
Decoupling Cognitive Agents

and Virtual Environments

Jeehang Lee, Vincent Baines, and Julian Padget

Department of Computer Science, University of Bath,
Bath, BA2 7AY, United Kingdom

{j.lee,v.f.baines,j.a.padget}@bath.ac.uk

Abstract. The development of and accessibility to rich virtual envi-
ronments, both for recreation and training activities leads to the use
of intelligent agents to control avatars (and other entities) in these en-
vironments. There is a fundamental tension in such systems between
tight integration, for performance and low coupling, for generality, flex-
ibility and extensibility. This paper addresses the engineering issues in
connecting agent platforms and other software entities with virtual en-
vironments, driven by the following informal requirements: (i) accessi-
bility: we would like (easily) to be able to connect any (legacy) software
component with the virtual environment (ii) performance: we want the
benefits of decoupling, but not at a high price in performance (iii) dis-
tribution: we would like to be able to locate functionality where needed,
when necessary, but also be location agnostic otherwise (iv) scalability:
we would like to support large-scale and geographically dispersed virtual
environments. We start from the position that the basic currency unit
of such systems can be events. We describe the Bath Sensor Framework,
which is a middleware that attempts to satisfy the above goals and to
provide a low-latency linking mechanism between event producers and
event consumers, while minimising the effect of coupling of components.
We illustrate the framework in two complementary case studies using
the Jason agent platform, Second Life and AGAVE (a 3D VE for vehi-
cles). Through these examples, we are able to carry out a preliminary
evaluation of the approach against the factors above, against alternative
systems and demonstrate effective distributed execution.

1 Introduction

Programming the environment in which a multiagent system is situated has
been and continues to be an active research issue [36]. From this perspective,
many rich open systems, formed from networked 3D virtual environments such
as online games, non-gaming applications or some entertainment context are
all potential (programmable) environments, since they offer sufficient variety
to simulate real and semi-real world situations. Second Life [27] is an obvious
representative example of a 3D virtual environment: it provides a sophisticated,
dynamic and realistic virtual world as if duplicating the modern human society
with avatars and 3D objects [26]. Such a virtual world may encourage advances

F. Dignum et al. (Eds.): CAVE 2012, LNAI 7764, pp. 17–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

18 J. Lee, V. Baines, and J. Padget

in agent intelligence, through the demands of sensing and interaction, as agents
are situated in more and more complex, dynamic or realistic environments.

However, the integration of agent software and rich environments creates a
range of challenges, arising not least from the variety of each and that neither
is typically designed to interact with the other. For example, the purpose of
the Second Life is to provide an avatar in a networked 3D virtual environment,
that it is expected a human will control, so it does not explicitly take into
account either the use of AI or integration with other applications. The Jason
agent platform [10] is similarly placed: its objective is to provide a BDI-based a
deliberative reasoning engine for agent research, so it does not consider standard
programming interfaces for other environments.

As a result, the research on agent-environment programming has mostly re-
lied on tightly coupled approaches, characterised by using a specific ontology,
protocol and interface that are particular to one system [1, 7–9, 22, 31, 41, 42].
Such a lack of interoperability is possibly not beneficial overall for the devel-
opment of agent intelligence because there is little scope for the agent that is
built for one VE to be exercised in another and so the agent is unavoidably
mono-cultural. Besides, such tightly connections between agents and particular
environments must somehow inhibit further potential applications arising from
alternative agent-environment combinations. We believe that a way forward from
this situation may be possible through an appropriate form of middleware.

Thus, our objective is to describe and to demonstrate a kind of integration
middleware that serves not only to loosen the coupling between agents and
environments, but also to make it possible to consider the connection of any kind
of agent and any kind of environment. In software engineering pattern terms,
we outline a façade for each agent platform and each environment, where each
communicates with the other by means of events (in effect, asynchronous message
passing), facilitated by the use of a publish-subscribe server. This constitutes
the essence of the Bath Sensor Framework (BSF), which provides the means to
link software components independently of programming language, platforms or
operating systems, so in principle offering good accessibility, distribution and
scalability as an agent-environment integration framework. Performance is a
more delicate issue that will take time and experience to establish, depending
on the communications overhead (the pub/sub server) and – more likely to
dominate – on the decision-making cycle of the agent, although this will clearly
depend on the sophistication of the agent architecture.

The remainder of this paper is organised as follows. The overall system de-
sign is be described in section 2. Section 3 presents the case studies and their
results with example applications. We finish with a brief survey of related work
(section 4) followed by discussion and future work (section 5).

2 System Design

In this section, we describe the whole system architecture and how it can in-
tegrate an agent platform with a virtual environment. In particular, we will

Decoupling Cognitive Agents and Virtual Environments 19

Virtual Agent

Transport

XMPP server

BDI Agent

Bath Sensor Framework

Sensor Subscriber

Bath Sensor Framework

Sensor Subscriber

Virtual Environments

Sensing

Interpreter

Motor

BSF Handler

Connection manager (VE)

BSF Handler

Jason Reasoning Engine

Beliefs Plans

Intelligence Plan Library

Fig. 1. Overall System Architecture

demonstrate the interaction between the software components and describe the
programming model.

For our experimental set-up, the collection, distribution and exchange of data
is performed by using publish/subscribe between event producers and consumers
via the Extensible Messaging and Presence Protocol (XMPP), an open standard
communications protocol [19, 20]. Although XMPP is often cited as a component
in real-time (web) systems [40], there is little quantitative evidence to back this
up. In consequence, we have carried out some preliminary evaluation (see 3.3)
and we return to this issue in related work. For an agent platform, we use the
Jason BDI framework and as virtual environments, we use Second Life and the
AGents and Autonomous Vehicles Environment (AGAVE).

Any of these components (Jason, SL, AGAVE, XMPP) may be substituted in
pursuit of a better fit with the requirements set out earlier, but the primary focus
of this paper is our evaluation of the adequacy of the BSF, instantiated as out-
lined, as a solution to the issues identified above pertaining to agent-environment
programming. In doing so, we present case studies that connect Jason agents,
Second Life and AGAVE, and discuss how to accommodate differences in plat-
form and programming language.

2.1 Overall System Design

The essence of the design is that the agent platform is decoupled from the virtual
environment by means of a publish-subscribe messaging server – in this case,
XMPP – as shown in Figure 1.

20 J. Lee, V. Baines, and J. Padget

In the case of Second Life, the virtual agent is created using the openmeta-
verse library (LIBOMV [30]), which also provides the connection to the Second
Life server. The role of the virtual agent is to interpret the actions received from
the BDI agent, and then carry out the resulting “physical” actions. In the other
direction, the virtual agent perceives the environment and the percepts are de-
livered to the BDI agent via BSF, where it is becomes a belief that influences
the agent’s reasoning process.

Clearly the BSF plays a key role in facilitating the interaction between the two
components. In particular, through the imposition of a simple communication
API, a java-based agent platform and a virtual agent, in this case written in
a different language and running on a different platform, can interact with one
another. We now explain in more detail about the sensor framework.

2.2 Bath Sensor Framework

The Bath Sensor Framework (BSF) is an abstraction layer for data collection,
distribution and exchange built upon XMPP technology. The primary task for
which the framework was conceived is the effective collection of data from nu-
merous physical or logical sensors, and its subsequent distribution to the relevant
devices or software connected to the XMPP server. The data itself is represented
in RDF, although this is not mandatory: the XMPP message structure is just a
HTTP body and can be any representation that is suitable.

XMPP is an open standard communication protocol built upon a set of open
XML technologies [19, 20]. It is intended to provide not only presence and real-
time communication services, but also interoperability by exchanging any type
of data in cross domain environments by means of nodes in the XMPP server.
To this end, it supports 1-to-1, 1-to-many, and many-to-many data transport
mechanisms, so that any data may be be transferred from anywhere to any-
where [6]. Its flexibility, performance and lightweight nature have lead to XMPP
being chosen to support research in a diverse range of fields, including Many
Task Computing [39], bio-informatics [43] and Cloud Computing [5], as a data
distribution service in preference to HTTP or SOAP services.

The above features suggest a number of advantages over pure TCP/IP connec-
tions. The latter typically require quite careful set-up and can be fragile where
the connection graph is not simple. Moreover, TCP/IP is primarily for 1-to-
1 connections, so every additional connection needs an independent additional
socket whenever multiple software components are integrated into the main sys-
tem. In contrast, XMPP provides a star- or bus-like connection model to resolve
the m-to-n problem, but through the node abstraction within the server, allows
the set-up of multiple virtual circuits. Furthermore, the data producer does not
need to know the consumer’s identity to set up the connection and through
the server’s mediation of the connection, the system acquires a degree of fault-
tolerance, and permits the observation of system behaviour by third parties,
rather than having to replicate such mechanisms in each component. Thus, we
conclude that XMPP offers several attractive features, which is why we have
chosen to base BSF upon it.

Decoupling Cognitive Agents and Virtual Environments 21

Fig. 2. The System Architecture of Bath Sensor Framework (BSF)

For our purposes, the most notable feature of XMPP and hence the BSF is
its provision of a publish/subscribe mechanism. BSF supports these operations
by means of sensor and subscriber classes. When the sensor is created in the
application which has a role as a data source, a corresponding node is also
created in XMPP server. Once created, the application can publish the data
sensed from the real or virtual world via the node. If the subscriber, which is
created in another application, which has a role as a data consumer, sets up a
subscription request on that node and registers a corresponding handler in its
application, then the data will be transferred from one application to the other.
As noted earlier, the data is represented in RDF and published data can be
stored in a triple-store (in our case OpenRDF) so that historical data can be
retrieved on request from the subscriber using the SPARQL query language1. In
this way, the BSF supports a form of messaging passing with unstructured data
between multiple software components.

A particularly valuable aspect of XMPP/BSF is its relative independence
from both operating systems and programming languages so that more general
programming environments can be provided for users attempting to combine
heterogeneous software components. Thus, regardless of language its interfaces
reveal the same classes, methods, data structures and interfaces, so that all kinds
of applications or libraries can be integrated relatively easily just by adding the
classes inside applications.

As can be seen, the features of this framework present a simple and flexible
programming environment for heterogeneous software components, with a good
level of a accessibility in terms of a simplicity of protocol and ease of connection,
performance, and distribution. Consequently, we show how the BSF can facilitate
the integration of a cognitive architecture for virtual agents. The next section
discusses the programming model of the BSF.

2.3 Programming Model of Bath Sensor Framework

The Bath Sensor Framework can equally be applied to data exchange between
distributed software components as to sensor based applications. The perspective

1 Other (structured, relational) databases may equally be connected to the Openfire
server and accessed by SQL queries.

22 J. Lee, V. Baines, and J. Padget

of this section is limited to the former. The analogy we draw, in making the
connection between BDI agent, virtual agent and virtual environments, is that
the virtual agent can be viewed as a sensor for the percepts from the environment.
In this context, the sensor object is instantiated in a virtual agent in order to
collect percepts for the BDI agent. Conversely, the BDI agent needs a subscriber
object to receive the percepts and subsequent reasoning over acquired beliefs.

In a data consumer such as in the BDI agent, the subscriber object has to be
instantiated inside the BDI agent. The C# version of this example is identical
modulo the grammar of the programming language.

The objective of the design is that it should suffice just to put the sensor
and subscriber object in a wrapper around whichever software component it is
desired to integrate into the event processing framework.

3 Case Studies

The aim of the case studies is to demonstrate how the BSF enables the inte-
gration of agents and virtual environments; experiments in the actual usage of
agents and VEs will be part of future work. In particular, the studies focus on
the impact of the use of BSF on the integration of agent platform and virtual
environment, in respect of some desiderata for computational models such as
generality, modularity and dynamic extensibility [36]. A complementary aspect
is the increased capacity for distribution of the components of the software ar-
chitecture, so that it is not so tightly coupled and that the addition or removal
of components is straightforward.

In the preceding section, we outlined how sensor and subscriber objects are
incorporated into a BDI agent and a virtual agent. For the following discussions,
the components are (i) Jason, providing a BDI agent, (ii) the openmetaverse
library, providing a virtual agent, and (iii) Second Life and AGAVE, providing
a virtual environment all linked by the BSF.

3.1 Case Study 1 : Jason Agent and Second Life

The goals of this study are two-fold: (i) to demonstrate the integration of Jason
agents with avatars in Second Life via BSF (ii) to identify appropriate mechanism
for the control of avatars via BSF, through exploratory scenarios. We also take
into account interaction not only between avatars controlled by Jason agents,
but also those between humans in real world and avatars in virtual worlds. This
latter direction will be explored in more depth as part of future work.

The brief scenario for this section is as follows: one avatar controlled by a
human in Second Life server says ‘hello’ to a Second Life avatar governed by
Jason agent. In what follows, we refer to the Jason controlled avatar as the
Second Life Bot (SLB). When the SLB receives the greeting message, the SLB
sends it to the Jason agent over XMPP via the sensor, where it is received via the
subscriber. The Jason agent then updates the percepts, and performs one cycle of
reasoning. As a result, the belief ‘hello’ triggers the plan ‘bow’, and appropriate

Decoupling Cognitive Agents and Virtual Environments 23

Fig. 3. Basic Operation between Jason agent and Bath Sensor Framework

actions are sent to the SLB. Finally the bot does a ‘bow’ animation by means of
the openmetaverse library after interpreting the action plan ‘bow’. Interpretation
of the action plans means the conversion of actions from Jason to Second Life
animation action(s). For example, if ‘bow’ is received from Jason, then SLB
looks to see whether ‘bow’ is defined in the action map: if so it perform that
animation. More commonly, an action plan is likely to be composed of several
atomic actions (or animations) in SLB.

A notable aspect of this scenario is that two heterogeneous software com-
ponents are able to interact by means of the BSF: because the openmetaverse
library is in C#, so too is the SLB, but Jason is Java. Previous work has been
able to integrate them by means of the .NET framework [31], but this requires
all the components to be in the same location, on a specific platform and also
couples them quite tightly.The C# interface to BSF is achieved by an extension
of the jabber.net library [25], while the Java interface is built on the Smack li-
brary [35], although this is just one of several available Java libraries for XMPP.
We are currently using the OpenFire [34] XMPP server, although again there
are several other candidates.

Jason Agent and Bath Sensor Framework. There are two ways in which
to use Jason agent reasoning engine. The most straightforward is to subclass
the environment class, which provides interfaces that are triggered by internal
events during the reasoning cycle. This is a quick method of construction, but
has limitations: (i) the dynamic update of percepts is impossible because the
update interface only can be triggered by the Jason reasoning engine, so external
update events from the environment cannot update percepts directly (ii) the
other problem is that action execution in the environment class is limited to
those actions defined in the base environment class, whle those in the subclass
are inaccessible. An alternative approach is to use the Jason agent reasoning
engine by subclassing the AgArch class from the Jason class library. The latter
is a more general technique for deploying embodied AI into rich environments.
Hence we choose this latter approach.

Figure 3 sketches the basic operations between a Jason agent and the BSF.
The Jason agent is extended, using the AgArch class, with the sensor and

24 J. Lee, V. Baines, and J. Padget

Fig. 4. Basic Operation between Second Life Bot and Bath Sensor Framework

subscriber objects. Percepts from the SLB are received by the subscriber ob-
ject, which results in updates to the beliefs. The next reasoning cycle utilises
these beliefs to retrieve an action plan and the sensor object publishes the plan
to the SLB.

Second Life Bot and Bath Sensor Framework. The open metaverse library
provides a set of APIs to program the avatar in terms of creation, appearance,
movement, communication – verbal and non-verbal – and interaction with each
other, in the same way as the Second Life official viewer application. Thus,
with openmetaverse, it is possible to program complex compound actions in the
avatar.

Once logged in, the SLB appears as an avatar in Second Life. As such, it has
an identity and can move and interact with other participants, as well as perceive
events taking place nearby. Consequently, all events occurring in Second Life are
detectable in the openmetaverse library and delivered via a callback mechanism
to the sensor object in the SLB, which collects them and publishes them for
the Jason agent to receive. On the other side, the subscriber object receives
(subscribes to) the action plans from the Jason agent. These are then translated
into sequences of atomic actions, which are a combination of defined actions in
openmetaverse or user-defined actions. As a result, the SLB carries out these
actions in respect of other participants or its environment.

3.2 Case Study 2 : Jason Agents and AGAVE

This case study also has two goals, first to demonstrate the use of Jason agents
controlling simulated vehicles within a virtual environment, and second, to re-
place the simulated vehicle with a physical robot vehicle, but all controlled via
the Bath Sensor Framework and XMPP messaging. The AGAVE framework
evolved from earlier work based on a Jason-based virtual tank simulation called
TankCoders [21]. The solution has now been redesigned, with the Bath Sen-
sor Framework at its core, with integration to the jMonkeyEngine simulation
package (to provide a 3D scene), the AllegroGraph data store (for replay and

Decoupling Cognitive Agents and Virtual Environments 25

performance analysis), and the Jason BDI framework, to form the AGents and
Autonomous Vehicles Environment (AGAVE). Vehicles are controlled via XMPP
messages, and report information back via the same mechanism using the BSF.
The aim of this work is the construction of scenarios for the exploration of ve-
hicle convoys [4] in the context of automatic driving for their potential benefits
in fuel consumption and fatalities, as well as improving traffic efficiency [16].

AGAVE, Jason, and Virtual Vehicles. Unlike the system described in [21],
the AGAVE simulation components here are decoupled from Jason for the sake
of increased flexibility in where the code is run and the requirements placed on
the underlying implementation. As the BSF supports a Resource Description
Framework (RDF) data model, the ontology of message exchange is defined,
allowing alternative components to be easily integrated. For example, vehicles
are expected to publish geo-spatial updates to the BSF, and subscribe to set of
defined control messages (e.g. setOrientation, setSpeed). Of course, how those
operations are realized depends on the end device, allowing easy substitution
for simulated by real vehicles. Similarly, components such as the 3D-view scene
subscribe to vehicle updates, and display those positions via the simulated scene.

A vehicle is currently a simple simulated abstraction that publishes its spatial
location at a predefined heartbeat, and updates its location based on current
orientation and speed. When started, the simulated vehicle is provided with a
name, and will publish its spatial position with this name included in the data
as well as responding to any control messages that give its name as the subject.

Jason agents are able to interact with a vehicle via the BSF, through the
use of customised Jason environment and agent classes. The environment class
has been extended, and uses the BSF sensor component with a subscription to
spatial data. Received spatial updates are then processed within the environment
class, and added as percepts to the relevant coordinator agent for a vehicle. The
agent class has been extended with two BSF sensor components, one responsible
for sending vehicle commands and one for sending data relating to the state of
the Jason agents themselves. The latter is used to display information in the
3D view such as the number of beliefs and agent messages, in order to assist
with identifying underlying reasons for observed behaviour of the vehicles. The
agent class provides custom actions to the coordinator agent, where the two
core actions (setSpeed and setOrientation) required for vehicle control are
implemented. The setSpeed action is used by the coordinator agent to request
that the vehicle moves at the specified speed, and the class extension passes this
to its BSF sensor component, which constructs the appropriate RDF structure
for XMPP transmission. The setOrientation action follows a similar process,
generating a message for the BSF sensor, specifying the desired orientation of
the vehicle. The overall process is very similar to that shown in Figure 3, apart
from the delivery from the BSF is to vehicles instead of bots.

In this part of the study, the vehicle controlled by the Jason agents is simulated
based on the implementation discussed earlier. On receipt of any vehicle control
messages via the BSF, the simulated vehicle updates its speed or orientation
value, which then takes effect during the next simulation step of the vehicle, as

26 J. Lee, V. Baines, and J. Padget

Fig. 5. AGAVE BSF vehicle integration

position changes are determined based on these values. This integration is shown
in Figure 5, showing the communication flow between the BSF and the vehicle
component.

Each vehicle is controlled by three agents: (i) a coordinator agent that
acts as a gatewaybetween other agents responsible for the vehicle and the interface
to the vehicle itself – i.e. only this agent directly controls the vehicle), (ii) a driver
agent responsible for achieving goals such as moving to a destination, and (iii) a
convoy agent responsible for managing vehicle behaviour in convoy
formations. Key plans provided by coordinator agent are +!chosenSpeed(V) and
+!requestTurnToAngle(A). The driver agent provides plans such as
+!emergencyStop, +!arrivedAtDestination, +!cruise, +!speedUp,
+!slowDown and +!moveToKnownPosition (which is dependent on
desiredXZ(X,Z)). Finally, the convoy agent provides control largely based on be-
lief updates about the car it is following, which in turn leads to requests for actions
by the driver agent such as desiredXZ(X,Z) (which X,Z is the location of the ve-
hicle being followed) and speedUp or slowDown to maintain convoy spacing.

This implementation has been used successfully for a scenario involving a
convoy of vehicles navigating in the city centre of Bath (UK). Real world map
data in OpenStreetMap format is used for this scenario, with a 3D virtual map
created in order to view the simulated vehicles as they traverse the route.

AGAVE, Jason, and Bath Sensor Framework Vehicles. The objective
here is to set up a bridge to a simple robot vehicle, such as a Lego Mindstorms,
in place of the simulated vehicle used in the previous scenario. At present, both
the vehicle control on the Jason side and on the Mindstorms platform are com-
plete, but have not been tested together. In the case of the latter, we utilise an
android phone for communications, which runs the BSF component to connect
with the XMPP server and bluetooth commincations to send commands to the
Mindstorms controller.

Decoupling Cognitive Agents and Virtual Environments 27

As intended, the system structure remains largely the same, due to the de-
coupled nature of the design as outlined earlier. The robot vehicle interface to
the BSF only needs to implement the same functions as the simulated vehicle
(i.e. setSpeed and setOrientation) and by doing so, the simulated vehicle and
robot vehicle components become interchangeable, with no changes required to
the Jason agents. Consequently, the same process as shown earlier in Figure 5
is used, however the calculation of the new position of the vehicle needs to be
based on real world sensors rather than inferred from speed and orientation. This
complication however resides with robot vehicle, but brings the benefit of being
able to validate Jason agent performance against real sensor data and physical
performance issues. As there are no changes required to the BSF design, Ja-
son integration, or the Jason agents themselves, contrasting simulated with real
results provides a useful comparison.

3.3 Evaluation

We have prototyped two demonstrators using the BSF: Jason agents controlling
Second Life avatars, Jason agents controlling vehicles in a virtual driving environ-
ment. A third connecting Jason agents and Lego Mindstorms vehicles is almost
completed. At the outset, our informal requirements were stated as (i) accessibil-
ity: connection of new software components (ii) performance: decoupling without
significant degradation (iii) distribution: connection of components where-ever
they might be, and (iv) scalability: in terms of size of environment and number
of participants.

Clearly, at this stage, progress on scalability is not feasible, but we can com-
ment on each of the other aspects, although we devote the most space to perfor-
mance because seems to be the one that raises the most questions.

Accessibility. While each case study started out with the decoupling of the
decision-making components (BDI agent) from the virtual environment, each
has added other components that demonstrate the practice of our accessibility
requirement.

In the context of the first case study, connection with the VE presented a
challenge, because the OpenMetaverse library is written in C# and runs in .NET,
hence required the construction of a C# client for the BSF, as well as cross-
platform communications. Subsequently, we have incorporated a connection with
an institutional model (involving Java and Answer Set Programming), following
the initial implementation of Balke et al. [3], but decoupled by means of the BSF
interface. This has been used to demonstrate norm-mediated behaviour of agents
in Second Life (the “hello” example described earlier, and a more complicated
one involving making space in a queue for an individual who is given priority).

The development history of the second case study, equally, illustrates how we
are starting to meet this requirement. The system started as a decoupled ver-
sion of the TankCoders [21] system, but the VE has been replaced by the jMon-
keyEngine – a 3D game engine written in Java – and subsequently augmented

28 J. Lee, V. Baines, and J. Padget

by a 3D viewer that utilises Open Street Map data to produce a more visually
credible environment for the convoy than the desert of the original TankCoders.
The institutional connection will shortly also be applied here, as we start to treat
the management of the convoy as a norm-governed environment problem.

Performance. A qualitative measure of performance might be that the sys-
tem is performing properly only as long as no events are dropped. That would
require even extreme situations to be withing the performance envelope. Quan-
titative evaluations may not be particularly helpful except perhaps to provide
reasssurance that throughput of particular components is probably sufficient not
to be the cause of a bottleneck. Even then, it may be hard to say, even if many
such components are performing “well”, whether their collective performance is
adequate. We have, for example, measured round-trip message times between
Second Life and the agent controlling an avatar, but this may well say more
about the networking infrastructure than about the architecture as whole. As a
consequence, it is common to eschew distribution for tight coupling in order to
be able to deliver performance guarantees. Thus, performance is less about raw
processing power, however that might be measured, but whether the architec-
ture as a whole performs believably. Even then, exhaustive testing all possible
states of all possible components is likely to be infeasible, so we are limited, as a
poor substitute, to stress-testing individual components as a way of seeking con-
fidence in the overall architecture. In practice, performance is a pervasive issue
and tight coupling of components is one way that some control can be exerted
over the collective factors that influence it, but in the long term such coupling
impacts scalability.

It is too early to have detailed performance profiles of the components in the
architecture we have described, but among the primary (new) sources of delay are
the network, which is relatively hard to control, and the XMPP server (or servers,
since they may be federated). There are several XMPP server implementations,
but it is nor surprising, given the application domain, that all aim for high
performance within themselves. We have chosen to use Openfire, because of
its stated aims of supporting real time communications projects. We have not
done a comparative evaluation against other XMPP servers. Openfire claims
to be able to support significant numbers of (human) users with relatively few
resources (e.g up 500 concurrent users with a minimum of 384Mb RAM on a
1.5GHz processor and up to 100,000 with a minimum of 2.0Gb RAM, 2×3GHz
processors and 1–4 connection managers). Further details at [38] measure factors
such as the number of concurrent sessions and packet counts.

Since the fundamental mode of communication is publish/subscribe, one ap-
proach to evaluating the processing capacity of a component is to quantify the
rate at which it can process incoming items, that is the data in the streams
to which it is subscribed. Different components will have different subscription
capacities, and depending on their role and where they are connected into the
subscription network, one of several approaches may be appropriate if this ca-
pacity is insufficient, such as: (i) increasing component input capacity (ii) com-
ponent replication (iii) throttling input volume, and (iv) inserting an aggregator

Decoupling Cognitive Agents and Virtual Environments 29

Fig. 6. Effect of additional jason state messaging on RDF quantity

component whose subscription and publication rates match upstream and down-
stream components. We have some preliminary data about subscription capacity,
such as the frequency at which driver updates (in AGAVE) result in a stable
simulation or lead to failure. For example, see Figure 6, where the Standard Data
Level is the volume for normal convoy control, resulting in successful arrival at
the destination, but the Additional Data Level, which includes full Jason state
data, can result in a loss of communication between Jason agents and vehicles,
depending on the number of vehicles involved. Openfire developers report of a
capacity for ≈250 updates/sec – well in excess of the number observed above –
but much more detailed measurements are required to fill out this picture.

There are two forms of mitigation that are possible in the architecture we
have outlined: (i) short-circuiting, and (ii) aggregation (as mentioned earlier).
Short circuiting is, in effect, taking events from the virtual environment, inter-
cepting them before they are forwarded to the controlling agent, and making
a decision that is returned to the VE. We do this, for example, in the Mind-
storms scenario, where an android handset is physically located on the robot,
which may make some (reactive) control decisions and relay them back over the
local bluetooth connection to the (lower level) Mindstorms controller. Several
such (nested) feedback loops [37] can be inserted into the control chain depend-
ing on need. Such a design pattern reflects a hierarchical control framework,
where proximity to source implies lower level events and tighter control, as seen
in historical multi-layer agent architectures such as InteRRaP [29] and Touring
Machines [17]. The technical difference here is that those layers are distributed,
reflecting the network-determined (or estimated) capacity for a timely response.

Aggregation is a complementary perspective on the same issue. Our experi-
ence and that of others [32] is that the Jason agents cannot handle high percept
update frequencies (actual figures are not very useful because they are inevitably
application and platform specific useful), which is typically manifested by un-
stable and hard to re-produce behaviour. One approach might be to re-engineer

30 J. Lee, V. Baines, and J. Padget

Jason for higher performance, which although possibly desirable, does not con-
sider whether all those events actually need to be processed at the BDI, that is
the deliberative, level. In both theory and practice, cognitive architectures use
layers to aggregate small observations into bigger ones. This can be characterised
as inference or situational awareness, depending on perspective, but the overall
effect is that minor observations are somehow collected, correlated and classified
into less minor observations, subject to some degree of probability that reflects
the accuracy of the process. In doing so, the volume of data, which possibly at
some level may be labelled “information”, is reduced so that frequency of com-
munication is also reduced and the receiving reasoning process is presented with
synthesized knowledge reflecting some kind of summary of the situation, rather
than having to carry out that process itself. It is a fundamental design challenge,
perhaps reflecting the principle of so-called sliding autonomy, to decide which
levels should make which decisions, whether those strata are fixed and if not,
how those divisions may be determined, or negotiated, in live situations.

We believe that performance is a many-faceted issue in this context and
XMPP server throughput, and to a lesser extend network latency, while sig-
nificant, are not the only factors, and it is as much the other components, but
especially the deliberative architectures that we choose to use, the rate at which
they can absorb percepts and the rate at which they can make effective decisions.
This in turn is significantly affected by the level at which it is demanded they
reason: is it sensible to use a BDI agent to monitor and adjust the speed of a
vehicle –rather like a cruise control – when the same function can be achieved
with a simple numerical procedure? Thus, the second mitigation is the rela-
tive ease with which new event processors can be added to this architecture, by
subscribing them to existing feeds and publishing their results to existing con-
sumers, through which it becomes possible to balance the factors of event rate,
information level and network latency to achieve performance targets.

Distribution. Observations regarding distribution are relatively brief because,
like accessibility, it could be viewed as having been demonstrated in principle, but
like scalability, more is needed for it to be demonstrated with confidence. Since
the XMPP message transport layer is directly built on HTTP, and since XMPP
has been used for some years to support Internet Messaging in various guises
(Microsoft Messenger, Google Talk, etc.), the mechanism has been demonstrated
both to distribute and to scale. We have used the BSF in the context of a
distributed sensing project, but the case studies reported here have only been
run in the same local area network.

4 Related Work

AI research has paid substantial attention to how agent behaviour should reflect
a response to something sensed from the environment in which it is situated.
Cognitive architectures analyse this information, make decisions, and carry out
planning to determine the next behaviour to execute. In a dynamic environ-
ments, SOAR [24] is a well known example of a classical symbolic reasoning

Decoupling Cognitive Agents and Virtual Environments 31

architecture. However, it is also known as rather heavy-weight and can hardly
be expected to respond in real time. There is also a range of well-known reactive
architectures, including subsumption [13], Finite State Machines (FSMs) [12, 14],
Basic Reactive Plans (BRP) [14, 18], and POSH plans [11], amongst others. Any
of the above, perhaps bar SOAR, are suitable decision-makers for avatars in vir-
tual environments, but our choice from among goal-driven approaches, is the
popular the Belief-Desire-Intention (BDI) architecture [33]. Beliefs here refer to
knowledge about the world in agents mind, desires are objectives to be achieved,
and intentions identify the actions chosen by the agent as part of some plan to
help it achieve a particular desire [28].

A distinct line of research has highlighted the notion of the environment pro-
gramming in multiagent systems [36]. According to [36], agent programming
should have balance between the agent itself and its environments in order to
achieve a high level of intelligence. This perspective reflects the idea that the
environment becomes a meaningful place to support the agent’s abilities with
many functionalities, rather than the traditional view in which it is simply a
place that the agent senses and acts upon.

In this context, there is a fair body of research into the deployment of an
embodied artificial intelligence using the above cognitive architectures in rich
environments. For example, Bogdanovych et al [7] introduce the 3D Electronic
Institution, or Virtual Institution (VI), which is a virtual world with normative
regulations governing interactions between participants and environment. They
also also propose the introduction of virtual characters capable of learning [8]
and the use of VI as environments for imitation learning, providing for the en-
hancement of virtual agent behaviour by learning from human users or other
software agents. Later work from this group puts forward a teaching mecha-
nism, so that the virtual character may become more believable [9]. Although
this work is amongst the most developed in the use of Second Life, it offers rather
less on the matter of agent-environment programming and the role of cognitive
architectures, because of its focus on the regimented normative environment and
virtual characters that learn.

Veksler [42] demonstrates integration between ACT-R [2, 23] and Second Life
via HTTP web server. In this work, all information are gathered by a 3D ob-
ject, which is attached to the avatar. It scans the environment around the avatar
within a certain radius, and sends what scanner senses to a dedicated web server.
The ACT-R module is separate from the Second Life environment, but capa-
ble of communicating to the web server. By means of HTTP request to the
web server, the decision-making module collects sensing data and executes a
‘perceive–think–act’ loop. In the end, the decision including motor actions goes
back to the intermediate web server, and are then applied to the avatar. An-
other notable work is [31], in which a Jason agent supplies the reasoning for
a virtual agent in an environment provided by Second Life, supported by an
external data processing module that handles environment sensing. In the same
manner as above, through an attached 3D object, which serves as a virtual sen-
sory system, sets of perceptions generated by the data processing module are

32 J. Lee, V. Baines, and J. Padget

delivered to Jason agent, which then deliberates. The results of the reasoning
are communicated back to the Second Life avatar, and the action is realised,
changing the state of the environment. The scenario in this case is the playing of
a football game. This work demonstrates the utilization of an event recognition
platform [32] not only to enhance the perception capability, which becomes a
source of better reasoning, but also to retrieve more accurate domain-specific
information from low level data.

In comparison with the above systems, which are quite tightly coupled, other
approaches also exist, that aim for a more general integration between cognitive
agents and virtual environments. There are (at least) three representative sys-
tems, with similar objectives to ours, against which we contrast what has been
presented here: GameBots [1], Pogamut [22], and CIGA [41]. Gamebots [1] has
much in common with the virtual agent component in our system, being a kind
of programmable agent controller, integrated with the 3D video game Unreal
Tournament (UT), in order to create autonomous bots that interact with hu-
man players as well as other bot players. The bots are able to sense and act
directly from the environment, via TCP/IP socket communication. Gamebot
‘agents’ appear to be limited to reactive behaviours, while the system as a whole
only functions with one game engine, namely Unreal Tournament.

Pogamut [22] incorporates an interface layer between Unreal Tournament and
the decision-making agent, by means of TCP/IP sockets. The role of this compo-
nent is rather like that of the Jason agent in our system, in that it has the task of
perceiving the environment, interaction with environment, and decision making,
for which it uses the POSH reactive planner [11]. As with Gamebots, Pogamut
has seen substantial up-take, from student projects to complex research projects,
thanks to their approach that allows greater flexibility in the development of the
high level of autonomy in virtual agents. Nevertheless, it still has a high depen-
dency on the particular environment of UT, and on a particular programming
language, namely Java.

CIGA [41] also has numerous similarities with our framework in that it aims
to resolve the coupling problem between agent and virtual environment. This
it does by means of two interface layers and an ontology model: (i) physical
interface layer to connect to a environment (game engine), and (ii) cognitive
interface layer to connect to a multiagent system, corresponding to the Virtual
Agent and the Jason Agent, respectively. The use of ontology model, containing
pre-defined ontologies to make a contract between agent and game engine even
though they are situated in a specific domain, eases the interpretation of per-
ception and behaviour execution. This architecture offers fair accessibility, and
could in principle support distributed execution, thanks to the use of socket-
based communications, but this would require careful manual configuration. In
this respect, CIGA is the closest to our proposal, but the dependence on a rel-
atively low-level and inflexible network layer seems likely to inhibit distribution
and scalability.

To summarise, the short-comings we observe in the above lie in their tight
integration of the components, leading to an effectively closed, single platform

Decoupling Cognitive Agents and Virtual Environments 33

system. Thus, they do not have the flexibility necessary for distributed soft-
ware systems. They are tightly coupled by the communication protocol as well
as ontology, so that adding/removing a software component is challenging, and
deploying such platforms more widely is in general difficult. This is only exac-
erbated – or probably even rendered impossible – if it is desired to incorporate
components in different programming languages or that only run on another
operating system.

Earlier, we noted the lack of any comprehensive performance evaluation of
XMPP, as far as we can find, in the academic literature. Linden Labs have ap-
parently carried out an evaluation of various message passing protocols2, noting
that the Advanced Message Queueing Protocol [15] implementations demon-
strate good single-host performance, but lack figures on maximum capacity when
clustered, or the value of clustering. XMPP appears in the list, but was not eval-
uated for lack of time. Several other protocols are eliminated for not meeting
their requirements, but unfortunately there is no definitive conclusion. At best,
this indicates that if XMPP proves inadequate, AMPQ may be worth investiga-
tion, however it is observed that AMPQ lacks adequate flow control mechanisms,
so servers may simply stop when overloaded, unlike XMPP. Also, we note that
communication may well finally constitute only a small fraction of the critical
costs of round-trip times between agent and VE, compared to the response times
of the agent or the VE themselves.

5 Conclusion and Future Work

In this paper, the Bath Sensor Framework has been introduced as a middleware
for decoupling cognitive agents and virtual environments. Also, two case studies
are presented using the framework for linking heterogeneous software, the Jason
BDI reasoning platform, and Second Life and AGAVE which are representative
rich 3D virtual environments, respectively. From these studies, it seems clear
that the BSF has some useful advantages as an integration middleware. Firstly,
it offers good accessibility, because of the simplicity in protocol, and ease of both
connection and use. Secondly, in respect of speed and reliability, it inherits from
XMPP, so that it is able not only to communicate in real time but also transfer
whatever data in the form of open XML, which may become the basis of the
interoperability in cross domain applications. Finally, it enables distribution of
components, so that it contributes to effective data transport mechanism such
as 1-to-1, 1-to-many, or many-to-many, from anywhere to anywhere. As a result,
through the use of the BSF, the system as a whole has the potential for flexibility
and extensibility.

Furthermore, we have extended the framework to operate in conjunction with
an institutional framework based, so that the behaviour of agent in virtual envi-
ronments can be governed by norms.The notion of institution, as a set of rules
for a particular agent society, is appropriate for the regulation of behaviour of

2 http://wiki.secondlife.com/wiki/Message_Queue_Evaluation_Notes, retrieved
20120416, last updated 2010.

http://wiki.secondlife.com/wiki/Message_Queue_Evaluation_Notes

34 J. Lee, V. Baines, and J. Padget

virtual agents in a particular situations, by saving the need to incorporate be-
haviour for all circumstances in the agent themselves.

Plans for future work include a careful evaluation of performance issues, such
as (i) the notion of component subscription profiles, (ii) monitoring of com-
munication in live systems, so that out-of-profile situations can be detected,
(iii) development of mitigations, such as throttling, replication and aggregation,
(iv) experimentation with data handling policies, such as discarding and (finite)
buffering, amongst others and (v) exploring the feasibility of applying corrective
actions during execution, as well, of course, as the application of IVAs to more
demanding scenarios.

Acknowledgements. We would like to thank Surangika Ranathunga, Stephen
Cranefield, and Martin Purvis for useful discussions and observations.

References

1. Adobbati, R., Marshall, A.N., Scholer, A., Tejada, S.: Gamebots: A 3d virtual
world test-bed for multi-agent research. In: Proceedings of the Second International
Workshop on Infrastructure for Agents, MAS, and Scalable MAS (2001)

2. Anderson, J.R., Matessa, M., Lebiere, C.: ACT-R: A theory of higher level cog-
nition and its relation to visual attention. Human Computer Interaction 12(4),
439–462 (1997)

3. Balke, T., De Vos, M., Padget, J., Traskas, D.: On-line reasoning for institutionally-
situated bdi agents. In: The 10th International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2011, Richland, SC, vol. 3, pp. 1109–1110. In-
ternational Foundation for Autonomous Agents and Multiagent Systems (2011)

4. Bergenhem, C., Huang, Q., Benmimoun, A., Robinson, T.: Challenges of platoon-
ing on public motorways. In: 17th World Congress on Intelligent Transport Systems
(2010), http://www.sartre-project.eu/en/publications/Documents/ITS%20

WC%20challenges%20of%20platooning%20concept%20and%20modelling%2010%20b

.pdf (retrieved November 11, 2012)

5. Bernstein, D., Vij, D.: Intercloud directory and exchange protocol detail using
XMPP and RDF. In: 2010 6th World Congress on Services (SERVICES-1), pp.
431–438 (July 2010)

6. Bernstein, D., Vij, D.: Using XMPP as a transport in intercloud protocols. In: 2010
the 2nd International Conference on Cloud Computing, CloudComp (2010)

7. Bogdanovych, A., Esteva, M., Simoff, S., Sierra, C., Berger, H.: A Methodology
for Developing Multiagent Systems as 3D Electronic Institutions. In: Luck, M.,
Padgham, L. (eds.) Agent-Oriented Software Engineering VIII. LNCS, vol. 4951,
pp. 103–117. Springer, Heidelberg (2008)

8. Bogdanovych, A., Simoff, S., Esteva, M.: Virtual Institutions: Normative Envi-
ronments Facilitating Imitation Learning in Virtual Agents. In: Prendinger, H.,
Lester, J.C., Ishizuka, M. (eds.) IVA 2008. LNCS (LNAI), vol. 5208, pp. 456–464.
Springer, Heidelberg (2008)

9. Bogdanovych, A., Simoff, S., Esteva, M., Debenham, J.: Teaching autonomous
agents to move in a believable manner within virtual institutions. In: Bramer, M.
(ed.) Artificial Intelligence in Theory and Practice II. IFIP, vol. 276, pp. 55–64.
Springer, Heidelberg (2008)

http://www.sartre-project.eu/en/publications/Documents/ITS%20WC%20challenges%20of%20platooning%20concept%20and%20modelling%2010%20b.pdf
http://www.sartre-project.eu/en/publications/Documents/ITS%20WC%20challenges%20of%20platooning%20concept%20and%20modelling%2010%20b.pdf
http://www.sartre-project.eu/en/publications/Documents/ITS%20WC%20challenges%20of%20platooning%20concept%20and%20modelling%2010%20b.pdf

Decoupling Cognitive Agents and Virtual Environments 35

10. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems
in AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley &
Sons (2007)

11. Brom, C., Bryson, J.J.: Action selection for intelligent systems. In: The European
Network for the Advancement of Artificial Cognitive Systems, white paper 044-1
(2006)

12. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47(1-3),
139–159 (1991)

13. Brooks, R.A.: How to build complete creatures rather than isolated cognitive sim-
ulators. In: Architectures for Intelligence. Lawrence Erlbaum Assosiates, Mahwah
(2001)

14. Bryson, J.J.: Action selection and individuation in agent based modelling. In: Pro-
ceedings of AGENT 2003: Challenges of Social Simulation, pp. 317–330 (2003)

15. OASIS Advanced Message Queueing Protocol (AMQP) Technical Commit-
tee. Advanced message queuing protocol 1.0. Technical report, OASIS (2012),
https://www.amqp.org/resources/download (retrieved 20120416)

16. Dressler, F., Kargl, F., Ott, J., Tonguz, O., Wischhof, L.: 10402 abstracts collec-
tion and executive summary – inter-vehicular communication. In: Inter-Vehicular
Communication, Dagstuhl, Germany. Dagstuhl Seminar Proceedings, vol. 10402,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2011)

17. Ferguson, I.A.: Touring machines: Autonomous agents with attitudes. Com-
puter 25(5), 51–55 (1992)

18. Fikes, R.E., Hart, P.E., Nilsson, N.J.: Learning and executing generalized robot
plans. Artificial Intelligence 3, 251–288 (1972)

19. The XMPP Standards Foundation. Extensible messaging and presence proto-
col(XMPP): Core, and related other RFCs. http://xmpp.org/rfcs/rfc3920.html

20. The XMPP Standards Foundation. The XMPP standard foundation homepage.
http://www.xmpp.org

21. Fronza, G.: Simulador de um ambiente virtual distribuido multiusuario para
batalhas de tanques 3d com inteligencia baseada em agentes BDI. Final
year project report (July 2008),http://campeche.inf.furb.br/tccs/2008-I/
2008-1-14-ap-germanofronza.pdf, See also http://sourceforge.net/projects/
tankcoders/ (retrieved Novebber 11, 2012)

22. Gemrot, J., Kadlec, R., B́ıda, M., Burkert, O., Ṕıbil, R., Havĺıček, J., Zemčák, L.,
Šimlovič, J., Vansa, R., Štolba, M., Plch, T., Brom, C.: Pogamut 3 Can Assist
Developers in Building AI (Not Only) for Their Videogame Agents. In: Dignum,
F., Bradshaw, J., Silverman, B., van Doesburg, W. (eds.) Agents for Games and
Simulations. LNCS, vol. 5920, pp. 1–15. Springer, Heidelberg (2009)

23. ACT-R Research Group. ACT-R: Theory and architecture of cognition,
http://act-r.psy.cmu.edu/

24. The Soar Group. Soar project homepage, http://sitemaker.umich.edu/soar
25. Jabber-Net. The jabber.net project, http://code.google.com/p/jabber-net
26. Kumar, S., Chhugani, J., Kim, C., Kim, D., Nguyen, A., Dubey, P., Bienia, C.,

Kim, Y.: Second life and the new generation of virtual worlds. Computer 41(9),
46–53 (2008)

27. Linden Labs. Second life homepage, http://www.secondlife.com
28. Mascardi, V., Demergasso, D., Ancona, D.: Languages for programming bdi-style

agents: an overview. In: Corradini, F., De Paoli, F., Merelli, E., Omicini, A. (eds.)
WOA, pp. 9–15. Pitagora Editrice Bologna (2005)

29. Müller, J.: The Agent Architecture InteRRaP. In: Müller, J.P. (ed.) The Design of
Intelligent Agents. LNCS, vol. 1177, pp. 45–123. Springer, Heidelberg (1996)

https://www.amqp.org/resources/download
http://xmpp.org/rfcs/rfc3920.html
http://www.xmpp.org
http://campeche.inf.furb.br/tccs/2008-I/2008-1-14-ap-germanofronza.pdf
http://campeche.inf.furb.br/tccs/2008-I/2008-1-14-ap-germanofronza.pdf
http://sourceforge.net/projects/tankcoders/
http://sourceforge.net/projects/tankcoders/
http://act-r.psy.cmu.edu/
http://sitemaker.umich.edu/soar
http://code.google.com/p/jabber-net
http://www.secondlife.com

36 J. Lee, V. Baines, and J. Padget

30. OpenMetaverse Organization. libopenmetaverse developer wiki,
http://lib.openmetaverse.org/wiki/

31. Ranathunga, S., Cranefield, S., Purvis, M.: Interfacing a cognitive agent platform
with a virtual world: a case study using second life. In: The 10th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2011, vol. 3,
pp. 1181–1182. International Foundation for Autonomous Agents and Multiagent
Systems, Richland (2011)

32. Ranathunga, S., Cranefield, S., Purvis, M.: Identifying events taking place in second
life virtual environments. Applied Artificial Intelligence 26(1-2), 137–181 (2012)

33. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of
the First Intl. Conference on Multiagent Systems, San Francisco (1995)

34. Ignite Realtime. The Openfire Project,
http://www.igniterealtime.org/projects/openfire/

35. Ignite Realtime. The Smack API Project,
http://www.igniterealtime.org/projects/smack/

36. Ricci, A., Piunti, M., Viroli, M.: Environment programming in MAS: An artifact-
based perspective. Autonomous Agents and MultiAgent Systems 23(2), 158–192
(2011)

37. Van Roy, P.: Self management and the future of software design. Electr. Notes
Theor. Comput. Sci. 182, 201–217 (2007)

38. Jive Software. Openfire scalability,
http://www.igniterealtime.org/about/OpenfireScalability.pdf (retrieved
November 09, 2012)

39. Stout, L., Murphy, M.A., Goasguen, S.: Kestrel: an XMPP-based framework for
many task computing applications. In: Proceedings of the 2nd Workshop on Many-
Task Computing on Grids and Supercomputers, MTAGS 2009, pp. 11:1–11:6.
ACM, New York (2009)

40. In-Band Real Time Text. Xep-301: In-band real time text. Technical report, XMPP
Standards Foundation (2012) http://xmpp.org/extensions/xep-0301.pdf (re-
trieved April 16, 2012)

41. van Oijen, J., Vanhée, L., Dignum, F.: CIGA: A Middleware for Intelligent Agents
in Virtual Environments. In: Proceedings of the 3rd International Workshop on
the uses of Agents for Education, Games and Simulations (2011)

42. Veksler, V.D.: Second-life as a simulation environment: Rich, high-fidelity world,
minus the hassles. In: Proceedings of the 9th International Conference of Cognitive
Modeling (2009)

43. Wagener, J., Spjuth, O., Willighagen, E., Wikberg, J.: XMPP for cloud comput-
ing in bioinformatics supporting discovery and invocation of asynchronous web
services. BMC Bioinformatics 10(1), 279 (2009)

http://lib.openmetaverse.org/wiki/
http://www.igniterealtime.org/projects/openfire/
http://www.igniterealtime.org/projects/smack/
http://www.igniterealtime.org/about/OpenfireScalability.pdf
http://xmpp.org/extensions/xep-0301.pdf

	Decoupling Cognitive Agents and Virtual Environments
	Introduction
	System Design
	Overall System Design
	Bath Sensor Framework
	Programming Model of Bath Sensor Framework

	Case Studies
	Case Study 1 : Jason Agent and Second Life
	Case Study 2 : Jason Agents and AGAVE
	Evaluation

	Related Work
	Conclusion and Future Work
	References

