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Abstract— Remote estimation problems are critical to many
novel applications enabled by large-scale dense wireless sensor
network. Individual sensors simultaneously sense, process and
transmit measured information over a lossy wireless network to
a central base station, which processes the data and produces
an optimal estimate of the state. In this paper, we investigate the
tradeoff between the estimation performance and the number of
communicating nodes with respect to the major MAC protocols
used in wireless sensor networks. We first construct a Markov
model of the node behavior to study the correlation between
packet reception probability and the number of communicating
nodes. We then develop a multi-sensor measurement fusion
model. This is used to feed a multi-sensor Kalman filtering
algorithm to assess the impact of MAC protocols on estimation
performance. We offer a target tracking example to illustrate
our approach.

I. INTRODUCTION

Wireless sensor networks (WSN) are composed of low

power devices that integrate general-purpose computing with

heterogeneous sensing and wireless communication. Their

emergence enables observation of the physical world at an

unprecedented level of granularity [4].

Some of the most promising applications have been suc-

cessfully implemented in in the fields of industrial and

home automation, consumer electronics, military security

and health monitoring [2],[3].

In the monitoring and control of moving machinery, for ex-

ample, wireless sensor networks have compelling economic

and engineering advantages over their wired counterparts.

They may also deliver crucial information in real-time from

environments and processes where data collection is impos-

sible or impractical with wired sensors.

Installed at a fraction of the labor and the cost of wired

devices [12], the deployment of wireless sensor network

in heating ventilation air conditioning (HVAC) systems im-

proves system performance and increases energy efficiency

by providing the control systems with more complete infor-

mation about the building environment.

In home automation applications, SK Telecom, the largest

cellular provider in South Korea, has rolled out a new digital

smart home service in October 2005 for customers to monitor

and control their homes remotely using cell phones and/or
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the Internet. A key enabler of this service is 802.15.4/ZigBee-

compliant wireless networking technology.

In all of the above WSN application examples, remote

estimation is a central problem. Multiple sensor nodes in

a common neighborhood sense an event and subsequently

transmit sensed information to a remote processing unit or

base station. Base stations are responsible for collecting

and processing data. The Medium Access Control (MAC)

sublayer sits directly on top of the physical layer and controls

data communication.

In an attempt to compute an optimal estimate of the system

state upon available observations, the use of more sensors

can potentially improve the performance of the estimation

algorithms (essentially by averaging). However, using too

many sensors can generate bottlenecks in the communication

infrastructure when they all compete for bandwidth. As a

result, having too many sensors can actually degrade the

estimation performance. It is this tradeoff that we wish to

explore in this paper.

A. Related Work

In recent years, state estimation over lossy networks has

received considerable attention. The work by Sinopoli et al.

[14] shows the existence of a critical value of the packet loss

rate for bounded estimation error covariance.

For multi-sensor scenario, Liu and Goldsmith [8] extend

the analytical work [14] to a two-sensor case. Matveev

and Savkin [9] consider one out of N sensors sending its

measurement to the estimator with delay and study the

stability conditions of the system. Gupta et al. [6] address the

multi-sensor joint state-estimation of a plant, allowing only

one sensor to take measurement and access communication

channel at each time step.

The tradeoff between communication and estimation per-

formance is explored as controlled communication in the

works of Yook et al. [20], Xu and Hespanha [18] [19], to

actively reduce network traffic. They construct within the

(only) smart sensor a stationary Kalman filter besides a copy

of the remote estimator. By comparing the two copies, the

system decides whether or not the local estimate should be

sent to the network.

To our best knowledge, our paper is the first attempt

to explicitly analyze this tradeoff in terms of the optimal

number of communicating sensor nodes among a large

wireless sensor network.

The remainder of this paper is organized as follows. A

summary of major MAC protocols used in wireless sensor

network, along with characterization of packet reception

probability based on a Markov model of node transmission
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is described in Section 2. Section 3 presents our multi-sensor

measurement model and lossy multi-sensor Kalman filtering

algorithm. An illustrative target tracking example is offered

in Section 4. Finally, we summarize our results and draw

conclusions.

II. MODELING OF MEDIA ACCESS CONTROL

The Media Access Control (MAC) sublayer arbitrates

which sensor node is allowed to access the radio channel

at any given time. In general, MAC protocols can be cat-

egorized into Time Division Multiple Access (TDMA) and

contention based Carrier Sense Multiple Access (CSMA).

TDMA requires global synchronization and each node to

maintain a list of its neighbors’ schedules, which may be hard

to achieve in resource constrained wireless sensor networks.

In the case of power deprivation, sensor nodes may stop

functioning, thus this type of schemes is not scalable and

hard to implement in large scale sensor networks.

The channel access schemes for wireless sensor networks

are generally contention based due to their simplicity and

flexibility. Among them the two most widely used MAC

protocols are B-MAC [11] and IEEE 802.15.4 MAC [7].

B-MAC is still the de-facto standard networking stack while

IEEE 802.15.4 is emerging as the new global standard in

the wireless sensor network stack. Zigbee, a global wireless

industry open standard that is built on top of IEEE 802.15.4,

has become the preferred technology for home automation

and control, among other applications.

Under these consideration we focus on CSMA-type MAC

schemes to study the correlation between the packet recep-

tion probability 1 and the number of reporting sensors.

Before going into the details of node transmission model-

ing, let us state our main assumptions.

A. Network Model and Assumption

There are N identical sensors observing a dynamical

system and reporting to a central location over the wireless

sensor network with one radio channel. For simplicity, we

assume our sensor network to be a single hop network with

star topology where every node has always a packet ready

for transmission.

In our estimation application, we consider a report is lost

when it is not correctly received after one sample period 2.

Given a single radio channel and multiple reporting sen-

sors, the network needs to arbitrate media access by using

the protocol specified for this end.

B. Node Model

We illustrate the basic idea through the Contention Access

Period (CAP) of unslotted IEEE 802.15.4 MAC, the standard

for the low rate wireless personal area network. Fig 1

provides its flow chart.

1For tractability, we omit other network impact such as interference and
coding errors.

2 Depending on the network conditions such as the channel gain and the
network traffic, there is a possibility that a report is corrupted or substantially
delayed during channel access and transmission.
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Fig. 1. Contention Access Period of unslotted IEEE 802.15.4, where NB

is the number of backoff stage

During the CAP, a node with a packet ready for trans-

mission first backs off for a random unit period, chosen

uniformly between 0 and 2BE − 1, or the backoffWindow

before sensing the channel, where the parameter BE is the

backoff exponent which is initially set to macMinBE. This

random backoff serves to reduce the probability of collision

among contending nodes. Once the backoff time counter

decrements to zero, a node starts to sense whether the chan-

nel is busy. The channel sensing mechanism then ensures

that the channel is clear of activity for a contention window

duration, expressed in terms of units of backoff periods,

before the node can attempt transmission. If the channel is

found to be busy, the backoff exponent is incremented by

one and a new number of units is drawn for the node to

wait, until the channel can be sensed again. This process

is repeated until either BE equals the parameter aMaxBE

(which has a default value of 5), at which point it is frozen

at aMaxBE, or until a certain maximum number of permitted

random backoff stages is reached, at which point an access

failure is declared to the upper layer. The maximum number

of permitted random backoff stages is determined by the

parameter macMaxCSMABackoffs, which has a default value

of 5 3.

We formulate the behavior of a single node with a

Markov model, a similar idea used for modeling IEEE 802.11

in [1]. The transmission success of a particular sensor is

identified with the absence of collisions, i.e. none of the

N −1 remaining sensors accesses the channel when it does.

Our assumption is that at each channel access attempt, the

channel is busy with constant and independent probability c

regardless of the number of access attempts. This assumption

3Similarly, B-MAC has an initial backoff and activates congestion backoff
after collision takes place. The upper layer protocol, Mint, typically, used
with BMAC specifies the number of retransmission to be 5 too.
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is reasonable and accurate for a large scale network with a

large N and a fixed packet size.

The Markov chain is depicted in Fig 2

D
R
O
P

Fig. 2. Markov chain model of the node state including backoff stages
and channel sensing. c refers to the probability that the channel is busy.
The backoff timer decrements till zero and commences the Clear Channel

Assessment(CCA).

Let s(t) be the stochastic process representing the backoff

stage (0, ...,m) of a node at time t with m being deter-

mined by macMaxCSMABacko f f . Let b(t) be the stochastic

process representing the time counter at each backoff stage

including backoff and clear channel assessment. Denote the

backoff window size Wi = 2iW , where W = 2macMinBE − 1.

The transition probabilities of the Markov chain for the

bidimensional stochastic process {s(t),b(t)} are

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

P{s(t +1) = i,b(t +1) = k|s(t) = i,b(t) = k +1} = 1

i ∈ [0,m] k ∈ [CCA,Wi −2]
P{s(t +1) = 0,b(t +1) = k|s(t) = i,b(t) = 0} = (1− c)/W0

k ∈ [0,Wi −1]
P{s(t +1) = 0,b(t +1) = k|s(t) = m,b(t) = 0} = 1/W0

k ∈ [0,W0 −1]
P{s(t +1),b(t +1) = k|s(t) = i−1,b(t)} = c/Wi

i ∈ [1,m] k ∈ [0,Wi −1]
(1)

The first equation in (1) describes the fact that the time

counter always decrements. The second equation says that

following either a successful access attempt and transmission

a node starts to transmit a new packet and takes an initial

random backoff, uniformly chosen in the interval (0,W0−1).
The third one reflects the fact that after the maximum number

of backoff stages, regardless of the status of the access

attempt, a node will transmit a new packet. The last equation

explains that any unsuccessful access attempt before the

maximum backoff stage leads to a new round of backoff

with the new backoff value uniformly chosen from a longer

backoff window, i.e. (0,Wi).

Let bi,k = limt−>∞ P{s(t) = i,b(t) = k}, i ∈ (0,m),k ∈
(CCA,Wi −1) be the stationary distribution of the chain. We

have

bi−1,0c = bi,0 ⇒ bi,0 = cib0,0 i ∈ [1,m]

b0,0 = (1− c)
m

∑
i=0

bi,0 + cbm,0.

By the chain regularity, we have bi,k = Wi−k
Wi

bi,0.

We can express all the values of bi,k as functions of the

value b0,0 and the conditional channel busy probability c. By

balancing the Markov Chain, we have

1 =
m

∑
i=0

Wi−1

∑
k=0

bi,k =
b0,0

2
[
1− cm+12m+1

1−2c
W +

1− cm+1

1− c
]. (2)

Thus

b0,0 =
2(1−2c)(1− c)

(1− c)(1− cm+12m+1)W +(1−2c)(1− cm+1)
. (3)

We are now in the position to evaluate the probability ptr

that a node transmits in a randomly chosen time period. Any

transmission occurs when a node finds the channel to be idle

after its backoff time counter decrements to zero, regardless

of the backoff stage, namely

ptr = (1− c)
m

∑
i=0

bi,0 = (1− cm+1)b0,0

=
2(1−2c)(1− c)(1− cm+1)

(1− c)(1− cm+12m+1)W +(1−2c)(1− cm+1)
(4)

The fundamental independence assumption implies that

each access attempt “sees” the system in the same state,

i.e. in steady state. At steady state, each node transmits with

probability ptr. Thus for a given node, at each channel access

attempt, the conditional channel busy probability c is

c = 1− (1− ptr)
N−1 (5)

We can derive the value of ptr by solving the set of non-

linear fixed point equations. (4, 5). It is straightforward to

show there is only one fixed point for each N.

C. Successful Packet Reception Probability

The ideal channel condition assumes that a node has a

successful transmission if it is the only one that transmits.

Without loss of generality, we consider that successful packet

reception probability for an individual node is equivalent to

successful transmission probability,

λt(N) = ptr(1− ptr)
N−1 (6)

III. REMOTE ESTIMATION PROBLEM

The discrete time linear dynamical system and measure-

ment models are the following, where i is the sensor index.

xt+1 = Axt +wt (7)

yi,t = Cxt + vi,t (8)
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where xt ∈ R
n is the state vector, yt ∈ R

m is the output

vector, wt ∈ R
n is white Gaussian noise with zero mean

and covariance Q > 0 and vi’s ∈ R
m are white Gaussian

noises with covariances Ri > 0. wt and vi’s are independent.

The initial system state x0 is Gaussian with zero mean and

covariance ∑0. We assume x0 is independent of wt and vi’s.

We use Kalman filter to estimate the state of the dynamical

system.

A. Measurement Fusion

The accuracy of measurement improves as more sensors

collaborate.

The two most commonly used methods for Kalman filter

based data fusion are state-vector fusion and measurement

fusion [5]. State-vector fusion involves fusing a joint state

estimate through individual estimates produced by each sen-

sor from its individual Kalman filter whereas measurement

fusion method directly fuses the sensor measurements to

obtain a weighted measurement and feeds it into a single

Kalman filter to derive a final state estimate.

The measurement fusion method provides a better overall

estimation performance and demands a relative lower compu-

tation load on each sensor node. State-vector fusion method

is only effective when the Kalman filters are consistent [5],

whereas modeling errors introduced by linearization in many

realistic applications often violate this condition. Thus for

our sensor network, measurement fusion is preferable.

Among several possible methods for measurement fusion,

we choose to fuse observations from different sensors with

the inverse of sensor’s variance as the weighting factor.

yt = [
N

∑
i=1

R−1
i (t)]−1

N

∑
i=1

R−1
i (t)yi,t (9)

This method is optimal in the sense of minimum-mean-

square-error (MMSE) with a consistent observation vector

dimension to have a lower computational load. Note that

the noise covariance of fused measurement takes the form

Rt = [∑N
i=1 R−1

i (t)]−1.

B. Multi-sensor lossy Estimation

We define the arrival of an observation yi at time t as a

binary random variable γi,t , i.i.d Bernoulli with probability

distribution pγi,t (1) = λt(N), and with γi,t independent of γi,s

if t �= s.

Under this lossy network condition, the measurement yt 9

of the dynamical system is fused as

yt = Cxt +[
N

∑
i=1

γi,tR
−1
i (t)]−1

N

∑
i=1

γi,tR
−1
i (t)vi,t (10)

The measurement noise of sensor i is defined in the

following fashion:

p(vi,t |γi,t) =

{

N (0,Ri) : γi,t = 1

N (0,∞I) : γi,t = 0

When the observation from every sensor yi,t is lost, i.e.

γi,t = 0 for i = 1...n, then the measurement of yt is fully

lost and it’s equivalent to receiving the measurement with an

infinite noise variance. Otherwise, the variance matrix of the

measurement noise is R
(N)
t = Rt = [∑N

i=1 γi,tR
−1
i (t)]−1. That is

to say the more packets arrive the higher is the measurement

accuracy.

Let us define the following vectors γt = {γ0, ...,γt} and

yt = {y0, ...,yt}. Then

x̂t|t = E[xt |yt,γt]

Pt|t = E[(xt − x̂t|t)(xt − x̂t|t)
′
|yt,γt]

x̂t+1|t = E[xt+1|yt,γt+1]

Pt+1|t = E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
′
|yt,γt+1]

ŷt+1|t = E[yt+1|yt,γt+1].

The prediction phase for x̂t+1|t and Pt+1|t of the Kalman

filter is independent of the observation process with:

x̂t+1|t = Ax̂t|t (11)

Pt+1|t = APt|tA
′
+Q (12)

The measurement update is stochastic as the received

measurements are functions of γt, which are random.

If only one sensor observes the dynamical system, Sinop-

oli et al [14] have detailed exposition.

Liu et al [8] discuss the related case of 2 reporting

nodes, in which one measurement is partitioned between

measurements from two sensor nodes with different loss rate.

For illustration purposes, we will derive our equations for

2 sensors before generalizing to N. In our setting, we have

the following measurement updates corresponding to the four

possible outcomes.

For γ1,t ,γ2,t = 0, i.e., both measurements are lost, then the

final measurement update runs one step open loop.

x̂t+1|t+1 = x̂t+1|t

Pt+1|t+1 = Pt+1|t (13)

For γ1,t = 1 and γ2,t = 0, or γ1,t = 0 and γ2,t = 1, then we

are back to the case with one sensing sensor.

x̂t+1|t+1 = x̂t+1|t

+ Pt+1|tC
′
(CPt+1|tC

′
+R(1))−1(y1,t+1 −Cx̂t+1|t)(14)

Pt+1|t+1 = Pt+1|t −Pt+1|tC
′
(CPt+1|tC

′
+R(1))−1CPt+1|t (15)

For γ1,t ,γ2,t = 1, i.e., both measurements successfully

provide a fused final measurement to the Kalman filter.

x̂t+1|t+1 = x̂t+1|t +Pt+1|tC
′
(CPt+1|tC

′
+R(2))−1

(R(2)(R−1
1 y1,t+1 +R−1

2 y2,t+1)−Cx̂t+1|t)(16)

Combine (13), (14), and (16), the modified Kalman filter

formulation with two reporting sensors can be rewritten as

follows:

P
(2)
t+1 = APtA

′
+Q− [γ1,t(1− γ2,t)+(1− γ1,t)γ2,t ]M

(1)(Pt)

− γ1,tγ2,tM
(2)(Pt) (17)

where we use the simplified notation Pt = Pt|t−1 , M(i)(Pt) =

APtC
′
(CPtC

′
+R(i))−1CPtA

′
and R(i) = [∑i

j=1 R−1
j ]−1.
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Without loss of generality, by omitting the correspondence

of the indexes and the sensors, the covariance update may

have following compact expression,

P
(N)
t+1 = APtA

′
+Q−

N

∑
n=1

n

∏
i=1

γi(N)
N−n

∏
j=1

(1− γ j(N))M(n)(Pt)

(18)

where M(n)(Pt) = APtC
′
(CPtC

′
+ R(n))−1CPtA

′
and R(n) =

[∑n
j=1 R−1

j ]−1. Note that R(n) is the variance of n random

sensors out of the total N .

Given the initial condition P0, the sequence {Pt}
∞
t=0 is a

random process dependent on both {γi,t}
∞
t=0 and the number

of reporting sensors n. Therefore, we only focus on the

statistical properties of the error covariance matrix iteration.

Since Pt is bounded with probability 1 if and only if Pt =
E[Pt ] is bounded, we will study Pt = E[Pt+1] as the metric

of the estimation performance.

We define the modified algebraic Riccati equation

(MARE) for the Kalman filter with multiple reporting sensors

as follows,

gλλλ(N)(X) = AXA
′
+Q−

N

∑
n=1

λ(N)n(1−λ(N))N−nM(n)(X)

(19)

where M(n)(X) = AXC
′
(CXC

′
+ R(n))−1CXA

′
and R(n) =

[∑n
i=1 R−1

j ]−1.

It follows that

gλλλ(Pt) = E[Pt+1|Pt ], and (20)

Pt+1 = E[Pt+1] = E[gλλλ(Pt)] (21)

C. Special Case

To show the tradeoff between the number of reporting

nodes and the estimation performance, in this section we

will first discuss a simpler scenario where the number of

reporting sensors doesn’t contribute to packet loss rate and

the measurement noise of a particular sensor is a constant

regardless of the distance between the sensor and the sensed

object.

Denote the successful packet arrival rate for each sensor,

λt . This is a special case of the (10), where measurements

for fusion are equally weighted, namely

yt =
∑N

i=1 λtyi,t

∑N
i=1 λt

= Cxt +
∑N

i=1 λtvi,t

∑N
i=1 λt

The covariance update simplifies into the following form,

Pt+1 = APtA
′
+Q−

N

∑
n=1

(

N

n

)

λ(N)n(1−λ(N))N−nM(n)(Pt)

(22)

where M(n)(Pt) = APtC
′
(CPtC

′
+ R

n
)−1CPtA

′
.

Lemma 1: For a fixed 0 ≤ λ ≤ 1 and a given X , gλλλ(X)
is a non-increasing function in N, i.e. if 0 ≤ N1 < N2, then

g
λλλ(N1)(X) ≥ g

λλλ(N2)(X). Thus E[Pt+1|Pt ] is non-increasing in

N.

Remark: Statistically speaking, the more samples, the

smaller the variance of “sample mean” and the better esti-

mation as well. By the same token, the more measurements

of sensor nodes for multi-sensor Kalman filter, the smaller

the error covariance should be, provided constant packet

reception rate, as shown in Fig. 3(a)
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Fig. 3. Estimation Performance v.s. Number of Reporting Sensors with
(a)Constant Packet Reception Rate (b)Varying Packet Reception Rate that
is dependent of the number of reporting sensors

However, as shown in Fig. 3(b), if the packet reception

probability varies with the number of reporting sensors, the

estimation performance is no longer a monotonic function in

N, i.e. the number of reporting sensors.

IV. ILLUSTRATIVE EXAMPLE: TRACKING

A specific estimation example – tracking over wireless

sensor network is presented in this section to further illustrate

the impact of the number of communicating sensors on the

estimation performance.

A. Simple Example with Same Measurement Noise

There are 150 identical sensors uniformly distributed over

the surveillance region. We model the discrete dynamics and

measurement of the agent as

xt+1 = Aext +wt

yi,t = Cixt + vi,t (23)

where w and v are white Gaussian noises with zero mean and

covariance Qe = diag (0.152,0.152,0.152,0.152) and Ri = R

= diag(0.152,0.152), and δ = 0.5 is the sampling period.

Ae =









1 0 δ 0

0 1 0 δ
0 0 1 0

0 0 0 1









Ci = C









1 0

0 1

0 0

0 0









T

(24)

Using (19), we can can compute the optimal number of

sensor, which is 27 for this case as illustrated in Fig 4(a).

The tracking performance comparison of wireless sensor

networks with different number of communicating sensors,

100 and 27 respectively, is shown in Fig 5,

Fig. 6 gives the performance comparison of the two sensor

networks in terms of tracking error. It shows that the sensor

network comprised of 27 communicating sensors generates

better results than that of 100 case.

B. Example of Sensors with Distance Determined Variance

In this example, the sensor measurement noise variance is

determined by the distance between the sensing sensor and

sensed target.
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Fig. 6. Tracking Error Comparison

As shown in Fig 4(b), the optimal number of sensors

decreases, comparing with the special case of distance in-

dependent variance. In fact, sensors further away from the

target have larger measurement noise variance.

V. CONCLUSION

The tradeoff between estimation performance and the

number of communicating sensors in lossy wireless sensor

network is analyzed using a Markov model of the MAC

protocol and a lossy multi-sensor Kalman filtering algorithm

based on fused measurements. This cross-layer analysis

shows that “ the more, the merrier ” is not applicable when it

comes to multiple sensors communicating their observations

to the center location. A target tracking example in wireless

sensor network is provided to illustrate the analysis. In

terms of how to engage the optimal number of sensors

into communicating, sensor scheduling problem is a very

attractive question to be addressed next, especially in the

setting of multi-hop wireless network.
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