
Environments for Multiagent Systems
State-of-the-Art and Research Challenges

Danny Weyns1, H. Van Dyke Parunak2, Fabien Michel3,
Tom Holvoet1, and Jacques Ferber3

1 AgentWise, DistriNet, K.U.Leuven,
B-3001 Leuven, Belgium

{danny.weyns,tom.holvoet}@cs.kuleuven.ac.be
2 Altarum Institute,

Ann Arbor, MI 48105-1579, USA
van.parunak@altarum.org

3 LIRMM, CNRS, Montpellier
34392 Montpellier Cedex 5, France
{fmichel,ferber}@lirmm.fr

Abstract. It is generally accepted that the environment is an essential
compound of multiagent systems (MASs). Yet the environment is typ-
ically assigned limited responsibilities, or even neglected entirely, over-
looking a rich potential for the paradigm of MASs.
Opportunities that environments offer, have mostly been researched in
the domain of situated MASs. However, the complex principles behind
the concepts and responsibilities of the environment and the interplay
between agents and environment are not yet fully clarified.
In this paper, we first give an overview of the state-of-the-art on en-
vironments in MASs. The survey discusses relevant research tracks on
environments that have been explored so far. Each track is illustrated
with a number of representative contributions by the research commu-
nity. Based on this study and the results of our own research, we identify
a set of core concerns for environments that can be divided in two classes:
concerns related to the structure of the environment, and concerns re-
lated to the activity in the environment. To conclude, we list a number
of research challenges that, in our opinion, are important for further
research on environments for MAS.

1 Introduction

There is a general agreement in the multiagent research community that environ-
ments are essential for multiagent systems (MASs). Yet most researchers neglect
to integrate the environment as a primary abstraction in models and tools for
MASs, or minimize its responsibilities. As a consequence, a rich potential of
applications and techniques that can be developed using MASs is overlooked.

Popular frameworks such as Jade [9], Jack [44], Retsina [79] or Zeus [58]
reduce the environment to a message transport system or broker infrastructure.
Well-known methodologies such as Message [25], Prometheus [66] or Tropos [12]

offer support for some basic elements of the environment, however they fail to
consider the environment as a first-class entity. Standard literature on MASs
used for education, including [73][93] and [45], only deals very briefly with the
topic of environments. Even in the FIPA [34] specifications it is hard to find any
functionality for the environment beyond message transport or broker systems.
Restricting interaction to inter-agent communication neglects a rich potential of
possibilities for the paradigm of MASs.

Researchers working in the domain of situated MASs traditionally integrate
the environment as a first-class entity in a MAS. In situated MASs, the environ-
ment is an active entity with its own processes that can change its own state,
independent of the activity of the embedded agents. Inspired by biological sys-
tems, several researchers have shown that the environment can serve as a robust,
self-revising, shared memory for agents. This can unburden the individual agents
from continuously keeping track of their knowledge about the system. Moreover,
it enables the agents to use their environment as an excellent medium for in-
direct coordination. Gradient fields and evaporating marks in the environment
can guide agents in their local context and as such facilitate the coordination in
a community of agents in a decentralized fashion. Several practical applications
have shown how the environment can contribute to manage complex problems.
There are examples in domains such as supply chain systems, network support,
peer-to-peer systems, manufacturing control, multiagent simulation etc. Since
the exploitation of the environment in MASs results in better manageable so-
lutions, it is a promising paradigm to deal with the increasing complexity and
dynamism of future system infrastructure and more advanced problem domains,
e.g. ad hoc networks or ubiquitous computing.

Despite the large amount of work in the domain of situated MASs, we are
just at the very beginning of understanding the complex principles behind the
concepts related to the environment and the interplay between agents and the
environment. This paper aims to contribute in three ways. First we give an
overview of the state-of-the-art on environments for MASs. Based on this study
as well as the results of our own research, we identify a set of core concerns for
environments, as a second contribution. Third, we outline a number of research
challenges that, in our opinion, are important for the future development of
environments for MASs.

2 Organization of the Paper

In Sect. 3, we start with an overview of the state-of-the-art on environments
for MASs. Studying MAS literature with a focus on environments is a tough
job. During our study, we encountered two types of difficulties: (1) the term
environment has several different meanings, causing a lot of confusion, (2) the
functionalities associated with the environment are often treated implicitly, or
integrated in the MAS in an ad-hoc manner.

The confusion on what the environment comprises is mainly caused by mixing
up concepts and infrastructure. Sometimes, researchers refer to the environment

as the logical entity of a MAS in which the agents and other objects/resources
are embedded. Sometimes, the notion of environment is used to refer to the
software infrastructure on which the MAS is executed. Sometimes, environment
even refers to the underlying hardware infrastructure on which the MAS runs.

The fact that functionalities of the environment are often treated implicitly,
or in an ad-hoc manner, indicates that in general, the MAS research community
fails to treat the environment as a first-class entity. [36] defines a first-class
module as: “a program building block, an independent piece of software which
[...] provides an abstraction or information hiding mechanism so that a module’s
implementation can be changed without requiring any change to other modules.”
Thus, the environment is in general not treated as an independent building block
that encapsulates its own clear-cut responsibilities in the MAS, irrespective of
the agents.

Starting from this perspective, the overview of the state-of-the-art on envi-
ronments for MASs we discuss in Sect. 3 is not just a summary of representative
papers on the topic of environments for MASs. In fact, the number of research
papers that are devoted to the environment is very limited. The overview is
rather a reflection on MAS research literature in which we have put the spot-
light on models and concepts associated with the environment. The survey is
structured as follows:

3.1 General models for environments (Russell and Norvig, Ferber, Odell et al.,
Environments for mobile agents)

3.2 Inter-agent facilities
– Communication infrastructure (Huhns & Stephens, FIPA, Jade, Retsina)
– Models for indirect interaction

• Classical blackboard communication
• Tuple-based interaction models (JavaSpaces, Lime)
• Stigmergy (Synthetic ecosystems, Network routing)
• Interaction models related to space in MASs (MMASS)

– Environment as an organizational layer (AGR)
3.3 Agent-Environment interaction

– Perception of the environment (Robocup Soccer Server, Model for active
perception)

– Dealing with actions in the environment (Synchronous model for action,
Action model with regional synchronization)

– Task-environments (Wooldridge, TAEMS)
3.4 Environments in agent-oriented methodologies (Gaia)

For each track we selected a number of relevant contributions from the research
community, specified in brackets. It is not a primary goal of the survey to be com-
plete, but rather to give an overview of the wide range of different conceptions
associated with the environment for MASs and its various uses.

In Sect. 4, we extract, from the listed research tracks, a set of core concerns
for environments in MASs. We have divided the concerns in two classes:

4.1 Concerns related to the structure of the environment (Structuring, Resources,
Ontology)

4.2 Concerns related to the activity in the environment (Communication, Ac-
tions, Perception, Environmental processes)

Each concern represents a logical functionality for which the environment may
have a natural responsibility. Our goal is to make the logical functionalities ex-
plicit, i.e. as concerns of environments as first-class entities. We want to underline
that the proposed list of concerns is not intended to be complete. Our aim is to
give an initial impetus to explore the rich potential of environments for MASs.

Next in Sect. 5 we outline a number of research challenges that, in our opin-
ion, are important for the further development of environments for MASs. We
have divided the list in three categories:

5.1 Definition and scope of environments
5.2 Agent-environment interrelationship
5.3 Engineering environments

Each category discusses a number of applicable research challenges. These chal-
lenges may serve as a source of inspiration for future exploration of environments
for MASs.

Finally, in Sect. 6 we draw conclusions.

Conventions In the remainder of the paper, we use the following style con-
ventions:

• Quotations are put in “quotation marks.”
• Specific terms used in literature are marked in teletype.
• Terms of concepts we want to emphasize are marked in italic.

3 Environments for MASs: a Survey of the
State-of-the-Art

In this section we give an overview of a number of important research tracks
that, in one way or another, include some notion of environment. We start with
discussing a couple of general models for environments that have been proposed
in literature. Then we zoom in on various concepts and functionalities related
to inter-agent facilities in the environment and agent-environment interaction.
We conclude the section by discussing the position of environments in agent-
oriented software engineering. Each track is illustrated with a number of relevant
contributions from the research community.

3.1 General Models for Environments

We start our study on environments for MASs with a number of representative
models for environments that have been proposed in the research community.

Russell and Norvig. In chapter 2 of [73], S. Russell and P. Norvig discuss
how an intelligent agent relates to its environment: “An agent is anything that
can be viewed as perceiving its environment through sensors and acting upon
the environment through effectors.” This generally acknowledged relationship
between an agent and its environment is schematically depicted in Fig. 1.

?

agent

percepts

sensors

actions

effectors

environment

Fig. 1. Agent interaction with the environment [73].

Russell and Norvig discuss a number of key properties of environments that
are now adopted by most researchers in the domain:

– Accessible versus inaccessible: indicates whether the agents have access to
the complete state of the environment or not.

– Deterministic versus nondeterministic: indicates whether a state change of
the environment is uniquely determined by its current state and the actions
selected by the agents or not.

– Static versus dynamic: indicates whether the environment can change while
an agent deliberates or not.

– Discrete versus continuous: indicates whether the number of percepts and
actions are limited or not.

The most complex class of environments are those that are inaccessible, non-
deterministic, dynamic and continuous. The first three properties of this list are
properties typically occurring in MASs.

Russell and Norvig also define a “generic environment program”, see Fig. 2.
The program periodically gives the agents percepts and receives back their ac-
tions. Next, the program updates the state of the environment based on the
actions of the agents and of possibly other dynamic processes in the environ-
ment that are not considered as agents. This simple program for environments
clearly illustrates the basic relationship between agents and their environment.

Ferber. In [28], J. Ferber discusses the modelling of environments for MAS at
length. According to Ferber, an environment can either be represented as a single
monolithic system, i.e. a centralized environment, or as a set of cells assembled
in a network, i.e. a distributed environment. In a centralized environment, all
agents have access to the same structure. In a distributed environment, each

procedure RUN-ENVIRONMENT(state, UPDATE-FN, agents, termination)
inputs: state, the initial state of the environment

UPDATE-FN, function to modify the environment
agents, a set of agents
termination, a predicate to test when we are done

repeat
for each agent in agents do

PERCEPT[agent] � GET-PERCEPT(agent, state)
end
for each agent in agents do

ACTION[agent] � PROGRAM[agent](PERCEPT[agent])
end
state � UPDATE-FN(actions, agents, state)

until termination(state)

Fig. 2. A generic environment program [73].

cell behaves like a centralized environment in miniature. However, a cell of a
distributed environment differs in a number of ways from a centralized envi-
ronment: (1) the state of a cell in a distributed environment depends on the
surrounding cells, (2) the perception of agents in a distributed environment typ-
ically goes beyond one cell, (3) when agents move from cell to cell, the agent’s
link with the cells has to be managed and (4) the propagation of signals over
the network of cells has to be managed. Orthogonal to the difference between a
centralized or a distributed representation of environment, Ferber distinguishes
between “generalized” and “specialized” models for environments. A generalized
model is independent of the kind of actions that can be performed by agents.
A specialized model is characterized by a well-defined set of actions. Ferber fur-
ther distinguishes between purely communicative MASs (in which agents can
only communicate by message transfer), purely situated MASs (in which agents
can only act in the environment) and the combination of communicating and
situated MASs.

Central to Ferber’s model of an environment is the way actions are modelled.
The action model of Ferber distinguishes between influences and reactions
to influences. Influences come from inside the agents and are attempts to modify
the course of events in the world. Reactions, which result in state changes, are
produced by the environment by combining influences of all agents, given the
local state of the environment and the laws of the world. This clear distinction
between the products of the agents’ behavior and the reaction of the environment
provides a way to handle simultaneous activity in the MAS.

Ferber uses the BRIC formalism (Block-like Representation of Interactive
Components) to model a MAS as a set of interconnected components that can
exchange messages via the links. BRIC components encapsulate their own behav-
ior and can be composed hierarchically. Fig. 3 depicts a model for a combined
communicating and situated MAS in BRIC notation. In the BRIC model de-

����������� 	
��� � ��

������� � 	
��������

���
��
���

��������
�

�����������
� 	
��� � �
�����
� �

� �! �" # $ %
&'% (
)' �* * +�,�

� +�&�*)-$ * * $ %�&
% (�)' �* * +�,�

* .�& ! /�� %�&�$ 0 + # $ %�&�% (
)' �* * +�,� �# � +
& *)�$ * * $ %�&

� �! �" # $ %
&'% (
)' �* * +�,�

$ & (1 2 �& ! �*

"� �� ! �" # $ %
& *

 �& 3�%�(
� �+�! # $ %
& ** .�& ! /�� %�&�$ 0 +�# $ %
&

% (
� �+�! # $ %�& *

& 3�% (�)' �* * +�,�
� +�& *)�$ * * $ %�&

* .�& ! /�� %
&�$ 0 +�# $ %
&
% (
"
� ! �" # $ %�&�*

* .�& ! /�� %�&�$ 0 +�# $ %
&
%�(�+�! # $ %�& *

Fig. 3. BRIC model of communicating and situated MAS [28]

picted in Fig. 3, the activity cycle of the MAS starts when the environment sends
“perceptions” to the agents. As soon as the Synchronizer sends “synchroniza-
tion of perceptions” signals to the agents, the agents are triggered to interpret
the perceptions. Then, each agent produces an influence in the environment and
possibly transmits a message to another agent. Next, the agent informs the Syn-
chronizer it has finished its action by sending an “synchronization of actions”
message. When all agents have sent their “synchronization of actions” messages,
the Synchronizer sends a “synchronization of reactions” message to the Environ-
ment and simultaneously it sends a “synchronization of message transmission”
to the Message routing unit. As a consequence, the Environment calculates the
reactions to the collected influences, i.e. state changes of the Environment, and
the Message routing unit delivers the messages. When the reactions are calcu-
lated, the Environment sends an “end of reactions” message to the Synchronizer.
Analogously, the Message routing unit sends an “end of message transmission”
when all messages are delivered. After that, the Environment sends the next
perceptions to the agents and the whole cycle repeats. In the MAS model of
Fig. 3, messages are synchronized with actions, i.e the messages are transmitted
at the same time as the influences. A variant to this model is discussed in [87].

Odell et al. A classic paper on environment modelling for MAS is [61]. Ac-
cording to J. Odell and his colleagues, “an environment provides the conditions
under which an entity (agent or object) exists”. The authors distinguish between
the physical environment and the communication environment.

The physical environment provides the laws, rules, constraints and policies
that govern and support the physical existence of agents and objects. An example
of a law in the agent system is that two agents are not allowed to occupy the
same place at the same time. In accordance with [68], an environment is defined
as a tuple < State, Process >. State is a set of values that completely define the
environment, including the agents and objects within the environment. Process
indicates that the environment itself is an active entity. It has its own process
that can change its state, independently of the actions of the embedded agents.
The primary purpose of Process is to implement dynamism in the environment,
e.g. the aggregation, diffusion and evaporation of pheromones that ant-like agents
use to coordinate. Odell and his colleagues argue for a “common processing
platform [...] that would provide a foundation upon which agent applications
could build to leverage their own specific environmental requirements.” However,
they conclude, “In spite of the acronym, the FIPA (Agent Platform) architecture
focusses almost entirely on the electronic environment, and does not address the
physical environment. As such, it does not address the real potential of an active
environment [...] to get more powerful interaction.”

The communication environment provides (1) the principles and processes
that govern and support the exchange of ideas, knowledge and information,
and (2) the functions and structures that are commonly employed to exchange
communication, such as roles, groups, and the interaction protocols between roles
and groups. Basically, communication is the conveyance of information from one
entity to another. A difference exists between transmission and communication.
Communication requires that the information transmitted by one agent results
in a state change of another, i.e. an act of sensing and deciding (although the
latter may simply choose to do nothing). An interesting point of view related
to this issue is discussed in [82]. L. Tummolini and his colleagues propose the
notion of Behavioral Implicit Communication (BIC) as a parasitical form
of communication that exploits both environmental properties and the agents’
capacity to interpret each other’s actions. To enable BIC, the environment needs
to support the observability of the actions of the agents.

Odell and his colleagues define an agent’s social environment as “a com-
munication environment in which the agents interact in a coordinated manner”.
The social environment consists of (1) the social units (groups) in which the
agent participates, (2) the roles that are employed for social interaction and
(3) all the other members who play roles in these social groups. A group can
be empty if no agents participate in the group; its collection can also contain
a single participating agent or multiple agents. Groups have a unique identity
in the overall system. As such, groups can become social actors, e.g. a business
organization that interacts with sector groups in industry. The authors define a
role as an abstract representation of an agent’s function, service or identification
within a group. Roles determine the patterns of dependencies and interactions
among agents.

Environments for Mobile Agents. Since the mid nineties, mobile agents
have been an active area for research and development communities. Mobile
agents have the ability to migrate autonomously across a network, based on the
principle of code mobility. A mobile agent is capable to suspend its execution
at one node (at an arbitrary moment or at particular points in its life time),
to move along with its code and its execution state to another node, and to
resume its execution seamlessly. As such, a mobile agent is not bound to the
network host where it begins execution. This permits a mobile agent to move to
a destination node that contains the resources or services with which it wants to
interact. As such mobile agents provide flexibility inside a distributed network
to reduce network load and optimize service performance. Support for mobil-
ity introduces additional requirements for the multiagent platform. During the
last decade, many platforms for mobile agents have been developed. Some
representative examples are Aglets from IBM [1], Voyager from Objectspace
[83], Grasshopper from IKV++ [39], Ajanta from University of Minnesota [2] or
SOMA developed at the University of Bologna [76].

Mobile agent platforms realize a distributed processing environment that is
usually referred to as Distributed Agent Environment (DAE). DAEs typically
support a hierarchy of locality abstractions to model physical network resources.
Fig. 4 depicts an abstract overview of a DAE. The white agents symbolize mobile
agents, the gray symbolize stationary agents.

������� �	��
 � � �	��

��� ��� ���

������� ����
 � � ����

��� ��� ���

������� ����
 � � ����

��� ��� ��� ��� ��� ���

��� �	� � � � ���

�����! ���� � � � � ���
"#����� �	�
"#����� � � �

$&%#')(*)+-,

Fig. 4. Structure of a Distributed Agent Environment [65]

On each host, at least one agent system has to run to support the execu-
tion of agents. Each agent system provides one or more places. A place is an

executing context that offers specific services. An example is a trading place
where agents can offer or buy information and service access. A region groups
a number of agent systems (typically in a local area network). Each region has
a region registry that maintains information about all registered agent sys-
tems, places and the hosted agents. The current location of mobile agents is
updated in the corresponding region registry after each migration. The termi-
nology used in Fig. 4 (region, place and agent system) is standardized by the
OMG MASIF standard [63]. [65] enumerates a number of common capabilities
for mobile agent platforms:

1. Agent execution: basic provisions to put incoming agents into execution,
taking into account the binding to local resources.

2. Transport: mobility support to facilitate the network transport of agent code
and execution state.

3. Unique identification: support for the generation of unique agent identifiers,
even in the scope of the entire Internet.

4. Communication: support to enable agents to communicate with one another
and with platform services.

5. Security: support for security issues such as authentication, access control
of resources and integrity guarantees for code/state during the transfer over
an untrusted network.

6. Management: enable system administrators to interact with the system,
e.g. to monitor agents or to interrupt the execution of an agent task.

An important issue for mobile agent systems is interoperability. Interoperability
permits the integration of heterogeneous agent systems and legacy systems. To
obtain interoperability, most platforms for mobile agents therefore comply to
one of the two main standards, the OMG MASIF standard [63] or the FIPA
standard [34].

3.2 Inter-Agent Facilities

In this section, we zoom in on various concepts and functionalities related to
inter-agent facilities in the environment. We have organized the material in
line with the taxonomy of agent interaction mechanisms proposed in [69]. We
start with studying traditional infrastructure for direct message transfer between
agents. The most commonly used form of direct message flow are peer-to-peer
conversations, but also a distinguished agent that commands a subordinate is
an example. Next, we discuss several models for indirect interaction, including
blackboard systems, tuple-based interaction models and stigmergy. To conclude
we look at models in which the environment serves as an organizational layer.

Communication Infrastructure. Communication is without any doubt a ba-
sic aspect of any MAS. In this section, we focus on communication infrastructure
for message transfer between agents. We start with some general reflections on
agent communication from Huhns and Stephens. Then we look at the FIPA

agent platform for communication. In connection we discuss two concrete archi-
tectures for communication: the FIPA compliant middleware platform Jade, and
the Retsina MAS infrastructure.

Huhns and Stephens. In the 2nd chapter of [45], M. Huhns and L. Stephens
discuss characteristics and concerns of multiagent environments. The authors
list the following characteristics:

1. Multiagent environments provide an infrastructure specifying communica-
tion and interaction protocols

2. Multiagent environments are typically open and have no single centralized
designer

3. Multiagent environments contain agents that are autonomous and distributed
and may be self-interested or cooperative

Next the authors list a brief summary of a number of concerns of multiagent
“execution environments”:

1. Design autonomy: relates to the platform, interaction protocols and agent
architecture

2. Communication infrastructure: relates to type of communication medium
and the type of connection

3. Directory service: white or yellow pages
4. Message protocol: refers to language (e.g. KQLM) and technology (e.g. COR-

BA)
5. Mediating and Security services: e.g., support needed for transactions or

authentication
6. Operations support: refers e.g. to archiving

Hunhns and Stephens look at the environment as a computational infrastructure
that enables agents to communicate with one another.

FIPA. The FIPA (Foundation for Intelligent Physical Agents) agent platform
reference model [34] illustrates a typical communication infrastructure for direct
message exchange, see Fig. 5.

The key building block of an environment in FIPA is the agent platform.
An agent platform includes a “run-time environment” that defines the life cycle
of the agent system, and executes e.g. on a Java virtual machine. The building
blocks of the agent platform are: (1) a directory facilitator acting as a yel-
low pages service for the agents to advertise and discover services offerings, (2) an
agent management system that enables agents to register on the platform and
to locate one another (i.e. a white pages service) and that controls resource usage,
and (3) a message transport system, i.e. a communication service for local
and inter-platform message exchange. The message transport system is specified
in great detail. It specifies transport protocols (low level details for wired and
wireless transfer of messages between interfaces on different agent platforms)
and message transport envelopes (encoding of metadata required for message

������� �

�	��

 �������� ���
 ��� �����
 � ���

������� ����� � � � ��� �

������� �

�	��

 �������� ����
 ����� �����
 � ���

������� ����� � � � ��� �

�	��

 �������� ���
 � ��� �
��� � � ��� ���

���������

 �����

������� ������� �������	��� �

���
 � ���

������� ������� �������	��� �
���
 � ���

 �! � ��� � ��� �#"���� ! � ! � ��� ���

 �! � ��� � ��� �#"���� ! � ! � ��� ���

Fig. 5. FIPA agent platform reference model [34].

forwarding over individual transport protocols). Lastly, the message transport
system also includes specifications of several ACL message representations that
define the syntax to be used when sending messages. Besides a standard for
message transport, FIPA also provides standards for interagent communication,
i.e. it defines the precise semantics of the exchanged bits. These specifications
are divided in four sections: (1) the message structure specification that defines
the structure of FIPA-ACL (FIPA Agent Communication Language) messages,
(2) a library of performatives, defining the semantics of different communica-
tive acts, (3) a number of protocols, i.e. message sequences applicable in agent
systems and (4) a content language for FIPA messages, called FIPA-CL (FIPA
Content Language). Note that FIPA does not define an ontology language to ex-
press domain knowledge. An increasing number of agent platforms comply with
the FIPA standard, including Jack [44], Jade [9] and Zeus [58].

JADE. Fig. 6 depicts the Jade (Java Agent Development Environment) archi-
tecture [9]. Jade is a pure Java, middleware platform intended for the develop-
ment of distributed multiagent applications based on peer-to-peer communica-
tion. Jade includes Java classes to support the development of application agents
and the “run-time environment” that provides the basic services for agents to
execute. An instance of the Jade run-time is called a container, and the set of
all containers is called the platform. The platform provides a layer that hides
from agents the complexity of the underlying execution system. Jade includes a
naming service ensuring that each agent has a unique name, and a yellow pages
service that can be distributed across multiple hosts. Agents can dynamically
discover each other and communicate by exchanging asynchronous messages.

����� � ��� �
	�� ����� � ��� � 	�� ����� � ��� � 	�� ����� � ��� � 	��

 ������� � � 	��

���
� � � ���
	�� ����� � � � � ��� � 	
�����
�
� � �
� � ���

 !
"�� !
"�� !��#� !
"��

 ��$%�&$��'� � � 	��

(�	 �)���� *� ����� 	
 � � ���

Fig. 6. The Jade architecture [9].

The structure of the messages complies with the FIPA-ACL language definition.
Jade provides a set of skeletons of typical interaction protocols. The platform
also supports mobility of code and execution state (exclusive the data on the
JVM -Java Virtual Machine- stack). This enables agents to stop running on a
host, migrate to a different remote host and restart execution from the point
they stopped. Jade is widely used in the academic community and several com-
panies are using Jade for their internal projects, including Telecom Italy [81],
Whitestein Technologies AG [90] and Rockwell Automation [72].

RETSINA. Retsina (Reusable Environment for Task-Structured Intelligent Net-
work Agents) [79] is a well-known MAS infrastructure, see Fig. 7. Retsina is an
open MAS infrastructure that supports communities of heterogeneous agents.
The Retsina MAS infrastructure is build up in several layers. The operating
environment provides the platform on which the infrastructure components and
the agents run. Retsina supports a broad range of execution platforms and it
automatically handles different types of network transport layers.

The communication infrastructure provides two types of communication chan-
nels: one for message transfer between peers, the other for multicast that is used
for a discovery process to let the agents find infrastructural components. The
ACL used in Retsina is KQML (Knowledge Query and Manipulation Language)
[33]. Retsina provides an ontology derived from the Wordnet Ontology [27] and
a protocol engine with a protocol language. The MAS management services offer
tool support to monitor the activity of the agents and to debug and launch the
applications. Retsina provides a service for performance monitoring in simula-
tion. The security module supports agent authentication, secure communication
and integrity of the Retsina infrastructure components. A first basic high-level in-

frastructural support is offered through ANSs (Agent Name Services). An ANS
provides a means to abstract away from physical locations by mapping agent
identifiers to network addresses. ANSs do not participate in the transactions be-
tween agents, they only provide the agents with addresses that they can cache,
removing the need for unnecessary lookups. A second level of infrastructural
support is offered by middle agents, i.e. matchmakers. Matchmakers provide a
mapping between agents and services. Service providers can advertise their ser-
vices at the matchmakers and agents can request the matchmakers to get contact
information of relevant providers. Advertisement and requests have to be for-

����� ��� � 	
����
���	 � ��
����
��
��� � ��� ����� � �! �� "#� $ %#&�' (���)�* $ � � ��� $,+�' � ��� -�&�' $/.�� 0��1'

23���4�65�
�	 7�� � 	 ��
98
�: ����; � �15�7 � 5����
<#� � �1&�=�� ' 0�> ����� � � ?��@+�' �1�A� B � '

CED!FAC �
�� �A� ���
�� F � � ��	 7�� ;

G � �1: ��� ���
�7��1; F � � �/	 7�� ;

F � 715�� 	 � H

I � �J��� ��K���7�� � 	 ��
 C � ����	
��
L "!

2�� �#� M�	 N 	 � H�� � D �A�
�� C � ����	
��
�!�1$ � ��OP� (��1'

Q � ��; 	
�� RS� D#D 8
��S� ������� ��� � ���

D 23KT8
�: ����; � � 5�7 � 5����
U�)�V�* � �����/$ &�* &�?�0�> U�' &�$ &�� &�* �W �1' =�� '��

Fig. 7. The Retsina MAS infrastructure [79].

mulated in a special language called LARKS (Language for Advertisement and
Request for Knowledge Sharing) [78]. The Retsina-OAA InterOperator on top of
the Retsina MAS architecture bridges the Retsina MAS infrastructure with the
OAA platform (Open Agent Architecture) [18]. Due to fundamental differences
in the architectures, not all inter-agent interactions can be translated.

Models for Indirect Interaction. In this section we discuss interaction mod-
els in which entities interact indirectly through some kind of communication

abstraction. Indirect (or mediated) interaction is characterized by a number of
fundamental properties, such as name uncoupling, space uncoupling and time
uncoupling. In order to communicate, interacting entities do not have to know
each other explicitly, nor do they have to be at the same place, they do not
even have to co-exist at he same time. Especially in open, highly dynamic, dis-
tributed systems, these properties enable flexible and robust interaction among
the cooperating entities. An interesting attempt to define a unified framework
for indirect interaction is the work on coordination artifacts of A. Omicini,
A. Ricci and M. Viroli [64].

Classical Blackboard Communication Infrastructure. Blackboard systems were
the first type of mediated interaction models proposed by AI researchers [24][20].
A blackboard is an intermediary data repository that enables cooperating soft-
ware modules to communicate indirectly and anonymously. A classic blackboard
system consists of three main components [20], see Fig. 8:

��������� 	�
�	������� ��	��

� ����� ��������	�� �

��� ������������

Fig. 8. Components of a classical blackboard system

1. The knowledge sources are independent computational modules that to-
gether contain the expertise to solve the problem.

2. The blackboard is a system-wide data repository containing the shared data;
interaction between knowledge sources only happens via the blackboard.

3. A control component makes runtime decisions about the course of prob-
lem solving. When the currently executing knowledge source completes, the
control component selects the most appropriate pending knowledge source
for execution. To guide its selection, knowledge sources provide the control
component with the necessary control knowledge.

Traditional MASs contrast with blackboard systems since they emphasize
autonomy of agents, coordinated interaction between the agents, distribution

(thus no central data repository) and organization as an emergent global phe-
nomenon. As such, MASs and blackboard systems are two technologies with
different application domains. Traditional blackboard systems are most appro-
priate for closely collaborating problem solving, while the focus of MASs is on
solving large-scale distributed problems.

Tuple-based Interaction Models. In contrast to blackboard systems, tuple-based
technologies use associative access to a shared dataspace for communication
and synchronization purposes. Tuplespaces were first introduced in Linda [16].
Linda is a coordination language, where coordination is defined in the spirit of
separation of concerns: computation, i.e. the internal behavior of the active enti-
ties in the system, and coordination, i.e. the management of the interdependent
active entities, especially their communication and synchronization, should be
separated as much as possible. Linda attains this by providing a coordination
language that enables communication between agents. Agents in Linda commu-
nicate by putting tuples in, and removing them from a shared space, i.e. the
tuplespace. The Linda language is in essence composed out of three primitives:
in, allows to take a tuple out of the tuplespace that matches with a given tem-
plate; out, allows to put a tuple in the tuplespace; and rd that allows to non-
destructively read a tuple based on a template. Throughout the years variants
for distributed computing appeared, such as MARS [15], Sun’s JavaSpaces [77]
and LIME [57]. We take a closer look at the latter two.

JavaSpaces [77] is a tuplespace model developed as part of (and as base of)
Sun’s Jini [35]. JavaSpaces is a fairly straightforward translation of the original
Linda model to a distributed setting. JavaSpaces offers the possibility of several
remotely accessible tuplespaces. Since it was developed in the context of the
Java programming language, not tuples but objects are put in the tuplespace.
JavaSpaces adds the possibility of distributed transactions on the tuplespace.
The fact that this is a hard problem was raised by N. Busi [14]. Busi showed
that the serializability of transactions is not always guaranteed by the JavaSpaces
system. JavaSpaces remains important as it is supported by Sun and used as
discovery mechanism for the Jini system.

LIME (Linda In a Mobile Environment) [57] is a middleware system that
allows communication between agents in a similar way as Linda does. How-
ever, it is built to operate in a mobile environment, as opposed to Linda which is
conceived for parallel computing. Instead of communicating through one central-
ized tuplespace, in Lime each agent carries its own tuplespace. The traditional
tuplespace operations are available, augmented with other operations such as
the non-blocking read and non-blocking in operations. The originality of the
approach is that, when agents reside on the same or a connected host, their
tuplespaces are merged transparently, i.e. agents have the illusion of a locally
shared tuplespace. The Lime middleware can be used for applications where both
the agents are mobile (i.e. moving from host to host) and the hosts are mobile
(i.e. physically moving). In order to make this possible a location parameter is
added to the operations, so that agents can select the tuplespace they wish to
interact with. Also, to cope with the dynamic environment, reactions can be

defined, i.e. code that is executed by the tuplespace when specific tuples are
inserted in the tuplespace.

In recent years, a number of tuple-based systems were proposed for ad hoc
and mobile computing. ObjectPlaces [74], EgoSpaces [47] and TOTA [49] add
mechanisms for sharing tuples across tuplespaces. ObjectPlaces maintains an
agent defined view on a host’s surroundings. A view is an up-to-date represen-
tation of the state of tuplespaces on neighboring nodes in the network, and this
representation is maintained as the network and the contents of the tuplespaces
change. This can be done efficiently since the interface to the tuplespaces in
ObjectPlaces is asynchronous (i.e. operations do not block, but their result is
returned when it is available), as opposed to the synchronous interface common
in other tuplespace-like systems. In the EgoSpaces system, a view is similarly a
description of neighboring hosts in the network, and the system allows agents to
execute Linda-like operations on the tuplespaces gathered from the view speci-
fication. EgoSpaces is built upon the Lime system. TOTA takes a different ap-
proach. The TOTA middleware maintains distributed tuples: a distributed tuple
can for example represent a gradient field that decays as it is propagated on the
network. This tuple is thus spread out over different distributed tuplespaces, and
the TOTA middleware maintains the tuple as the network topology changes.

Stigmergy. The term stigmergy is coined by Grassé [38] to explain nest construc-
tion in termite colonies. The concept indicates that individual entities interact
indirectly through a shared environment: one individual modifies the environ-
ment and others respond to the modification, and modify it in turn. [68] discusses
several uses of stigmergy for MAS.

A popular means for such indirect interaction is through pheromones. A
pheromone is a chemical substance (or a software counterpart) deposited in
the environment. A pheromone has three interesting properties: (1) it aggre-
gates, i.e. newly dropped pheromone merges with/reinforces already existing
pheromone, (2) it diffuses, meaning it propagates in its local environment, and
(3) it evaporates, meaning it decays over time. A pheromone is thus a represen-
tation of shared agent knowledge: it spreads to other nearby agents, allowing
a local information transfer; it can be reinforced by other agents, allowing the
MAS to incrementally build a solution; and disappears over time, which is a
natural way to cope with dynamism in the environment.

Some applications using stigmergy include solving constraint problems, used
by Dorigo’s Ant Colony Optimization [23]; routing calls through telecommuni-
cation networks [11]; manufacturing control [13] and peer to peer systems [56].
For more application examples and more in-depth technical discussion, we re-
fer to [10]. Here we take a closer look at two representative uses of stigmergy.
First we zoom in on synthetic ecosystems presented in [13], than we look at the
telecommunication network routing infrastructure presented in [11].

Synthetic ecosystem. In [13], S. Brueckner considers a synthetic ecosystem
where on the one hand agents control physical entities in the real world, but on
the other hand, agents act among each other in a software environment. To
enable indirect coordination among software agents in the same way social ants

coordinate, the software environment emulates the “services” provided by the
real world of ants. The part of the software environment realizing the services is
called the pheromone infrastructure.

The pheromone infrastructure models a discrete spatial dimension. It com-
prises a finite set of places and a topological structure linking the places. A link
connecting two places has a downstream and an upstream direction. Thus, for
each place there is a set of downstream and a set of upstream neighbor places
that are directly linked to it. Each agent in a synthetic ecosystem is mapped to
a place, i.e. the current location of the agent, which may change over time. The
pheromone infrastructure models a finite set of pheromone types. A pheromone
type is a specification of a software object comprising a strength-slot (real num-
ber) and other data-slots. For each pheromone type, a propagation direction
(downstream or upstream) is specified.

The pheromone infrastructure handles a finite set of software pheromones
for each pheromone type. Every data-slot, except the strength-slot, is assigned
a value of a finite domain to form one pheromone (type, direction etc.) The
strength value (i.e. the value in the strength-slot) is interpreted as a specific
amount of the pheromone. Different pheromones of a synthetic ecosystem may
be stored in each place.

An agent may perform the following activities at its current place in the
pheromone infrastructure:

– Access the references to all agents located at a place.
– Perceive the neighbor places of a place.
– Sample the local strength values of a specified set of pheromones.
– Initiate a change in the local strength of a specified pheromone by a specified

value.

The pheromone infrastructure manipulates the values in the strength-slot of the
pheromones at each place in the following way:

1. External input (aggregation): based on a request by an agent, the strength
of the specified pheromone is changed by the specified value.

2. Internal propagation (propagation/diffusion): Assume an external input of
strength s into a pheromone g at a place p. The input event is immediately
propagated to the neighbors of p in the propagation direction of g. There,
the local strength of g is changed by an input weaker than s. An even weaker
input propagates to the following neighbors. The stepwise weakening of the
input is influenced by g ’s propagation parameter.

3. Without taking changes caused by external input or propagation into ac-
count, the strength of each pheromone is constantly reduced in its absolute
value (evaporation). The reduction is influenced by the evaporation param-
eter of the pheromone.

There is a major difference between the algorithms realized in the pheromone in-
frastructure and those observed in nature. After an ant deposits pheromones on
the ground, evaporation disperses it. Particle by particle the pheromone moves

through the continuous space driven by Brownian motion. At the initial loca-
tion the amount of pheromones is reduced, while it builds up somewhere else
or vanishes completely. In the discrete space of the pheromone infrastructure,
propagated pheromones have only specific locations on which to “settle down”.
Furthermore, the structure of the space is not homogeneous. At some places,
pheromones may be propagated to many places, while at other places no fur-
ther propagation is possible. As a consequence, the mechanisms of evaporation
and propagation of pheromones are modelled separately. Instead of continuously
exchanging particles among places, there is one “wave” of input events running
along the links, which is triggered by the original input of the agent.

The pheromone infrastructure realizes an application-independent support
for synthetic ecosystems designed according to a number of design principles,
such as decentralization, locality, parallelism, indirect communication, informa-
tion sharing, feedback, randomization and forgetting. In [13], the principles of
synthetic ecosystems and the proposed pheromone infrastructure are applied to
manufacturing control systems. V. Parunak and his colleagues have applied dig-
ital pheromones in several practical applications, for an overview we refer to
[67].

Network routing. In [11], E. Bonabeau and his colleagues present an ant-
like mechanism for routing and load balancing in telecommunication networks
that builds upon work of R. Schoonderwoerd [75] and S. Guérin [40]. Routing
allows calls to be transmitted from a source to a destination through a sequence
of intermediate switching nodes. The pathway of a message must be as short
as possible, taking into account fluctuations of user traffic and changes of the
network structure (e.g. link or switch failures.) To provide fault tolerance and
spreading the computational load, the routing functionality should be imple-
mented in a decentralized way. Social insects exhibit flexibility and robustness,
solving difficult problems in a highly distributed way. The authors exploit this
knowledge to tackle the routing problem in telecommunication networks. In the
original routing algorithm of Schoonderwoerd [75], a node Ni (of a network with
n nodes), with k(i) neighbors (links being bidirectional) is characterized by a
routing table Ri = [ri

l,m]n−1,k(i) that has n − 1 rows and k columns: each row
corresponds to a destination node and each column to the next node. ri

l,m gives
the probability that a given message, the destination of which is node Nl, be
routed from node Ni to node Nm.

Agents go from their source node to their destination node by moving from
node to node. The next node an agent will move to is selected according to the
routing table of its current node. Agents update routing tables of nodes viewing
their node of origin as a destination node, i.e. agents use certain knowledge about
the portion of the network they come from to modify routing tables. For its part,
this modification will influence the routing of messages and agents that have this
portion of the network as destination. This approach avoids requiring agents to
go back all the way to their node of origin to update the intermediate routing
tables.

More precisely, an agent modifies the row corresponding to its source node,
which is viewed as its destination node. With Ns the source node of an agent, Nm

the node it just came from, and Ni its current node at time t, the entry ri
s,m(t)

is reinforced while other entries ri
s,l(t) in the same row decay. The modification

is determined by a reinforcement parameter δr that depends on the agent’s
characteristics. The influence of δr of a given agent must depend on how well
this agent is performing, e.g. aging can be used to modulate δr. If an agent has
been waiting a long time along its route to its destination node, it means that
the nodes it has visited and links it has used are congested, so that δr should
decrease with the agent’s age.

Based on an idea of Guérin [40], Bonabeau and his colleagues propose to
update not only the row that corresponds to an agent’s source node, but all rows
corresponding to all the intermediate nodes visited by the agent. Thereby the
reinforcement of an entry associated with a given name is discounted by a factor
that depends on the agent’s age relative to the time it visited that node. [11]
shows that the extended approach yields significantly better performance results.
The authors however, point to the simplifications of previously used models and
state that realistic tests in complex network models are needed. Therefore a
deeper understanding of the limits and constraints of communication networks
is necessary.

Interaction Models Related to Space in MASs. The ancestors of agent models
providing an explicit representation of the spatial structure of the environment
are Cellular Automata (CA) [91][92]. The CA model provides a regular lattice
of automata, characterized by a homogeneous state and transition rule. The
related structure is naturally suited to represent an abstraction of a physical
environment, and CA have been widely used to model problems in which spatial
features can play an important role. Some approaches providing the integration
of CA and agent systems have been proposed, see e.g. [22]. Several platforms for
MAS-based simulation, developed in line with Swarm [55], implement a spatial
structure of the environment in terms of regular grids.

The Multilayered Multi Agent Situated System (MMASS) [6] is a MAS model
providing an explicit representation of the agents environment and an interaction
model strongly related to the agents context. The environment is modelled as
a multi-layered structure, where each layer is represented as a connected graph
of sites. Layers may represent abstractions of a physical environment, but can
also represent logical aspects, e.g. the organizational structure of a company.
Between the layers specific connections (interfaces) can be defined that are used
to specify that information generated in one of these layers, may propagate into
a different one. In MMASS, agents can (1) interact through a reaction among
adjacent entities, (2) emit fields that are diffused in the environment, and (3)
can be perceived by other agents. After experiments for the simulation of com-
plex systems, the MMASS model has been recently proposed for applications in
the ubiquitous computing scenario [50]. This type of application requires soft-
ware architectures and tools based on models comprising some notion of space.
Among other approaches sharing this viewpoint, it is important to mention Co-

Fields [48] (Computational Fields) of M. Mamei, L. Leonardo and F.Zambonelli.
Co-Fields supports the coordination of agents in an environment by means of
distributed data structures (i.e. the co-fields) that can be spread either by the
agents themselves or by other elements of the environment. Agents can sense the
intensity of co-fields and are constantly guided by them, e.g. by moving towards
local minima.

Environment as an organizational layer. Recently a particular interest
has been given to organizational concepts within MAS such as “organizations”,
“groups”, “communities”, “roles” etc. [21, 29, 46, 37, 95, 59]. From an organiza-
tional perspective, a MAS can naturally be considered and designed as a com-
putational organization [94] that defines a framework for agent activities, i.e. the
organization imposes a set of constrains for the behavior of agents, and offers
a set of facilities and services that agents may use. In [30] J. Ferber and his
colleagues make a distinction between ACMAS or agent-centered MAS and OCMAS
or organizational-centered MAS. In OCMAS, the organization acts (1) as a “dy-
namic framework” where agents may enter and leave organizations at will, and
(2) as an environment for resources, services, communications and tasks, through
the concepts of both groups and roles.

Thinking in terms of organizational design differs from the agent-centered
approach that has been dominant during many years. When building an OC-
MAS, the designer first concentrates on the organizational level by specifying the
structures and pattern of activities among agents, based on abstractions such
as groups, roles, interaction protocols, authority constraints between roles, etc.
At this stage, no mental issues such as beliefs or goals are considered. It is only
when the organization has been specified that the MAS developer focusses on
the agent’s internal architecture.

Several models of OCMAS have been proposed [4, 30, 60]. Here, we briefly
examine the AGR model (previously called Aalaadin) [29, 30] which is a very
simple organizational model.

AGR. The AGR model is based on three primitive concepts: Agent, Group and
Role. In the AGR model, agents play roles within groups. An agent may play
multiple roles at the same time and may be a member of several groups. A group,
as a part of an organization, is used as a context for patterns of activity. Agents
are only allowed to communicate with agents of the same group. Suppose that
an agent a of group G wants to communicate with an agent b of group H, but a
does not belong to H and b does not belong to G. Communication can only be
established when agent a joins group H, or agent b joins group G, or an agent c
exists that is member of both groups G and H, and that can act as a mediator
for this communication. This restriction on the scope of communication supports
the creation of well-defined organizational structures such as hierarchies.

Groups act as environments for agents. An agent may enter or leave a group
as a human may enter or leave a house or a social structure such as a firm
or a lab. Within a group, agents provide services and facilities that the other

agents of the group may use. Partitioning a society of agents into several groups
enables a designer to build secure systems where secured groups of agents protect
themselves by requesting authorization to be joined.

AGR provides a set of diagrams to describe organizations [30]. In the “cheese-
board diagram”, a group is represented as an oval that imitates a board. Agents
are represented by skittles that are positioned on a board and cut across a board
when they belong to several groups.

Fig. 9. The “cheeseboard” diagram in AGR for describing concrete organizations.

A role is represented as a hexagon and a line links the role to agents. Fig. 9
illustrates a concrete organization using the cheeseboard diagram. In this exam-
ple, the agent F is a member of both groups, G2 and G3, and the agent plays
roles R4 and R5 in group G2, and role R6 in group G3.

The “organizational sequence diagram” describes the dynamics of organiza-
tions, i.e. the temporal relationships between organizational events, such as the
creation of a group, an agent that enters a group or leaves it, or the acquisition
of a role. The organizational sequence diagram can be seen as an extension of
UML sequence diagram that incorporates the dynamics of roles and groups.

Contrary to an AUML sequence diagram where the life-line of an agent is
represented by a single vertical line, in an organizational sequence diagram the
life-line of an agent may consists of several (possibly parallel) segments. Each
segment describes the life of an agent playing a specific role in a specific group.
Parallel segments represent the fact that an agent plays several roles simultane-
ously. Fig. 10 depicts an example of a organizational sequence diagram.

MadKit [41, 52] is a multiagent platform, that has been designed according
to the AGR model. In MadKit, groups and roles are used as core mechanisms for
building, launching, deploying, simulating and observing multiagent programs.
Several practical applications have proven the usefulness of MadKit and the
underlying AGR model.

Extensions of AGR. In AGR, organizations do not encompass the notions of
situatedness and action. To integrate the notion of situatedness in AGR, a spatial
relationship could be added to a group. However, this extension would raise many

Fig. 10. The organizational sequence diagram in AGR.

difficult problems: e.g. what is the semantics of “distance” in relation to roles, is
a role representing a “social location” as coordinates represent spatial locations?
This approach has not been followed so far. To include the notion of action in
AGR, it is necessary to reify the concept of environment and to integrate it with
the organizational concepts.

In [70], V. Parunak and J. Odell propose an extension of AGR by reifying
the environment. In this model, an agent is both a member of (possibly several)
groups, and an element of an environment. This work is interesting, but needs
further exploration. In [32], J. Ferber and F. Michel propose another approach
and consider an organization as a special kind of environmental zone, called an
area. Actions are associated with organizations, i.e. communicating, entering a
group or leaving it, playing a role, and creating a group.

In summary, the main idea of the research track on AGR is to offer an
organizational-centered approach to build MASs. In AGR, the designer first
considers the organization of the MAS as an accessible organizational structure in
which agents have to behave, i.e. the designer builds the agent system according
to the roles the agents play in the organization. Afterwards, the designer can
focuss on the agent internal architectural details.

3.3 Agent-Environment Interactions

In this section, we discuss different models related to agent-environment inter-
action. First we look at agents’ perception of the environment. Then we zoom in
on a couple of models for actions. The section concludes with a brief discussion
of the notion of task-environments.

Perception of the Environment. Perception is the ability of an agent to
observe its neighborhood, resulting in a percept of the environment. Percepts
describe the sensed environment in the form of expressions that can be under-
stood by the agent. Agents use percepts to update their knowledge about the
world or use it directly for decision making. In the case of an agent situated in
the physical world, perception can be implemented in hardware: for example, it
might be a video camera or a laser sensor on a mobile agent. For software agents
situated in a virtual environment, perception must be implemented in software.
Although perception is very common for any MAS, relatively little research work
has been done in this area. Most of the research on perception can be found in
robotics and cognitive science. For virtual environments, where all aspects of
perception must be modelled explicitly, only a couple of theories and generic
models for perception have been proposed. First, we illustrate perception in the
RoboCup Soccer Server, then we discuss a domain independent model for active
perception.

RoboCup Soccer Server. The RoboCup Soccer Server [71] supports three kinds
of sensors in its sensor model: the aural sensor, the visual sensor and the body
sensor. The aural sensor detects messages sent by the referee, the coaches and
the other players. All messages are received immediately. The format of an aural
sensor message is:

(hear T ime Sender Message)

Time indicates the current time, Sender refers to the sender and Message to
the content of the received message. Several server parameters affect the aural
sensor. E.g., a player can only hear a message if the player’s hear capacity is at
least hear decay, since the hear capacity of the player is decreased by that num-
ber when a message is heard. Every cycle, the hear capacity is increased with
hear inc, but is limited to hear max. Players can receive more than one message
at the same time. A message of a player is transmitted only to the players within
audio cut dist meters from that player.

The visual sensor reports objects currently seen by the player. The informa-
tion is automatically sent to the player every sense step, a fixed period of time.
Visual information arrives from the server in the following format:

(see ObjName Distance Direction DistChng DirChng BodyDir HeadDir)

ObjName refers to the name of the observed object, Distance and Direction
are self-explaining. DistChng and DirChng refers to information about the rela-
tive velocity of the target object. BodyDir and HeadDir are only included if the
observed object is another player and indicate the head and body direction of
the other player relative to the observing player. The visible sector of a player is
dependent on several parameters such as sense step, which determines the ba-
sic time step between received visible information, visible angle, i.e. the player’s
view cone, and visible distance being the number of meters a player is able to

see an object. If an object is within the distance but not in the view cone, then
the player can only perceive the type of the object (ball, player, goal etc.) but
not the exact name of the object. The player itself can influence the frequency
and quality of the information by changing ViewWidth and ViewQuality.

Finally, the body sensor reports the current “physical” status of the player.
This information is automatically sent to the player every sense body step. The
transmitted information contains different kinds of player-specific information,
such as: AmountOfSpeed, i.e. an approximation of the player’s current speed,
HeadDirection, i.e. the relative direction of the player’s head, and MoveCount,
i.e. a counter that indicates the number of move commands the player has exe-
cuted so far.

The Robocup Soccer Server supports a rich and flexible model for perception,
however the model is confined to the Robocup domain.

Model for Active Perception. In [89], D. Weyns, E. Steegmans and T. Holvoet
propose a generic model for active perception that focusses on software agents
situated in a virtual environment. Active perception enables an agent to direct
its perception at the most relevant aspects of the environment according to its
current task, facilitating better situation awareness and helping to keep pro-
cessing of perceived data under control. The authors state that their model is
generic in the sense that (1) it is independent of any domain or specific topology
of the environment; (2) it offers reusable core abstractions for active perception
in situated MASs, and (3) it offers support to model domain specific properties
of perception. Fig. 11 gives a high level overview of the model. The model de-
composes active perception in three functional modules: sensing, interpreting
and filtering.

Sensing maps the state of the environment onto a representation. A rep-
resentation is defined as a structured assembly of symbols that refers back to
something in the environment, i.e. external to the agent. The mapping of state to
representation depends on two factors. First the agent can select a set of foci.
Each focus is characterized by its sensibility, but may have other properties too,
such as an operating range, a resolution etc. Focus selection enables an agent
to direct its perception, it allows it to sense the environment only for specific
types of information. E.g., in an ant-like MAS, one agent may be interested in a
“visible” perception of his environment, while another agent may be interested
in “smelling” pheromones. To sense the desired type of information, both agents
have to select a different appropriate focus. Second, the representation of the
state is composed according to a set of perceptual laws. A perceptual law is
an expression that constrains the composition of a representation according to
the requirements of the modelled domain. As such, perceptual laws are an in-
strument for the designer to model domain specific constraints on perception.
Contrary to physical sensing that incorporates such constraints naturally, such
constraints have to be modelled explicitly in software MASs. Examples are a per-
ceptual law that specifies how an area behind an obstacle is out of the scope of a
perceiving agent or a law that under certain conditions adds some noise to per-
ception. Besides the modelling of domain specific sensing, perceptual laws also

permit the designer to introduce “synthetic” constraints on perception. E.g., for
reasons of efficiency one could introduce default limits for perception in order to
restrain the amount of information the agents have to process. It is important to
notice that the model supports parallel sensing of the environment. Since agents
can select different foci simultaneously, sensing typically results in a compound
representation of the environment. This property is important to enable agents
to sense their environment in a multi-mode manner.

The second functionality of active perception is interpretation. Interpretation
maps a representation to a percept. To interpret a representation, agents use
descriptions. Descriptions are blueprints that enable agents to extract percepts
from representations. Percepts describe the sensed environment in the form of
expressions that can be understood by the internal machinery of the agent. E.g.,
consider a representation that contains a number of similar objects in a certain
area. The agent that interprets this representation may use one description to
interpret the distinguished objects and another description to interpret the group
of objects as a cluster.

��������� ��� 	 ��
 ��� ��� ��
 � ��� �� �
 ��� � ���
�

�

������������� � ���

�� "!$# % &' �(*)' "+

, -�. /10 243�5�/

6�7�)' "+�8

9

�1
 :�
 �

; :�<=� �>�?4�

@ ����� ��������
 :�
 � >��

A ����?�� � ��
 � >����

B ��� ?��C��
 �

�� �
 ��� �

B ��� ?��C��
 �

Fig. 11. Model for active perception.

The third and final functionality of active perception is filtering. By selecting
a set of filters an agent is able to select only those data items of a percept that
match specific selection criteria. Each filter imposes conditions on the elements
of a percept. These conditions determine whether the elements of a percept can
pass the filter or not. E.g., an agent that has selected a focus to perceive its
environment visually and is currently interested in only the agents within its
perceptual range can select an appropriate filter that matches only agents for its
percept.

An important remark concerns dynamism of perception. In the context of
open systems, it is important that the components of the perception system can
change (or be changed) dynamically, by the engineer or by the agents them-
selves. According to the authors, in the model for active perception, the agent
can change the set of selected foci and filters dynamically according to its ongo-

ing tasks. On the other hand, perceptual laws are pre-defined by the designer.
As such, perceptual laws can not cope with unpredictable changes in the en-
vironment. To deal with run-time changes of domain specific constraints on
perception, the model can be extended with infrastructure to adapt the set of
perceptual laws (according to the changes in the system) or to replace laws
dynamically.

Models for Actions. The classical approach to deal with actions is based
on the (environmental) transformation of states, i.e. an action is defined as a
transition of state, that is, as an operator whose execution produces a new
state. From an observational point of view, the result of the behavior of an
agent -its action- is directly modelled by modifying the environmental state
variables. Whereas this approach suffices in classical AI where only one agent is
acting, it fails for MASs were several agents are acting concurrently on a shared
environment.

In [28], J. Ferber indicates a number of weaknesses of the classical approach
to action. A first limitation is that only very elementary actions can be described.
Complex composite actions can hardly be described. A harder problem is the
static nature of actions as state transformations. Dynamic processes in the envi-
ronment, such as the evaporation of pheromones, cannot be described, only the
transformation obtained by the application of actions can. Another drawback
is the lack of (flexible) support for simultaneous actions. E.g., to deal with a
possible collision, explicit tests (as well as their possible consequences) must be
added to the action code to verify whether two agents step to the same location
or not. While the MAS community always assumes that the actions of different
agents are carried out in parallel, the classical models for action do not offer
an adequate formal basis to represent collective actions. Finally, the approach
does not distinguish between the actions themselves (what the agents do) and
the consequence of the actions. Thus, traditional approaches to actions leave the
description of how actions happen aside and only take into account the results
of the actions.

Hereafter, we zoom in on two models for action that deal with these draw-
backs. First, we zoom in on the action model for situated MASs of Ferber and
Müller, described in [31]. Next, we look at the action model of Weyns and
Holvoet, described in [86], that builds upon the Ferber-Müller model. From the
scarce other work that is done on explicit models for action, we point to the work
of F. Okuyama, R. Bordini and A. da Rocha Costa [62], which presents an XML
based description language for actions and its effects, called ELMS (Environ-
ment Description Language for Multi-Agent Simulations). For more background
information on action models we refer to [28].

Synchronous Model for Action. The action model of J. Ferber and J.P. Müller
is based on three main principles. First, it distinguishes between influences and
reactions to influences. Influences come from inside the agents and are attempts
to modify the course of events in the world. Reactions, which result in state

changes, are produced by the environment by combining influences of all agents,
given the local state of the environment and the laws of the world. This clear
distinction between the products of the agents’ behavior and the reaction of the
environment enables the handling of simultaneous actions. Second, the model
decomposes the system dynamics in two parts, the dynamics of the environment
and the dynamics of the agents situated in the environment. Third, the model
describes the different dynamics of the MAS by means of abstract state machines.

Contrary to classical theories that only use the state of the world to describe
evolution in a MAS, in Ferber and Müller’s model evolution is described as the
transformation of what they call dynamical state. Such a dynamical state is
defined as a tuple consisting of the state of the environment and the set of influ-
ences simultaneously produced in the environment. The evolution of the MAS
is defined as a function called Cycle, that in each step transfers the dynamical
state to the next dynamical state. The Cycle function is further split in two
sub-functions, React and Exec. A set of laws of the world describe how the next
state of the world is computed given the previous state and the set of influences.
In addition, a set of operators is defined for the agents that allow them to pro-
duce influences in the environment. The React function takes the influences and
according to the current state of the world and its laws, produces the next state
of the world. The Exec function produces the influences in the next dynamical
state.

To describe the overall dynamics of the system, Ferber and Müller integrate
the React and Exec functions in the Cycle function. The Cycle function then
expresses the evolution of a MAS with n agents, i.e. in each cycle the function
produces (1) a new state of the environment as reaction of the environment to the
set of produced influences and (2) a new set of influences produced by the agents
and the dynamics of the environment. A global synchronizer is responsible for the
synchronization of the cyclic evolution of the MAS. This synchronizer ensures
that, “at a given moment, all the agents are treated as acting simultaneously,
and that the environment reacts only subsequently, before handing over to the
agents in an endless loop” [28].

The Ferber-Müller model deals with complex interactions in the environment
and between agents, solving the fundamental problem of simultaneous actions in
an elegant way. Besides, the model is applicable to purely reactive agents as well
as to agents with memory. The model is basically restricted to synchronous MAS
evolution, i.e. the MAS evolves at one global pace. Because the influences of all
agents are treated as if they happened together, each influence can potentially
interfere with any other influence.

Action Model with Regional Synchronization. As an alternative to the central-
ized synchronization model of Ferber-Müller, D. Weyns and T. Holvoet [86]
propose an action model based on regional synchronization. With regional syn-
chronization, there is no longer one global synchronizer, but instead each agent
is equipped with his own local synchronizer. Each synchronizer is responsible to
handle all synchronization issues for its associated agent. Before each action, the
agent’s synchronizer synchronizes with the other synchronizers in its neighbor-

hood. The result of the synchronization algorithm is the formation of a group
of agents, called a region. Agents of the same region act simultaneously, but
independent of the other agents of the MAS. An algorithm for regional synchro-
nization is discussed in detail in [85][88].

The action model that integrates regional synchronization, describes the dy-
namics of a MAS composed of a set of agents that exist in an environment and
act simultaneously based on their locality. Besides the actions invoked by the
agents, other activities may be going on in the environment too. In [86], such ac-
tivities are denoted as ongoing activities. Examples of ongoing activities are
a moving object or, in the context of ant-like systems, an evaporating pheromone.
Weyns and Holvoet use a different notion of dynamical state than the Ferber-
Müller model. Dynamical state is defined as a tuple consisting of the state of the
environment, and a set of consumptions. A consumption 4 is an effect from the
environment reserved for a particular agent. Such consumption results from the
reaction of the environment to the most recently produced influences for that
agent. When an agent “consumes” a consumption, the consumption can be ab-
sorbed by the agent (e.g. food that is turned into energy), the agent may simply
hold an element (e.g. an object he has picked up) or the consumption may affect
the agent’s state (e.g. the arm of a robot is wrenched through an external force).

The dynamics of the system is defined as the Cycle function that maps a
dynamical state to the next dynamical state. To clarify the activities invoked by
the agents A and the ongoing activities D in the environment on the one hand
and the reaction of the environment upon both activities on the other hand,
the Cycle function is split up in two parts. The first part is composed of two
sub-functions: ExecA and ApplyD. The second part is a single function React
that represents the reaction of the environment to the simultaneously performed
activity of agents and ongoing activities.

ExecA represents the activities invoked by the agents. The subset of simulta-
neous acting agents consume their consumptions and produce a set of influences
through the application of operators. The effects of the ongoing activities in the
environment are induced by the ApplyD function. Depending on the state of the
environment, the set of ongoing activities produce a set of influences in the en-
vironment through the application of a set of parallel composed operators that
are associated with the ongoing activities.

Since the activities invoked by the agents and the ongoing activities in the
environment happen simultaneously, the influences resulting from ApplyD and
ExecA have to be combined. The reaction of the environment to the simultane-
ously performed activity of the agents and the ongoing activities in the environ-
ment is described by the React function, i.e. in the state of the environment, for
the united sets of influences, and according to the set of parallel composed laws,
React determines the next state of the environment and produces a new set of
consumptions.

The evolution of the dynamical system is then defined as a sequence of cycles.
In each cycle the Cycle function transfers the dynamical state into the next

4 The notion of consumption is introduced by Ferber in [28].

dynamical state, i.e. it produces (1) a new state of the environment and (2) a
new set of consumptions. This twofold transfer is the result of the reaction of
the environment to the execution of a set of operators invoked by a subset of
agents that exist in the system together with the application of a set of operators
resulting from the ongoing activities in the environment, given the state of the
environment, a set of consumptions, and a set of laws of the world.

Comparison. In [86], Weyns and Holvoet compare the two discussed models
for action. Two obvious differences between the models are the definition of
dynamical state and the granularity of the groups of synchronized agents. The
models are compared from the perspective of the typical execution-reaction cycle
for situated MASs, graphically depicted in Fig. 12.

������� ��� ��	�
����� 	��

��� � ��������������� ��� � � ��	

��������� � ��	������ ����� ��� � ��	

��� ��� ��� ��������������� � ��	

� 	�� � ����	���������� � ����� � ��	

����������� � ��	� ��������� � ��	���!���� �

" !�	���#�� ��	�� $���� � ��	 � ��� 	��
%&��!�	��� '���� (�������
)��*����

" !�	���#�� ��	�� $���� � ��	 � ��� 	��
+���� ,���� -���� � ����
���*����

Fig. 12. Comparison of the two model for action based on the execution-reaction cycle.

In the Ferber-Müller model, dynamical state is composed of state and in-
fluences. As such, the dynamics of the MAS can be expressed as the reaction
of the environment to the set of influences and subsequently the production of
a new set of influences, given the state of the environment and the laws of the
world. So, the execution-reaction cycle runs from the point where the influences
are collected to the next point where influences are collected, indicated by the
“Synchronization point Ferber-Müller model” in Fig. 12. The start of the cycle
is initiated by the environment and as such the model takes an environment-
centered view on MAS evolution. The granularity of synchronously acting agents
in the Ferber-Müller is the whole group of agents in the MAS. All agents act
at one global pace, i.e. the influences of all agents in each cycle are considered
as happening simultaneously. Thus, in the Ferber-Müller model, all agents syn-
chronize in each passage of the execution-reaction cycle at the “Synchronization
point Ferber-Müller model” and act simultaneously.

In the regional synchronized model for action, dynamical state is composed
with state and consumptions. The dynamics of the MAS can be expressed as

the consummation of a subset of consumptions and the production of a set of
influences to which the environment subsequently reacts (according to the ap-
plicable laws) by updating its state and producing a new set of consumptions.
So in the Weyns-Holvoet model the execution-reaction cycle runs from the point
where the reactions are calculated to the next point where the reactions are
calculated, indicated by the “Synchronization point Weyns-Holvoet model” in
Fig. 12. Here the agents (on a per region basis) take the initiative to start their
cycles, and as such the model takes an agent-centered view of MAS evolution.
In this model agents of different regions can consume their consumptions in-
dependently and run asynchronously through the execution-reaction cycle. In
the Weyns-Holvoet model, the granularity of synchronous acting agents are re-
gions of synchronized agents. Influences of agents within a region are considered
as happening simultaneously, however different regions can act asynchronously.
Thus, in the Weyns-Holvoet model, in each passage of the execution-reaction
cycle agents synchronize at the “Synchronization point Weyns-Holvoet model”
and form regions that act simultaneously.

Task Environments. In [93], M. Wooldridge defines a task environment as
a tuple < Env, Ψ >. An environment Env is a triple Env = < E, e0, τ >, where
E is a set of environment states, e0 ∈ E is an initial state, and τ is a state
transformer function. Ψ : R → {0, 1} is a predicate over runs. A run r ∈ R of
an agent in an environment is a sequence of interleaved environment states and
actions, i.e.:

r : e0
α0→ e1

α1→ e2
α2→ . . .

αu−1→ eu

with ei ∈ E the set of environment states and αj ∈ Ac the set of actions
available to the agents. A task environment thus specifies:

– The properties of the system the agent will inhabit, i..e. the environment
Env.

– The criteria by which an agent either failed or succeeded in its task, i.e. the
specification Ψ .

According to Wooldridge, the most common types of tasks are achievement
tasks, those of the form “achieve a state of affairs”, and maintenance tasks
of the form “maintain a state of affairs”. An achievement task is specified by
a number of goal states. The agent is required to bring about one of these
goal states. A well-known achievement task environment is the blocks world,
see e.g. [73]. A maintenance task environment is a task environment in which
an agent is required to keep (or avoid) some state of affairs. A simple example
is a software agent which task it is to maintain the set of available services
in a particular context. Complex tasks might be specified by combinations of
achievement and maintenance tasks.

A well-known model for task environments is the TAEMS framework (Task
Analysis, Environment Modelling, and Simulation), developed by K. Decker and

V. Lesser [43]. TAEMS can be used to specify, reason about, analyze, and sim-
ulate task environments. TAEMS is independent of the agent architecture and
the inherent nature of the modelled domain. For details, we refer to [80].

3.4 Environments in Agent-Oriented Methodologies

Popular methodologies such as Message [25], Prometheus [66] or Tropos [12] offer
support for some basic elements of the environment, however they do not consider
the environment as a first-class entity. To our knowledge, the only methodology
for analysis and design of MASs that considers the environment as a primary
abstraction is the extended version of Gaia described in [94]. F. Zambonelli and
his colleagues state that “identifying and modelling the environment involves
determining all the entities and resources that the MAS can exploit, control
or consume when it is working towards the achievement of the organizational
goal.” The authors distinguish between computational (or virtual) environments
(e.g. a Web site) and physical environments (e.g. a manufacturing pipeline). A
list of issues is put forward that has to be taken into consideration during the
environmental modelling phase:

1. What are the environmental resources that agents can effectively sense and
effect? The environment model should distinguish between the existence and
the (possibly constrained) accessibility of a resource.

2. How should the agent perceive the environment? This question refers to the
representation of the environment according to given circumstances.

3. What of the existing scenario should be characterized as part of the envi-
ronment? The distinction between the agents and the environment is not
always clear cut. For dynamic environmental resources, the designer has to
decide whether they should be modelled as agents or as dynamic resources
in the environment.

In Gaia, the identification of the environmental model is part of the analysis
phase and is intended to yield an abstract, computational representation of the
environment in which the MAS will be situated. During the subsequent archi-
tectural design phase, the output of the environmental model (together with a
primary role model, a preliminary interactions model and a set of organizational
rules) is integrated in the system’s organizational structure that includes the
real-world organization (if any) in which the MAS is situated. The organiza-
tional structure is then used to complete the preliminary role and interaction
models. During the detailed (and final) design phase, the definition of the agent
model and services model are derived from the completed role and interaction
models. According to the authors, Gaia does not commit itself to specific tech-
niques for modelling roles, environment and interactions etc. The outcome of the
Gaia process is a technology-neutral specification that should be easily imple-
mented using an appropriate agent-programming framework of a modern object
or a component-based framework. With respect to the development of the envi-
ronmental model, the authors state “it is difficult to provide general modelling

abstractions and general techniques because the environments for different ap-
plications can be very different in nature and also because they are somehow
related to the underlying technology.” Therefore the authors propose a “rea-
sonable general approach (without the ambition to be universal), and treat the
environment in terms of abstract computational resources, such as variables or
tuples, made available to the agents for sensing (e.g. reading their values), for
affecting (e.g. changing their values) and for consuming (e.g. extracting them
from the environment).” As such the environmental model is represented as a
list of resources, each associated with a symbolic name, characterized by the
type of actions that the agent can perform on it and possibly associated with
additional textual comments and descriptions. A notation is used that is based
on the Fusion [19] notation, e.g. :

reads V ar1 //readable resource of the environment
V ar2 //another readable resource

changes V ar3 //a variable that can also be changed by the agent

The authors indicate that “in realistic development scenarios, the analyst would
choose to provide a more detailed and structured view of environmental re-
sources.” In particular, specific issues related to the modelling of environmental
resources may be required to enrich/complement the basic notation. Some ex-
amples are:

– the representation of the logical/physical relationships between the resources
in the environment. A graphical schema may be of help to model and to
identify how and from where a resource can be accessed.

– the dynamics of the environment. The authors propose additional annota-
tions to the basic notation to deal with this issue.

– dealing with a priori unknown availability of resources. The authors suggest
an associative access model as the Linda tuple space to suit this purpose.

To deal with active components (services and computer-based systems) as
part of the operational environment, the authors give some general guidelines.
When the role of the active components is simply that of a data provider (e.g. a
Web server or a computer-based sensor), they should be modelled in terms of
resources. However, if the environment contains components that are capable
to perform complex operations (e.g. active databases or active control systems),
the components should not be treated as part of the environment but, instead,
they should be agentified.

4 Concerns for Environments

The survey described in the previous section shows us that the environment
includes a broad diversity of functionalities. In this section we extract a number
of core concerns for environments from the survey. We focus on concerns that
represent logical functionalities of the environment.

As we already mentioned in the introduction section, researchers have highly
different views on the concept of environment, causing a lot of confusing what
the environment comprises. As a start to disentangle the confusion, we propose
a 3-tier model for MASs5 as depicted in Fig. 13.

��
��
�� �� �
	
�� �� �

��
��
���� �
��� �
�

��
��� �
���
��
��� !
�
� ! "

#%$'& (*),+ -/. 0 1 + 2'3 & + 4'5 & 4,+ $

6*7*8:9,+ 2,;<$'(*),+ -

6<= >'>,? $ (@2,+ $
AB= + & 4 2,? 6C2'5 D'= 0 $,3

ECF $,+ 2 & = 0 G/8IH 3 & $,;

7*F'F'? = 5 2'& =)J0LKI0 M'= +),0,;<$,0 &7BG'$,0 & 3

NO)'3 & NO)'3 & N%)'3 &

Fig. 13. 3-Tier model for MASs.

The MAS Application layer typically consists of two sub-layers: (1) the do-
main specific application logic containing the Application Environment with
the embedded Agents, and (2) a supporting MAS framework that offers high-
level programming abstractions for the MAS developer such as support for com-
munication or a pheromone infrastructure. The MAS Application runs on top of
an “Execution Platform” that typically is composed of a generic (distributed)
Middleware infrastructure and Virtual Machines that execute on top of an Op-
erating System. The Execution Platform is mapped onto the “Physical Infras-
tructure” that comprises the hosts with processors and the connecting Network
Infrastructure.

In [51], K. Mertens and his colleagues identify two levels of environments:
the “application environment” and the “execution environment.” According to
the authors, the application environment provides the context for the agents to
perform their actions, to communicate with one another and to acquire informa-
tion about the problem they have to solve. The application environment is the
5 The focus of the proposed model is first of all on software agents.

translation of the problem situation, e.g. a grid world with tiles and holes for the
Tileworld or a graph structure of locations with accessible files for a peer-to-peer
file sharing system. The execution environment is the platform that is used to
execute the MAS. The execution environment is mapped onto the physical lay-
out of the hardware, e.g. a JVM that is mapped onto a single host or a number
of JVMs mapped on different hosts. Whereas in Mertens’ model of the environ-
ment, the agents are externally connected to the application environment, we
have placed the agents inside the Application Environment emphasizing (1) that
agents are inextricably bound up with their environment, and (2) that agents
together with the Application Environment form an abstraction layer (and run)
on top of an Execution Platform that maps onto a Physical Infrastructure.

The concerns of the environment we discuss in this section are located in the
MAS Application layer, i.e. the top layer in Fig. 13. We distinguish between two
classes of concerns: concerns related to the structure of the environment and
concerns related to activity in the environment. Several concerns may seem to
be quite natural functionalities for environments. We want to stress, however,
that in practice the concerns we put forward are often dealt with in an implicit
or ad hoc way. Our goal is to make the logical functionalities explicit, i.e. as
concerns of environments as first-class entities. Not every concern we discuss is
relevant for every possible MAS environment. The set of concerns should rather
be viewed as a portfolio of logical functionalities for which the environment may
have a “natural responsibility.” In practice, it is up to the designer to decide
which concerns should be integrated in the environment model for the domain
at hand. As a final remark, we want to underline that the proposed list of
concerns is not intended to be complete. Our goal is to give an initial impetus
to explore the rich potential of environments for MASs. In the next section we
discuss a number of research challenges that may serve as a source of inspiration
for further exploration.

4.1 Concerns Related to the Structure of the Environment.

We start with discussing a number of concerns related to structural features of
the environment. Successively we look at structuring, resources and ontology.

Structuring. Agents and objects of a MAS share a common environment. The
agents as well as the objects are dynamically interrelated to each other. It is
the role of the environment to define the rules under which these relationships
can exist and can evolve. As such the environment acts as a structuring entity
for the MAS. This structuring can take different forms: it can be spatial, see
e.g. [5][13][7][54], but also organizational, e.g. [30][94], or the environment can
be structured as a mediating entity as e.g. in [16][57][74]. Structuring is a fun-
damental functionality of the environment. The structure of the environment is
a design choice that depends upon the requirements of the domain at hand, and
should be dealt with explicitly.

Resources. Besides the agents, an environment typically comprises different
types of objects or (logical) resources. It is a responsibility of the environment
to control the access to the resources. In general, resources can be read/perceived,
writed/modified or consumed by agents. The extent to which agents are able to
access a particular resource may depend on several factors such as the nature
of the resource itself, the resource’s current relationship to other resources or
agents, the neighborhood of the agent to the resource, the capabilities of the
agent etc. In general, the access to the resources can be described by a set of
laws defined by the domain at hand, see e.g. [28][86].

Ontology. In [17], P. Chang and his colleagues state: “agents must be able
to understand their environment.” Therefore, an environment must specify an
ontology that provides a conceptual representation of the domain at hand. The
ontology must cover the structure of the environment as well as the observ-
able characteristics of objects, resources and agents, and their interrelationships.
For symbolically-oriented agents, an explicit ontology should be available to the
agents to enable them to interpret their environment and reason about it. For
reactive/behavior-based/stigmergic agents, the designer/developer applies the
ontology to encode the agents’ internal structures. As such, these kinds of agents
have an implicit ontology that enables them to make decisions.

4.2 Concerns Related to the Activity in the Environment.

Next we discuss a number of concerns related to activity performed in the envi-
ronment. First we look at concerns related to activity produced by the agents:
communication, actions and perception. We conclude with the responsibilities of
the environment related to activity produced by resources or objects.

Communication. As stated in the state-of-the-art overview, communication is
inextricably bound up with MASs. Communication can take very different forms,
ranging from direct message transfer over anonymous mediated communication
via a shared space to indirect communication through stigmergy. Each of these
types of communication has its own pros and cons. Designers should be aware
of the potency as well as the impact of each type of communication for their
solution. Selecting a particular type of communication should be an architectural
choice, determined by the requirements of the problem domain at hand.

Actions. Dealing with actions in MASs in general is a very complex matter. If
we allow multiple agents to act in the environment in parallel, we need explicit
models to deal with actions that range far beyond the scope of state changes
based on simple individual manipulation of objects. More than a decade ago,
S. Hanks, M. Pollack and P. Cohen already raised in [42] the problem of “how the
effects of simultaneous actions differ from the effects of those actions performed
sequentially.” In the state-of-the-art section we discussed a couple of models

for action for MASs. Central to these models are (1) the distinction between
the products of the agents’ behavior on the one hand and the reaction of the
environment on the other hand, and (2) a set of explicitly defined laws that
govern the effects of the actions of the agents. These models resolve a number
of fundamental issues with respect to actions in MASs, however, dealing with
actions in MAS needs extensive further research to grow into full maturity.

Perception. Perception implies that the environment must be an observable en-
tity. Agents must be able to inspect their neighborhood. In general, agents should
be able to inspect the environment according to their current preferences. In the
state-of-the-art overview, we discussed several examples of selective perception,
such as “foci” proposed in [89] or “views” as proposed in [47] and [74]. Percep-
tion is constrained not only by agents’ capabilities, but also by environmental
properties (which in fact reflect properties of the problem domain). In [89] the
environmental constraints are made explicit in the form of “perceptual laws”.
As for action models, there is still a wide (unexplored) field open to the concern
of perception.

Environmental Processes. Besides the activity of the agents, resources or
objects can produce activity in the environment too. A digital pheromone, for
example, is a dynamic structure as it aggregates with additional pheromone that
is dropped, it diffuses in space and it evaporates over time. Other examples are
a rolling ball that moves on, or the local temperature that evolves over time.
Maintaining such dynamics is an important functionality of the environment,
see e.g. [13][86].

5 Challenges

To conclude this paper, we list a number of research challenges that, in our
opinion, are important for the further exploration of environments for MAS. We
have divided the list in three categories: issues with respect to the definition
and scope of environments, issues with respect to the interrelationship between
agents and their environment, and finally issues concerning the engineering of
environments for MASs.

5.1 Definition and Scope of Environments

In Sect. 2, we noted that the term “environment” is vague and ill-defined in
relation to MASs. An ongoing research challenge will be developing a clearer
understanding of what we mean by an “environment.” Defining anything requires
relating it to other entities. In the case of environments, their definition requires
relating them first to the agents that inhabit them, then to one another, and
finally to different application domains.

Environments and Agents. What is the difference between the environment
and the agents that inhabit it? A wide variety of distinctions have been proposed.
Here are only a few examples:

– What the developer writes for a specific application are the agents. The soft-
ware or hardware infrastructure on which the agents run is the environment.

– The environment provides the logical context for the agents to perform their
actions, to communicate with one another and to acquire information about
the problem they have to solve.

– Agents are autonomous, in that they proactively pursue objectives. The en-
vironment has no objectives.

– In a refinement of the previous suggestion, agents have achievement goals,
while the environment can have only maintenance goals.

– The environment is extensive and unbounded, while the agents are bounded
and localized in the environment.

– The environment embodies the given dynamics or “laws of physics” of a
problem domain. The agents react to those laws in contingent ways.

– The environment is open to inspection. Individual agents are opaque. In
other words, the environment implements what everyone is presumed to be
able to see about the domain, while agents hide local decisions that should
not be open to direct inspection or manipulation by others.

Each of these distinctions (and others that might be proposed) will yield different
conclusions about the relative responsibilities of the agents and the environment,
how they are mapped onto a given problem domain, and the life cycle of the de-
sign and implementation of a real system. These distinctions deserve formaliza-
tion and analysis. Certainly, they are not orthogonal to one another. How many
truly distinct views are there of the relation between agent and environment?

Taxonomy of Environments. With a formal understanding of the different
ways that agents can be related to their environment, we can then classify en-
vironments with respect to one another. This level of understanding will enable
researchers to be sure that they are talking about the same kind of environment
in describing their systems and arguing for the relative merits of alternative
approaches.

Environments and Domains. One reason that definitions of “environment”
have proliferated is that MASs have been applied to a wide range of different
applications domains, which impose differing constraints and afford different
resources for interactions among agents. For example, it is natural for designers
of a MAS intended to provide packet routing and quality of service management
on a communications network to associate the environment with the existing
infrastructure of hardware and software that makes up the network and on which
the agents will have to execute. In another domain, such as an agent-based
simulation of an ecosystem, the environment as well as the agents will be custom-
built for the application, and the distinction between agent and environment

will be driven more by the differences between bounded vs. unbounded scope
and given vs. contingent dynamics. In yet another domain, such as electronic
commerce, the distinction between a transparent environment and opaque agents
that can hide proprietary details of individual participants becomes paramount.

With a taxonomy of environments in hand, we can begin to develop system-
atic principles for relating a specific kind of environment to a particular domain.
A number of research questions address the question of the relation between a
taxonomy of environments and a taxonomy of domains. These include:

– Are there domains that do not need an explicit distinction between environ-
ment and agent?

– Are there domains that are particularly well suited to this distinction?
– What features of domains make them particularly amenable or hostile to

this distinction?
– Are there particular functions of environments that are valuable regardless

of the application domain?
– In general, how can a specification of a domain be mapped to a specifica-

tion of a particular environment that will best support MASs serving that
domain?

5.2 Agent-Environment Interrelationship

As our understanding of the space of possible environments becomes more re-
fined, we need to explore in more detail the relation between agents and their
environments. This relationship can be elaborated along at least three dimen-
sions: architecture, protocol, and topology.

Architecture. In many applications, both agents and their environment will
be software running on some physical computing system. What is the relation-
ship between the agent software, the environment software, and the software and
hardware that make up the computational substrate? In some cases, the agents
may be completely dependent on the environment for their access to compu-
tational services, so that the environment (whatever other services it provides)
becomes an “operating system” for the agents. In other cases, agents and the en-
vironment may have independent access to computational services (perhaps on
different physical CPU’s, as in robotic applications), and will interact with one
another as computational peers. In this latter case, the question of how to dis-
tinguish the agents from the environment becomes particularly important, since
at one level the environment is just another program executing architecturally
at the same level as the agents.

These two cases are not mutually exclusive. One can imagine an architecture
in which agents and environment execute on separate CPU’s, but in which some
services (such as inter-agent communications) are only available through the
shared environment. Still other configurations are possible, such as the case
of a purely physical two-dimensional arena that provides the environment for
soccer robots. The exploration of architectural alternatives for relating agents to
environments offers ample scope for a new discipline within software engineering.

Protocol. By “protocol,” we mean the set of conventions by which agents
interact with the environment. The issue of protocol governs the degree to which
an environment is open to heterogeneous agents, or to agents that are designed
without advance knowledge of the environment. Protocols can vary along at least
two dimensions: physical vs. digital and natural vs. arbitrary.

– In a physical protocol, agents must have physical sensors and effectors that
can change and sense the state of the physical world. In a digital protocol,
agents need only a way to read and write a register, such as a message
mailbox or a communication channel.

– In a natural protocol, the structure of the interaction is constrained by the
broader laws of physics, and any agent that complies with these laws can
interact. In an arbitrary protocol, the signs exchanged by the agents are
defined by some engineered language that each agent must understand in
order to interact. The more natural the protocol, the more open the system
will be to other agents that were constructed without detailed knowledge of
the environment.

All four combinations of these dimensions are possible, illustrated in Tab. 1.

��������� 	�
�� � � �� �
��

��
�� ���
�� ��������� ��� � ��� �! �"��$#!%�&�%�' '$� ��()%�� *�� #���+ �
����%�',+ ��%!�$��-,-,���.%�� ����%�/

���!%���������� � �$+ ����� ��-,��0�0!"���+ -,%�� �!����%��,#�%�� ��*
-,#�%�������',*���� ��-,� ��()#���� #����.���.������� #���� ��+ ��� � %�1 1 + -
���!� #���-,#�%�������',2 �,+ 0�+ ' %��.� �!3�� #���� ����� 4 /�5 ��+ �
"�������-,���,�$%�� ��1 ���.� #��!%���������� ��"���*���� �$� %���*�� #��
� � %�1 1 + -�� #�%���+ ��*���� ��-,� �,/

6�� 7�� � �
�� � 8 #�������%�',+ ��0�%�� 9,��*!&���%�:,+ �$"�%�',� %�� �����
��1�%�*����,+ ����%�� ��*!-,��' ��� /

��������� ����;,-,#�%������!<�=�>!?�0!���$�,%�������� #�� ��"���#
� #�������:,+ � ����0������ /

Table 1. Taxonomy of agent-environment protocols, with examples.

This taxonomy of agent-environment protocols is very preliminary, and offers
several directions for further research:

– What other dimensions distinguish the different ways in which agents inter-
act with their environments?

– How do those dimensions impact the degree to which the system is open or
closed?

– What responsibilities does the environment have, and what services can it
provide, to increase its openness to heterogeneous agents?

– Alternatively, in applications that must be highly secure, how can environ-
ments ensure that only authorized agents have access to their services?

Topology. One characteristic of many environments is that they define a topol-
ogy within which agents exist locally. A soccer agent is at only one location
within the arena; a network agent lives on a specific router; an information re-
trieval agent visits only one database at a time. Such topological constraints can
simplify agent reasoning (by restricting the range of information an agent must
consider to that which is locally available) and system deployment (by restrict-
ing interaction to nearby entities and thus enabling the use of low-bandwidth
communications), but may also pose challenges in achieving timely, long-range
interactions. Research questions involving the relation between agents and the
environment’s topology include:

– What topologies does each kind of environment naturally induce? In robotics,
environments naturally conform to low-dimensional manifolds, such as the
surface of the earth or (for flying robots) the atmosphere. Computer networks
cannot be mapped to such manifolds, but are typically power-law graphs [8]
or more complex structures [3]. In some information retrieval applications,
the topology may conform to the semantic structure of natural language [84].

– What does it mean for an agent to be “local” in an environment? In other
words, how should the topology constrain agent actions? In some cases,
agents may be able to access information only about their current location
in the topology, but may be able to communicate with other agents that are
remote from them. In other cases, direct inter-agent communications may
be restricted to agents at the same location.

– What constraints do different topologies impose on agent interactions with
the environment, and with one another through the environment? The ex-
istence of such phenomena as small-world shortcuts or highly varying node
degrees can lead to interactions that vary widely from what our intuitions
lead us to expect in low-dimensional manifolds or planar graphs.

– What is the environment’s responsibility with regard to locality? Is it re-
sponsible, for instance, to enforce locality of agent interaction? Should all
agents be equally localized, or can agents have different degrees of scope?
For example, in a tree-structured environment, one can imagine that each
agent can interact directly with all agents at its nodes and at lower-level
nodes. How should agent scope be related to environment structure?

5.3 Engineering Environments

The previous two areas of research challenges provide ample scope for theoretical
exploration, and will lead to many intriguing intellectual issues. The ultimate
social benefit from these insights, though, requires their application to concrete
problems, and the challenge of engineering environments for such problems will
pose significant challenges in both the design and implementation of practical
systems.

Design. Disciplined design practices for agents in general are in their infancy,
and extending these techniques to environments greatly increases the scope of

work to be done. A first step is gaining recognition for environments as first-class
entities in MAS design. A number of the points discussed above directly impact
design, such as how different sorts of domains map to different types of environ-
ments, and how agents are related to their environments. The results of studies
in these areas need to be captured in tools such as description languages and
other representational mechanisms that will enable engineers to communicate
unambiguously about alternative designs. In many cases, the environment may
incorporate physical as well as digital elements, and design tools need to support
the integration of these domains.

Implementation. The growth of agent-oriented programming led to the prolif-
eration of frameworks and development platforms for agents. Similarly, growing
recognition of the importance of environments will stimulate extensions to these
tools, or even the development of new tools that can support environments within
which agents from different platforms can interact. Inevitably, embodying the
services of an environment in a platform will collapse some of the dimensions we
have explored in the previous paragraphs. For example, it is unlikely that a single
platform will support all of the architectural options discussed above. The suc-
cess of rival platforms in the market will itself be an important tool to assessing
which of these dimensions are most important for practical use, and which can
safely be removed from the developer’s inventory. A critical question for imple-
mentation concerns the relationship between the logical and physical distribution
of the environment. In some cases, it will make sense for an environment that
represents a physically distributed topology to be distributed physically itself,
while in other cases many of the benefits of the agent-environment distinction
can be retained even if the environment is hosted on a single machine.

In sum, recognizing the distinction between agent and environment opens up
new horizons for research and development comparable to those inaugurated by
the development of the agent metaphor itself in the 1990’s. These suggestions
may help to inspire the next generation of researchers to explore directions that,
at this point, seem the most promising. A measure of their success will be the de-
gree to which the natural momentum of the research community overtakes them
and leads to a self-sustaining body of science and technology that recognizes
environments as first–class entities in the study of multi-agent systems.

6 Conclusions

Environments for MASs are too often assigned limited responsibilities, overlook-
ing a rich potential for the paradigm of MASs. In this paper we have given a
survey on the use of environments for MASs. From the study we learned that
environments include a broad diversity of functionalities.

We used the insights from the survey to extract a first set of general concerns
for environments, each concern representing a particular logical functionality for
environments. A fundamental concern of the environment is that it structures
the MAS. The environmental structuring can take different forms, such as spacial

or organizational. Since agents must be able to understand their environment, an
explicit ontology is required that covers the structure of the environment as well
as the observable characteristics of objects, resources and agents, and their inter-
relationships. Besides structural aspects, we identified a set of concerns related
to the activity in the environment. The most common activity of agents in the
environment is communication. We discussed several types of communication for
MASs. The designer should be aware of the potency as well as the impact of each
form of communication and select the appropriate form according to the require-
ments of the problem domain. Next to communication, agents typically perform
actions in the environment. It is the responsibility of the environment to define
the rules for, and enforce the effects of, the agents’ actions. Agents must also be
able to perceive their environment. As such, the environment is an observable
entity, contrary to the agents themselves. The environment should enable agents
to observe their neighborhood according to their preferences, however, percep-
tion is constrained by environmental properties that reflect limitations in the
modelled domain. Finally, we clarified that agents are not the only entities that
can produce activity in the environment. Objects or resources too may be active
in the environment (for example, a pheromone or a moving object). Maintaining
such dynamics is an important responsibility of the environment.

The set of concerns we have proposed is not complete, but intended as a start
to make the potential responsibilities for environments for MAS explicit. We
listed a number of research challenges that may serve as a source of inspiration
for further exploration.

We hope that this paper may contribute to extend the exploration of envi-
ronments for MASs. Environments carry a rich potential for the paradigm of
MASs. However, as long as researchers and software developers limit the func-
tionality of environments, or deal with its responsibilities in an implicit or ad
hoc manner, the full potential of environments will not be revealed. To discover
and exploit the full potential of environments, we must treat environments as
first-class entities. Recognizing environments as first-class entities opens up new
horizons for research and development in MASs.

7 Acknowledgments

We would like to thank the attendees of the First International Workshop on
Environments for Multiagent Systems [26] for the valuable discussions that have
contribute to the work presented in this paper. A special word of appreciation
also goes to Kurt Schelfthout, Alexander Helleboogh and Guiseppe Vizzari for
their kind cooperation.

References

1. Aglets: http://www.trl.ibm.com/aglets/

2. Ajanta: http://www.cs.umn.edu/Ajanta/home.html

3. Alderson, D., Doyle, J., Govindan, R., Willinger, W.: Toward an Optimization-
Driven Framework for Designing and Generating Realistic Internet Topologies.
ACM SIGCOMM Computer Communications Review (2003)

4. Amiguet, M., Müller, J.P., Baez-Barranco, J.A., Nagy, A.: The MOCA Platform.
Multi-Agent-Based Simulation II, Lecture Notes in Computer Science, Vol. 2581.
Springer-Verlag, Berlin Heidelberg New York (2003)

5. Bandini, S., Manzoni S., Simone C.: Dealing with Space in Multi-Agent Systems:
a Model for Situated MAS. Second International Joint Conference on Autonomous
Agents and Multiagent Systems, ACM Press, Bologna, Italy (2002)

6. Bandini, S., Manzoni, S., Simone, C.: Heterogeneous agents situated in heteroge-
neous spaces. Applied Artificial Intelligence, Taylor & Francis, 16(9-10) (2002)

7. Bandini, S., Manzoni, S., Vizzari, G.: A Spatially Dependant Communication
Model for Ubiquitous Systems. First International Workshop on Environments
for Multiagent Systems, New York (2004)

8. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science,
286(509) (1999)

9. Bellifemine, F., Poggi, A., Rimassa, G.: Jade, A FIPA-compliant Agent Framework.
4th International Conference on Practical Application of Intelligent Agents and
Multi-Agent Technology, (1999)

10. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. SFI Studies in the Sciences of Complexity, Oxford University
Press (1999)

11. Bonabeau, E., Henaux, F., Guérin, S., Snyers, D., Kuntz P., Theraulaz, G.: Routing
in Telecommunications Networks with “Smart” Ant-Like Agents. Intelligent Agents
for Telecommunications Applications, IATA (1998)

12. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perrini, A.: Tropos:
an Agent-Oriented Software Development Methodology. Technical Report DIT-
02-0015, University of Trento, Italy (2002)

13. Brueckner, S.: Return from the Ant. PhD Dissertation, Humboldt-Universität
Berlin, Germany (2000)

14. Busi, N., Zavattaro, G.: On the Serializability of Transactions in JavaSpaces. Elec-
tronic Notes Theoretical Computer Science, Vol. 54 (2001)

15. Cabri, G., Leonardi L., Zambonelli, F.: MARS: a Programmable Coordination
Architectue for Mobile Agents. IEEE Internet Computing (2000)

16. Gelernter, D., Carrierro, D.: Coordination Languages and their Significance. Com-
munications of the ACM, 35(2) (1992)

17. Chang, P., Chen, K., Chien, Y., Kao, E., Soo, V.: From Reality to Mind: A Cog-
nitive Middle Layer of Environment Concepts for Believable Agents. First Inter-
national Workshop on Environments for Multiagent Systems, New York, 2004.

18. Cheyer, A., Martin, D.: The Open Agent Architecture. Journal of Autonomous
Agents and Multi-Agent Systems, 4(1) (2001)

19. Coleman, D., Arnold, P., Bodoff, S., Dollin, D., Hayes, H., Jeremas, P.: Object Ori-
ented Development: the Fusion Method. Prentice-Hall International, Hemel Hamp-
stead, UK (1994)

20. Corkill, D.: Collaborating Software. International Lisp Conference, New York
(2003)

21. Demazeau, Y., Rocha Costa, A.C.: Populations and organizations in open multi-
agent systems. 1st National Symposium on Parallel and Distributed AI (1996)

22. Dijkstra, J., Timmermans, H.J.P., Jessurun, A.J.: A Multi–Agent Cellular Au-
tomata System for Visualising Simulated Pedestrian Activity. 4th International
Conference on Cellular Automata for Research and Industry (2001)

23. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a Colony
of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part
B, 26(1) (1996)

24. Englemore, R.S., Morgan, A. (eds.): Blackboard Systems. Addison-Wesley (1988)

25. Evans, R., Kearney, P., Caire, G., Garijo, F., Gomez Sanz, J., Pavon, J., Leal, F.,
Chainho, P., Massonet, P.: MESSAGE: Methodology for Engineering Systems of
Software Agents. EURESCOM, EDIN 0223-0907 (2001)

26. E4MAS: First International Workshop on Environments for Multiagent Systems.
New York (2004) http://www.cs.kuleuven.ac.be/˜ distrinet/events/e4mas/

27. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)

28. Ferber, J.: Multi-Agent Systems, An Introduction to Distributed Artificial Intelli-
gence. Addison-Wesley, ISBN 0-201-36048-9, Great Britain (1999)

29. Ferber, J., Gutknecht, O.: A Meta-Model for the Analysis and Design of Orga-
nizations in Multi-Agent Systems. 3rd International Conference on Multi Agent
Systems, Paris, France (1998)

30. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: an Organi-
zational View of Multi-Agent Systems. Agent-Oriented Software Engineering IV.
Springer-Verlag, Berlin Heidelberg New York (2003)

31. Ferber, J., Müller, J.P.: Influences and Reaction: a Model of Situated Multiagent
Systems. 2th International Conference on Multi-agent Systems, Japan, AAAI Press
(1996)

32. Ferber, J., Michel, F.: Integrating Environments with Organization-Centered Mul-
tiagent Systems, Environments for Multiagent Systems, Weyns, D., Parunak,
H.V.D, Michel, F. (Eds.), Lecture Notes in Artificial Intelligence Vol. 3477, Berlin
Heidelberg New York, Springer (2005)

33. Finin, T., Labrou, Y., Mayfield, J.: KQLM as an Agent Communication Language.
Software Agents, MIT Press (1997)

34. FIPA: Foundation for Intelligent Physical Agents. http://www.fipa.org/

35. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces: Principles, Patterns an Practice.
The Jini Technology Series, Addison-Wesley (1999)

36. Free On-Line Dictionary of Computing. http://foldoc.doc.ic.ac.uk/foldoc/index.html

37. Gasser, L.: Perspectives on Organizations in Multi-Agent Systems, Multi-Agent
Systems and Applications: 9th ECCAI Advanced Course ACAI 2001 and Agent
Link’s 3rd European Agent Systems Summer School, EASSS. Luck, M., Mark, V.,
Stpnkov, O., Trappl, R. (Eds.), Lecture Notes in Artificial Intelligence, Vol. 2086.
Berlin Heidelberg New York, Springer (2001)

38. Grassé, P.P.: La Reconstruction du nid et les Coordinations Inter-Individuelles
chez Bellicositermes Natalensis et Cubitermes sp. La theorie de la Stigmergie: Essai
d’interpretation du Comportement des Termites Constructeurs. Insectes Sociaux,
Vol. 6 (1959)

39. Grasshopper: http://www.grasshopper.de/

40. Guérin, S.: Optimisation multiagents en environment dynamic: application au
routage dans les réseaux de télécommunications. Dissertation, University of Rennes
I and Ecole Nationale Supérieure des Télécommunications de Bretange (1997)

41. Gutknecht, O., Ferber, J., Michel, F.: Integrating tools and infrastructures for
generic multi-agent systems, 5th International Conference on Autonomous agents,
Montreal, Quebec, Canada, ACM Press (2001)

42. Hanks, S., Pollack, M., Cohen, P.: Benchmarks, Testbeds, Controlled Experimen-
tation, and the Design of Agent Architectures, AI Magazine, 14(4) (1993)

43. Horling, B., Lesser, V., Vincent, R., Wagner, T., Raja, A., Zhang, S., Decker,
K., Garvey, A.: The Taems White Paper, Multi-Agent Systems Lab University of
Massachusetts.

44. Howden, W., Ronnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents,
http://www.agent-software.com/shared/home/

45. Huhns, M.N., Stephens, L.M.: Multi-Agent Systems and Societies of Agents.
G. Weiss (ed.), Multi-agent Systems, ISBN 0-262-23203-0, MIT press (1999)

46. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence,
117(2), Elsevier Science Publishers (2000)

47. Julien, C., Roman, G.C.: Egocentric Context-Aware Programming in Ad Hoc Mo-
bile Environments. 10th International Symposium on the Foundations of Software
Engineering, Charleston, USA (2002)

48. Mamei, M., Leonardi, L., Zambonelli, F.: Co-Fields: Towards a Unifying Approach
to the Engineering of Swarm Intelligent Systems. Lecture Notes in Artificial Intel-
ligence Vol. 2577. Springer-Verlag, Berling Heidelberg New York (2003)

49. Mamei, M., Zambonelli, F., Leonardi, L.: Tuples On The Air: A Middleware for
Context-Aware Computing in Dynamic Networks. ICDCS Workshops (2003)

50. Manzoni, S., Nunnari, F., Vizzari, G.: Towards a Model for Ubiquitous and Mo-
bile Computing. Theory And Practice of Open Computational Systems, TAPOCS.
IEEE Computer Society (2004)

51. Mertens, K., Holvoet, T., Berbers, Y.: Adaptation in a Distributed Environment,
First International Workshop on Environments for Multiagent Systems, New York
(2004)

52. Michel, F., Ferber, J., Gutknecht, O.: Generic Simulation Tools Based on MAS
Organization, 10th European Workshop on Modelling Autonomous Agents in a
Multi Agent World MAMAAW’01, Annecy, France (2001)

53. Michel, F., Gouaich, A., Ferber, J.: Weak Interaction and Strong Interaction
in Agent Based Simulations. 4th Workshop on Multi-Agent Based Simulation,
MABS’03 at AAMAS 2003, Melbourne, Australia (2003)

54. Mili, R., Leask, G., Shakya, U., Steiner, R., Oladimeje, E.: Architectural Design
of the DIVAS Environment. First International Workshop on Environments for
Multiagent Systems, New York (2004)

55. Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The swarm simulation system:
A toolkit for building multi-agent simulations. Working Paper 96-06-042, Santa Fe
Institute (1996)

56. Montresor, A.: Anthill: a Framework for the Design and Analysis of Peer-to-Peer
Systems. 4th European Research Seminar on Advances in Distributed Systems,
Bertinoro, Italy (2001)

57. Murphy, A., Picco, G.P., Roman, G.C.: LIME: a Middleware for Physical and
Logical Mobility. 21th International Conference on Distributed Computing Systems
(2001)

58. Nwana, S., Ndumu, D.T., Lee, L.C., Collis, J.C.: Zeus: A Toolkit for Building
Distributed Multi-Agent Systems. 3th International Conference on Autonomous
Agents, Seattle, WA, USA (1999)

59. Odell, J., Parunak, H.V.D., Breuckner, S., Fleischer, M.: Temporal Aspects of
Dynamic Role Assignment. Agent-Oriented Software Engineering IV: 4th Interna-
tional Workshop, Melbourne, Australia. Springer-Verlag, Berlin Heidelberg New
York (2003)

60. Odell, J., Parunak, H.V.D., Fleischer, M.: The Role of Roles in Designing Effective
Agent Organizations. Software Engineering for Large-Scale Multi-Agent Systems,

Lecture Notes in Computer Science Vol. 2603. Springer-Verlag, Berlin Heidelberg
New York (2003)

61. Odell, J., Parunak, H.V.D., Fleischer, M., Breuckner, S.: Modeling Agents and their
Environment. Agent-Oriented Software Engineering III, Giunchiglia, F., Odell, J.,
Weiss, G. (eds.) Lecture Notes in Computer Science, Vol. 2585. Springer-Verlag,
Berlin Heidelberg New York (2002)

62. Okuyama, F., Bordini, R., da Rocha Costa, A.C.: ELMS: An Environment De-
scription Language for Multiagent Simulation. First International Workshop on
Environments for Multiagent Systems, New York (2004)

63. OMG MASIF: http://www.fokus.gmd.de/research/cc/ecco/masif/index.html
64. Omicini, A., Ricci, A., Viroli, R., Castelfranci, C., Tummolini, L.: Coordination Ar-

tifacts: Environment-based Coordination for Autonomous Agents, 3th Joint Con-
ference on Autonomous Agents and Multi-agent Systems, ACM Press, New York
(2004)

65. Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf R., (eds.): Coordination of
Internet Agents: Models, Technologies and Applications. Springer Verlag, Berlin
Heidelberg New York (2001)

66. Padgham, L., Winikoff, M.: Prometheus: A methodology for Developing Intelligent
Agents. 3th Agent-Oriented Software Engineering Workshop, Bologna, Italy (2002)

67. Parunak, H.V.D.: Altarum Institute, http://www.altarum.net/˜ vparunak/
68. Parunak, H.V.D.: Go to the Ant: Engineering Principles from Natural Agent Sys-

tems. Annals of Operations Research, Vol. 75 (1997)
69. Parunak, H.V.D., Brueckner, S., Fleischer, M., Odell, J.: A Design Taxonomy of

Multi-Agent Interactions. Agent-Oriented Software Engineering IV, Melbourne.
Springer-Verlag, Berlin Heidelberg New York (2003)

70. Parunak, H.V.D., Odell, J.: Representing social structures in UML, Agent-Oriented
Software Engineering II, Wooldridge, M., Weiss, G., Ciancarini, P. (Eds.) Lectue
Notes in Computer Science Vol. 2222, Berlin Hiedelberg New York, Springer (2002)

71. RoboCup: http://www.robocup.org/
72. Rockwell: http://www.rockwell.com/
73. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, Prentice Hall

(2003)
74. Schelfthout, K., Holvoet, T.: An Environment for Coordination of Situated Multi-

Agent Systems. First International Workshop on Environments for Multiagent Sys-
tems, New York (2004)

75. Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: Ant-based load bal-
ancing in telecommunication networks. Adaptive Behavior, Vol. 5 (1997)

76. SOMA: http://www-lia.deis.unibo.it/Research/SOMA/
77. Sun Microsystems, Inc.: The JavaSpaces v1.2.1 Specification (2002)
78. Sycara, K., Klusch, M., Widoff, S., Lu, J.: Dynamic Service Matchmaking Among

agents in Open Environments. ACM SIGMOD Record 28(1) (1999)
79. Sycara, K., Paolucci, M., van Velsen, M., Giampapa, J.: The Retsina MAS Infras-

tructure, Kluwer Academic Publishers (2001)
80. TAEMS: http://dis.cs.umass.edu/research/taems/
81. Telecom Italia: http://www.telecomitalialab.com/
82. Tummolini, L., Castelfranchi, C., Omicini, A., Ricci, A., Viroli, M.: “Exhibition-

ists” and “Voyeurs” do it better: a Shared Environment for Flexible Coordination
with Tacit Messages. First International Workshop on Environments for Multia-
gent Systems, New York (2004)

83. Voyager: http://www.recursionsw.com/voyager.htm

84. Weinstein, P., Parunak, H.V.D., Chiusano, P., Brueckner, S.: Agents
Swarming in Semantic Spaces to Corroborate Hypotheses. Joint Confer-
ence on Autonomous Agents and Multiagent Systems, New York (2004)
http://www.altarum.net/ vparunak/AAMAS04AntCAFE.pdf

85. Weyns, D., Holvoet, T.: Regional Synchronization for Situated Multi-agent Sys-
tems. 3rd International/Central and Eastern European Conference on Multi-Agent
Systems, CEEMAS 2003, Prague, Czech Republic, Lecture Notes on Computer Sci-
ence, Vol. 2691. Springer-Verlag, Berlin Heidelberg New York (2003)

86. Weyns, D., Holvoet, T.: A Formal Model for Situated Multi-agent Systems. Formal
Approaches for Multi-Agent Systems, Special Issue of Fundamenta Informaticae,
63(2) (2004)

87. Weyns, D., Holvoet, T.: Look, Talk, Do: A Synchronization Scheme for Situated
Multi-Agent Systems. UK Workshop on Multi-agent Systems, Liverpool (2002)

88. Weyns, D., Holvoet, Y.: A Colored Petri Net for Regional Synchronization in Sit-
uated Multiagent Systems. First International Workshop on Petri Nets and Coor-
dination, PNC’04, Bologna, Italy (2004)

89. Weyns, D., Steegmans, E., Holvoet, T.: Towards Active Perception in Situated
Multi-agent Systems. Journal on Applied Artificial Intelligence, 18(9-10) (2004)

90. Whitestein: http://www.whitestein.com/pages/index.html
91. Wolfram, S.: Theory and Applications of Cellular Automata. World Press (1986)
92. Wolfram, S.: A New Kind of Science. Wolfram Media, ISBN 1-57955-008-8 (2002)
93. Wooldridge, M.: An Introduction to MultiAgent Systems. ISBN 0-471-49691-X.

John Wiley and Sons, Ltd. England (2002)
94. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The

Gaia Methodology. Transactions on Software Engineering and Methodology, 3(12),
ACM Press (2003)

95. Zambonelli, F., Parunak, H.V.D.: From design to intention: signs of a revolution.
First International Joint Conference on Autonomous agents and Multiagent Sys-
tems, Bologna, Italy, ACM Press (2002)

