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Abstract

We study approximation algorithms for k-median
clustering. We obtain small coresets for k-median
clustering in metric spaces as well as in Euclidean
spaces. Specifically, in IRd, those coresets are of
size with only polynomial dependency on d. This
leads to a (1 + ε)-approximation algorithm for k-
median clustering in IRd, with running time O(ndk +
2(k/ε)O(1)

d2nσ), for any σ > 0. This is an improve-
ment over previous results [5, 20, 21]. We also provide
fast constant factor approximation algorithms for k-
median clustering in finite metric spaces.

We use those coresets to compute (1 + ε)-
approximation k-median clustering in the streaming
model of computation, using only O(k2dε−2 log8 n)
space, where the points are taken from IRd. This is
the first streaming algorithm, for this problem, that
has space complexity with only polynomial depen-
dency on the dimension.

1 Introduction

Clustering is an important problem in computer
science with applications in many problem domains.
One of the widely studied clustering variants is the k-
median clustering, which requires finding k centers in
a set of n points that minimize the sum of distances
from the data points to their nearest centers.

The first constant factor approximation algo-
rithm for k-median clustering, in the metric space
settings, was given by Charikar et al. [8]. There have
been several improvements to the approximation ra-
tio and the running time. We focus on the most
related results here, for further information see [9]
and references therein. Indyk [16] gave a randomized
constant factor approximation algorithm to produce
O(k) centers running in O(nk · polylog(nk)) time.
Based on Indyk’s construction, Guha et al. [12] pre-
sented a (300 + o(1))-approximation algorithm run-
ning in O(nk ·polylog(nk)) time. Mettu and Plaxton
[22] provided a constant factor approximation algo-
rithm that runs in O(nk+n log n+k2 log2 n) time. In
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addition, they showed that a running time of Ω(nk)
is necessary even for randomized algorithms.

In the geometric settings, one is interested in
(1 + ε)-approximation algorithms. Arora et al.
[3] presented a (1 + ε)-approximation algorithm
for k-median clustering for points in the plane,
with running time O

(
nO(1/ε)+1

)
. Kolliopoulos and

Rao [19] further improved the running time to
O(ρn log n log k), for the discrete k-median prob-
lem, where the clustering centers can only be se-
lected from among the input point set, and ρ =
exp[(O(1 + log (1/ε))/ε)d−1]. Further improvement
can be achieved by using coresets [1]. Informally
speaking, a coreset for a clustering problem is a small
(weighted) subset from the input set, such that for
any set of clustering centers, the cost of clustering
the coreset by the set of centers is close to the true
cost (i.e., the cost of clustering the original input set
by the same set of centers). In particular, Har-Peled
and Mazumdar [14] used coresets to improve the run-
ning time to O(n + ρkO(1) logO(1) n), using a coreset
of size O(kε−d log n), for k-median clustering. Har-
Peled and Kushal [13] recently showed that one can
construct coresets for these problems with size in-
dependent of n. Kumar et al. [20, 21] showed a
(1 + ε)-approximation algorithm for k-median clus-
tering running in O

(
2(k/ε)O(1)

dn
)

time.
Recently, there was growing interest in perform-

ing clustering in the streaming model of computation
[12, 9, 17, 14, 10]. Here, points arrive one by one in
a stream and one is interested in maintaining a clus-
tering of the points seen so far. Typically, the input
point set is too large to fit in the memory. Therefore,
it is necessary to maintain a data structure to sketch
the data seen so far. In this model, the complexity
measure includes the overall space used and the time
required to update the data structure.

In the streaming model of computation, Guha
et al. [12] proposed an algorithm that uses O(nε)
space to compute a 2O(1/ε)-approximation to k-
median clustering of points taken from a metric space.
Charikar et al. [9] improved the result significantly
by proposing a constant factor approximation algo-
rithm using O(k log2 n) space. In the geometric set-
tings, Har-Peled and Mazumdar used coresets to com-
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pute an (1+ε)-approximation k-median clustering us-
ing O(kε−d log2d+2 n) space. The algorithms handle
streams with insertions only. Indyk [17] showed how
to handle both insertions and deletions, under the
restriction that the points are taken from a grid of
finite resolution (however, the resulting clustering al-
gorithm was prohibitively slow). Frahling and Sohler
[10] extended the work of Indyk, by showing how to
extract the coreset quickly and cluster it in the inser-
tion/deletion streaming model.

Our results. We propose fast approximation
algorithms for k-median clustering using coresets.
We use a fast bi-criteria approximation for k-
median clustering to guide a random sampling
from the original input set. The sampling al-
lows us to extract a (k, ε)-coreset (see Section 2
for formal definition) of size O(kε−2 log n(k log n +
log (1/λ))) in a general metric space, and a coreset of
size O(kε−2 log n(kd log (1/ε) + k log k + k log log n +
log (1/λ))) in IRd, where the probability of success
is ≥ 1 − λ, and λ is a prespecified parameter. The
construction of this coreset is the main result of this
paper.

For geometric k-median clustering in IRd, we ob-
tain an algorithm to find a (1 + ε)-approximation
k-median clustering in time O(ndk + 2(k/ε)O(1)

d2nσ)
that succeeds with constant probability, for any
σ > 0. This result improves over the algorithm
of Kumar et al. [20, 21], which had running time
O(2(k/ε)O(1)

dn).
Our main result implies an algorithm that uses

O(k2dε−2 log8 n) space, for (1 + ε)-approximation k-
median clustering in the streaming model, where the
points are taken from IRd. The algorithm assumes
that the points arrive one by one, and removal of
points is not allowed. Upon the arrival of a new point,
the amortized time to update the data structure
is O(kd · polylog(ndk/ε)). In comparison, previous
algorithms required space and time exponential in the
dimension.

For the general metric case, the coreset can
also be used to stream k-median clustering using
small space, such that one can compute (1 + ε)-
approximation k-median clustering using this data
structure. To our knowledge, this is the first algo-
rithm, for general metric spaces, that can use small
space and can provide (1+ε)-approximation for clus-
tering. Of course, since the (1 + ε)-approximation
itself can not be computed efficiently (i.e., in polyno-
mial time), this is of limited interest. Nevertheless, it
leads to a (10+ε)-approximation algorithm for metric
k-median clustering running in O

(
nk + k7ε−4 log5 n

)
time using known techniques [4]. This result pro-

vides better trade-offs between overall running time
and approximation quality over previous results when
k is small. In particular, all previous algorithms with
O(nk ·polylog(nk)) running time [16, 12, 22] provided
constant approximation, where the constant is con-
siderably larger than the new algorithm.

The main tool we employ to extract small core-
sets is random sampling. We note that Mishra
et al. [23] used similar approach to obtain fast k-
median clustering algorithms. Their algorithm re-
quires O((M/ε)2 log n) samples to approximately rep-
resent the original input point set, where n is the in-
put size, M is the diameter of the input, and ε is
the difference between the average clustering cost on
the samples and the average clustering cost on the
original input. Depending on the size of diameter M ,
their algorithm may yield running time as high as
O(n2). Our approach can be interpreted as combin-
ing the approach of Mishra et al. with the usage of
coresets and exponential grids, such that we can ob-
tain “good” samples with size independent of M and
with low dependency on the dimension.

The paper is organized as follows. In Section 3 we
show an algorithm to compute small (k, ε)-coresets
for metric k-median clustering. This algorithm helps
illustrate our main idea. In Section 4, we prove the
existence of a small (k, ε)-coreset for geometric k-
median clustering. In Section 5, we propose fast
approximation algorithms using those (k, ε)-coresets.
We conclude in Section 6.

2 Problem definition

Let (X,d) be a metric space, where d is the dis-
tance function defined over the points of X. Let
d(v,Q) = minq∈Q d(v, q) denote the distance between
a point v ∈ X and a set Q ⊆ X. Let d(V,Q) =
minv∈V d(v,Q) denote the distance between the two
sets V,Q ⊆ X. Let diam(Q) = maxs,t∈Q d(s, t) de-
note the diameter of a set Q ⊆ X.

Let P ⊆ X be a set of n points. In the following,
we assume that each point p ∈ P is associated with
a positive integer weight wp. An unweighted set P
can be considered as weighted, with wp = 1 for each
point p ∈ P . Let w(P ) =

∑
p∈P wp denote the total

weight of P .

Definition 2.1. (Metric k-median clustering.)

Let P be a set of n points in a metric space (X,d).
A center set C = {c1, . . . , ck} ⊆ X induces a k
clustering; that is, each point of P is assigned to
its nearest center in C. The point p ∈ P is served
by ci if the nearest neighbor to p in C is ci. Let
νC(p) = d(p, C) · wp denote the cost of clustering p
using C. The cost of k-median clustering of P by C
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is νC(P ) =
∑

p∈P νC(p).
The metric k-median problem is to find a set of

k centers C ⊆ P that minimizes the cost νC(P ).
Let νopt(P, k) denote the cost of optimal k-median
clustering of P .

The average radius of the k-median clustering is
denoted by rC(P ) = νC(P )/w(P ).

Definition 2.2. (Geometric k-median clustering.)

Let P be a set of n points in IRd, the geometric
k-median problem is to find a set of k centers
C ⊆ IRd that minimizes the cost νC(P ), where the
distance is the usual Euclidean L2 distance.

Definition 2.3. ( (k, ε )-Coreset.) Given a
(weighted) point set P in a finite metric space, a
(weighted) subset S ⊆ P is a (k, ε)-coreset of P for
metric k-median clustering, if

|νC(S) − νC(P )| ≤ ε · νC(P )

for any set C ⊆ P such that |C| = k.
In the geometric settings, given a (weighted)

point set P in IRd, a (weighted) set S ⊆ P is a (k, ε)-
coreset of P for geometric k-median clustering, if

|νC(S) − νC(P )| ≤ ε · νC(P )

for any set C of k centers in IRd.

3 Metric k-median clustering

In this section, we present an algorithm to compute
a (k, ε)-coreset of P for metric k-median clustering.
The input are a set P of n points in a finite metric
space (X,d), and a confidence parameter λ. Our
algorithm consists of two steps: (i) partition the input
point set P into several disjoint subsets, and (ii) take
a random sample from each subset, and return the
union of the samples as the desired coreset.

3.1 The algorithm

3.1.1 Step 1: partitioning P For the sake of
simplicity of exposition, we assume that the input
point set P is unweighted in the remainder of the
paper unless explicitly stated otherwise. Note that
the results also hold when P is weighted, with slightly
worse bounds on the running time and coreset size.

Assume that A ⊆ P is the center set of a
bi-criteria (α, β)-approximation to the optimal k-
median clustering of P . Namely, A = {a1, . . . am}
satisfies

νA(P ) ≤ β · νopt(P, k),

where m ≤ αk. Let R = νA(P )/(βn) be a lower
bound estimate of the average radius of optimal k-
median clustering.

Let Pi be the set of points of P that are served
by the center ai, for i = 1, . . . ,m. Let b(p, r) denote
the close ball of radius r centered at p.

For i = 1, . . . ,m, let

Pi,0 = Pi ∩ b(ai, R)

and

Pi,j = Pi ∩
(
b(ai, 2jR) \ b(ai, 2j−1R)

)
,

for j = 1, . . . , φ, where φ = �log2(βn)�. We call each
set Pi,j a ring set, for i = 1, . . . ,m and j = 0, . . . , φ.

Note that for any point in P , it must be in exactly
one ring set defined above, since no point of P can
be in distance ≥ βnR from all the centers of A.
Therefore, P is partitioned into disjoint ring sets Pi,j ,
for i = 1, . . . ,m and j = 0, . . . , φ.

To obtain the set A, we use the algorithm of In-
dyk [16]. It uses a black-box algorithm BB which
provides a constant factor approximation k-median
clustering. Such a black-box algorithm runs in
roughly quadratic time. We slightly modify the algo-
rithm of Indyk as follows. We plug the algorithm of
Indyk into itself as the black-box algorithm (Namely,
we recursively use the algorithm of Indyk; in the bot-
tom of this recurrence, we still use the algorithm BB.
Note that the recursion depth is a constant). This re-
duces the overall running time to O(nk), and the al-
gorithm returns a (α, β)-approximation with constant
probability, where α = O(1), β = O(1). We boost the
success probability of the algorithm to ≥ 1 − λ/2 by
running it O(log(1/λ)) times, and take the solution
of the smallest cost. Here λ is the prespecified confi-
dence parameter.

Remark 3.1. If P is weighted, with total weight
W , we use standard grouping technique to group
points with roughly equal weights together, and run
the above algorithm on each group with confidence
parameter set to O(1/ log W ). This yields a constant
factor approximation k-median clustering of P using
O(k log W ) centers with constant probability. The
overall running time is O(nk log log W ) time.

Remark 3.2. The algorithm of Jain and Vazirani
[18] can serve as the black-box algorithm BB. Its
running time is O(n2 log n(L+log n)), where 2L is the
ratio between the largest edge length and the smallest
edge length of P . L can be reduced to O(log n) by
using a standard trick: First find a rough estimate
of the optimal k-median average radius r′ [11]; then
decrease the length of every edge longer than 10n2r′ to
10n2r′, and increase the length of every edge shorter
than r′/(10n2) to r′/(10n2). It is easy to verify, in
the new problem, L = O(log n). Note that, a constant
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factor approximation to the new problem will still
be a constant factor approximation to the original
problem.

3.1.2 Step 2: random sampling Let s =⌈
100 · β2ε−2(2k ln n + ln(4/λ))

⌉
. For each ring set

Pi,j , for i = 1, . . . m and j = 0, . . . , φ, we extract
a subset Si,j as follows. If |Pi,j | ≤ s, let Si,j = Pi,j .
Otherwise, draw a set of s points from Pi,j indepen-
dently and identically, assign each point the weight
|Pi,j | /s, and let Si,j be the resulting weighted sam-
ple. For the simplicity of exposition, we assume in the
reminder of the paper that the weight |Pi,j | /s is an
integer number. This is a minor technical difficulty
that can be easily resolved.

Let S = ∪i,jSi,j . We claim that S is the desired
(k, ε)-coreset of P .

3.2 Proof of correctness The following lemma is
straightforward and we omit the easy proof.

Lemma 3.1. (i) diam(Pi,j) ≤ βnR and diam(Pi,j) ≤
2j+1R, for i = 1, . . . ,m and j = 0, . . . , φ. The same
holds for diam(Si,j).

(ii) For p ∈ Pi,j, 2j−1R < d(p,A) ≤ 2jR, for
j = 1, . . . , φ; the same holds for p ∈ Si,j. For
p ∈ Pi,0, 0 ≤ d(p,A) ≤ R; the same holds for
p ∈ Si,0.

(iii) νA(S) ≤ 2νA(P ) + nR.

Lemma 3.2. (Haussler [15]) Let h(·) be a function
defined on a set P , such that for all p ∈ P , we
have 0 ≤ h(p) ≤ M , where M is a fixed constant.
Let S = {p1, . . . , ps} be a multiset of s samples
drawn independently and identically from P , and let
δ > 0 be a parameter. If s ≥ (M2/2δ2) · ln (2/λ),
then Pr

[∣∣∣h(P )
|P | − h(S)

|S|
∣∣∣ ≥ δ

]
≤ λ, where h(S) =∑

s∈S h(s), and h(P ) =
∑

p∈P h(p).

The following lemma is an application of
Lemma 3.2 to k-median clustering.

Lemma 3.3. Let ξ > 0 and λ > 0 be parameters, and
let S be a set of s =

⌈
ξ−2 ln (2/λ)

⌉
samples drawn

from a point set V independently and identically,
where V lies in a metric space. For a fixed set C
of centers, we have |rC(V ) − rC(S)| ≤ ξ(d(V,C) +
diam(V )), with probability ≥ 1 − λ.

Proof. Consider a point v ∈ V . By the triangle
inequality we have

0 ≤ d(v, C) ≤ d(V,C) + diam(V ).

Consider h(v) = d(v, C) as a function defined
over the points of V . By Lemma 3.2, setting M =

d(V,C) + diam(V ), δ = ξ(d(V,C) + diam(V )), for
a sample S of size s =

⌈
ξ−2 ln (2/λ)

⌉ ≥ (M2/2δ2) ·
ln (2/λ) from V , we have

Pr[|rC(V ) − rC(S)| ≥ ξ(d(V,C) + diam(V ))]

= Pr
[∣∣∣∣h(V )

|V | − h(S)
|S|

∣∣∣∣ ≥ δ

]

≤ λ,

since rC(V ) =
1
|V |

∑
v∈V

d(v, C) and rC(S) =

1
|S|

∑
p∈S

d(p, C). �

Theorem 3.1. Given a set P of n points in a finite
metric space and a parameter λ > 0, one can com-
pute a weighted set S of size O(kε−2 log n(k log n +
log(1/λ))), in O(nk ln(1/λ)) time. The set S is a
(k, ε)-coreset of P for k-median clustering with prob-
ability ≥ 1 − λ.

If P is weighted, with total weight W , then the
running time is O(nk log(1/λ) log log W ), and the
coreset is of size O(kε−2 log2 W (k log n + log(1/λ))).

Proof. The algorithm for computing S is described in
Section 3.1. First observe

|S| = O(m·φ·s) = O
(
kε−2 log n(k log n + log(1/λ))

)
.

Furthermore, the overall running time of the
algorithm is dominated by the computation of the
set A, which takes O(nk log(1/λ)) time.

Next, we show that S is indeed the desired coreset
with probability 1 − λ.

Claim 3.1. Under the assumption νA(P ) ≤ β ·
νopt(P, k), S is a (k, ε)-coreset of P for k-median
clustering, with probability ≥ 1 − λ/2.

Proof. Fix a set C of k centers. Recall that s =⌈
100 · β2ε−2(2k ln n + ln(4/λ))

⌉
. By Lemma 3.3, we

have

|rC(Pi,j) − rC(Si,j)| ≤ ε

10β
(d(Pi,j , C) + diam(Pi,j)) ,

with probability ≥ 1−n−2kλ/2, for i = 1, . . . ,m and
j = 0, . . . , φ.

It follows

|νC(Pi,j) − νC(Si,j)|
= |Pi,j | · |rC(Pi,j) − rC(Si,j)|
≤ ε

10β
|Pi,j |(d(Pi,j , C) + diam(Pi,j)) .

In addition, we have

|Pi,j | · d(Pi,j , C) ≤ νC(Pi,j).
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Lemma 3.1 implies

|Pi,j | · diam(Pi,j) ≤ |Pi,j | · 2j+1R

≤ 4νA(Pi,j) + |Pi,j | · 2R.

Combining the above inequalities together, we
have

|νC(Pi,j) − νC(Si,j)|
≤ ε

10β
(νC(Pi,j) + 4νA(Pi,j) + |Pi,j | · 2R) .

Summing this up for all sets Pi,j , for i = 1, . . . , m
and j = 0, . . . , φ, we have

|νC(P ) − νC(S)|
≤ ε

10β
(νC(P ) + 4νA(P ) + 2nR)

≤ ε

10β
(νC(P ) + 4βνopt(P, k) + 2νopt(P, k))

≤ ε · νC(P ),

and this holds with probability ≥ 1 − mφ · n−2kλ/2.
Since there are at most

(
n
k

)
different ways to select

a set C of k centers out of P , the set S is a (k, ε)-
coreset of P with probability ≥ 1−(

n
k

)·mφ·n−2kλ/2 ≥
1 − λ/2. �

By the algorithm in Section 3.1, νA(P ) ≤ β ·
νopt(P, k) holds with probability ≥ 1 − λ/2. There-
fore, by the above claim, S is a (k, ε)-coreset of P for
k-median clustering, with probability ≥ 1 − λ. �

4 Geometric k-median clustering

In this section, we compute a coreset for geometric k-
median clustering. The input are a set P of n points
in IRd, and a confidence parameter λ. The algorithm
follows similar steps as its metric variant. We point
out the differences below.

In the partitioning step, we use the same al-
gorithms as described in Section 3.1. It takes
O(ndk log(1/λ)) time to compute a set A =
{a1, . . . , am} in IRd such that νA(P ) ≤ β · νopt(P, k)
with probability 1 − λ/4, where m = αk, α = O(1),
and β = O(1).

In the sampling step, let s =⌈
cε−2(kd ln (1/ε) + k ln k + k ln lnn + ln (1/λ))

⌉
,

where c is an appropriate constant. As in the metric
space (Section 3), we partition P into ring sets
Pi,j , and extract the set Si,j from each set Pi,j

separately, for i = 1, . . . ,m and j = 0, . . . , φ, where
φ = �log2 (βn(1 + 4/ε))�.

4.1 Proof of correctness The geometric k-
median problem is different from the metric variant:

There are infinite number of ways to select a set of k
centers to serve P in IRd, while there are only a finite
number of ways to choose a set of k centers in the
metric k-median problem.

To prove the correctness of the algorithm, we
define an exponential grid structure. Note that the
grid is used only in the analysis.

Definition 4.1. Let A = {a1, . . . , am} be a set of
centers in IRd such that νA(P ) ≤ β ·νopt(P, k), where
m = αk, α = O(1), and β = O(1).

Let U denote the union of “huge” balls around the
points of A, formally U =

⋃m
i=1 b(ai, R · 2φ), where

b(p, r) denotes the close ball of radius r centered at
p, φ = �log2 (βn(1 + 4/ε))�, and R = νA(P )/(βn).

For i = 1, . . . ,m, let

Li,0 = b(ai, R)

and Li,j = b(ai, 2jR)\b(ai, 2j−1R), for j = 1, . . . , φ.
We use an axis-parallel grid with side length

ε2jR/(24β
√

d) to partition Li,j into cells, for i =
1, . . . , m and j = 0, . . . , φ. In each grid cell, the
center of the cell is called a representative point for
the points in the cell. Note that any point inside U
has a representative point.

Let G denote the set of all representative points.

Lemma 4.1. For any set C ′ of at most k cen-
ters chosen from G, |νC′(Pi,j) − νC′(Si,j)| ≤
(ε/10β)(νC′(Pi,j) + 4νA(Pi,j) + 2 |Pi,j | · R), for i =
1, . . . , m and j = 0, . . . , φ. This holds with probabil-
ity ≥ 1 − λ/2, where λ is the prespecified confidence
parameter.

Proof. It is easy to verify |G| = O
(
k(ε/100)−d log n

)
.

The lemma follows from similar arguments as used in
Theorem 3.1. �

Lemma 4.2. For any set C = {c1, . . . , ch} of
at most k points lying inside U , there ex-
ists a set C ′ = {c′1, . . . , c′h} such that C ′ ⊆
G, |νC(Pi,j) − νC′(Pi,j)| ≤ (ε/24β)(2νC(Pi,j) +
2νA(Pi,j) + |Pi,j | · R), and |νC(Si,j) − νC′(Si,j)| ≤
(ε/24β)(2νC(Si,j) + 2νA(Si,j) + |Pi,j | · R), for i =
1, . . . , m and j = 0, . . . , φ.

Proof. For each center ct choose its nearest neighbor
c′t in G, for t = 1, . . . , h. Let C ′ = {c′1, . . . , c′h}.

Fix a set Pi,j , and consider a point q ∈ Pi,j .
Suppose that cr is the closest center to q in C, c′l
is the closest center to q in C ′, where 1 ≤ r, l ≤ h.

It is easy to verify ‖crc
′
r‖ ≤ εR/(24β) if

d(cr,A) ≤ R, and ‖crc
′
r‖ ≤ 2εd(cr,A)/(24β)

if d(cr,A) > R. As such, we have ‖crc
′
r‖ ≤

(ε/24β)(2d(cr,A) + R).
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On the other hand, due to the triangle inequality,
d(cr,A) ≤‖qcr‖ + d(q,A).

Therefore, if νC(q) ≤ νC′(q), we have

νC′(q) − νC(q) ≤ ‖qc′r‖ −‖qcr‖ ≤‖crc
′
r‖

≤ ε

24β
(2νC(q) + 2d(q,A) + R),

and similarly, if νC′(q) ≤ νC(q), we have

νC(q) − νC′(q) ≤ ‖qcl‖ −‖qc′l‖ ≤‖clc
′
l‖

≤ ε

24β
(2νC′(q) + 2d(q,A) + R)

≤ ε

24β
(2νC(q) + 2d(q,A) + R).

Summing this up for all the points in Pi,j , we
have

|νC′(Pi,j) − νC(Pi,j)|
≤ ε

24β
(2νC(Pi,j) + 2νA(Pi,j) + |Pi,j | · R).

The claim about Si,j can be proved similarly. �

Lemma 4.3. For any set C of at most k centers
outside U , |νC(Pi,j) − νC(Si,j)| ≤ (ε/4)νC(Pi,j), for
i = 1, . . . , m and j = 0, . . . , φ.

Proof. Fix a set Pi,j . Note that Si,j is a weighted
subset from Pi,j , and w(Si,j) = w(Pi,j). By the
triangle inequality,

|νC(Pi,j) − νC(Si,j)| ≤ |Pi,j | · diam(Pi,j)
≤ |Pi,j | · βnR.

Since C is outside U , d(C,Pi,j) ≥ (2φ − 1)βnR ≥
(4/ε)βnR. This implies βnR ≤ (ε/4)d(C,Pi,j)).

It follows

|νC(Pi,j) − νC(Si,j)|
≤ |Pi,j | · (ε/4)d(C,Pi,j) ≤ (ε/4)νC(Pi,j),

by combining above inequalities. �

Lemma 4.4. For any set C of k centers in IRd,
|νC(P ) − νC(S)| ≤ ε · νC(P ). This holds with proba-
bility ≥ 1 − λ, where λ is the prespecified confidence
parameter.

Proof. Suppose C = Cin ∪ Cout, where Cin =
{c1, . . . , ch} is the set of centers inside U and Cout =
{ch+1, . . . , ck} is the set of centers outside U .

Consider a ring set Pi,j where there exists
p, q ∈ Pi,j such that p is served by Cin and
q is served by Cout. By the triangle inequal-
ity, we have |d(q, Cin) − d(p, Cin)| ≤ ‖pq‖ and

|d(p, Cin) − d(q, Cout)| = |d(p, C) − d(q, C)| ≤ ‖pq‖.
It follows

|d(q, Cin) − d(q, Cout)|
= |(d(q, Cin)−d(p, Cin))+(d(p, Cin)−d(q, Cout))|
≤ 2‖pq‖ .

In addition, we have ‖pq‖ ≤ βnR since p and
q are in the same ring set Pi,j , and d(q, Cout) ≥
(2φ − 1)βnR ≥ (4/ε)βnR since Cout is outside U .

Combining above inequalities, we have

|d(q, Cin) − d(q, Cout)|
≤ 2‖pq‖ ≤ 2βnR ≤ (ε/2)d(q, Cout).

This implies that, if we reassign the points of
Pi,j that are served by Cout to Cin, the cost νC(Pi,j)
changes by a factor of at most ε/2, and the same
is true for the corresponding set Si,j . Therefore, it
suffices to prove |νC(P ) − νC(S)| ≤ (ε/2)νC(P ) after
reassignment.

Next, consider the clustering cost after the re-
assignment described above. In those settings, each
ring set Pi,j (along with Si,j) is either served by Cin

or by Cout, for i = 1, . . . , m and j = 0, . . . , φ. Let
Pin (resp. Sin) denote the points of P (resp. S) that
is served by Cin, and Pout (resp. Sout) denote the
points of P (resp. S) that are served by Cout.

By Lemma 4.3, we have

|νCout(Pout) − νCout(Sout)| ≤ (ε/4)νCout(Pout)
≤ (ε/4)νC(P ).

Claim 4.1. |νCin(Pin) − νCin(Sin)| ≤ (ε/4)νC(P ).

Proof. We sketch the proof below, and omit the
tedious details.

By Lemma 4.2, there exists a C ′
in ⊆ G such

that |C ′
in| = |Cin|, νCin(Pin) is approximately equal

to νC′
in

(Pin), and νCin(Sin) is approximately equal to
νC′

in
(Sin).
On the other hand, by Lemma 4.1, νC′

in
(Sin) is

approximately equal to νC′
in

(Pin). As such, νCin(Pin)
is approximately equal to νCin(Sin). �

Therefore, we have

|νC(P ) − νC(S)|
= |νCin(Pin)+νCout(Pout)−νCin(Sin)−νCout(Sout)|
≤ (ε/2)νC(P ).

Note that Claim 4.1 assumes νA(P ) ≤
βνopt(P, k), which holds with probability ≥ 1 − λ/4.
It also uses Lemma 4.1, which holds with probability
≥ 1−λ/2. As such, the assertion of the lemma holds
with probability ≥ 1 − λ. �
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Theorem 4.1. Given a set P of n points in IRd and
a parameter λ > 0, one can compute a set S of size

O

(
k log n

ε2

(
kd log

1
ε

+ k log k + k log log n + log
1
λ

))
,

in time O(ndk log(1/λ)). The set S is a (k, ε)-coreset
of P for k-median clustering with probability ≥ 1−λ.

If P is weighted, with total weight W , then the
the running time is O(ndk log(1/λ) log log W ), and
the coreset is of size

O

(
k log2 W

ε2

(
kd log

1
ε
+k log k+k log log W +log

1
λ

))
.

5 Applications

In this section, we provide applications for the (k, ε)-
coreset construction described in Section 3 and Sec-
tion 4. We can plug the coreset into any k-median
algorithm that works on a weighted point set.

In the metric spaces, we apply the local search
algorithm of Arya et al. [4].

Theorem 5.1. Given a set P of n points in a metric
space, one can compute a (10 + ε)-approximation k-
median clustering of P in O(nk +k7ε−4 log5 n) time,
with constant probability.

In the Euclidean space IRd, we would like to apply
the (1 + ε)-approximation algorithm of Kumar et al.
[20, 21]. A simple extension of their algorithm to a
coreset yields a (1 + ε)-approximation algorithm for
k-median clustering of P in IRd. In particular, let
T (n,m) be the running time of their algorithm on
the (k, ε)-coreset, the recurrence of T (n,m) is

T (n,m) = O(u(k, ε))T (n,m − 1) + T (n/2,m)
+O((c(k, ε) + u(k, ε))d),

where u(k, ε) = O(2(k/ε)O(1)
), n is the total weight of

the coreset, c(k, ε) is the size of the (k, ε)-coreset, m is
the number of centers. It is not difficult to show that
T (n, k) = O(d2(k/ε)O(1)

c(k, ε)knσ), for any σ > 0.

Theorem 5.2. Given a set P of n points in IRd,
one can compute a (1 + ε)-approximation k-median
clustering of P in time O(ndk +2(k/ε)O(1)

d2nσ), with
constant probability, for any σ > 0.

Coresets were previously used to design approx-
imation algorithms in the streaming model [2, 14].
In particular, Har-Peled and Mazumdar [14] used
coresets to develop approximation algorithms for k-
median clustering in the insertion-only streaming
model. Randomized coreset construction described
in Section 4 can also be used in the streaming model
by the same techniques. See Appendix A for details.
In particular, we have the following theorem.

Theorem 5.3. Given a stream P of n points in IRd

and ε > 0, one can maintain a (k, ε)-coreset for k-
median clustering efficiently and use the coresets to
compute (1+ε)-approximation to k-median clustering
for the points seen so far. The coreset is correct with
constant probability. The relevant complexities are:

(i) Space to store the information:
O

(
k2dε−2 log8 n

)
(ii) Amortized update time:

O
(
kd log2 n · polylog(kd/ε)

)

6 Conclusions

In this paper, we used sampling techniques to extract
a small (k, ε)-coreset for k-median clustering in both
metric spaces and high dimensional Euclidean spaces.
The coreset can be used to obtain fast approximation
algorithms for k-median clustering. It is especially
useful in the streaming model of computation, where
the small storage space is desired. In particular, we
provide the first streaming clustering algorithm that
has space complexity with polynomial dependency on
the dimension.

In addition, the small coreset leads to a O(ndk +
2(k/ε)O(1)

d2nσ)-time (1+ ε)-approximation algorithm
for k-median clustering in IRd, which succeeds with
constant probability, for any σ > 0. This improves
over the work of Kumar et al. [20, 21]. This result,
together with the low dimensional result of Har-Peled
and Mazumdar [14] indicates, surprisingly, that the
expensive part in computing k-median clustering in
IRd, is answering nearest neighbor queries (this is the
O(ndk) term in the running time).

Furthermore, we believe that similar approxima-
tion algorithms exist for k-means clustering. (Essen-
tially, all we need is a fast bi-criteria approximation
algorithm for k-means clustering. It seems like adapt-
ing one of the k-median be-criteria algorithms for this
purpose should be easy.) This would be included in
the full version of the paper.

In light of the recent result of Har-Peled and
Kushal [13], which constructed low dimensional core-
set of size independent of n (but exponential in the
dimension), it is natural to ask if one can construct
a coreset of size with polynomial dependency on the
dimension and with no dependency on n. We leave
this as open problem for further research. A more
intriguing possibility is that one can construct core-
sets of size independent of the dimension altogether,
as was done in the min-enclosing ball case [7].
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A Streaming

The algorithm of Har-Peled and Mazumdar [14] was
based on standard dynamization technique of Bentley
and Saxe [6] and the following observation about
coresets.

Observation A.1. (i) If C1 and C2 are the (k, ε)-
coresets for disjoint sets P1 and P2 respectively, then
C1 ∪ C2 is a (k, ε)-coreset for P1 ∪ P2.

(ii) If C1 is (k, ε)-coreset for C2, and C2 is a
(k, δ)-coreset for C3, then C1 is a (k, (1+ε)(1+δ)−1)-
coreset for C3.

Next, we adapt the algorithm of Har-Peled and
Mazumdar to our randomized coresets.

Suppose that a sequence of points p1, p2, . . . in
IRd arrive one by one. We want to compute k-median
clustering of the points arrived so far. And we want
the result to be correct with probability ≥ 1 − λ,
where λ is a prespecified confidence parameter.

Conceptually, we use buckets B0, B1, . . . to store
points. The capacity of bucket B0 is M , where M is
to be specified shortly, and the capacity of bucket Bi

is 2i−1M , for i ≥ 1. We will keep an invariant: Bi

is either full or empty, for i ≥ 1. When pm arrives,
we insert pm into B0. If B0 has less than M points,
then we are done. Otherwise, we move all the points
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of B0 into a virtual bucket B′
1. If B1 is empty, move

points of B′
1 into B1, and we are done; otherwise we

merge the points of B′
1 and B1 into a virtual bucket

B′
2. Then we try to move points of B′

2 into B2. We
continue the process until we reach a stage r where
Br is empty; and then the points of virtual bucket B′

r

are moved into Br.
However, we can not afford to keep every point in

the buckets as above in the streaming model. Instead,
we maintain a coreset Qi (resp. Q′

i) for each bucket
Bi (resp. virtual bucket B′

i), for i = 0, 1, . . ., as
follows: Q0 is B0 itself; and whenever the points of B′

r

and Br are merged into B′
r+1, we compute a (k, ρr)-

coreset Q′
r+1 of Qr ∪ Q′

r with confidence parameter
λm = λ/m3, where ρr = ε/cr2, m is the number
of points received so far, and c is a large positive
constant. Let Q =

⋃
i≥0 Qi.

Claim A.1. The set Q is a (k, ε)-coreset of the
points received so far, with probability ≥ 1 − λ.

Proof. Recall that ρr = ε/cr2, where c is a large
positive constant. It is easy to verify that

∏r
l=0(1 +

ρl) ≤ 1+ε when c is a large enough constant for r ≥ 1.
On the other hand, Qr is a (k,

∏r
l=0(1+ρl)−1)-coreset

of Br, by Observation A.1. Therefore,Qr is a (k, ε)-
coreset of the points in Br, and Q =

⋃
i≥0 Qi is a

(k, ε)-coreset of the points in
⋃

i≥0 Bi. That is, Q is
a (k, ε)-coreset of the points received so far.

When we process the newly arrived point pm,
our computation may fail with probability ≤ λm =
λ/m3 whenever we compute a coreset with confidence
parameter λm. When pm arrives, it may trigger
at most �log2 m� coreset computations. As such,
overall the algorithm may fail with probability ≤
m∑

i=1

λ log2 i

i3
≤ λ. �

Set M = k2ε−2d and assume that we have
received n points so far. Note that |Q0| ≤ M
and |Q1| = M (if Q1 is not empty). For i =
2, . . . , �log2 n�, Qi has a total weight 2i−1M (if it is
not empty) and it is generated as a

(
k, ε/ci2

)
-coreset

of Q′
i−1 and Qi−1 with confidence parameter at least

λ/n3, where c is a constant. By Theorem 4.1,

|Qi| = O( kε−2i4(i + log M)2 ( kd log(ci2/ε)
+k log k + log(i + log M) + log(n3/λ) ) ).

If λ is a positive constant, the total storage
requirement is

2M +
�log2 n�∑

i=2

|Qi| =O(k2dε−2 log8 n)

To analyze the update time of the data structure,
observe that the amortized time dealing with Q0 and
Q1 is constant; and for j = 2, . . . , �log2 n�, Qj is
constructed after every 2j−1M insertions are made.
Therefore by Theorem 4.1, the amortized time spent
for an update is

O

⎛
⎝�log2 n�∑

i=2

1
2i−1M

|Qi−1|· kd· loglog|Bi−1|·log
n3

λ

⎞
⎠

= O

(
kd log2 n · polylog

(
kd

ε

))
.
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