
ARTICLE Communicated by Misha Tsodyks

Spike-Driven Synaptic Plasticity: Theory, Simulation, VLSI
Implementation

Stefano Fusi
INFN Sezione RM1, University of Rome “La Sapienza,” 00185, Roma, Italy

Mario Annunziato Physics Department, University of Pisa, 56100 Pisa, Italy

Davide Badoni INFN, Sezione RM2, University of Rome “Tor Vergata,” 00133,
Roma, Italy

Andrea Salamon Physics Department, University of Rome “La Sapienza,” 00185,
Roma, Italy

Daniel J. Amit INFN Sezione RM1, University of Rome “La Sapienza,” 00185,
Roma, Italy, and Racah Institute of Physics, Hebrew University, Jerusalem

We present a model for spike-driven dynamics of a plastic synapse, suited
for aVLSI implementation. The synaptic device behaves as a capacitor on
short timescales and preserves the memory of two stable states (efficacies)
on long timescales. The transitions (LTP/LTD) are stochastic because both
the number and the distribution of neural spikes in any finite (stimula-
tion) interval fluctuate, even at fixed pre- and postsynaptic spike rates. The
dynamics of the single synapse is studied analytically by extending the so-
lution to a classic problem in queuing theory (Takàcs process). The model
of the synapse is implemented in aVLSI and consists of only 18 transis-
tors. It is also directly simulated. The simulations indicate that LTP/LTD
probabilities versus rates are robust to fluctuations of the electronic pa-
rameters in a wide range of rates. The solutions for these probabilities
are in very good agreement with both the simulations and measurements.
Moreover, the probabilities are readily manipulable by variations of the
chip’s parameters, even in ranges where they are very small. The tests of
the electronic device cover the range from spontaneous activity (3–4 Hz) to
stimulus-driven rates (50 Hz). Low transition probabilities can be main-
tained in all ranges, even though the intrinsic time constants of the device
are short (∼ 100 ms).

Synaptic transitions are triggered by elevated presynaptic rates: for
low presynaptic rates, there are essentially no transitions. The synaptic
device can preserve its memory for years in the absence of stimulation.
Stochasticity of learning is a result of the variability of interspike inter-
vals; noise is a feature of the distributed dynamics of the network. The fact
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that the synapse is binary on long timescales solves the stability problem
of synaptic efficacies in the absence of stimulation. Yet stochastic learning
theory ensures that it does not affect the collective behavior of the net-
work, if the transition probabilities are low and LTP is balanced against
LTD.

1 Introduction

Material learning devices have the capability of changing their internal
states in order to acquire (learn) and store (memorize) information about
the statistics of the incoming flux of stimuli. In the case of neural devices,
this information is stored in the structure of couplings between neurons.
Hence, developing a learning neural network device means designing a
plastic synapse whose synaptic efficacy can be rapidly modified to acquire
information and, at the same time, can be preserved for long periods to
keep this information in memory. These two requirements are particularly
important for on-line unsupervised learning, in which the network must
handle an arbitrary stream of stimuli, with no a priori knowledge about
their structure and relevance. In the absence of an external supervisor, the
synaptic efficacy should be either updated (even just a little) by each stimu-
lus that is presented, or there will be no trace of any of them. Most discussion
of learning dynamics to date has focused on the structure of a developing
analog synaptic variable as a function of an incoming set of stimuli (Gross-
berg, 1969; Sejnowski, 1976; Bienenstock, Cooper, & Munro, 1982). Those
must be extended before a material implementation can be contemplated.

Developing an electronic plastic synapse that can be embedded in a large
learning neural network implies analog VLSI (aVLSI) technology. Since the
number of synapses can be as large as the square of the number of neurons,
the design of the plastic synapse should follow two principles: economy in
the number of transistors, to reduce chip area, and low power consump-
tion. The neuromorphic approach, introduced by Mead (1989), has been
adopted for the construction of a wide range of neural systems that emulate
biological counterparts. Since these devices exploit the inherent physics of
analog transistors to produce computation, they use less power and sili-
con area than their equivalent digital devices (Sarpeshkar, 1998). However,
this approach has been applied mainly to specialized systems (e.g., sensory
devices), with no learning. The lack of a simple synaptic device that could
couple the neuromorphic analog neurons was probably one of the main
limiting factors.

There are two common approaches to implementing synaptic devices.
First, the synaptic weights are stored on a digital device (typically a RAM)
off-chip: the analog neurons read the synaptic value via digital-to-analog
converters (DAC). Such memory can have arbitrary analog depth and can
be preserved for indefinitely long periods. It is not, however, an accept-
able solution for implementation of large-scale networks of analog neurons
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because most of the space would be occupied by the DAC and ADC convert-
ers. In the second approach, the memory of the synaptic efficacies is stored
as the voltage across a capacitor (Elias, Northmore, & Westerman, 1997;
Hafliger, Mahowald, & Watts, 1996): the device implementing the synapse
can preserve a continuous set of values, but the memory is volatile and is
lost on timescales of RC, where C is the capacitance and R is the leakage
resistance. A promising solution in this direction is emerging in the form
of synaptic devices using floating-gate technology (see, e.g., Diorio, Hasler,
Minch, & Mead, 1998). These devices can preserve the synaptic efficacy with
good analog depth and for times of the order of years (the problems related
to the updating procedure, such as high voltages, are probably going to be
solved).

Here we chose an alternative solution, which is technically quite simple
and is well within the scope of familiar technology. It is based on the the-
oretical observation that the performance of the network is not necessarily
degraded if the analog depth of the synapse is limited, even to the extreme.
Most of the effort to achieve large analog depth has been motivated by the
drive to implement learning rules based on the hypotheses: that closely
spaced, stable synaptic efficacies are essential for the proper functioning of
the network and that on short timescales it is possible to acquire informa-
tion about a stimulus, by small changes in the synaptic efficacy induced
by neural activities elicited by that stimulus (Hopfield, 1982). As a matter
of fact, another line of study always had it that associative memory could
operate with binary synapses. In fact, if stimuli are coded sparsely (i.e., the
fraction of neurons each stimulus activates is low), such networks have also
optimal performance (Willshaw, 1969; Tsodyks, 1990; Amit & Fusi, 1994).
Some empirical evidence that efficacies may indeed be binary, is beginning
to accumulate (Petersen, Malenka, Nicoll, & Hopfield, 1998). It is this op-
tion that was chosen in the development of the analog device since the
binary dynamic memory element has been the natural choice in the entire
information industry for the last half-century.

Networks with this kind of synapses operate as palimpsests (Nadal,
Toulouse, Changeux, & Dehaene, 1986; Parisi, 1986; Amit & Fusi, 1994);
that is, old stimuli are forgotten to make room for more recent ones. There is
a sliding window of retrievable memory; only part of the past is preserved.
The width of the window, the memory span, is related to the learning and
the forgetting rates: fast rates imply short windows. It also depends on the
fraction of synapses that change following each presentation: fractions close
to 1 imply fast learning and forgetting, but the memory span is reduced.
Note, by the way, that deep analog synapses do not share the palimpsest
property, and when their memory is overloaded, they forget everything
(Amit, Gutfreund, & Sompolinsky, 1987; Amit, 1989).

Every stimulus makes a subdivision of the entire pool of synapses in
the network; only active neurons are involved in changing synapses. More-
over, not all the synapses that connect neurons activated by a given stimulus



2230 Fusi, Annunziato, Badoni, Salamon, and Amit

must be changed in a given presentation, or at all, in order to acquire in-
formation about the stimulus to be learnt. The learning process requires
a mechanism that selects which synaptic efficacies are to be changed fol-
lowing each stimulation. In the absence of an external supervisor, a local,
unbiased mechanism could be stochastic learning: at parity of conditions
(equal pair of activities of pre- and postsynaptic neurons), the transitions
between stable states occur with some probability; only a randomly chosen
fraction of those synapses that might have been changed by a given stimulus
is actually changed upon presentation of that stimulus.

If stimuli are sparsely coded; transition probabilities are small enough,
and long-term potentiation (LTP) is balanced against long-term depres-
sion (LTD), then optimal storage capacity is recovered, even for two state
synapses (Amit & Fusi, 1994). Moreover, small transition probabilities lead
to slow learning and hence to the generation of internal representations that
are averages over many nearby stimuli, that is, class representatives. Fast
learning generates representatives faithful to the last stimulus of a class.
Slow learning also corresponds to observations in inferotemporal cortex
(Miyashita, 1993). On the other hand, the particular model chosen (two
states for the synapse and linear interspike behavior of synapse and neu-
ron) simplifies significantly the hardware implementation. It also makes
possible an analytical treatment of the synaptic dynamics. On the network
level, sparse coding and low transition probabilities make possible a de-
tailed analysis of the learning process (Brunel, Carusi, & Fusi, 1998).

What we present here is a study of the properties of the stochastic dy-
namics in a prototypical case. We focus on the dependence of the synaptic
transition probabilities on the activities of the two neurons it connects. It is
not possible to describe such dynamics in a general case. We consider this
study in analogy with the studies of the single integrate-and-fire (IF) neuron,
as carried out, for example, by Ricciardi (1977; Tuckwell, 1988). This study
has clarified the spike emission statistics of a leaky IF neuron with an af-
ferent current of gaussian distribution. Clearly, the spiking dynamics of the
neuron does not have to follow the RC circuit analogy (see, e.g., Gerstein &
Mandelbrot, 1964), nor is the current in general gaussian. In the same sense
we will choose a specific dynamical process for the synapse—the one also
implemented in aVLSI, as well as specific processes for the pre- and postsy-
naptic activities. The synaptic dynamics is triggered by presynaptic spikes,
which arrive in a Poisson distributed process characterized by the rate; the
postsynaptic neuron is an IF neuron with a linear leak and a “floor” (Fusi &
Mattia, 1999), driven by a current that is a sum of a large number of Poisson
processes. The synapse is described by an analog variable that makes jumps
up or down whenever, upon presentation of a stimulus, a spike appears on
the presynaptic neuron. The direction of the jump is determined by the level
of depolarization of the postsynaptic neuron. The dynamics of the analog
synaptic variable is similar to the BCM rule (Bienenstock et al., 1982), except
that our synapse maintains its memory on long timescales in the absence
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of stimulation. Between spikes, the synaptic variable drifts linearly up, to-
ward a ceiling (down, toward a floor) depending on whether the variable is
above (below) a synaptic threshold. The two values that delimit the synaptic
variable are the stable synaptic efficacies.

Since stimulation takes place on a finite (short) interval, stochasticity is
generated by both the pre- and postsynaptic neuron. Transitions (LTP, LTD)
take place on presynaptic bursts, when the jumps accumulate to overcome
the refresh drifts. The synapse can preserve a continuous set of values for
periods of the order of its intrinsic time constants. But on long timescales,
only two values are preserved: the synaptic efficacy fluctuates in a band near
one of the two stable values until a strong stimulation produces a burst of
spikes and drives it out of the band and into the neighborhood of the other
stable value.

Stochastic learning solves the theoretical problems related to perfor-
mance of the network, but small transition probabilities require bulky de-
vices (Badoni, Bertazzoni, Buglioni, Salina, Amit, & Fusi, 1995). The dy-
namics of our synapse makes use of the stochasticity of the spike emission
process of pre- and postsynaptic neurons. Hence, on the network level, the
new synapse exploits the collective dynamical behavior of the intercon-
nected neurons (Amit & Brunel, 1997; van Vreeswijk & Sompolinsky, 1997;
Fusi & Mattia, 1999).

In section 2 we present the model of the synapse and describe the details
of the dynamics. In section 3 the transition probabilities are estimated ana-
lytically by extending the theory of the Takàcs queuing process and are stud-
ied as a function of the pre- and postsynaptic neuron rates. In section 4 we
present the aVLSI implementation of the modeled synapse, and in section 5
we test the hardware device and show that stimulations induce stochastic
transitions between the two stable states and the transition probabilities
that can be obtained satisfy the requirements of the stochastic learning the-
ory. In section 6 we discuss extensions of the approach to other synaptic
dynamics, the role of the synapse in a network, and the correspondence of
the implemented synapse with neurobiological observation.

2 Synaptic Dynamics

The synaptic dynamics is described in terms of the analog internal vari-
able X(t), which in turn determines the synaptic efficacy J(t), defined as
the change in postsynaptic depolarization, or afferent current, induced by
a single presynaptic spike. The synaptic efficacy has two values: it is poten-
tiated (J(t) = J1) when the internal variable X is above the threshold θX and
depressed (J(t) = J0) if X < θX. X is restricted to the interval [0, 1] and obeys

d X(t)
dt
= R(t)+H(t); (2.1)
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at the boundaries (0 and 1), the right-hand side vanishes if it attempts to
drive X outside the allowed interval. Hence X= 0 and 1 are reflecting barriers
for the dynamics of X.

R(t) is a refresh term, responsible for memory preservation. H(t) is the
stimulus-driven Hebbian learning term, which is different from 0 only upon
arrival of a presynaptic spike. Between spikes, the synaptic dynamics, dom-
inated by R(t), is:

R(t) = −α2 (−X(t)+ θX)+ β2 (X(t)− θX) , (2.2)

which is a constant drift down of rate α, or up with rate β, depending on
whether X is below or above a synaptic threshold θX (2 is the Heaviside
function).

The Hebbian term depends on variables related to the activities of the
two neurons connected by the synapse: (1) the spikes from the presynaptic
neuron and (2) the instantaneous depolarization Vpost of the postsynap-
tic neuron. Presynaptic spikes trigger the Hebbian dynamics. Each spike
induces a jump in X whose value depends on the instantaneous depolariza-
tion of the postsynaptic neuron. The depolarization is indirectly related to
the activity of the postsynaptic neuron (see the appendix) and is available at
the synaptic contact. The capacitance of the neuron is exploited to compute
this quantity, which is smooth and provides a finite support for coincidence
between the presynaptic spikes and the postsynaptic activity. (See section 6
for possible extensions.)

In the general case, the Hebbian term can be written as

H(t) =
∑

k

F(Vpost(t
pre
k ))δ(t− tpre

k ). (2.3)

The sum is over all presynaptic spikes; spike number k arrives at the
synapse at tpre

k . The value of Vpost upon arrival of the presynaptic spike
determines the jump, F(Vpost(t

pre
k )), in the synaptic variable. The sign of F

determines whether the synapse is potentiated or depressed at the event.
This form of the Hebbian term, for the analog synaptic variable, is similar
to the BCM rule (Bienenstock et al., 1982).

In the case studied and implemented here, we have chosen a particular
form for F. If the pre-synaptic spike arrives when Vpost > θV , then the synap-
tic internal state is pushed up by a, toward the potentiated state (X→ X+a).
If it arrives while Vpost < θV , then X→ X−b (b > 0). This can be summarized
formally as

F(Vpost) = a2(Vpost(t)− θV)− b2(θV − Vpost(t)). (2.4)

The dynamics of equation 2.1 is illustrated in Figure 1 by simulating a
synapse connecting two spiking neurons that linearly integrate a gaussian
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Figure 1: Synaptic dynamics. Time evolution of the simulated internal vari-
able X(t) describing the synaptic state (center), presynaptic spikes (top) and
depolarization V(t) of postsynaptic neuron (bottom). In the intervals between
successive presynaptic pulses, X(t) is driven toward one of the two stable states
0, 1 depending on whether X(t) is below or above the threshold θX. At the
times of presynaptic spikes, indicated by dotted vertical lines, X(t) is pushed
up (X→ X+ a) if the depolarization V(t) (circles) is above the threshold θV , and
down (X→ X − b) if V(t) < θV .

current. The choice of the linear integrate-and-fire (LIF) neuron, with a re-
flecting barrier at zero depolarization, is also a natural candidate for aVLSI
implementation (Mead, 1989). Moreover, networks composed of such neu-
rons have qualitatively the same collective behavior as networks of con-
ventional RC IF neurons, which exhibit a wide variety of characteristics
observed in cortical recordings (Fusi & Mattia, 1999).

2.1 Stable Efficacies and Stochastic Transitions. In the absence of stim-
ulation, the pre- and postsynaptic neurons have low (spontaneous) rates,
and typically the Hebbian term is zero. Hence the dynamics is dominated
by the refresh term R(t), which stabilizes the synaptic internal variable at
one of the two extreme values, 0 and 1. In the interval (0, 1), we have: If
X(t) > θX(X(t) < θX), then a positive current β (negative−α) drives X(t) up
(down) until it stops at the reflecting barrier 1 (0) (see Figure 1). 1 and 0 are
stable states, unless a large fluctuation drives the synaptic efficacy across
(below from above, or above from below) the threshold θX.
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Figure 2: Stochastic LTP. Pre- and postsynaptic neurons have the same mean
rate and the synapse starts from the same initial value (X(0) = 0). (Left) LTP
is caused by a burst of presynaptic spikes that drives X(t) above the synaptic
threshold. (Right) At the end of stimulation, X returns to the initial value. At
parity of activity, the final state is different in the two cases. See Figure 1 for a
definition of the three windows.

To illustrate the stochastic nature of the learning mechanism, we assume
that the presynaptic spike train is Poissonian, while the afferent current to
the postsynaptic neuron is gaussian and uncorrelated with the presynaptic
process.

The synaptic dynamics depends on the time statistics of the spike trains of
the pre- and postsynaptic neurons. During stimulation, synapses experience
two types of transitions between their two stable states:

• Long-term potentiation. Both pre- and postsynaptic neurons emit at a
high rate. The frequent presynaptic spikes trigger many jumps in X(t),
mostly up (X→ X + a), since in order to emit at a high rate, the post-
synaptic neuron spends much of the time near the emission threshold
(θ = 1), and hence above the threshold θV .

• Long-term homosynaptic depression. The presynaptic neuron emits at a
high rate, while the postsynaptic neuron emits at a low (spontaneous)
rate. The many jumps triggered are mostly down (X→ X−b), because
the postsynaptic neuron is mostly at low depolarization levels.

During stimulation, the synapses move up and down. Following the
removal of the stimulus, the synaptic efficacy may return to its initial state, or
it may make a transition to another state. Figure 2 shows two cases at parity
of spike rates of pre- and postsynaptic neurons. In one case (left) a fluctuation
drives the synaptic efficacy above threshold; when the stimulus is removed,
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Figure 3: Stochastic LTD. As in the case of LTP, pre- and postsynaptic neurons
have the same mean rate, and the synapse starts from X(0) = 1. (Left) A presy-
naptic burst provokes LTD. (Right) At the end of stimulation, X returns to the
initial value. Conventions as in Figure 1.

X is attracted to the high state: LTP has occurred. In the second case (right),
when the stimulus is removed, X is below threshold and is attracted by the
refresh to the initial state. There is no transition. The stochasticity of LTD
transitions is exemplified in Figure 3. At low presynaptic rates, there are
essentially no transitions, irrespective of the postsynaptic rate.

The empirical transition probability is defined as the fraction of cases,
out of a large number of repetitions of the same stimulation conditions, in
which at the end of the stimulation, the synapse made a transition to a state
different from its original state.

3 Estimating Expected Transition Probabilities

3.1 General Considerations. Given the synaptic parameters and the ac-
tivity of the two neurons connected by the synapse during the stimulation,
the transition probabilities contain most of the information relevant for the
learning process. These probabilities depend on the following factors:

• The duration of the stimulation. Transition probabilities increase with
presentation time Tp. At small transition probabilities, the dependence
is linear.

• The structure and the intensity of stimulation. The presynaptic neuron acts
as a trigger. At low firing rates, the probability of having a transition
is negligible. The activity of the postsynaptic neuron is related to the
statistics of the depolarization and, hence, the probability of having
either a potentiating or a depressing jump.
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• Temporal patterns in the spike trains emitted by the two neurons. Synchro-
nization can affect the transition probability. We will consider such
cases in the determination of the parameters of the VLSI synapse (see
section 5).

• The parameters governing the synaptic dynamics (see equations 2.1–2.3).
The two refresh currents (α, β), the jumps induced by the presynaptic
spikes (a, b) and the threshold θX.

We study the dependence of LTP and LTD transition probabilities on the
mean emission rates of the pre- and postsynaptic neurons, (νpre νpost). The
activities of the two neurons are read in different ways. For the presynaptic
neuron, we take the probability per unit time that a spike is emitted, which
is the mean rate. For the postsynaptic neuron, we use the probability that
the depolarization is below (or above) the threshold when the presynaptic
spike arrives. In order to determine this probability, we have to specify the
framework in which the synaptic device operates. The appendix describes
the scenario used. We point out in section 6 that this is not a restrictive
feature of the framework.

3.2 Synaptic Dynamics as a Generalized Takács Process. We assume
that presynaptic spikes are emitted in a Poisson process with rate νpre. The
value (size and direction) of successive jumps is determined by the inde-
pendently distributed random variables Vpost(t

pre
k ) and Vpost(t

pre
k+1) of equa-

tion 2.3. The independence of these variables is a good approximation when
νpre is not too high, because the mean interval between tpre

k and tpre
k+1 is longer

than the typical correlation time of the Wiener process driving the depo-
larization of the postsynaptic neuron. Yet the transition probabilities may
be quite sensitive to these correlations, even if the correlation time of the
Wiener process is relatively short. In fact, transitions are usually caused by
bursts of presynaptic spikes, for which the time intervals between succes-
sive spikes are short, irrespective of the mean rate. Here, for simplicity, we
ignore these correlations and assume that the random variables Vpost(t

pre
k )

are independent. This position would be analogous to the neglect of possi-
ble temporal correlations in the afferent current to an IF neuron (Ricciardi,
1977).

In this case, X(t) is a Markov process, similar to the virtual waiting time
in Takács single-server queue (e.g., see Cox & Miller, 1965). The process is
somewhat generalized, to take into account that:

• There are two possible drifts, one up and one down, depending on
where X(t) is relative to its threshold.

• There are two reflecting barriers.

• Jumps can be down as well as up.
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Those generalizations can be made, and we proceed to describe the resulting
equations for the distribution.

The probability density function of X(t) consists of two discrete proba-
bilities, P0(t) that X(t) = 0 and P1(t) that X(t) = 1, and a density p(X, t) for
X(t) ∈ (0, 1). The density p(X, t) evolves according to two equations, one
for each subinterval ]0, θX[ and ]θX, 1[. p(θX, t) = 0 for any t, since θX is an
absorbing barrier (see, e.g., Cox & Miller, 1975):

∂p(X, t)
∂t

= α ∂p(X, t)
∂
(+)X

+ ν[−p(X, t)+ A(X, t)] if X ∈]0, θX[

∂p(X, t)
∂t

= −β ∂p(X, t)
∂
(−)X

+ ν[−p(X, t)+ B(X, t)] if X ∈]θX, 1[.

The first term on the right-hand side of each equation is the drift due to
the respective refresh currents, −α and β. The terms proportional to ν are
due to presynaptic spikes: νp(X, t) is the fraction of processes leaving X at
time t, per unit time, νA(X, t) is the probability of arriving at X in the lower
subinterval, and νB(X, t) is the same probability in the upper subinterval.
The expressions for A and B are, respectively,

A = Qa[P0(t)δ(X − a)+2(X − a)p(X − a, t)]

+Qb2(−X + 1− b)p(X + b, t)

B = Qa2(X − a)p(X − a, t)+Qb[P1(t)δ(X − (1− b))

+2(−X + 1− b)p(X + b, t)].

In A, the term in square brackets accounts for the +a jumps, starting from
X = 0 (first term) or from X = X − a (second term). The last term accounts
for b jumps (we assume that b < 1−θX). Qb (= 1−Qa) is the probability that
the depolarization of the postsynaptic neuron is below the threshold θV ; it
is related to the firing rate of the postsynaptic neuron (see the appendix).
The interpretation of B above θX is analogous.

The two discrete probabilities P0 and P1 are governed by:

dP0(t)
dt
= −νQaP0(t)+ αp(0, t)+ νQb

∫ b

0
p(x, t)dx

dP1(t)
dt
= −νQbP1(t)+ βp(1, t)+ νQa

∫ 1

1−a
p(x, t)dx.

They describe processes that leave the stable states or arrive at them driven
by spikes, the first and third term, respectively, on the right-hand side of
each equation, and processes that arrive at each of the two stable states
driven by the refresh drift, middle term in each equation. These equations
are completed by the normalization condition, which restricts the process
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to the interval [0, 1]:

P0(t)+
∫ 1

0
p(x, t)dx+ P1(t) = 1.

3.3 LTP and LTD Transitions Probabilities. From the solution of the
Takács equations, one derives the transition probabilities per presentation
for LTP and LTD. To obtain the LTP probability, PLTP, one assumes that
the synapse starts at X(0) = 0, which corresponds to the initial condition
p(X, 0) = 0, P1(0) = 0 and P0(0) = 1. If the stimulation time is Tp, we have:

PLTP =
∫ 1

θX

p(x,Tp)dx+ P1(Tp).

Similarly, for the depression probability per presentation, PLTD, the initial
condition is the high value—p(X, 0) = 0, P0(0) = 0, P1(0) = 1—and

PLTD =
∫ θX

0
p(x,Tp)dx+ P0(Tp).

3.4 LTP/LTD Probabilities: Theory.

3.4.1 The Determination of Qa. In order to compute PLTP and PLTD as a
function of the mean rates of two neurons connected by the synapse, we
solve numerically the Takács equation for each pair of frequencies νpre, νpost.
To do this, one must calculate Qa and Qb, which depend on the distribution
of the depolarization of the (postsynaptic) neuron, p(v). In general, this
distribution is not uniquely determined by the neuron’s emission rate. For
an IF neuron, for example, the rate is a function of two variables: the mean
and the variance of the afferent current. For the linear IF neuron, given the
mean and variance, one can compute explicitly p(v) (Fusi & Mattia, 1999).

Hence, we use a stimulation protocol that allows a one-to-one correspon-
dence between the output rate and the distribution of the depolarization.
This is achieved by assuming that the afferent current to the neuron is a
sum of a large number of independent Poisson spike processes (see the ap-
pendix). Figure 4 exhibits the characteristics of the resulting distribution.
On the left is p(v), for 0 < v ≤ θ for the relevant νpost (between 1 and 60 Hz).
For low spike rates, p(v) is concave, and the probability for a depolarization
near spike emission threshold θ(= 1), as well as for an upward jump (above
θV(= 0.7)), is low. As νpost increases, the distribution becomes convex and
increasingly uniform.

Given p(v) at some value of νpost, one computes Qa =
∫ θ
θV

p(v), which
determines whether the synaptic jump is down or up. Figure 4 (right) shows
Qa as a function of νpost. In conclusion, with the parameters α, β, a, b, θX, and
Qa,Qb and fixing the stimulation time Tp the probabilities for LTP and LTD
can be computed for any pair νpre, νpost.
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Figure 4: Distributions of the postsynaptic depolarization, p(v) (left) and Qa

(probability for upward jump) (right) versus ν(= νpost), in a stimulation proce-
dure described in the appendix. For low spike rates, p(v) is concave, and the
probability for a depolarization near spike emission threshold θ(= 1) is low.
As νpost increases, the distribution becomes convex and increasingly uniform.
The white line on the surface is p(v) at the upward jump threshold θV(= 0.7).
Qa =

∫ θ
θV

p(v).

3.4.2 Parameter Choices. The sets of parameters of the synaptic dynam-
ics are the same as in the hardware tests (see section 5). Tp = 500 ms, as
in a typical neurophysiological experiment. The rate of spontaneous activ-
ity has been set at 4 Hz and the typical stimulation rate at 50 Hz. We have
chosen two sets of synaptic parameters to check that behavior can be manip-
ulated (see Table 1). For each set we looked for a regime with the following

Table 1: Two Sets of Parameters of the Synaptic Dynamics.

a b α β

Synaptic parameters: Set 1
DQ 0.150± 0.009 0.117± 0.012 0.00670± 0.00054 0.0184± 0.0018
PQ 498± 30 mV 395± 25 mV 22.1± 1.7 mV/ms 62.4± 6.0 mV/ms

Synaptic parameters: Set 2
DQ 0.170± 0.007 0.138± 0.020 0.00654± 0.00035 0.0185± 0.002
PQ 562± 25 mV 457± 40 mV 21.6± 1.0 mV/ms 61.3± 6.5 mV/ms

Notes: The power supply voltage (the distance between the two stable synaptic efficacies)
is 3.3 V. It sets the scale for the dimensionless units (DQ quantities) used in the extended
Takács equations and determined by the measuring procedure. PQ are the physical quan-
tities. The synaptic threshold Xθ is 0.374 (1236 mV) in both cases. The static regulations for
the two refresh currents α and β are the same for the two sets (except for electronic noise).
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characteristics:

• Slow learning. LTP at stimulation (νpre = νpost = 50 Hz) is 0.03 for
set 1 and 0.1 for set 2. LTD for neurons with anticorrelated activity
(νpre = 50 Hz, νpost = 4 Hz) is at 10−3 and 10−2, respectively. This
means that approximately 30 (10) repetitions of the same stimulus are
required to learn it (Brunel et al., 1998). Smaller probabilities can be
achieved for the same rates, but exhaustive hardware tests become too
long.

• LTP/LTD balancing. We have aimed at a region in which the total num-
ber of LTP and LTD transitions are balanced in a presumed network.
For random stimuli of coding level f , balancing implies PLTD ' f PLTP.
In our case, f = 0.03 for set 1 and 0.1 for set 2.

• Stability of memory. In spontaneous activity the transition probabil-
ities should be negligible.

In Figure 5 we plot the surfaces PLTP(νpre, νpost) and PLTD(νpre, νpost) for
parameter set 1. The νpre,νpost space divides in three regions:

1. νpre and νpost both high; PLTP is much higher than PLTD. The stronger the
stimulation, the higher the transition probabilities. PLTP drops sharply
when one of the two rates goes below 10 Hz and becomes negligible
around the spontaneous rates—about 5× 10−8.

2. νpre high, and νpost around spontaneous levels. LTD dominates, even
though stimulus-driven PLTD probability at (νpre = 50 Hz, νpost = 4
Hz) is a factor of 30 smaller than the stimulus-driven PLTP (νpre =
νpost = 50 Hz). This guarantees the balance between potentiation and
depression. PLTD decays very rapidly in the direction of lower νpre and
more slowly in the direction of increasing νpost.

3. νpre low: Both LTP and LTD transition probabilities are small. This is the
region in which the synapse remains unchanged on long timescales.

A network with such synapses should perform well as an associative
memory (Amit & Fusi, 1994; Brunel et al., 1998).

Figure 6 is another representation of the phenomenology discussed above:
the color map is the surface of the asymptotic probability Pasy of having
a potentiated state following a large number of presentations of the same

Figure 6: Facing page. Asymptotic “learning rule” Pasy (see equation 3.1) versus
(νpre, νpost). If PLTP and PLTD are less than 10−3, their value under stimulation
Pasy is set to 0.5; there is no clear tendency. In the upper right corner (both
neurons activated by stimulus), LTP is dominant; in the upper left corner, LTD
dominates (homosynaptic LTD). The bright wedge (green) corresponds to equal
probabilities. In the lower region, transition probabilities are negligible. The
parameters are the same as in Figure 5.
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and postsynaptic neuron rates (parameter set 1, Table 1).
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pattern of activities, given by:

Pasy(νpre, νpost) =
PLTP(νpre, νpost)

PLTP(νpre, νpost)+ PLTD(νpre, νpost)
. (3.1)

It is near 1 if the synapse tends to be potentiated, near 0 if it tends to be
depressed, and around 0.5 if the two transition probabilities are about equal.
When both transition probabilities are 10−3 times their value in the presence
of stimulation (PLTP < 10−4, PLTD < 10−6), we set the surface height to 0.5,
to indicate that there is no clear tendency.

Figure 6 illustrates the way the synapse encodes activity information,
or the “learning rule.” For each pair of rates (νpre, νpost), Pasy determines
whether the synapse will be potentiated or depressed. If the stimulus acti-
vates the two neurons connected by the synapse, the synaptic efficacy tends
to be potentiated. If the presynaptic neuron is firing at high rates and the
postsynaptic neuron has low activity (below 5–20 Hz, depending on the
presynaptic neuron activity), the synapse tends to be depressed.

Finally, we note that the LTP probability, which sets the upper bound
on the stability of memory, is 5 × 10−8 (5 × 10−7 for parameter set 2). In
other words, the mean time one has to wait until the synapse makes a
spontaneous transition and loses its memory is approximately 100 days for
parameter set 1 and 10 days for parameter set 2. This time depends on the
typical activation rates, the spontaneous rates, and the time constants of
the synaptic dynamics. For parameter set 2, it is relatively short because
the probabilities are high. Still it is 107 times longer than the longest time
constant of the synaptic dynamics. For lower spontaneous rates, one can
achieve mean times of years. For example, with a spontaneous rate of 2 Hz,
it is 4 years for parameter set 1, and 1.2 years for set 2.

4 Hardware Implementation

The mechanism has been implemented in aVLSI (Badoni, Salamon, Salina,
& Fusi, 2000) using standard analog CMOS 1.2µ technology. The synapse
occupies about 90µ× 70µ.

The schematic design of the synapse is depicted in Figure 7. The pre- and
postsynaptic neurons are simulated in this study. In the network implemen-
tation, they are a modified version of Mead’s neuron (Mead, 1989; Fusi, Del
Giudice, & Amit, in press; Badoni et al., 2000). There are four functional
blocks.

4.1 Capacitor C. The capacitor C acts as an analog memory element: the
amount of charge on the capacitor is directly related to the internal synaptic
state X(t):

X(t) = U(t)−Umin

Umax −Umin
,



Spike-Driven Synaptic Plasticity 2243

DendriteRefresh termHebbian term

-

+

I2
V(I1)

NotPreSpk

V(BiasP)

C

PreSpk

V(BiasN)

P
ostS

tate

U( t )

I1

To postsynaptic
neuron

V(I2)

R
efrp

R
efrn

V(Refrp)

V(Refrn)Bias

θU

NotPreSpk

B
iasP

B
iasN

Figure 7: Schematic of the synaptic device. The voltage across the capacitor C is
the internal variable X(t). The refresh block implements R(t) and provides the
refresh currents. The activity-dependent Hebbian block implements H(t). The
dendrite block produces the synaptic transmission when a presynaptic spike
arrives (the devices corresponding to the pre- and postsynaptic neurons are not
shown, they are simulated). See the text for a description of each block.

where U(t) is the voltage across the synaptic capacitor and can vary in the
band delimited by Umin ∼ 0 and Umax ∼ Vdd (the power supply voltage).

4.2 Hebbian Block. The Hebbian block implements H(t), which is ac-
tivated only on the arrival of a presynaptic spike. The synaptic internal
state jumps up or down, depending on the postsynaptic depolarization.
The input signal PostState determines the direction of the jump and is the
outcome of the comparison between two voltage levels: the depolarization
of the postsynaptic neuron V(t) and the threshold θV . If the depolarization
is above the threshold, then PostState is ∼ 0; otherwise it is near the power
supply voltage Vdd.

In the absence of presynaptic spikes, the two MOSFETs controlled by
NotPreSpk and PreSpk are open (not conducting), and no current flows in
the circuit. During the emission of a presynaptic spike, both of these MOS-
FETs are closed, and the PostState signal controls which branch is activated.
If PostState = 0 (the postsynaptic depolarization is above the threshold θV),
the three topmost MOSFETs of the upper branch are closed, and the current
flows from Vdd to the capacitor. The charging rate is determined by BiasP,
which is the current flowing through the upper MOSFET and determined
by V(BiasP) (this MOSFET is the slave of a current mirror). Analogously,
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when PostState = 1, the lower branch is activated, and the current flows
from the capacitor to the ground.

Hence, the jumps a and b (see equation 2.3) are given by

a = BiasP 1t
C(Umax −Umin)

, b = BiasN 1t
C(Umax −Umin)

,

where 1t is the duration of the presynaptic spike.

4.3 Refresh Block. The refresh block implements R(t), which charges
the capacitor if the voltage U(t) is above the threshold Uθ (correspond-
ing to θX) and discharges it otherwise. It is the term that tends to damp
any small fluctuation that drives U(t) away from one of the two stable
states.

If the voltage across the capacitor is below the threshold Uθ (U(t) < Uθ ),
the voltage output of the comparator is ∼ Vdd, the pMOS controlled by
V(Ref rp) is not conducting, while the nMOS controlled by V(Ref rn) is closed.
The result is a current flow from the capacitor to the ground.

If U(t) > Uθ , the comparison produces the minimal output voltage as
the output of the comparator, the lower pMOS is closed, and the current
flows from Vdd, through the upper pMOS, to the capacitor. Since the nMOS
is always closed, part of the current coming from Vdd flows to the ground.
The net effect is that the capacitor is charged at a rate proportional to the dif-
ference between the current determined by V(Ref rp) (Refrp) and the current
flowing through the lower MOS (Refrn) (see Figure 7).

The two refresh currents α and β of equation 2.2 are, respectively:

α = Ref rn
C(Umax −Umin)

, β = Ref rp− Ref rn
C(Umax −Umin)

.

See Badoni et al. (2000).

4.4 Dendrite Block. The dendrite block implements the synaptic ef-
ficacy. The postsynaptic potential evoked by a presynaptic spike (EPSP)
depends on the synaptic internal state X(t). In our implementation, if X(t)
is below the threshold Xθ , the EPSP is J0; otherwise, it is J1.

This mechanism is implemented as follows: The current is injected only
upon the arrival of a presynaptic spike (the topmost MOSFET acts as a
switch that is closed while the presynaptic neuron is emitting a spike). The
output of the refresh block comparator determines the amount of current
injected in the postsynaptic neuron. The lower MOSFET in the left branch
acts as a switch whose state depends on the outcome of the comparison
performed by the refresh term between X(t) and θX. If X(t) > θX, the switch
is closed, and the current injected is the sum of the two currents I1 and I2.
Otherwise, only the MOSFET controlled by VI2 is conducting, and the total
current is I2. Hence the EPSPs J0 and J1 can be regulated through the control
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currents I1 and I2:

J0 = I21t/Cn

J1 = (I1 + I2)1t/Cn, (4.1)

where Cn is the capacity of the postsynaptic neuron and 1t is the spike
duration.

5 Testing the Electronic Synapse

5.1 The Testing Setup. We present measured LTP and LTD probabilities
for the electronic synapse, for two sets of parameters of the synaptic dynam-
ics, as a function of the spike rates of the pre- and postsynaptic neurons. The
main objectives are to test whether the behavior of the electronic synapse is
well described by the model of section 2 and to check whether the desired
low LTP and LTD transition probabilities and the balance between them can
be achieved and manipulated with reasonable control currents.

We use the same setup for measuring the synaptic parameters of the chip
as for the measurements of the transition probabilities. The only difference is
the choice of special stimulation protocols for the parameter determination,
much as in neurobiology (Markram, Lubke, Frotscher, & Sakmann, 1997).

5.2 Measuring the Synaptic Parameters. In the parameter measure-
ment protocol, the presynaptic neuron emits a regular train of spikes, while
the postsynaptic depolarization is kept fixed (for LTP, it is constantly above
the threshold θV). If the interspike interval of the regular train is T, then the
arrival of a presynaptic spike (at t = 0) generates a triangular wave in X(t):

X(t) = X(0)+ a− αt.

We assume that a < θX. If the rate is low (T > a/α), the synaptic internal
state is reset to 0 by the refresh current α, before the arrival of the next spike.
If T < a/α, the effects of successive spikes accumulate and eventually drive
the synaptic potential across the synaptic threshold, θX, to the potentiated
state. The transition occurs when

na− (n− 1)Tα ≥ θX, (5.1)

where n is the minimal number of presynaptic spikes needed to make the
synaptic potential cross the synaptic threshold θX.

If one increases progressively the period T, at some point the minimal
number of pulses n will change, and one extra spike will be needed in order
to cross the threshold. At this point the relation (5.1) becomes an equality:

na− (n− 1)Tα = θX. (5.2)
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By increasing or decreasing the period T, we can collect a set of such special
points. For each special period Tk, we have a corresponding nk: for T < Tk,
nk presynaptic pulses are needed to cross the threshold, while for T > Tk
the minimal number of spikes is nk+1. Actually two of these special points,
for example, ni and nj, determine α and a:

α = θX
ni − nj

ni(nj − 1)Tj − nj(ni − 1)Ti
,

a = θX
(nj − 1)Tj − (ni − 1)Ti

ni(nj − 1)Tj − nj(ni − 1)Ti
. (5.3)

An analogous procedure would provide an estimate of β and b.
The synapse is initially set to X = 0. A high-frequency train of pulses is

generated for the presynaptic neuron: T = Tmin = 11 ms for a and α and
Tmin = 2 ms for b and β. The difference is due to the fact that at parity of
frequency, LTD requires more spikes to cross the threshold (for example, for
set 1, θX = 2.49a, while (1− θX) = 5.35b).

As soon as the synaptic voltage X(t) crosses the threshold θX, the train is
stopped and the number of spikes emitted by the presynaptic neuron since
the beginning of the trial is stored in n(T). Then T is increased (typically
1T = 0.1–0.2 ms) and the procedure is repeated, to obtain n(T) for a given
range of periods. The discontinuities of the curve are the special points
(ni,Ti). aij and αij are determined for each pair (i, j) of special points, using
equations 5.3. The final estimate is given by the average of these values. The
standard deviation provides an estimate of the fluctuations due to electronic
noise.

The measured parameters and the corresponding standard deviations are
reported in Table 1, in their dimensionless as well as physical values. The
parameters entering the extended Takàcs equations are dimensionless. The
corresponding physical quantities are obtained using the actual voltages for
the threshold θX and the distance between the two stable synaptic efficacies
equal to the power supply voltage. The parameters have been adjusted to
satisfy the requirements listed in section 3. Note that the errors are larger
for LTD parameters. This is due to the fact that more jumps are required to
get to threshold, and the electronic noise accumulates as the square root of
the number of jumps.

5.3 Measuring the Transition Probabilities. Poissonian spike trains are
generated for the presynaptic neuron by the host computer. The probability
of the distribution of depolarization of the LIF neuron is used to generate
the up (down) jump probability Qa (Qb) for the postsynaptic neuron to be
above (below) the threshold θV . (See the appendix.) For each presynaptic
spike, an independent binary number ξ is generated: ξ = 1 with probability
Qa, 0 with probability Qb (=1 − Qa). This number determines the direction
of the jump induced.
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The synapse is set to one of its two stable values, and then the two neurons
are stimulated (fixing their emission rates) for Tp = 500 ms. Following the
stimulation, the host PC reads the resulting stable value of the synapse and
establishes whether a transition has occurred. This procedure is repeated
from 104 to 2× 105 times (depending on the transition probability), and the
transition probability is estimated by the relative frequency of occurrence
of a transition.

The testing time is reduced by discarding trials in which the internal vari-
able X(t) is likely to remain throughout the trial, too far from the threshold to
induce a transition. In order to identify these trials, we simulate the dynam-
ics described by the ordinary differential equations of section 2 and take only
the trials in which the simulated internal variable enters in a band around
the threshold (X(t) > Xθ − 1.5a for LTP, and X(t) < Xθ + 1.5b for LTD). In
the other trials, the electronic synapse is likely to remain unchanged, even
if the parameters have not been estimated accurately or the simulated dy-
namics does not reproduce exactly the real dynamics. Hence they are safely
counted as no-transition trials.

The upper and lower bounds of the confidence interval of the estimated
probabilities are given by Meyer (1965):

Plow/high =
Pn+ k2

2 ∓ k
[
P(1− P)n+ k2

4

]1/2

n+ k2 , (5.4)

where n is the total number of repetitions, P is the estimated probability,
and k is the width of the confidence interval in sigmas. In our case, k = 3.

5.4 Results. The experimental transition probabilities are compared with
those predicted by the theory of section 3 and with those measured in a
computer simulation of the protocol used for the hardware test, for the
two sets of parameters of Table 1. If the model of section 2 is adequate for
describing the behavior of the electronic synapse, the computer simulation
values should be in agreement with the measured experimental values. This
question becomes more poignant given the uncertainties on the measured
parameters, as expressed in Table 1. In what follows we use the central es-
timate for the parameters. On the other hand, if the theoretical approach,
as expressed in the extended Takàcs equations, is a valid one, the numeri-
cal integration of the equations should give a good asymptotic estimate for
both the experimental values and the simulated ones (for a large number of
presentations).

Two sets of parameters have been chosen to show that beyond the quality
of the model and of its solutions, the performance of the synaptic system can
be manipulated rather effectively, despite the strict requirements imposed—
that is, small, balanced transition probabilities for sparse coding stimuli.
Note that the time constants of the refresh currents are the same for the two
sets: 1/α ' 150 ms, and 1/β ' 50 ms.
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Figure 8: LTP probabilities versus presynaptic (= postsynaptic) rate, in a three-
way comparison, for the two sets of parameters of Table 1. Lower curves and
points: set 1; upper: set 2. (Left) Numerical solution of extended Takács equa-
tions (solid curves) and measurements in a simulation (diamonds and circles)
(105 repetitions for the upper curves and 2×105 for the lower ones). (Right) The-
oretical prediction (solid curves, as on left) and transition probabilities for the
hardware device (from 104 to 4×104 presentations) (diamonds and circles). Error
bars: confidence intervals (see equation 5.4).

The results are reported in Figures 8 and 9 for LTP and LTD, respectively.
Each figure is a three-way comparison for two sets of parameters (see

Table 1). Upper curves and points are for set 2; the lower ones are for set 1.
The graphs on the left compare theory (extended Takács equations) and
simulations; the ones on the right compare the same theory and probability
measurements on the electronic device. To reduce the two-dimensional rate
space to one, the probabilities for LTP are given for a typical stimulation
situation in which both neurons have the same rate. The higher the rate is,
the stronger is the stimulation. Instead, for LTD, the postsynaptic rate is set
at a spontaneous level, 4 Hz, and the presynaptic rate is varied.

The theoretical predictions are almost identical to the simulations results,
which implies that the numerical solution of the extended Takàcs equations
provides a reliable estimate of the modeled dynamics, even for rather small
probabilities (a range of five orders of magnitude). The theoretical predic-
tions are also in good agreement with the measured experimental values.
This is an indication that the device works as expected and is not sensitive
to the uncertainties in the parameters.

Finally, Figures 10 and 11 present a comparison of the measured (chip)
and theoretical (extended Takàcs) LTP and LTD transition probabilities (re-
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Figure 9: LTD probabilities versus presynaptic rate (postsynaptic rate is 4 Hz)
in a three-way comparison theory-simulation-experiment, as in Figure 8.

spectively), over a two-dimensional (pre- and postsynaptic) rate space for
parameter set 2. Each point of the surfaces represents the transition prob-
ability for a given pair of pre- and postsynaptic rates. It is coded by both
color and elevation. The average percentage discrepancy between the mea-
sured and the predicted transition probabilities is about 11% for LTP and
about 14% for LTD (the discrepancy between the measured value Pm and
the prediction Pp is defined as 2|Pm−Pp|/(Pm+Pp)). The fact that the relative
discrepancies are larger for LTD is related to the fact that the uncertainties
in the parameters are larger and that these probabilities are at least 10 times
smaller.

6 Discussion

6.1 Balance Sheet. We have carried out an extensive test (about 1.5×106

presentations in all) in which most of the plane of the pre- and postsynaptic
activities is explored. The agreement demonstrates that the dynamics of the
synapse is well described by the model of section 2, and the simple synapse
is a reliable, manipulable device, integrable on large scale.

6.2 The Scope of the Synaptic Dynamics. The particular realization of a
plastic, synaptic device resolves the tension between the need to learn from
every stimulus (fast) and the need to preserve memory on long timescales—
to learn and forget slowly. The solution is conceptually simple and is im-
plementable in aVLSI. The result satisfies the expectations quite well. The
synapse has two dynamical regimes: an analog, volatile regime, in which
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Figure 10: LTP transition probability surfaces (log scale). (Left) Experiment.
(Right) Theory. The code is of both elevation and color. Number of repetitions
for each point is 105. Average relative discrepancy is 11%.
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Figure 11: LTD transition probability surfaces. (Left) Experiment. (Right) The-
ory. As in Figure 10. Number of repetitions: 2× 104 to 4× 104.

it is modified little and the modifications decay in a relatively short time;
and a discrete, binary efficacy, which is modified in a stochastic way and
can preserve memory for very long times.

The synapse and the analysis presented in this study are a particular,
though very rich, case of a wide range of situations that can, and should,
be selected by confrontation with experiment and/or with computational
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desiderata. The particular choices made were of two types: convenience of
electronic implementation and amenability to detailed analysis. The first
choices have suggested the dynamics of the synapse. The second have sug-
gested the dynamics of the neurons connected by the synapse.

The synapse may have a different refresh mechanism (such as an expo-
nential, rather than linear, decay). It may also use a different postsynaptic
variable than the postsynaptic depolarization. For the mechanism to work, it
must be related to a variable that smoothes the very brief instances in which
postsynaptic spikes are emitted. An alternative to the depolarization could
be some quantity that measures the time interval between spikes emitted by
the pre- and the postsynaptic neurons. It would require some extra internal
degree of freedom and hence some extra components in the chip, but the
framework will still hold. The extended Takàcs description covers a wide
range of cases and can go unmodified.

Simplifying assumptions were also made for the stimulation mechanism,
mainly the fact that the neurons are LIF neurons and that the jumps, depend-
ing on the postsynaptic depolarization, are independently distributed. Both
can be relaxed, at the price of losing the analytic tool of the Markov process.
But simulation and experiment can be performed.

We reemphasize that the context in which the study has been conceived
is similar to that of the IF neuron (Ricciardi, 1977; Fusi & Mattia, 1999), in
which a motivated, simplifying choice is made for the neural dynamics and
a simple, though generic, choice is made for the afferent current. Such an
approach allows for a detailed study and for the development of intuitions
and the generation of new questions. The simplified models can then be
embedded in networks in which the assumptions may not be precisely
satisfied and yet function satisfactorily. For the synapse, such a paradigmatic
model has not been presented before.

6.3 Requisites at the Level of a Network. The synapse presented here
is the result of an effort to extend the study of the properties of recurrent
neural networks to include on-line learning (see also Badoni et al., 1995;
Del Giudice, Fusi, Badoni, Dante, & Amit, 1998; Amit, Del Giudice, & Fusi,
1999). Sixty of these synapses have been embedded in a pilot aVLSI net-
work of 21 (14 excitatory and 7 inhibitory; only excitatory-excitatory con-
nections are plastic) neurons (Badoni et al., 2000; Fusi et al., in press), as
well as in large-scale simulation experiments (Mattia & Del Giudice, in
press).

The general framework developed for learning networks has convinced
us that synapses have discrete and bounded values for their efficacies. This
is suggested by considerations of implementability (see, e.g., Baldoni et
al., 2000), as well as by considerations of performance as an associative
memory. The latter are related to the fact that it should be a rather general
requirement that an open learning memory have the palimpsest property
than the “overload catastrophe.” But for a network with discrete synapses to
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perform well and have large enough memory, learning should be stochastic
and slow. This puts a heavy load on the synapses, because implementing
low transition probabilities for individual synapses requires cumbersome
devices.

6.4 The Present Synapse in the Context of a Learning Network. The
scheme has the very attractive (and novel) feature that it transfers the load of
generating low-probability synaptic transitions to the collective dynamics
of the network. In other words, not only memory is distributed but also
functional noise.

The source of stochasticity is in the spike emission processes of the neu-
rons, and small transition probabilities can be easily achieved because the
LTP and LTD transitions are based on the (approximate) coincidence of
events that are relatively rare (fluctuations in the presynaptic spike train
and in the postsynaptic depolarization). These rare events are the result of
the collective dynamics of the network, in which the pre- and postsynap-
tic neurons are embedded. Indeed, the time constants of the single neurons
could not account for the long mean interspike intervals observed in cortical
recordings for spontaneous activity, for example.

The statistics of recorded trains of spikes are good enough for the dynam-
ics of our synapse (Softky & Koch, 1992). Networks composed of IF neurons
show similar features (Amit & Brunel, 1997; van Vreeswijk & Sompolinsky,
1997; Fusi & Mattia, 1999). The next step will be to know whether the spikes
generated by the simulated networks can drive the synaptic dynamics as
expected. Preliminary results (Mattia & Del Giudice, in press) indicate that
networks of LIF neurons, when stimulated, produce stochastic transitions.
In those simulations, it is already clear that the learning process can be de-
scribed as a random walk between the two stable states of the synapses, as
in Brunel et al. (1998).

The behavior of the network can also be modified by setting the pa-
rameters appropriately. Varying the transition probabilities, it is possible
to control the learning rate (in terms of repetitions of the same stimulus)
and, consequently, the size of the sliding window of the memory span. This
means that it is possible to have fast single-shot learning, with a correspond-
ingly short memory, as well as slow learning, using the same device. In fact,
one simple handle is the rates provoked by the stimuli.

6.5 The aVLSI Synapse and Biology. The synaptic device has been
tested for biological timescales; that is, the rates are similar to those ob-
served in associative cortex and the typical presentation time is 500 ms. The
two parameters that determine the timescale of the synaptic dynamics are
the two refresh currents, α and β. Varying these currents, one can obtain
similar behavior on a wide range of timescales, presumably as fast as 103

times the biological scale (requiring a much faster data acquisition and stim-
ulation system). It is tempting to speculate that one of the reasons for the
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brain to operate at low speeds is also the lack of fast enough stimulation
and acquisition systems.

Given that the ideas underlying the hardware implementation are rather
general, it is natural to ask about their biological relevance. The question is
not about a mapping onto a series of biochemical reactions that ultimately
trigger the expression of synaptic change. The biological plausibility is re-
lated to observable consequences of spike activity—that is, to the experi-
mental protocols that induce an activity-dependent LTP and LTD.

6.5.1 Discreteness of Synapses. It is known that the discreteness of the
stable synaptic states is compatible with experimental data (see, e.g., Bliss
& Collingridge, 1993). Recently Petersen et al. (1998) provided experimental
evidence that long-term potentiation is all-or-none, meaning that for each
synapse, only two efficacies can be preserved on long timescales. Models
of networks with this type of synapses have been studied in detail (Amit &
Fusi, 1994; Brunel et al., 1998).

6.5.2 Synaptic Dynamics. It appears that at low presynaptic rates, the
synaptic changes are temporary, and after stimulation, the synaptic efficacy
returns to the initial values (Markram et al., 1997). Sudden transitions to
the potentiated or depressed state are observed when the rate is increased.
This would be a nice corroboration of our scenario, in which a change in the
internal variable that does not make X cross the threshold is damped.

Recent experiments (Markram et al., 1997; Zhang, Tao, Holt, Harris, &
Poo, 1998; Bi & Poo, 1999) indicate that induction of LTP and LTD requires
“precise timing” of presynaptic spikes and postsynaptic action potentials.
LTP requires that presynaptic spikes precede postsynaptic spikes by no more
than about 10 ms, and LTD that presynaptic spikes follow the postsynaptic
spike within a short time window.

Our synapse is not fully compatible with these results, since it is the
postsynaptic depolarization that determines whether the synapse is poten-
tiated or depressed, rather than “precise timing.” What is consistent is that
whenever a presynaptic spike precedes a postsynaptic action potential, the
depolarization is likely to be near the emission threshold, and therefore
above the threshold θV , and LTP is likely to be induced. When a presynaptic
spike occurs just after the emission of a postsynaptic action potential, that
neuron is likely to be hyperpolarized, and the depolarization will tend to be
below θV . This produces LTD. Where it fails is when the presynaptic spike
precedes by more than 10 ms the postsynaptic one. Our synapse may still
potentiate or depress; the biological one seems not to.

There may be different reasons for the remaining discrepancy. The depo-
larization of simple IF neurons may not directly map on the depolarization
of a complex biological neuron. There may instead be some internal vari-
able that accounts for other internal states and is sensitive to particular time
intervals, before and after the postsynaptic spike.
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Figure 12: Alternative forms for the dependence of the analog synaptic jump
(provoked by a presynaptic spike) F upon the postsynaptic depolarization, Vpost.
Full curve: (step function) is implemented in the present synapse—constant
positive jumps for high depolarization, negative for low Vpost. Dashed curve: an
alternative, with a transition region of very small jumps (unable to produce any
permanent modification)—produces a behavior similar to the “precise timing”
plasticity observed in the experiments.

Alternatively, a simple modification of the synaptic dynamics would
allow reproducing the experimental results of Markram et al. (1997). For
example, it is sufficient to extend the function F, expressing the value of the
synaptic jump (see equation 2.4), upon the arrival of a presynaptic spike.
The form used in our chip is depicted by the step function (full curve) in
Figure 12. It takes a negative value (−b) below some θV and a positive value
(a) above. The second example in the figure depicts a case of soft transition:
jump up for Vpost near θ ; down for Vpost very low; in a region of intermediate
Vpost, the size of the jump is zero or very small. If the two regions in which
the synaptic jumps are significant are concentrated near enough to the depo-
larization boundaries, the experimental results can be reproduced quantita-
tively. In other words, given that the experiment is carried out in a determin-
istic situation (Markram et al., 1997), there will be a sharp cutoff for LTP and
LTD in the time difference of the arrival of the pre- and postsynaptic spikes.

But a synaptic mechanism for which both LTP and LTD have a sharp
cutoff in the time difference between the arrival of pre- and postsynaptic
spikes (“precise timing”) is rather insensitive to input spike rates (Abbott &
Song, 1998; Senn, Tsodyks, & Markram, in press), and it is not easy to encode
information expressed in mean emission rates. Our synapse will operate in
a regime based on time coincidence: although it is conceived to operate in an
asynchronous regime (described in section 5), it is rather sensitive to spike
synchronization.
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Appendix: Depolarization and Firing Rate

The probability Qb (= 1−Qa) that appears in the extended Takács equations
of section 3 is the probability that the depolarization of the postsynaptic
neuron is below the threshold θV . It is indirectly related to the firing rate of
the postsynaptic neuron, and the relation depends on the neural dynamics
and the structure of the input current.

A.1 Neural Dynamics. We chose a linear IF neuron, which integrates
an afferent current and has a reflecting barrier at 0 (Fusi & Mattia, 1999).
When the depolarization V crosses a threshold θ , a spike is emitted, and
the depolarization is reset to 0 and forced to stay there during an absolute
refractory period τarp. A constant negative current µn produces a linear
decay in the absence of the afferent current I(t). In the interval between the
reflecting barrier and the emission threshold θ , the dynamics of V is:

dV
dt
= I(t)− µn.

Given the probability distribution function, pn(V), of the depolarization V,
the probability Qb is obtained as

Qb =
∫ θV

−∞
pn(v)dv.

For neurons with a reflecting barrier at 0, the lower bound in the above
integral is 0. The probability distribution pn(V) can be computed analytically
in terms of the mean µ and the standard deviation σ , per unit time, of the
afferent current I. It is given by

pn(V) = ν(µ, σ )

µ

[
1− exp

(
−2

µ

σ 2 (θ − V)
)]
,

where ν(µ, σ ) is the emission rate of the neuron for these µ and σ , given
below. Note that the linear decay current µn has been absorbed in µ.

The emission rate of the neuron can also be expressed in terms ofµ and σ :

ν(µ, σ ) =
[
τarp + σ 2

2µ2

(
2µθ
σ 2 − 1+ e

−2µθ
σ2

)]−1

. (A.1)

Thus, given the neural parameters (τarp = 2 ms), if µ and σ 2 are linear
functions of the stimulating spike rate, we have a unique relation between
the rate of the postsynaptic neuron and the distribution of the depolariza-
tion.

A.2 Afferent Current. The current is produced by a large number of in-
dependently spiking excitatory and inhibitory neurons: cE = 240 afferents
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from excitatory neurons and cI = 60 afferents from inhibitory neurons. The
rates of the inhibitory neurons and 120 of the excitatory ones are fixed. They
help take care of the level of spontaneous activity. cext

E = 120 excitatory af-
ferents carry stimulation activity. The mean synaptic efficacies are chosen so
that the neurons have spontaneous activity ν0

E = 4 Hz when all 240 afferent
excitatory neurons have that same rate and the 60 inhibitory neurons emit
at ν0

I = 8 Hz: JE→E = 0.05θ (equal for all excitatory synapses), JI→E = 0.33θ .
The afferent current to each neuron is well approximated by a gaussian, and
its mean and variance per unit time can be estimated by using mean-field
theory (as in Amit & Brunel, 1997):

µ = −110.4− µn + 6νext (A.2)

σ 2 = 68.34+ 0.37νext, (A.3)

where the coefficients in the expression for σ 2 include a variability in the
connectivity of 25%. The linear decay current µn is 27θ Hz.
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