate arrays) with lower reconfiguration times has made possible the concept of

“virtual hardware” [1][2]: the hardware resources are supposed unlimited and implementa-

tions that oversize the resources available on the device are resolved by temporal partitioning.

Then, the temporal partitioned solution is executed by time-sharing the device such that the

initial functionality is preserved. This concept promises to be an efficient solution to save

silicon area [1]. One of the applications is the switch among functionalities that have mutual

exclusiveness on the temporal domain, such as the context-switching between cod-

ing/decoding schemes in communication, video or audio systems.

Although, even the latest commercial FPGAs, such as the Xilinx Virtex family [3], do

not have mechanisms to implement efficiently temporal partitioned functionalities and the

time of reconfiguration of the overall FPGA is still quite high, the importance of the "virtual

hardware" concept has already been demonstrated with computationally complex applications

[4]. Industrial efforts are under way to further improve the capability of the devices to handle

multiple-configurations by storing several on-chip configurations and permitting the switch

between contexts in few nanoseconds [5].

The virtualization of FPGA resources has been considered by several authors while dealing

with circuit netlists that oversize the available resources on the device ([6][7], just to name a

few). From the point of view of the design, those approaches work at a much low-level of ab-

straction, without the possibility to exploit tradeoffs between the number of reconfigurations

and the resource sharing of functional units (FUs), for instance. The design automation for

FPGA-based systems should include temporal partitioning algorithms able to efficiently ex-

ploit the new concept. Tradeoffs among parallelism, communication costs, execution and re-

configuration times, and sharing of some FUs in the same reconfiguration need to be consid-

ered during the architectural synthesis phases.

Sharing of FUs among operations is a technique to reuse a single configuration of an FU

by more than one operation of the same type. On the other hand, temporal partitioning is a

technique tailored to reuse the available resources by different circuits (configurations) with

the time-multiplex of the device. The nodes of a given intermediate representation (e.g., a

dataflow graph) representing operations have to be scheduled in time steps to be executed in

each temporal partition (TP). Temporal partitioning must preserve the dependencies among

nodes (that are already temporal dependencies) such that a node B dependent on node A can-

 3

not be mapped to a partition executed before the partition where node A is mapped. In addi-

tion, considering sharing FUs during temporal partitioning can conduct to better overall re-

sults (lower number of TPs and better performance).

Figure 1a) shows a design flow which integrates temporal partitioning prior to the high-

level synthesis tasks [8]. The majority, if not all, of the existent approaches utilizes the pre-

sented flow [9][10]. Our efforts address architectural synthesis1 integrating temporal parti-

tioning and this paper presents a new temporal partitioning algorithm that effectively takes

into account sharing of FUs, while maintaining a small computational complexity. Besides, it

is sufficiently flexible to target different FPGA devices. Figure 1b) shows the design flow

proposed in this paper, where temporal partitioning is integrated in the high-level synthesis

tasks and is performed simultaneously.

Temporal
Partitioning

High-Level
Synthesis

Component
Library

Simultaneously
Temporal

Partitioning
and High-

Level Synthesis

Component
Library

Constraints
DFG,
CDFG

Circuit-
generation,

Logic
Synthesis

Circuit-
generation,

Logic
Synthesis

Constraints
DFG,
CDFG

a) b)

Figure 1. Design flow based on high-level synthesis for reconfigur-

able computing systems: a) traditional flow; b) proposed flow.

Example 1. Motivational example.

Consider the dataflow graph exhibited in Figure 2 (Ex1). It consists of 4 additions

and 2 multiplications. Suppose that each adder uses 1 cell and has a latency of 1

clock cycle, each multiplier uses 2 cells and has a latency of 2 clock cycles and

1 There is no distinction among the terms: high-level synthesis, architectural synthesis and behavioral synthe-

sis.

 4

the maximum resources available on the device equals 3 cells. The dataflow graph

has a critical path latency of 4 cycles and needs 8 cells given those FUs (last row

of Table I). Figure 2 shows an optimal solution (not considering the area of multi-

plexers, registers and control unit needed to implement sharing of a specific FU)

for the example with results shown in the second row of Table I. In Figure 2 each

gray region identifies operations that are mapped to the same FU. The optimal so-

lution is achieved with only one adder and one multiplier and fits totally on a sin-

gle TP. When not considering sharing of adders, the optimum result is shown in

the third row of Table I. The algorithm proposed in this paper achieves those op-

timal results. The fourth row of the table shows the solution obtained when con-

sidering a leveling temporal partitioning algorithm that does not consider resource

sharing of FUs. From this example, it can be seen that resource sharing can reduce

the number of reconfigurations and can also reduce the overall execution latency.

There are also cases where the critical path latency of the input dataflow graph

(last row) is maintained (second row).

0 1

2

3

4

5

Figure 2. Dataflow graph of the example Ex1.

Table I. Results for Ex1.

Approach (+, *) #TPs Execution
latency

Resources
used

Optimum (sharing of adders and
multipliers)

- 1 4 3

Optimum (sharing of multipliers) - 3 5 3
ASAP (no sharing) [11] (4, 2) 4 6 3

Without Temporal Partitioning
(no sharing)

(4, 2) - 4 8

 5

The remainder of this paper is organized as follows. In section 2, previous work is de-

scribed. Section 3 formulates and explains the problem. The algorithm is deeply explained in

section 4, where the pseudo-code and the overall performed steps are fully elucidated through

an example. In section 5 experimental results are shown and discussed. Finally, in section 6,

conclusions are presented and further work is envisaged.

2 Previous Work

As far as we know, the development of temporal partitioning algorithms was firstly con-

sidered in [9][2]. The similarities of both scheduling on high-level synthesis [8] and temporal

partitioning allow the use of common scheduling schemes for partitioning. Some authors,

such as [9][10], have considered temporal partitioning at behavioral levels having in mind the

integration of synthesis.

In [9], a heuristic based on a static list scheduling algorithm, enhanced to consider tempo-

ral partitioning and partial reconfiguration, is shown. The approach exploits the dynamic re-

configuration capability of the devices, while doing temporal partitioning.

In [10][12] the temporal partitioning problem is modeled in a specified 0-1 non-linear

programming (NLP) model. The problem is transformed to integer linear programming (ILP)

and the solution determined by an ILP solver. Due to the long execution times, this approach

is not practical for large input examples. Some heuristic methods have been developed to

permit its usability on larger input examples [13]. Kaul [14] exploits the loop fission tech-

nique while doing temporal partitioning in the presence of loops to minimize the overall la-

tency by utilization of the active TP as long as possible. Sharing of functional units is consid-

ered inside tasks and temporal partitioning is performed at the task level. Design space ex-

ploitation is performed by inputting to the temporal partitioning algorithm different design

solutions for each task. Such solutions are generated by a high-level synthesis tool (constrain-

ing the number of FUs of each type). This approach lacks a global view and is time-

consuming.

The simplest approaches only consider temporal partitioning without exploiting sharing of

FUs. In [11], both a temporal partitioning algorithm based on leveling the operations by an

ASAP scheme and other based on clustering a number of nodes are used. The algorithm fills

the available resources in the increasing order of the ASAP levels. The selection of nodes in

the same level is arbitrary and the algorithm switches to another TP when it encounters the

first node that does not fit on the current TP. The approach does not consider neither commu-

 6

nications costs nor resource sharing. In [15] another algorithm is presented that selects the

nodes to be mapped in a TP with two different approaches (one for satisfying parallelism and

another for decreasing communication costs). In [16], an algorithm based on the extension of

the ASAP or ALAP leveling schemes resorting to the mobility of each node to select among

the nodes has been considered. [16] also shows an algorithm that searches recursively in the

list of ready nodes so that if a node cannot be mapped to the current partition, other nodes can

be considered.

[17] considers both communication costs among different TPs that can occur and the over-

all execution time. The authors presented an extension to static list scheduling, which permits

to the algorithm sensitivity to the communication costs while trying to minimize the overall

execution time. The results presented, when compared to near-optimal solutions obtained

with a simulated annealing algorithm tuned to do temporal partitioning while minimizing an

objective function, that integrates the execution time of the TPs and the communication costs,

revealed the efficiency of the approach.

[18] presents a method to do temporal partitioning considering pipelining of the reconfigu-

ration and execution stages. The approach divides an FPGA into two portions to overlap the

execution of a TP in one portion (previously reconfigured) with the reconfiguration of the

other portion.

In [19] constraint logic programming is used to solve temporal partitioning, scheduling,

and dynamic module allocation. However, the approach needs a specification of the number

of each FU before processing and may suffer of long runtimes.

More related to our approach is the algorithm presented in [20]. A scheme based on the

force-directed list scheduling algorithm that considers resource sharing and temporal parti-

tioning is shown. The algorithm tries to minimize the overall execution time, performing a

tradeoff between the number of TPs and sharing of FUs. However, the approach adapted a

scheduling algorithm not originally tailored to do temporal partitioning and lacks of a global

view. Instead, our approach proposes a novel algorithm matched to the combination of tem-

poral partitioning and sharing of FUs that maintains a global view.

3 Problem Definition

Given a dataflow graph (DFG), representing a behavioral description, G = (V, Ε), topo-

logically ordered, directed and acyclic, with |V| nodes, {ν1,ν2,…,ν|V|} and |E| edges, where

each node νi represents an operation and each edge ei,j ∈ Ε represents a dependence between

 7

nodes νi and νj. A dependence can be a simple precedence-dependence or a transport-

dependence due to the transport of data between two nodes. The DFG can be obtained from

an algorithmic input description. Such pre-processing step is beyond the scope of this article,

but the front-end of our Java compiler for reconfigurable computing systems can be em-

ployed [16].

Here we assume that there is a component library with a set of FUs and there is one FU for

each type of operation in the DFG. Φ represents the set of FUs, from the component library,

to be instantiated by the algorithm. RMAX represents the resource capacity available on the

device, R(πi) returns the number of resources utilized by the TP πi and R(vi) returns the num-

ber of resources utilized by the FU instance associated with vi. Ã(πi) returns a subset of nodes

of V mapped to πi.

Each partition πi is a non-empty subset of V, where for each node exists a map to one and

only one FU instance in Φ. π(νi) identifies the TP where node νi is mapped. The set of the

TPs is represented by:

 U
N

i
i

1=

=℘ π (3)

where N represents the number of TPs. A graph G, temporal partitioned in N subsets (TPs), is

correct if:

– ∅=Γ
=
I
N

i
i)(

1

π : each node vi ∈ V is mapped to only one TP (here we do not consider clon-

ing of operations in the DFG);

– V)(
N

i
i =Γ

=
U

1

π : all the nodes of V are mapped;

– ∀ πi ∈ ℘, R(πi) ≤ RMAX: each TP fits in the resources available on the device;

– ∀ ei,j ∈ Ε, π(νi) ≥ π(νj): the order of the execution of the TPs does not violate the depend-

encies among operations of the DFG (necessary condition to obtain the same functional-

ity).

A correct set of TPs guarantees the same overall behavior of the original graph (when exe-

cuted from 1 to N and considering a correct communication mechanism to transfer data

among TPs). However, we are also interested on the minimization of the overall execution la-

tency. The cost that reflects the overall execution latency in a time-multiplexed device can be

estimated by the equation (1) or (2), when partial or full reconfiguration of the available re-

 8

sources is considered respectively. CS(℘) returns the minimum execution latency (number of

control steps or clock cycles, identified as cs) of the partitioned solution, CS(πi) refers to the

minimum execution latency of the TP πi (it may include the communication costs and repre-

sents the execution latency of the critical path of the graph formed by the subset of nodes in

πi and the correspondent edges, considering that nodes sharing FU instances can exist). ∂i and

∂ represent the number of clock cycles to reconfigure the TP πi or all the available resources

respectively.

 ∑
=

∂+=℘
N

i
iiCSCS

1

)()(π (1)

 ∑
=

∂×+=℘
N

i
i NCSCS

1

)()(π (2)

The objective of our algorithm is to furnish a set of datapaths that will be executed in se-

quence with a minimum number of control steps2. Each datapath unit fits on the physically

available resources. For the sake of minimizing the number of TPs needed, exploiting sharing

of FUs while doing temporal partitioning needs to be considered by the algorithm. Specifi-

cally, our algorithm has to output:

– The set of TPs (℘): each TP identifying the nodes of the DFG assigned to it;

– The set of instances for each FU used (Φ);

– Each node of the DFG has to identify a specific FU instance of Φ implementing the opera-

tion.

From those outputs, it is straightforward to generate a behavioral HDL-RTL (hardware de-

scription language at the register transfer level) description of each TP control unit and a

structural HDL-RTL description of each datapath, considering the existence of a HDL de-

scription for each FU. The configurations can be generated from those netlists using a tradi-

tional FPGA design flow.

4 Simultaneously doing Temporal Partitioning and Sharing of FUs

The algorithm uses an initial number of TPs that can be specified by the user. Another pos-

sibility is to use the number of levels of the DFG or the number of TPs utilized by any tempo-

2 - We assume that each control/time step for scheduling is equal to the clock period of the system. Thus,

there is no distinction among the use of clock cycle, control step or time step.

 9

ral partitioning algorithm without using sharing of FUs (e.g., ASAP [11]) as the initial num-

ber of TPs. The user has to specify the total number of available resources on the device. In

addition, for each FU there exists a boolean variable which value indicates if the FU can be

shared or not (sharing of some FUs may need more resources than the utilization of several

FU instances, due to the overhead of using auxiliary circuits needed for the implementation

of the sharing mechanism).

To a clear description, we show the main steps of the algorithm with a connection to

Example 1. A brief exposition of the steps performed, when considering sharing of all FUs, is

stretched in Figure 3.

The algorithm starts with the following steps:

q Compute the set of nodes child3 of each node of the DFG;

q Map an FU instance to each operation in the DFG (at the moment neither consider

more than one FU for the same operation nor FUs capable to implement more than one

operation);

q Estimate the area and execution latency of each node in the DFG according to the FU

characterization, existent in the component library, for the target device. This step is

beyond the scope of this article and from now on we will assume that there exists, for

each FU, an estimation of the number of resources and of the execution latency;

q Perform the ASAP (as soon as possible) and ALAP (as late as possible) start times for

each node in the DFG (see Figure 3a)), both unconstrained. When doing the ALAP

scheme, the algorithm also calculates the ALAP level of each node;

q Determine the set of nodes in one of the critical paths of the DFG (see Figure 3b));

q Create a number of TPs equal to the input number specified NTP. See the three TPs ini-

tially created in Figure 3c);

q Assign each node of the set of nodes in one of the critical paths of the DFG (deter-

mined in point 5) to a TP by ascending level. When the number of TPs is larger than

the number of nodes in the critical path, the last TPs are left empty; otherwise the last

nodes of the set are left unassigned (see the nodes assigned to each TP in Figure 3c));

q Assign the size (number of resources used) of a node in a TP to the current size of that

TP (see Figure 3c)).

3 A node vi is child of a node vj if there exists a path from vj to the end of the DFG that includes vi.

 10

Node
0 1 2 3 4 5

ASAP 0 0 1 0 2 3
ALAP 1 1 2 0 2 3

a)

#cs/ MAXCS/R(π)

2/2/2

1/1/1

1/1/1

3

4

5

π1

π2

π3

c)

0 1

2

3

4

5

b)

3

4

5

0 1
π1

π2

π3

#cs/ MAXCS/R(π)

2/2/3

1/1/1

1/1/1

d)

3

4

5

0 1

2

π1

π2

π3

#cs/ MAXCS/R(π)

2/3/3

1/2/3

1/2/1

e)

3

4

5

0 1

2

π1

π2

#cs/R(π)

4/3

1/1

f)

3

4

5

0 1

2 π1

#cs/R(π)

4/3

g)

Figure 3. Algorithm execution through an example: a) ASAP and

ALAP start times; b) The nodes in the critical path identified by the

gray region; c), d), e), f) and g) show iterations of the algorithm.

After the above steps the main kernel of the algorithm is executed (see the pseudo-code in

Figure 4, 5 and 6). Some of the most important functions used by the algorithm are listed and

briefly explained below:

– vi.ALAPlevel(): returns the level of vi considering an ALAP leveling scheme;

– vi.ALAPStart(): returns the ALAP start time of vi;

 11

– πi.addEl(vi): adds the node vi to πi;

– πi.rmEl(vi): removes vi from πi;

– πi.sched(vi): returns the number of control steps of the critical path considering that vi is

mapped to πi;

– ℘.add(πi): adds a new TP πi to the current set of TPs (πi will be the last TP in the set);

– ℘.elAt(i): returns the ith TP from the set of TPs (℘);

– findNodes(i): returns a list of nodes ready to be mapped to the ith TP;

– UpDateAndSortALAP(ListReady, vi): consider the nodes that can be mapped due to the al-

ready mapping of node vi.

Our algorithm will be progressively constructing a global solution. On each iteration, the

algorithm traverses the sequence of the existent TPs trying to assign ready nodes to each TP.

Each TP has an associated maximum slot time (MAXCS). A node ready to be mapped to a TP

is only really considered for mapping if the resultant execution latency of that TP (consider-

ing the mapping) does not exceed the correspondent MAXCS (line 15 of Figure 4 and lines 2,

21 and 29 of Figure 5). MAXCS of a given TP πi is equal to the critical path latency of that TP

added by a relax amount: CS(πi) + relax. On each iteration over the TPs the relax value is in-

cremented by the great common divisor (gcd) among all the execution latencies of the opera-

tions in the DFG (line 24 of Figure 4). When a node is mapped (see function mapNode in

Figure 6), the critical path length of the associated TP is updated (lines 4 and 5 of Figure 6).

The algorithm considers that nodes in contiguous time steps mapped to the same TP and

with the same operation should be bound to the same FU instance.

A list of nodes ready for mapping to a current TP is used. The list has the nodes sorted by

increasing ALAP start times (the candidate operation having the least ALAP value will have

the highest priority) and, for nodes with the same ALAP start time, it uses the ASAP start

time as a tiebreak (by ascending or descending order). The list is determined examining for a

given node its predecessors (they already must be mapped in TPs before the current TP) and

the child set (the nodes child of the node to be mapped must be on TPs after the TP under

consideration). The incremental update of the list of the nodes candidate to be mapped to the

current TP, when each node is mapped, is an option of the algorithm (lines 6 and 7 in Figure

6). When such option is disabled the algorithm only tries to do update when the list is empty.

The algorithm uses a static-based approach in the sense that the ALAP/ASAP values are cal-

culated only once and they are not updated during the execution of the algorithm.

 12

1. // begin main kernel
2. BitSet NodesSched = marked with the nodes already mapped to TPs;
3. int NumTP = 0; relax = 0; N = NTP;
4. int step = gcd(All nodes in DFG);
5. while(notAllNodesSched(NodesSched)) {
6. LOOP B: while(NumTP < N) {
7. Vector listReady = findNodes(NumTP);
8. Vector πi = ℘.elAt(NumTP);
9. while(!listReady.isEmpty()) {
10. Node vk = listReady.rmFirst();
11. int RNEW = R(πi) + R(vk);
12. Boolean fit = (RNEW <= RMAX);
13. // CS(πi) when vk is mapped to πi:
14. int CSnew = πi.sched(vk);
15. if((CSnew > (CS(πi)+relax)) && ((πi is the last TP) && (Γ(πi) == ∅)

|| (vk.ALAPlevel() < π(vk)))) {
16. tryToSched(RNEW, vk, fit, CSnew – CS(πi), πi, NodesSched, update,

CSnew, ListReady); Figure 5
17. } else {
18. tryToSched(RNEW, vk, fit, relax, πi, NodesSched, update, CSnew,

ListReady); Figure 5
19. }
20. }
21. NumTP++;
22. }
23. NumTP = 0;
24. relax += step;
25. }
26. // end main kernel

Figure 4. Main kernel of the proposed algorithm.

A special directed edge between two nodes is used to identify in the DFG that both nodes

share the same FU instance. A path of nodes connected by such edges identifies the sequence

of utilization of the FU instance (from the source to the sink). Those edges are added by the

algorithm to the initial DFG and provide an efficient way to both represent sharing of FU in-

stances, to determine the execution latency and to generate the datapath and control unit de-

scriptions. When a node vn is bound to an FU instance that is already shared by two or more

operations, the algorithm adds a special edge from the last node of the path of shared FUs to

vn. However, when there are one or more nodes in that path that are child of vn in the DFG, vn

is inserted immediately before the first child found traversing the path from left to right (see

Figure 7).

The algorithm considers the interchange4 of a node previously assigned to a TP with a

node ready to be mapped in that TP. This occurs if the TP has only one node, the node to be

4 This involves the move of a node from a TP to the list and the map of the first node ready to that TP.

 13

mapped has lower ALAP start time and the change is feasible in terms of available resources

and MAXCS (lines from 3 to 13 of Figure 5).

1. tryToSched(int RNEW, Node vi, Boolean fit, int relax, TP πk, BitSet
NodesSched, Boolean update, int CSnew, ListReady) {

2. if((CSnew ≤ (relax+CS(πk)) || (CS(πk) == 0)) {
3. if only one node vj in πk {
4. if(vj.ALAPStart() > vi.ALAPStart()) {
5. if((RNEW – R(vj)) <= RMAX) {
6. πk.rmEl(vj);
7. R(πk) = R(vi);
8. πk.addEl(vi);
9. NodesSched.clear(vj);
10. NodesSched.set(vi);
11. continue LOOP B;
12. }
13. }
14. }
15. boolean canShare = try sharing with a node of the same type with a

path of shared FUs with the smallest length (number of nodes;
16. if(canShare) {
17. if(fit && share produces increase) {
18. canShare = false;
19. rmShare(vi);
20. } else {
21. int CSnew1 = πk.sched(vi);
22. if(CSnew1 ≤ (relax + CS(πk))) {
23. mapNode(πk, vi, NodesSched, update, CSnew1, ListReady); Figure

6
24. } else {
25. rmShare(vi);
26. canShare = false;
27. }
28. }
29. }
30. if(!canShare && fit && (CSnew ≤ (relax+ CS(πk))) || (CS(πk) == 0)) {
31. mapNode(πk, vi, NodesSched, update, CSnew, ListReady); Figure 6
32. }
33. if(vi not mapped and no FU with operation type of vi in thisTP and vi

does not fit and thisTP is the last TP) {
34. create a new TP πn; N++;
35. ℘.add(πn);
36. mapNode(πn, vi, NodesSched, update, CS(πn), ListReady); Figure 6
37. break LOOP B;
38. }
39. }
40. if((CS(πk) + relax) ≤ MaxLatOp) {
41. if(!Share && !wasSched) break LOOP B;
42. }
43. } // end tryToSched

Figure 5. Function tryToSched.

 14

1. mapNode(TP πk, Node vi, BitSet NodesSched, Boolean update, int CSnew, Vec-
tor ListReady) {

2. πk.addEl(vi);
3. NodesSched.set(vi);
4. if(CSnew > CS(πk))
5. CS(πk) = CSnew;
6. if(update)
7. upDateAndSortALAP(ListReady, vi);
8. } // end mapNode

Figure 6. Function mapNode.

j k n

ππi

j n

ππi

k

Note that node k
is a child of
node n in the
DFG (1)

(2)

Indicates that the
source node and
the sink node share
the same functional
unit in the order of
the arrow.

Figure 7. Special mapping of a node in a TP.

After the execution of the main kernel the algorithm considers a merge operation. Such op-

eration tries to group adjacent TPs in a single TP considering resource sharing among FU in-

stances of the same type in two considered TPs (see Figure 3e), f) and g)). This step of the al-

gorithm is done incrementally and it stops when no merging is possible. From the two first

TPs of Figure 3e) it can be seen that sharing the FUs, the two TPs can be merged. Figure 3f)

illustrates the result of that merge. From the later result we can figured out that π1 and π2 are

also able to be merged (with node 5 sharing the FU instance already shared by nodes 0, 1 and

4). The resultant merge is shown in Figure 3g) and the final solution requires only a single

TP.

When a node does not fit (in the sense that the MAXCS of the considered TP is violated) in

the last TP and if that TP is empty then the algorithm prefers to relax the TP to accommodate

the node (see lines 15 to 17 in Figure 4).

When finding if a node to be mapped can share an FU instance already existent in the con-

sidered TP, the algorithm binds the node/operation to the FU instance with lower length path

of nodes sharing it (line 14 in Figure 5).

 15

The steps of the algorithm shown in lines 32 to 37 of Figure 5 are related to the case that

when a node does not fit (with or without resource sharing or with relaxation of MAXCS) in

the last TP a new TP is added to the existent set of TPs and the node is mapped to it.

The algorithm optionally uses a jump to the first TP (lines 38 to 40 of Figure 5). This

forces the algorithm to consider the binding of nodes, which cannot share an FU in the cur-

rent TP, to earlier TPs.

4.1 Time Complexity of the Algorithm

The worst time complexities for each step of the algorithm are:

• O(|V|+|E|), for ASAP and ALAP schemes;

• O(|V|+|E|), for determination of the child nodes presented in all the paths from each

node of the DFG to the end, when the DFG is topologically ordered;

• O(|V|2), for sorting a list of |V| nodes;

• O(|V|), for searching a node in each TP;

• O(NPASS.N.|V|), for the core of the algorithm, where NPASS is the number of passes of

the algorithm through the N TPs. NPASS has a majoring value of |V|×MaxLatOp/step,

where MaxLatOp represents the largest latency of the set of FUs that could be assigned

to nodes of the DFG;

• O(N.|V|), for the merge operation.

Thus, the worst time complexity of the algorithm is O(k.N.|V|2), with k equal to MaxLa-

tOp/step, or just O(N.|V|2).

5 Experiments and Results

All the algorithms considered in this section have been implemented with the Java™ lan-

guage. All the executions of the algorithms were conducted on a portable PC (Pentium-II

@366MHz, 196Mb RAM) with the JIT compiler integrated in the JDK1.2 running on Win-

dows98.

The algorithm proposed in this paper has been tested with a number of representative ex-

amples (with variable complexity) and, whenever possible, the results obtained are compared

with other approaches.

 16

5.1 Examples

The SEWHA is the auto regression filter presented in [21], HAL is the loop body of the

differential equation example [22], EWF is a digital fifth order elliptic wave filter [23], FIR is

a 12-tap finite impulse filter, Mat4×4 corresponds to a fully parallel multiplication of two ma-

trixes with 4×4 integer elements each one, and FDCT is the fast discrete cosine transform

used in [24]. Mat4×4 is used as an example of high operation level parallelism degree.

We consider for all the experiments an execution latency of 1 clock cycle for each adder or

ALU and 2 clock cycles for each multiplier (only nonpipelined multipliers were used). For

the number of resources needed for each FU we consider 1 cell for each adder or ALU and 4

cells for each multiplier. Table II shows the main characteristics of the considered examples

(number of operations of each type, total number of resources and the critical path length).

Table II. Characteristics of the examples.

Example Number of
operations

(×, +/-)

Total number
of operations

Total number
of resources

(cells)

Critical path
length of the DFG

(clock cycles)
Ex1 (2, 4) 6 12 4

EWF (8, 26) 34 58 17
FIR (12, 11) 33 59 6
HAL (4, 6) 10 22 7

SEHWA (16, 12) 28 76 11
Mat4×4 (64, 48) 112 304 4
FDCT (16, 26) 42 90 8

5.2 Sharing versus not sharing

Table III shows results for the considered examples. The ASAP results refer to the leveling

technique proposed in [11]. The SA results were obtained with a simulated annealing ap-

proach to do temporal partitioning without resource sharing proposed in [17]. Here, the algo-

rithm is tuned to optimizing the overall execution time without entering into account the

communication costs (the algorithm can also exploit the tradeoff between execution time and

communication costs). Values shown represent the best results collected from several runs of

the algorithm (minutes and hours of CPU time).

Our(1), (2) and (3) identify results obtained by applying the proposed algorithm. Our(1)

identifies executions of the algorithm disabling the capability to share FUs among operations.

Our(2) considers resource sharing for both adder and multiplier units, and Our(3) only con-

siders resource sharing for multiplier units. #cs identifies the execution latency (number of

 17

clock cycles) and #p the number of TPs. The results for our algorithm refer to solutions with

the minimum number of control steps obtained (not considering the time to reconfigure).

Such solutions do not necessarily have the minimum number of TPs. Each solution related to

our algorithm was obtained in less than 1s of CPU time.

Only Mat4×4 needed to start with the number of TPs obtained by the ASAP approach to

achieve the best solution. For all the other examples, the best solution was obtained starting

with an initial number of TPs equal to the number of levels of the DFG. The results for

Mat4×4 in Table III were collected disabling the update of the list of nodes ready for each

node mapped (the list is updated only when it is empty). It is strongly recommended to dis-

able the update option for examples with high-level degree of parallelism and a small critical

path length.

Table III. Results obtained for the examples.

Approach
ASAP

w/o
sharing

SA
w/o

sharing

Our(1)
w/o

sharing

Our(2)
w/ sharing of
+’s, ALU’s

and ×’s

Our(3)
w/ sharing

of ×’s
Example RMAX

#p #cs #p #cs #p #cs #p #cs #p #cs
Ex1 6 2 5 2 4 2 4 1 4 2 4

6 18 36 18 35 17 38 1 34 6 34
10 9 24 9 19 9 20 1 18 6 18

SEHWA
(AR)

15 6 18 6 15 7 15 1 15 5 15
6 5 11 5 9 4 9 1 9 3 10 HAL
10 3 10 3 7 3 7 2 7 3 7
6 12 26 12 22 12 25 1 23 9 25
10 6 22 6 21 8 19 5 18 7 18 EWF
15 4 19 4 18 4 18 1 17 4 18
6 14 28 14 27 13 28 1 20 4 27
10 7 16 7 15 7 15 1 15 4 15 FIR
15 5 12 5 11 5 12 1 11 3 11
6 72 136 72 130 64 130 1 130 21 130
10 37 69 37 66 33 66 1 66 17 66
15 25 47 25 46 22 46 1 46 10 46

Mat4×4

20 16 29 16 29 16 29 2 29 4 29
6 20 36 20 34 18 36 2 34 6 36
10 11 21 11 19 10 20 2 19 5 20
15 7 17 7 14 7 15 3 14 6 14*

FDCT

20 5 14 5 12 5 12 2 12 5 12

The values in bold in the 4th, 6th, 8th, 10th and 12th columns of Table III show the minimum

execution latency for the datapaths obtained by the considered approaches (not considering

configuration times). The 8th column presents results when executing our algorithm disabling

 18

the sharing of all FUs. Twelve cases, represented in bold, are not worse to the results close-

to-optimum produced with SA. Surprisingly, one case obtained by Our(1) was not achieved

by SA. The values in bold in the 12th column represent that, even without considering sharing

of adders, our algorithm returns solutions with execution latencies equal to the execution la-

tencies obtained sharing all the resources (10th column), despite the fact that those solutions

need more TPs. When compared to ASAP our algorithm produces only 1 worst case.

When considering resource sharing for all FUs, a minimum number of TPs (only 7 cases of

Table III needed more than one TP to produce a minimum execution time) seems to ensure

solutions with lower execution latencies than the obtained by doing temporal partitioning

with ASAP or SA for the majority of the examples (5 cases are better than the close-to-

optimum SA results). Note that when all the FUs can be shared and the resource overhead to

implement sharing is not taken into account, an empirical observation tell us that, most of

times, the solutions with lower execution latency are those with only one TP. This is expected

by the fact that a new TP produces an equal or worse effect than sharing FU instances on the

overall execution latencies because all the nodes in that TP can only start executing after the

end of the execution of the TP immediately before.

When sharing of adders is not considered the algorithm is capable to find 14 solutions

without inferior execution latency.

5.3 Exploiting the number of TPs

An exploitation of the overall execution latency versus the number of TPs is, for the

Mat4×4 example, shown in Figure 8. Those results were produced by calling the algorithm

several times, each time starting with a different initial number of TPs from a range of 1 to

15. The exploitation has been done in approximately 5.4s of CPU time. All the solutions use

only a single TP and the best result (execution latency equal to 66 clock cycles) has been

achieved when the algorithm started with 8 TPs. The results without considering sharing of

adders are shown in Figure 9. The algorithm exploited a range of TPs from 1 to 26 and the

minimum execution latency achieved was 66 clock cycles (solution with 21 TPs). Based on

those results we can select a solution that minimizes the global execution latency taking into

account the reconfiguration times (see equation (2)).

From the results presented so far we may conclude that sharing FUs can reduce the number

of TPs without increasing the overall execution time. Moreover, a minimum number of TPs

can be a priority, when an FPGA with significant reconfiguration times is used. Due to its

 19

low computational complexity, the algorithm can be used to exploit the design space based

on the tradeoff between the number of TPs and the overall execution latency.

65

70

75

80

85

90

1 3 5 7 9 11 13 15

Initial number of Temporal Partitions

E
xe

cu
ti

o
n

 la
te

n
cy

(c

lo
ck

 c
yc

le
s)

Figure 8. Execution latency versus the initial number of TPs for

Mat4××4 obtained by the proposed algorithm, when RMAX=10 (sharing

of adders and multipliers).

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25

Initial Number of TPs

F
in

al
 N

u
m

b
er

 o
f

T
P

s

64

65

66

67

68

69

70

71

E
xe

c.
 (

cl
o

ck
 c

yc
le

s)

#TPs Exec.

Figure 9. Execution latency and the final number of TPs versus the

initial number of TPs obtained by the algorithm for Mat4××4, when

RMAX=10 (no sharing of adders).

5.4 Comparison with schedulers

At this point a question may occur: is the algorithm competitive when a single TP is envis-

aged? Table IV shows results for EWF and SEWHA, considering various sizes for the avail-

able resources (RMAX). The schedule lengths obtained by the proposed algorithm considering

only one TP are shown (see the 5th column). The number of resources used for each type of

 20

FU for each solution is also shown (6th column). “Fixed” refers to results collected from the

state-of-the-art schedulers [25][26][27] and represent optimal (identified with ♣) or near-

optimal scheduling results (without taken into account to temporal partitioning) for the speci-

fied constraint on the number of FUs for each type of operation (see the 2nd column). The re-

sults show that our algorithm is efficient, even when we are interested on a final solution with

a single TP.

Table IV. Comparison of scheduling results obtained for EWF and SEHWA.

Approach
Fixed [25][26][27] Our Example
constraints

(×, +)
#cs constraints

RMAX (#p=1)
#cs (×, +)

#cs
difference

(1, 2) 21♣ 6 22 (1, 2) +1
(1, 3) 18 7 22 (1, 3) +4
(2, 1) 21♣ 9 22 (1, 5) +1
(2, 2) 18♣ 10 20 (2, 2) +2
(2, 3) 18 11 18 (2, 3) 0
(3, 2) 18 14 18 (2, 6) 0

EWF

(3, 3) 17♣ 15 17 (3, 3) 0
(1, 1) 34♣ 5 34 (1, 1) 0
(2, 1) 18♣ 9 20 (2, 1) +2
(2, 2) 18 10 18 (2, 2) 0
(3, 1) 16♣ 13 17 (3, 1) +1
(3, 2) 15♣ 14 15 (3, 2) 0
(3, 3) 15♣ 15 15 (3, 3) 0
(4, 1) 16♣ 17 16* (4, 1) 0

SEHWA
(AR)

(4, 2) 11♣ 18 11 (4, 2) 0

The result labeled with a “*” is achieved without an incremental update of the list of the

nodes ready to be mapped. This result shows that the algorithm did not skip from a local

minimum, since at least the result related to RMAX=15 should be achieved.

Some results consider the increasing order of the ASAP values as the second key (there is

no evidence to suggest when it is better to use the decreasing or the increasing ASAP values

as the second key).

The number of each FU instance allocated by our algorithm for each RMAX constraint only

was different in two cases to the constraints used (with total number of resources equal to

RMAX) to produce the near-optimal scheduling results (see Table IV). Therefore, it seems that

our algorithm can also be used to a fast identification of the number of FU instances needed,

considering a specific number of maximum resources available on the device.

 21

6 Conclusions and Future Work

In this paper we have presented a new and useful algorithm combining temporal partition-

ing, sharing of functional units, scheduling, allocation and binding. Unlike other approaches,

this algorithm merges those tasks in a combined and global method. The obtained results,

from a number of benchmarks, strongly confirm the efficiency and effectiveness of the idea.

The low computation time achieved, when dealing with the presented examples, shows that

the algorithm is fast and efficient and thus can be used on large examples.

Work in progress focuses practical extensions to the algorithm. Such extensions are taking

into account the hardware resources - for multiplexers, registers and for the control unit -

needed for sharing a functional unit.

Extensions to deal with functional units with pipeline stages and with more than one im-

plementation for a given operation will be considered in a near future. Another important is-

sue is the overlapping of reconfiguration and execution that should be considered by future

enhancements. Finally, aspects related to conditional paths and loops will also need to be fo-

cused on future work.

7 Acknowledgments

The author would like to acknowledge the support from the PRAXIS XXI Program under

the scope of the AXEL Project (PRAXIS/P/EEI/12154/1998).

8 References

[1] A. DeHon, Reconfigurable Architectures for General Purpose Computing, PhD Thesis,

AI Technical Report 1586, MIT, 545 Technology Sq., Cambridge, MA02139, Sept.

1996, http://www.ai.mit.edu/people/andre/phd.html.

[2] X.-P.Long, H. Amano, “WASMII: a Data Driven Computer on a Virtual Hardware,” in

Proc. of the 1st IEEE Workshop on Field Programmable Custom Computing Machines

(FCCM’93), Napa Valley, CA, USA, April 5-7, 1993, pp. 33-42.

[3] Xilinx Inc., Virtex Field Programmable Gate Arrays, version 1999.

[4] R. D. Hudson, D. I. Lehn, and P. M. Athanas, “A Run-Time Reconfigurable Engine for

Image Interpolation,” in Proc. of the 6th IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM’98), Napa Valley, CA, USA, April 15-17, 1998,

 22

Kenneth L. Pocek and Jeffrey Arnold, editors, IEEE Computer Society Press, Los

Alamitos, CA, USA, pp. 88-95.

[5] T. Fujii, et al, “A Dynamically Reconfigurable Logic Engine with a Multi-

Context/Multi-Mode Unified-Cell Architecture,” in Proc. of the IEEE Int'l Solid State

Circuits Conference (ISSCC’99), SA, CA, Feb. 15-17, 1999, pp. 364-365. Available

online at: http://www.isscc.org/digests/1999/DATA/21_3.pdf.

[6] S. Trimberger, “Scheduling Designs into a Time-Multiplexed FPGA,” in Proc. of the

6th ACM Int'l Symposium on Field Programmable Gate Arrays (FPGA’98), Monterey,

CA, USA, February 22-24, 1998, pp. 153-160.

[7] H. Liu and D. F. Wong, “Circuit partitioning for dynamically reconfigurable FPGAs,”

in Proc. 7th ACM Int'l Symposium on Field Programmable Gate Arrays (FPGA’99),

Monterey, CA, USA, Feb. 21-23, 1999, pp. 187-194.

[8] D. Gajski, et al., High-Level Synthesis, Introduction to Chip and System Design, Klu-

wer Academic Publishers, 1992.

[9] M. Vasilko, D. Ait-Boudaoud, “Architectural Synthesis Techniques for Dynamically

Reconfigurable Logic,” in Proc. of the 6th Int. Workshop on Field-Programmable Logic

and Applications (FPL’96), Darmstadt, Germany, Sept. 23-25, 1996, LNCS, vol. 1142,

Springer-Verlag, pp. 290-296.

[10] I. Ouaiss, et al., “An Integrated Partitioning and Synthesis System for Dynamically Re-

configurable Multi-FPGA Architectures,” in Proc. of the 5th Reconfigurable Architec-

tures Workshop (RAW’98), Orlando, Florida, USA, March 30, 1998, pp. 31-36.

[11] Karthikeya M. GajjalaPurna, and Dinesh Bhatia, “Temporal Partitioning and Schedul-

ing Data Flow Graphs for Reconfigurable Computers,” in IEEE Transactions on Com-

puters, vol. 48, no. 6, June 1999, pp. 579-591.

[12] M. Kaul, R. Vemuri, “Optimal Temporal Partitioning and Synthesis for Reconfigurable

Architectures,” in Proc. of the Design, Automation & Test in Europe (DATE’98), Paris,

France, Feb. 23-26, 1998, pp. 389-396.

[13] M. Kaul, R. Vemuri, “Temporal Partitioning combined with Design Space Exploration

for Latency Minimization of Run-Time Reconfigured Designs,” in Proc. of Design,

Automation & Test in Europe (DATE’99), Paris, France, Feb. 23-26, 1999, pp. 202-209.

 23

[14] Meenakshi Kaul, Ranga Vemuri, Sriram Govindarajan, Iyad E. Ouaiss, “An Automated

Temporal Partitioning and Loop Fission approach for FPGA based reconfigurable syn-

thesis of DSP applications,” in Proc. of the IEEE/ACM Design Automation Conference

(DAC'99), New Orleans, LA, USA, June 21-25, 1999, pp. 616-622.

[15] Atsushi Takayama, Yuichiro Shibata, Keisuke Iwai, and Hideharu Amano, “Dataflow

Partitioning and Scheduling Algorithms for WASMII, a Virtual Hardware,” in Proc. of

the 10th Int. Conference on Field-Programmable Logic and Applications (FPL’00),

Villach, Austria, August 27-30, 2000. Reiner W. Hartenstein and Herbert Grünbacher

(eds.), LNCS, vol. 1896, Springer-Verlag, Berlin, pp. 685-694.

[16] João M. P. Cardoso, and Horácio C. Neto, “Macro-Based Hardware Compilation of

Java Bytecodes into a Dynamic Reconfigurable Computing System,” in Proc. of the

IEEE 7th Symposium on Field-Programmable Custom Computing Machines

(FCCM'99), Napa Valley, CA, USA, April 21-23, 1999, Kenneth L. Pocek and Jeffrey

Arnolds (eds.), IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 2-11.

[17] João M. P. Cardoso, and Horácio C. Neto, “An Enhanced Static-List Scheduling Algo-

rithm for Temporal Partitioning onto RPUs,” in Proc. of the IFIP X International Con-

ference on Very Large Scale Integration (VLSI'99), Lisbon, December 1-3, 1999. Luis

M. Silveira, Srinivas Devadas and Ricardo Reis (eds.), VLSI: Systems on a Chip, Klu-

wer Academic Publishers, pp. 485-496.

[18] Satish Ganesan, and Ranga Vemuri, “An Integrated Temporal Partitioning and Partial

Reconfiguration Technique for Design Latency Improvement,” in Proc. of Design,

Automation & Test in Europe (DATE'00), Paris, France, March 27-30, 2000, pp. 320-

325.

[19] Xue-jie Zhang, Kam-wing Ng, and Wayne Luk, “A Combined Approach to High-Level

Synthesis for Dynamically Reconfigurable Systems,” in Proc. of the 10th Int. Confer-

ence on Field-Programmable Logic and Applications (FPL’00), Villach, Austria, Au-

gust 27-30, 2000. Reiner W. Hartenstein and Herbert Grünbacher (eds.), LNCS, vol.

1896, Springer-Verlag, Berlin, pp. 361-370.

[20] Awartika Pandey and Ranga Vemuri, “Combined Temporal Partitioning and Schedul-

ing for Reconfigurable Architectures,” in Proc. SPIE Photonics East Conference, SPIE

3844, Boston, Massachusetts, USA, Sept. 20-21, 1999. John Schewel, et al. (eds.), Re-

configurable Technology: FPGAs for Computing and Applications, pp. 93-103.

 24

[21] R. Jain, A. Parker, N. Park, “Module Selection for Pipelined Synthesis,” in Proc. of the

25th Design Automation Conference, Anaheim, CA, USA, June 12-15, 1988, pp. 542-

547.

[22] P. G. Paulin, J. P. Knight, and E. F. Girczyc, “HAL: A Multi-Paradigm Approach to

Automatic Data Path Synthesis,” in Proc. of the 23rd Design Automation Conference,

Las Vegas, NV, USA, June 29-July 2, 1986, pp. 263-270.

[23] P. Dewilde, E. Deprettere, and R. Nouta, “Parallel and Pipelined VLSI Implementation

of Signal Processing Algorithms,“ in VLSI and Modern Signal Processing, S.Y. Kung,

H.J. Whitehouse, T.Kailath (eds.), Prentice-Hall 1985, pp. 258-264.

[24] D. J. Mallon, and P. B. Deneyer, “A new approach to pipeline optimization,“ in Pro-

ceedings of the European Design Automation Conference (EDAC’90), March 1990, pp.

83-88.

[25] M. Narasimhan, and J. Ramanujam, “A Fast Approach to Computing Exact Solutions

to the Resource-Constrained Scheduling Problem, “ to appear in ACM Transactions on

Design Automation of Electronic Systems (TODAES), Vol. 7, No. 1, January 2002.

URL: http://www.acm.org/todaes/V7N1/TOC.html

[26] P.-Y. Hsiao, G.-M. Wu, and J.-Y. Su, “MPT-based branch-and-bound strategy for

scheduling problem in high-level synthesis,” in IEE Proc. Computers and Digital Tech-

niques, Vol. 145, No. 6, November 1998, pp. 425-432.

[27] M. K. Dhodhi, F. H. Hielscher, R. H. Storer, and F. Bhasker, “Datapath Synthesis Us-

ing a Problem-Space Genetic Algorithm,” in IEEE Transactions on CAD of Integrated

Circuits and Systems, Vol. 14, No. 8, August 1995, pp. 934-944.

