
On the Conceptualization of a Modeling
Language for Semantic Model Annotations

Hans-Georg Fill

Stanford University BMIR / University of Vienna DKE,
251 Campus Drive, Stanford CA 94305, USA,

fill@stanford.edu

Abstract. In this paper we describe the theoretical foundations, for-
mal considerations, and technical characteristics that were taken into
account for the conceptualization of a modeling language for the seman-
tic annotation of visual models. Thereby it is envisaged to give insights
into the underlying processes for the development of new visual modeling
languages and thus provide input for a future model of the conceptual-
ization process. To illustrate the realization of the approach we revert to
the semantic annotation of a business process model using concepts from
the web ontology language OWL, which allows us to show the iterations
that were conducted to develop the approach. As a first evaluation the
approach has been implemented on a meta modeling platform and will
be made freely available to the interested community in the course of the
SeMFIS project on www.openmodels.at.

Key words: Conceptualization, Design, Semantic Annotation, Concep-
tual Models, Ontologies

1 Motivation

When a new modeling language is being defined, it is mostly not made explicit
how the designers of the modeling language derived the particular elements,
relations, attributes, visual representations and model types from the underly-
ing theoretical bodies. Rather, it is often referred to previously existing, similar
languages and the incorporation of best practice examples, as e.g. stated in
the UML and BPMN specifications [1, 2]: ”...UML originated with three leading
object-oriented methods (Booch, OMT, and OOSE), and incorporated a number
of best practices from modeling language design, object-oriented programming,
and architectural description languages.” [1][p.1] and ”This specification repre-
sents the amalgamation of best practices within the business modeling commu-
nity...” [2][p.1]. It is thus not clear whether the creators of the language applied
some kind of structured, reproducable process, whether a formal, mathematical
approach has been used, or whether the outcome is the result of a serendipitous
inspiration of one or several persons. From a scientific point of view it seems
however necessary to investigate this process in more detail in order to make
the used techniques learnable and thus usable by a wider audience. In order to



2 Hans-Georg Fill

gain insight into such a process we will describe in the following the underlying
theoretical foundations, formal considerations, and technical characteristics that
have led to the development of a modeling language for the semantic annotation
of conceptual visual models.

2 Background: Semantic Annotation of Models

Several areas in information systems make use of conceptual visual modeling
methods today. They are used to represent both static and dynamic phenomena
and thus support human communication and understanding [3, 4]. Their usage
spans from business oriented applications such as for strategic and business pro-
cess management to the technical realization of information systems in software
engineering and IT infrastructure management, c.f. [5]. In recent years, several
approaches have been elaborated that focus on the processing of unstructured
semantic information that is contained in these models. Similarly to the idea of
a semantic web where unstructured textual information is enhanced by using
references to ontologies, the unstructured information that is expressed in the
models using natural language is made machine processable by defining map-
pings to semantic schemata. In contrast to approaches that aim for a complete,
a-priori formal definition of all model content, e.g. [6, 7], the use of semantic
annotations gives way to a flexible, stepwise semantic enrichment. Thus, a do-
main expert can easily choose which parts of the contained semantic information
shall be expressed in a formal way and which parts can be left in the traditional
natural language format. At the same time, the traditional way of using the
modeling language is not changed.

Especially in the area of business process modeling a range of benefits have
been described that are based on the processing of such semantic annotations.
Examples include the measuring of the similarity of models [8], the automatic
execution of process instances using web services [9] or the detection of regulatory
compliance [10]. However, the approaches that have been described in the past
are usually targeted towards a specific business process modeling language. It
therefore seemed worthwhile to develop an approach that can be applied to
arbitrary conceptual modeling languages and thus reap the benefits of semantic
annotations also for other knowledge areas and according modeling languages.

For this purpose we will first describe the foundations and concepts our
approach is based on and then discuss the process of how a modeling language
has been conceived that permits to annotate arbitrary conceptual models with
concepts from ontologies.

3 Fundamental Concepts

For describing our approach we will refer to a number of specific terms in regard
to modeling methods and modeling languages. Therefore, we will briefly define
some fundamental concepts and thus clarify their meaning in our context.



Modeling Language for Semantic Annotations 3

3.1 Components of Modeling Methods

To define the components of modeling methods we refer to the generic framework
developed in [11] - see also figure 1. A modeling method is thereby composed of
a modeling technique and mechanisms and algorithms. The modeling technique
contains a modeling language, which is specified by a syntax, semantics, and
visual notation, and a modeling procedure that defines the steps and results for
applying the modeling language. The semantics of the modeling language defines
the meaning of the syntactic elements by establishing a mapping to a semantic
schema. The mechanisms and algorithms are used in the modeling procedure and
can either be generic, i.e. applicable to arbitrary modeling languages, specific,
i.e. applicable only to a particular set of modeling languages or hybrid, i.e. they
can be parameterized for a specific modeling language.

Steps Results

Refers to

Defines grammar

Seman�cs

Defines meaning

Seman�c
Schema

Syntax

Seman�c
Mapping

connects
obeys

Nota�on

Defines applica�on of language
delivers

Used in

Modelling
Procedure

Modelling
Method

Modelling
Technique

Mechanisms
& Algorithms

Modelling
Language

Generic
Mechanisms
& Algorithms

Hybrid
Mechanisms
& Algorithms

Specific
Mechanisms
& Algorithms

Steps ResultsSeman�cs

Seman�c
Schema

SyntaxNota�on

Modeling
Procedure

Modeling
Method

Modeling
technique

Mechanisms
& Algorithms

Modeling
Language

Generic
Mechanisms
& Algorithms

Hybrid
Mechanisms
& Algorithms

Specific
Mechanisms
& Algorithms

Used for

Defines visualiza�on

visualizes

Seman�c
Mapping

Defines
meaning of

Fig. 1. Components of Modeling Methods [11]

For the conceptualization of a modeling method at least some of these generic
concepts need to be specified. To do so it can be chosen from several entry points:
One would be to start with the definition of the syntax of the modeling language
and its semantics. Then assign an appropriate visual notation to the syntactic
elements based on the semantics and finally specify the details of the modeling
procedure and the corresponding mechanisms and algorithms. Another direction
would be to focus on the modeling procedure and its results and then derive the
according modeling language and the mechanisms and algorithms. Similarly, if
one wants to focus on particular mechanisms and algorithms, e.g. for conducting
mainly machine based processing, it is also an option to start from there and
then develop the modeling language and the modeling procedure. However, a
modeling method does not necessarily need to contain all the elements shown
in the framework and not all of them to the full extent. The minimal set to
create visual models is certainly the definition of a syntax and a visual notation
together with at least a semantic description in the form of natural language
explanations. This allows to create visual models that may even be processed by



4 Hans-Georg Fill

generic mechanisms and algorithms that do not require a further semantic speci-
fication. Many of the currently used standards for visual modeling languages, e.g.
UML and BPMN, only contain such a minimal set and leave it to the modeler
to determine the most suitable modeling procedure.

3.2 Conceptual Models and Ontologies

To describe our approach we also need to define the terms conceptual model and
ontology. By a conceptual model we understand a visual representation of some
aspects of the physical and social world for the purpose of human understanding
and communication [4]. Based on the previous statements about the components
of modeling languages, such a conceptual model is created based on a formal - in
the sense of machine-processable - abstract and concrete syntax, which are speci-
fied by a schema or grammar, and a distinct graphical notation [4, 3]. As it is not
primarily directed towards machine processing, the definition of formal semantics
is not compulsory but may be added if necessary, e.g. to conduct simulations.
For defining the grammar of conceptual models it can be reverted to propri-
etary specifications such as the Eclipse modeling framework [12] or ALL [13] or
standardized specifications such as the meta object facility (MOF) [14].

An ontology on the other hand can be characterized as ”a shared and com-
mon understanding of some domain that can be communicated across people and
computers” [15][p.184]. In contrast to conceptual models, ontologies are based
on computer-usable definitions and are usually expressed in a logic-based lan-
guage [16]. This makes them particularly useful for specifying and processing
structured vocabularies that make the relationships between different terms ex-
plicit [17]. In addition, ontologies can today be easily interchanged using some
of the widely used languages such as RDF, RDFS or the web ontology language
(OWL) that come with a formal semantic specification that allow for auto-
mated reasoning mechanisms such as consistency checking and the classification
of terms [18].

4 Conceptualization of a Semantic Annotation Modeling
Language

Based on these foundations the process of developing a modeling language for
semantically annotating arbitrary types of conceptual models can now be de-
scribed. In particular we will investigate the theoretical foundations that were
considered at the beginning, the formal considerations for realizing the mod-
eling language in a way that can be processed by machines and the technical
characteristics that needed to be taken into account.

4.1 Theoretical Foundations

As there are several approaches available that discuss the semantic annotation
of conceptual models - in particular business process models - it was first inves-
tigated how semantic annotations have been conducted previously and which of



Modeling Language for Semantic Annotations 5

the described techniques could be reused for our purposes. Thereby, two main
directions could be identified - see also figure 2: The first direction concerns the
translation of all model information into an ontology language that provides
formal semantics, e.g. [19, 8]. By enriching the resulting ontology skeleton with
additional information about the semantic contents of the models, a machine
processable representation can be established. To illustrate this with an exam-
ple, consider the representation of a business process as an event driven process
chain (EPC), c.f. [19]. To translate such a process into an ontology, at first
the modeling language for EPCs is translated into ontology concepts, e.g. OWL
classes. The resulting ontology can then be refined in OWL, for example by defin-
ing the ”control flow” properties that connect ”functions” and ”events” of the
EPC as a transitive property. Based on the formal semantics defined for OWL a
reasoner can thus correctly interpret that instances of functions and events that
are connected with ”subsequent” properties are transitively connected to each
other.

Conceptual 
Model Instance

Conceptual 
Model Schema

Ontology 
Schema

Ontology 
Instance

Conceptual 
Model Instance

Ontology 
Instance

conforms to

conforms to conforms to

conforms totranslated to

translated to

translated to and enriched

Conceptual 
Model Instance

Conceptual 
Model Schema

Ontology 
Schema

Ontology 
Instance

Conceptual 
Model Instance

conforms to conforms to

conforms to

mapped to

mapped to

mapped to

mapped to

(1) (2)

Fig. 2. Two Variants for Semantic Annotations of Conceptual Models

The second direction that can be found in the literature on semantic annota-
tions for conceptual models is characterized by using mapping relations between
the elements of a conceptual model and concepts in an ontology, e.g. [20, 21, 22].
This permits to process the elements in the ontology using formal semantics
and thus detect for example ontology concepts that are similar to a concept
that participates in such a mapping. Based on this information, the mappings
from these similar ontology concepts to the same or other conceptual models can
then be used to detect similar elements on the side of conceptual models, as e.g.
described by [20].

Although these directions have been described primarily in the context of
business process modeling so far, they seemed to be applicable also to other
conceptual modeling languages. However, the literature on the application of
these approaches to practical scenarios that would allow an evaluation of which
of the approaches may be beneficial compared to the other is not yet available. At
best, descriptions about the successful application to concrete use cases can be
found, e.g. [23, 21, 22], thus illustrating potential advantages and shortcomings
of the approaches. Therefore, it had to be decided which direction should be
taken for our approach and we selected the second direction, i.e. the mapping



6 Hans-Georg Fill

between conceptual models and ontologies. The main reason for this choice was,
that we envisaged that the approach would thus be more loosely coupled and
could be more easily applied to arbitrary conceptual modeling languages. This
loose coupling mainly stems from the fact that no semantic enrichment of the
schema of the conceptual models is necessary but that only a mapping has to
be defined.

The next theoretical consideration concerned the choice of the language for
specifying ontologies. As Obrst has pointed out there is a spectrum of languages
available that can be used for this purpose, each with its own advantages and
pitfalls [16]. As we wanted to keep our approach as flexible as possible we chose
the web ontology language (OWL) for representing ontologies. OWL is widely
used in several domains, comes in the form of an official standard by the W3C
and is well supported by a range of tools and APIs. In addition, it can serve
various goals of using semantic annotations for conceptual models such as the
building of formal thesauri, the representation of complex domain knowledge in
a formal, machine processable way or as a starting point for executing queries on
the formal specifications and the definition of rules, e.g. by using the semantic
web rule language SWRL [24, 25].

4.2 Formal Considerations

Based on the theoretical choices for using a mapping approach to the web on-
tology language, the next part was the actual translation of these choices into
a concrete modeling language that would be able to use these concepts. Thus,
it had to be decided how the mapping should be formally defined in terms of a
modeling language and how an ontology in the OWL format should be repre-
sented. At the same time it should be ensured that the models that would result
from using such a modeling language could be easily processed in a meaning-
ful way. To represent OWL ontologies in the form of models several solutions
have been described in the past. These include for example the ontology def-
inition meta model by OMG [26] and a number of prototypes that originated
from research projects, e.g. [27, 21]. For the purposes of semantic annotations
we chose to re-use a previously developed implementation that allows to repre-
sent OWL ontologies in the form of visual models but does not itself require the
implementation of formal semantic restrictions [28]. In particular, this approach
provides algorithms that allow to exchange representations of OWL ontologies
with the Protégé ontology management platform. Thereby, the formal seman-
tic restrictions are enforced on the Protégé platform and its attached reasoners
and the ontologies are only represented in the modeling environment. To con-
duct reasoning tasks, requests can thus be sent to Protégé and the results then
transferred back into the modeling environment. This not only permits to reuse
already developed algorithmic solutions, e.g. for the similarity matching between
concepts of an ontology, but also as a basis for advanced manipulations of the
ontology concepts such as the execution of semantic queries or rules on the side
of Protégé, e.g. by using the SPARQL or SWRL extensions [25].



Modeling Language for Semantic Annotations 7

Model Element Mapping 
Relation

OWL Class

OWL Instance

MappingType

Fig. 3. Theoretical Conception of the Semantic Annotation Approach

To illustrate the path of developing the formal description of the seman-
tic annotation approach, we will describe three evolution steps for realizing a
modeling language for semantic annotations. Thereby we intend to show what
considerations have to be made for creating the modeling language. In figure 3
the fundamental idea of the approach is shown: For any kind of model ele-
ment a mapping relation is defined to either an OWL class or an instance of an
OWL class. To keep the illustration simple we omitted the possibility of creat-
ing mappings to properties. Furthermore, the mapping relation can be detailed
by a mapping type, which defines whether the mapped ontology entity is equal,
broader or narrower to the meaning of the model element or refers to a particular
meaning of an ontology entity.

Write letter Send letter?

Activity_1 Decision_1

Sub
sequent_1

Name Name

Write 
letter

Send 
letter?

from to

Write letter Send letter?

Activity_1 Decision_1

Sub
sequent_1

Name Name

Write 
letter

Send 
letter?

from to

Refers to 
OWL Class

http://ontology.
com/#Letter

C

Fig. 4. Sample of an Excerpt of a Conceptual Business Process Model and a Variant
for a Semantic Annotation

Based on this idea, a first variant for translating these concepts into a mod-
eling language is shown in figure 4. The left part in figure 4 shows the concrete
syntax and according visual representation of a sample part of a business pro-
cess model. It contains an activity element, a decision element and a subsequent



8 Hans-Georg Fill

relation between the two. In addition, name attributes with the values ”Write
letter” and ”Send letter?” are linked to the model elements. As a first variant,
the set of attributes for activities can be extended to give users of the modeling
language the possibility to specify an OWL class that stands for the refers-to
mapping type. If a value for such an attribute is present it can also be used
to change the visual representation accordingly as shown on the right side of
figure 4.

Although this first variant contains already all necessary information for the
mapping between model elements and ontology concepts and could be directly
processed by algorithms, it has several limitations. One limitation is that the
original modeling language needs to be extended with an attribute to contain
the mapping to the ontology concepts. This may not pose a serious limitation for
many modeling languages, but it may lead to difficulties if certain algorithms
depend on the original state of the modeling language and may need to be
adapted in case of a modification. Another limitation is that for each annotation
the exact reference to the ontology concepts needs to be known, i.e. the user of
the modeling language has to know the URI of the ontology concept and insert it
as an attribute value. Although this could be resolved on the user interface level,
it seemed worthwhile to investigate further options for a better representation.

Write letter Send letter?

Activity_1 Decision_1

Sub
sequent_1

Name Name

Write 
letter

Send 
letter?

from to

Refers to 
OWL Class

INTERREF

C

OWL Class

Name

http://ontology.
com/#Letter

C
Letter

Fig. 5. Variant of a Semantic Annotations using a Model-based Ontology Represen-
tation



Modeling Language for Semantic Annotations 9

Based on these considerations a second variant was created as depicted in
figure 5. It features a separate model type for representing the information con-
tained in OWL ontologies. As mentioned above it does however not include any
formal semantic restrictions but just presents the syntactic information con-
tained in an OWL ontology. For the example here, the OWL representation has
been simplified to highlight the key aspects. In this way, only an OWL Class
model element and a name attribute are shown. In a similar fashion also OWL
properties and instances could be represented. However, the presented informa-
tion is already sufficient to enable users to map the extended modeling language
for a business process model to the OWL model representation. In contrast to
the first variant, a user can easily select the ontology concepts that shall be used
for the annotation without knowing about the exact reference of the ontology
concepts. The ontology representation on the right side can thereby either cre-
ated by hand - e.g. by an expert user - or imported from an ontology toolkit such
as Protégé by using an import mechanism. Due to the lack of formal semantics in
the model representation, any modifications of the ontology relationships must
however be checked using an external source, e.g. through a reasoner attached
to Protégé.

Write letter Send letter?

Activity_1 Decision_1

Sub
sequent_1

Name Name

Write 
letter

Send 
letter?

from to

OWL Class

Name

#Letter

C
Letter

Model 
Reference

Instance 
Reference

INTERREF

Annotator

Annotation 
Type

Refers to

Ontology 
Reference

Ontology 
Reference

INTERREF

Activity: 
Write 
letter

OWL 
Class: 
#Letter

Is_input_1 Refers
to_1

Refers
to

from to from to

Fig. 6. Resulting Final Variant Using Two Additional Model Types for the Semantic
Annotation

Despite the progress that could be made with the second iteration, the prob-
lem of modifying the original modeling language had not been solved. This led
to a third iteration as described in figure 6. Here, the loose coupling between the
original modeling language, the annotations, and the ontology representation is
fully achieved. This is accomplished by introducing a third model type besides
the business process model and the ontology model: This annotation model type
contains references to both the elements of the modeling language that shall



10 Hans-Georg Fill

be annotated and the ontology model. It also permits to specify the annotation
type - shown in figure 6 again by the example of the Refers-to annotation type.
As the annotation model type provides all necessary information no modifica-
tion of the original modeling language is necessary. This approach is similar to
previously discussed approaches in the context of model weaving [29], however
we use an explicit visual representation for the annotation model type. Thereby,
a user can edit the annotations in a visual form without having to deal with a
formal specification language.

4.3 Technical Characteristics

Besides the formal considerations for the conception of the modeling language
also certain technical characteristics need to be taken into account. This stems
from the fact that in case the modeling language shall be implemented in soft-
ware, a translation from the abstract formal definitions into a concrete program-
ming or machine processable description language needs to be accomplished.
For this purpose it can be chosen from two directions: Either the modeling lan-
guage is built from scratch using a standard programming language such as Java
or C++ or some modeling tools such as specific programming APIs or a meta
modeling platform are used. Although implementing the modeling language in
a programming language from scratch may offer a maximum degree of freedom,
it is certainly not an efficient way to do so when taking into account all the
necessary details for the user interface, logic, and data storage level of such an
application. And even if an existing platform or API is used, there are still several
technical choices that need to be made.

Fig. 7. Screenshot of the Implementation of the Semantic Annotation Model



Modeling Language for Semantic Annotations 11

For the technical realization of the described semantic annotation modeling
language we used the ADOxx1 meta modeling platform that is provided for free
by the www.openmodels.at community. The choice for this platform was mainly
based on its extensive funcationalities for implementing modeling languages,
its industry ready scalability and robustness as well as existing skills on the
side of the authors with its proprietary configuration languages ALL, ADL, and
GRAPHREP [13]. The platform offers many options for implementing arbitrary
types of visual modeling languages. To highlight some of the technical charac-
teristics we will discuss two aspects: the user interface level and the aspects of
data exchange and storage. For the user interface level it had to be taken into
account that the semantic annotations can be easily created by hand and that
the visual representation offers some guidance to the users. This concerned in
particular the representation of the elements that reference the model elements
and the ontology elements - see figure 7. It was therefore decided to integrate
the details of the reference such as the model type, the model instance, the refer-
enced class, and the referenced instance into the visual representation. Thus, the
user can immediately see without further interaction what the reference stands
for. The same considerations were applied for the references to ontology models.
Another aspect of the user interface level that we would like to highlight is the
choice of the colors: Here the decisive factor was that the user should be able to
easily distinguish the elements from each other. Therefore different colors were
chosen for the model reference and the ontology reference elements and for the
two relations, the is input relation and the refers to relation. The choice for the
shapes was not driven by any particular consideration but was targeted towards
a neutral representation that would not evoke any references to existing symbols.

In regard to the data exchange and storage aspects the used meta modeling
platform offered several functionalities that helped to focus on the conceptual-
ization of the modeling language itself. Thus, it had not to be taken into account
how the modeling language in the form of a meta model nor the actual model
instances are stored in a database as the platform would handle that automati-
cally and in an efficient way. The same applied to the use of import and export
interfaces for exchanging ontology models with the Protégé platform. ADOxx
provides a generic XML format for importing and exporting models that could
be easily created by a specifically developed plugin for Protégé. If these func-
tionalities had not been available particular effort would have been required to
implement according database and XML schemata.

Also in terms of scalability and applicability to real scenarios, the choice for
the ADOxx platform provides several advantages. These include the fact that
ADOxx has been applied to many use cases in industry where several domain
specific modeling languages (DSML) have been developed [30]. The proposed
approach for using semantic annotations can be easily adapted to support a
variety of existing other modeling languages and practical scenarios. In addition,
also technical functionalities in regard to programmatic access to the models
provide further opportunities. It is thus planned to use the WSDL interface

1 ADOxx is a registered trademark of BOC AG.



12 Hans-Georg Fill

for ADOxx to develop a web-based annotation tool. A first prototype for this
approach that is based on the Google Web Toolkit and the SmartGWT2 API
is currently under development and will be shortly available [31, 32]. Based on
these developments it is then envisaged to further investigate and advance the
scalability of the approach by making it available for a wider audience on the
web.

Fig. 8. Screenshot of the Implementation on the ADOxx Platform

For the further evaluation of the implementation of the semantic annotation
modeling language it will be made freely available in the course of the SeMFIS
project on the www.openmodels.at platform3. Thereby, it is envisaged to receive
further feedback from the community, especially in regard to the scalability and
practical applicability of the approach.

5 Conclusion and Outlook

With the above description that highlighted some of the key choices during
the development of the semantic annotation modeling language it can now be
discussed which implications such a description may have. Clearly, the way how
modeling languages are being realized today is not - or maybe not yet - a process

2 SmartGWT is a registered trademark of Isomorphic Software.
3 See http://openmodels.at/web/semfis/



Modeling Language for Semantic Annotations 13

that adheres to a well-defined reproducable process. Many of the choices that are
made during the development are currently more based on intuition and previous
experience than on a sound theoretical foundation. However, there are some parts
in the development process where either existing theoretical approaches could
be directly applied or where it seems worthwhile of developing them.

In particular we see three parts where this is the case: The first and probably
most obvious concerns the choice of the graphical representation of the elements
and relations of a modeling language. For a long time several areas of science have
studied the meaning of signs, the perception of color or the cultural implications
that follow from this. It has already been described how systems could be realized
that support the creators of modeling languages in choosing appropriate visual
representations for this purpose [5]. This could be further developed and generate
a direct benefit for the conceptualization of modeling languages in general.

Another part where the use of existing theories and their further adaptation
to the conceptualization of modeling languages may be beneficial is the optimiza-
tion of the syntax of the modeling language. The field of databases developed
a large number of optimization techniques that may be able to serve as start-
ing points for further developments. Similar to the principles of normalization
and optimization of relational models [33], one could imagine also a theoretical
approach for optimizing the syntactic representation of a visual modeling lan-
guage. As described by the iterations that were presented in section 4 such an
optimization needs to take into account several dimensions at the same time to
be successful. It would not only have to focus on an efficient implementation in
terms of a data structure, but the data efficiency may even be sacrificed to a
certain extent to allow for a better user experience or a better application of
algorithms.

The third aspect that is probably the most difficult to achieve and that has
not been considered so far is the tighter collaboration with prospective real users
of the modeling language. Although this is usually hard to achieve for scientists
who are not tightly integrated with industry - e.g. based on common projects
as it is done in consortium research [34] - this seems to be the only way to
enhance the conceptualization process in terms of real usability. By receiving
continuous feedback of the future users and the immediate, structured response
to the needs expressed therein, is likely to be the sole option for arriving at a
quasi-optimal solution that not only has an academic impact. For this purpose
new developments in the fields of crowd-sourcing and social network approaches
could bring about interesting options for realizing such tasks also on a low-budget
basis and for integrating professionals in scientific development processes.

6 Acknowledgements

We would like to thank the three anonymous reviewers for their very constructive
and valuable comments. The work on this paper has been funded by the Austrian
Science Fund (FWF) in the course of an Erwin-Schrödinger-Fellowship grant
number J3028-N23.



14 Hans-Georg Fill

References

1. Object Management Group OMG: OMG Unified Modeling Language (OMG
UML), Infrastructure, V2.1.2 (2007) http://www.omg.org/spec/UML/2.1.2/

Infrastructure/PDF/ accessed 01-03-2011.
2. Object Management Group (OMG): Business Process Model and Notation

(BPMN) Version 2.0 (2011) http://www.omg.org/spec/BPMN/2.0/PDF/ accessed
01-03-2011.

3. Wand, Y., Weber, R.: Research Commentary: Information Systems and Conceptual
Modeling - A Research Agenda. Information Systems Research 13(4) (2002) 363–
376

4. Mylopoulos, J.: Conceptual Modeling and Telos. In Loucopoulos, P., Zicari, R.,
eds.: Conceptual Modelling, Databases and CASE: An Integrated View of Infor-
mation Systems Development. Wiley (1992) 49–68

5. Fill, H.G.: Visualisation for Semantic Information Systems. Gabler (2009)
6. Peleg, M., Tu, S.: Design Patterns for Clinical Guidelines. Artificial Intelligence

in Medicine 47(1) (2009) 1–24
7. Becker, J., Breuker, D., Pfeiffer, D., Raeckers, M.: Constructing Comparable Busi-

ness Process Models with Domain Specific Languages - An Empirical Evaluation.
In: 17th European Conference on Information Systems (ECIS), Verona, Italy (2009)

8. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring Similarity between Semantic
Business Process Models. In Roddick, J., Hinze, A., eds.: Proceedings of the Fourth
Asia-Pacific Conference on Conceptual Modelling (APCCM 2007). Volume 67 of
Australian Computer Science Communications. ACM (2007) 71–80

9. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business
process management: a vision towards using semantic web services for business pro-
cess management. In: IEEE International Conference on e-Business Engineering,
2005. ICEBE 2005. (2005) 535–540

10. Governatori, G., Hoffmann, J., Sadiq, S., Weber, I.: Detecting Regulatory Com-
pliance for Business Process Models through Semantic Annotations. In: 4th Inter-
national Workshop on Business Process Design, Milan (2008)

11. Karagiannis, D., Kuehn, H.: Metamodeling Platforms. In Bauknecht, K., Min Tjoa,
A., Quirchmayer, G., eds.: Third International Conference EC-Web 2002 Dexa
2002. LNCS2455. Springer, Aix-en-Provence, France (2002) 182

12. McNeill, K.: Metamodeling with EMF: Generating concrete, reusable
Java snippets (2008) http://www.ibm.com/developerworks/library/

os-eclipse-emfmetamodel/index.html?S_TACT=105AGX44&S_CMP=EDU.
13. Fill, H.G.: UML Statechart Diagrams on the ADONIS Metamodeling Platform.

Electronic Notes in Theoretical Computer Science 127(1) (2004) 27–36
14. OMG, O.M.G.: Meta Object Facility (MOF) Specification 2.0 (2006)
15. Studer, R., Benjamins, R., Fensel, D.: Knowledge Engineering: Principles and

methods. Data & Knowledge Engineering 25 (1998) 161–197
16. Obrst, L.: Ontologies for semantically interoperable systems. In: Proceedings of

the 12th International Conference on Information and Knowledge Management,
New Orleans, ACM Press (2003)

17. Horrocks, I., Patel-Schneider, P., Van Harmelen, F.: From SHIQ and RDF to OWL:
The Making of a Web Ontology Language. Web Semantics: Science, Services and
Agents on the World Wide Web 1(1) (2003) 7–26

18. W3C: OWL Web Ontology Language - Overview W3C Recommendation 10 Febru-
ary 2004 (2004) http://www.w3.org/TR/owl-features/ accessed 16-09-2005.



Modeling Language for Semantic Annotations 15

19. Thomas, O., Fellmann, M.: Semantic Business Process Management: Ontology-
based Process Modeling Using Event-Driven Process Chains. IBIS 2(1) (2007)
29–44

20. Hoefferer, P.: Achieving Business Process Model Interoperability Using Metamod-
els and Ontologies. In Oesterle, H., Schelp, J., Winter, R., eds.: 15th European
Conference on Information Systems (ECIS2007), St. Gallen, Switzerland, Univer-
sity of St. Gallen (2007) 1620–1631

21. Fill, H.G.: Design of Semantic Information Systems using a Model-based Approach.
In: AAAI Spring Symposium, Stanford University, CA, AAAI (2009)

22. Fill, H.G., Reischl, I.: An Approach for Managing Clinical Trial Applications using
Semantic Information Models. In Rinderle-Ma, S., Sadiq, S., Leymann, F., eds.:
Business Process Management Workshops - BPM 2009. Lecture Notes in Business
Information Processing. Springer, Ulm, Germany (2009) 581–592

23. De Francisco, D., Grenon, P.: Enhancing telecommunication business process rep-
resentation and integration with ontologised industry standards. In Hepp, M.,
Hinkelmann, K., Stojanovic, N., eds.: Proceedings of the 4th International Work-
shop on Semantic Business Process Management (SBPM2009), ACM (2009)

24. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL:
A Semantic Web Rule Language Combining OWL and RuleML (2004) http://

www.w3.org/Submission/SWRL/ accessed 21-03-2007.
25. O’Connor, M., Knublauch, H., Tu, S., Musen, M.A.: Writing Rules for the Semantic

Web Using SWRL and Jess. In: Protégé with Rules Workshop, held with 8th
International Protégé Conference, Madrid, Spain (2005)

26. OMG, O.M.G.: Ontology Definition Metamodel, Third Revised Submission to
OMG/ RFP ad/2003-03-40. Technical report (2005) http://www.omg.org/docs/

ad/05-08-01.pdf accessed 16-09-2005.
27. Leutgeb, A., Utz, W., Woitsch, R., Fill, H.G.: Adaptive Processes in E-Government

- A Field Report about Semantic-based Approaches from the EU-Project FIT. In:
Proceedings of the International Conference on Enterprise Information Systems
(ICEIS 07), Funchal, Madeira - Portugal, INSTICC (2007) 264–269

28. Fill, H.G., Burzynski, P.: Integrating Ontology Models and Conceptual Models
using a Meta Modeling Approach. In: 11th International Protégé Conference,
Amsterdam (2009)

29. Del Fabro, M.D., Valduriez, P.: Semi-automatic model integration using matching
transformations and weaving models. In: SAC ’07 Proceedings of the 2007 ACM
symposium on Applied computing, ACM (2007)

30. BPTrends: The 2005 EA, Process Modeling and Simulation Tools Report - Ado-
nis Version 3.81 (2005) http://www.boc-group.com/info-center/downloads/

detail/resource/bptrends-review-of-adonis/ accessed 30-03-2011.
31. Smeets, B., Boness, U., Bankras, R.: Beginning Google Web Toolkit - From Novice

to Professional. Apress (2008)
32. Software, I.: Smart GWT(TM) Quick Start Guide - Smart GWT v2.4 November

2010 (2010) http://www.smartclient.com/releases/SmartGWT_Quick_Start_

Guide.pdf accessed 30-03-2011.
33. Codd, E.: A relational model of data for large shared data banks. Communications

of the ACM 13(6) (1970) 377–387
34. Oesterle, H., Otto, B.: Consortium Research - A Method for Researcher-

Practitioner Collaboration in Design-Oriented IS Research. Business & Information
Systems Engineering 5/2010 (2010)


