
January 9, 2006 17:6 WSPC/157-IJCIA 00144

International Journal of Computational Intelligence and Applications
Vol. 5, No. 3 (2005) 305–320
c© Imperial College Press

USING COMPETITIVE CO-EVOLUTION TO EVOLVE
BETTER PATTERN RECOGNISERS

TARAS KOWALIW, NAWWAF KHARMA∗, CHRISTOPHER JENSEN,
HUSSEIN MOGHNIEH and JIE YAO

Department of Electrical and Computer Engineering
Concordia University, 1455 de Maisonneuve Blvd. W. Montréal

Québec, Canada. H3G 1M8
∗kharma@ece.concordia.ca

Revised 6 June 2005

We present a system for the automatic synthesis of classifiers. The CellNet system for
generating binary pattern classifiers is used as a base for further experimentation. As
in the original CellNet software, we evolve pattern recognisers (hunters). However, in
this version called CellNet Co-Ev, we also evolve the patterns (prey) in a competitive
co-evolution. Patterns evolve through the application of camouflage functions, which are
used to obscure the data naturally found in the database. The addition of this compet-
itive co-evolution yields a larger and more varied database, artificially increasing the
difficulty of the classification task. Application to the CEDAR database of handwritten
characters shows an increase in the reliability of the evolution of recognisers, as well as
in the elimination of over-fitting, relative to the original CellNet software.

Keywords: Pattern classification; character recognition; genetic algorithms; competitive
co-evolution; CellNet.

1. Introduction and Review

The aim of project CellNet is the creation of a software system capable of automat-
ically evolving complete pattern recognisers from arbitrary pattern sets; that is, to
minimise the amount of expert input required for the creation of pattern recognisers
given some set of target data. This is an ambitious goal, requiring much additional
work. This paper describes a step towards this goal: the original CellNet system is
augmented with a competitive co-evolution, towards the aim of improving reliability
and allowing for an artificial inflation of the provided data set. Unlike the original
CellNet system, the approach described in this paper allows for the co-evolution
of patterns; that is, images in the database are augmented with a genome which
specifies the application of camouflage functions — these are topologically invariant
functions which obscure the original pattern in the image, by introducing deforma-
tions, noise, etc. In doing so, the classification task becomes more difficult, leading
to the evolution of pattern recognisers which are more reliable. Additionally, the

305



January 9, 2006 17:6 WSPC/157-IJCIA 00144

306 T. Kowaliw et al.

problem of over-fitting,a a source of constant worry in nearly all pattern recognition
tasks, is eliminated.

A Pattern Recognition System is almost always defined in terms of two func-
tionalities: the description of patterns and the identification of those patterns. The
first functionality is called feature extraction, and the second, pattern classification.
Since there are many types of patterns in this world, ranging from the images of fruit
flies to those of signatures and thumb prints, the focus of most research endeavours
in pattern recognition has rightfully been directed towards the invention of fea-
tures that can capture what is most distinctive about a pattern. This leads to two
overlapping areas of research associated with features: feature selection and feature
creation. Feature selection has to do with choosing a small set of features from a
larger set, in order to maximise the rate of recognition of an associated classifier,
and simultaneously reducing the (computational) cost of classification. Feature cre-
ation, on the other hand, has to do with the creation or growth of complex features
from a finite set of simpler ones, also for the benefit of an associated classifier. Both
areas of research are reviewed below.

Many topics refer to Evolutionary Computation, especially Genetic Algorithms
(GAs); the interested reader may refer to Mitchell’s text for an introduction,9 or
to the paper by Sarker et al. for a more recent review with discussion of some
applications.12

1.1. Feature selection

Siedlecki14 was the first to suggest the use of GAs for feature selection. Ten years
later, Kudo8 demonstrates the superiority of GAs over a number of traditional
search & optimisation methods, for sets with a large number of features. Vafaie16

shows that a GA is better than Backward Elimination in some respects, includ-
ing robustness. Guo6 uses a GA for selecting the best set of inputs for a neural
network used for fault diagnosis of nuclear power plant problems. Moser10 surveys
previous attempts at speeding up the action of GAs, and then proposes two new
architectures of his own: VeGA, which uses parallelism to simultaneously evaluate
different sets of features (on one computer), and DVeGA, which utilises an adaptive
load balancing algorithm to use a network of heterogeneous computers to carry out
the various evaluations. Shi13 applies a GA to the selection of relevant features
in handwritten Chinese character recognition. Fung4 uses a GA to minimise the
number of features required to achieve a minimum acceptable hit-rate, in signa-
ture recognition. Yeung16 succeeds in using a GA in tuning four selectivity param-
eters of a Neocognitron, which is used to recognise images of handwritten Arabic
numerals. Current research often involves the use of GAs in ensembles of classifiers,
as in Ref. 5.

aOver-fitting is a common problem in machine learning: The tendency of classifiers to perform with
high accuracy on data during training, but with less accuracy on other data. It may be measured by
contrasting accuracy on the training data against some previously unseen independent test data.



January 9, 2006 17:6 WSPC/157-IJCIA 00144

Using Competitive Co-Evolution to Evolve Better Pattern Recognisers 307

1.2. Feature creation

The first paper that addresses feature creation appears to be [Ref. 15]. In his work,
Stentiford uses evolution to create and combine a set of features (into a vector),
which is compared to reference vectors, using nearest-neighbour classifiers. A sin-
gle feature is a set of black- or white-expecting pixel locations. The results were
generated using a training set of 30,600 printed characters and a test set of 10,200
printed characters. The error rate, on the test set, was 1.01%, and was obtained
using 316 nearest-neighbour classifiers automatically generated by the evolution-
ary system. More recently, Brumpy et al.3 used evolution to create features for
use in analysing satellite and other remote-sensing captured images. Specifically,
the researchers defined a genetic programming scheme for evolving complete image
processing algorithms for, for example, identifying areas of open water; that is, a
general framework in which both feature creation and classification was created,
allowing a Genetic Algorithm to find the best algorithm for recognition. Their sys-
tem called GENIE successfully evolved algorithms that were able to identify the
intended ground features with 98% accuracy. Co-evolutionary methods have been
used for the creation of descriptions of patterns or images, as in Veenman et al.,17

but in the context of multi-agent systems; while a powerful methodology for many
applications, multi-agent approaches are too slow for our present purposes.

1.3. Evolvable pattern recognition systems

Given successful systems for feature creation, it is a logical step to attempt to create
whole pattern recognition systems; that is, systems which automatically perform
all work involved in the pattern recognition process. After all, the hardest part of
successful pattern recognition is the selection/creation of the right set of features.
Indeed, initial examples of such systems seem to have focused on the evolution
of features or feature complexes, which are useful for classification. Two systems
described below to do this. CellNet6 blurs the line between feature selection and
the construction of binary classifiers out of these features. HELPR10 also evolves
feature detectors, but the classification module is completely separate from the
feature extraction module and is trained rather than evolved. Other differences
exist, but, both attempts are the only systems, that we know of, that aim at using
artificial evolution to synthesise complete recognition systems (though currently for
different application domains), with minimum human intervention.

CellNet is an ongoing research project aiming at the production of an
autonomous pattern recognition software system, for a large selection of pattern
types. Ideally, a CellNet operator would need little to no specialised knowledge to
operate the system. To achieve this, CellNet divides the problem (and hence the
solution) into two parts: feature creation and classifier synthesis.

The long-term goal of the CellNet project is the inclusion of methodologies
for the simultaneous evolution of both features and classifiers (Cells and Nets);
at present, however, a set of hard-coded features are used. Some interesting



January 9, 2006 17:6 WSPC/157-IJCIA 00144

308 T. Kowaliw et al.

perspectives are offered as to how an evolvable feature creation framework may be
structured. The most interesting of these suggestions is the use of a pre-processing
routine for deconstructing images using techniques inspired by pre-attentive vision
in humans — from there, a wide array of possible machine learning techniques may
be used.

In its current form, CellNet is capable of evolving classifiers for a given set of
patterns. To achieve this it uses a specialised genetic operator: Merger. Merger is
an operator, somewhat similar to that used in MessyGAs,4 designed to allow the
algorithm to search increasingly larger feature spaces in an incremental manner.
This is different from a normal GA, where the dimensionality of the search space
is fixed at the start of the run. CellNet is cast as a general system, capable of self-
adapting to many handwritten alphabets, currently having been applied to both
Arabic and Indian numbers (using the CEDAR database, and a second database
collected in Montreal1). This paper may be viewed as an extension of the CellNet
system — as such, CellNet is described in more detail in Sec. 2.

HELPR is composed of two modules: a features extraction module and a classi-
fication module. The classification system is not evolvable; only the feature extractor
is. The feature extraction module is made of a set of feature detectors. Its input is
the raw input pattern and its output is a feature vector. The system is designed to
handle signals (not visual patterns or patterns in general).

Each feature extractor has two stages: a transformation network followed by
a capping mechanism. A transformation network utilises a set of morphological
operations (such as Open and Erode) with structuring elements in addition to
a small number of arithmetic operations (such as addition and multiplication).
As such a transformation network (or TN) represents a mixed morpho-arithmatic
expression which transforms an n-element digitised input signal into an n-element
output signal. The purpose of the TN is to highlight those features of the input
signal that are most distinctive of the target classes. On the other hand, the purpose
of the capping mechanism (which is a single-layer of perceptrons) is to transform
the n-element signal coming out of the TN into a k-element array of scalars, where
k is the number of target classes defined by the user. Ideally, every element will
return a + 1 for a single class and −1 for the rest.

The most interesting features of this work is that (a) it adopts a holistic approach
to the evolution of pattern classifiers: it boldly states, starting with the title, that
such a goal is possible; (b) it demonstrates that it is possible for a computerised sys-
tem to automatically evolve a pattern classifier, which can be used for a real-world
application; (c) it augments the standard evolutionary processes in very creative
ways to produce a customised system, which perform well and (e) it suggests that
it is possible, using a small set of morphological operations (in addition to simple
arithmetic), to characterise a wide range of signals. There is no doubt that this
paper, as well as the CellNet architecture are examples of a new trend in pattern
classification: that of the autonomous pattern recogniser. However, there is also no
doubt that both works still have a number of deficiencies to deal with.



January 9, 2006 17:6 WSPC/157-IJCIA 00144

Using Competitive Co-Evolution to Evolve Better Pattern Recognisers 309

Both HELPR and CellNet only evolve part of the system: other parts of the
system are hard-coded. In addition, both systems have a large number of parameters
that are manually set by an expert user. Finally, both systems only work on specific
input signals/images; the promise of extension is there, but not yet realised. This
is why the following set of problems must be dealt with:

(1) Feature Creation (or Detection) mechanisms that are suited to large sets of
classification problems. This is to eliminate the need for serious re-configuration
or worse still, re-engineering, every time a different application domain is
targeted.

(2) Elimination of Parameters, many of which need to be set by the user before
the system is exploited. These parameters include: probability distributions
types, probability values, population size, number of feature extractors and
so on.

(3) Thorough Testing of the evolved system against a diverse set of pattern
databases (and not just Radar signatures or Arabic Numerals), and doing so,
without subjecting the system to any significant amount of re-configuration.

This paper may be viewed as a step towards the realisation of points 2 and 3.
Co-Evolution is demonstrated to help eliminate the problem of over-fitting in the
creation of a classifier, hence eliminating the need for an expert to manually deter-
mine the correct parameters. Additionally, the camouflage routines presented aid
in the diversification of a given pattern database, allowing for greater variance in
any given set of data. That is, by artificially making the problem harder during
the training period, better results are obtained in terms of reliability and poten-
tial application to the real world, without any database-dependent expert input
required.

2. Hunters and Prey

2.1. Hunters

CellNet hunters were first introduced in Ref. 7, a reader interested in their formal
representation is urged to consult that source — our implementation is identical.
However, given they are an entirely new and rather complicated representations for
pattern recognisers, we offer an informal explanation of their structure, along with
some illustrative examples.

2.1.1. Feature functions

The basis on which Hunters are built is a set of normalised feature functions. The
functions (all applied to thinned figures) used by CellNet Co-Ev are [parameterised
histograms, central moments, Fourier descriptors, Zernike moments, normalised
width (of a bounding box), normalised height, normalised length, number of ter-
minators, number of intersections]. However, for the purposes of explanation, we



January 9, 2006 17:6 WSPC/157-IJCIA 00144

310 T. Kowaliw et al.

shall assume that our examples use only two: F1 and F2. This assumption is made
for ease of visual representation of a 2-dimensional Feature Space, and is easily
generalised.

2.1.2. Hunters

A Hunter is a binary classifier — a structure which accepts an image as input,
and outputs a classification. The fitness function which is used to drive the Genetic
Algorithm determines which digit the agent classifies; for example, assuming our fit-
ness function specifies that we are evolving Hunters to recognise the digit “ONE”, a
Hunter which returns “yes” given an image will implicitly be stating that the image
is a “ONE”, as opposed to “NOT-ONE”, i.e. any other digit. We will refer to these
classes as the primary class and the non-primary class. Hence, a Hunter outputs a
value from {PRIMARY, NON-PRIMARY, UNCERTAIN} when presented with an
image.

A Hunter consists of Cells, organised in a Net. A Cell is a logical statement —
it consists of the index of a Feature Function, along with bounds. Every cell is
represented by the following format:

Feature Function F i Bound b1 Bound b2

Provided with an image I, a cell returns TRUE, if b1 < F i (I) < b2, and FALSE
otherwise.

A Net is an overall structure which organises cells into a larger tri-valued logical
statement. That is, a Net is a logical structure which combines the TRUE/FALSE
values of its constituent Cells to return a value from {PRIMARY, NON-PRIMARY,
UNCERTAIN}.

The structure of a Net is as follows: A Net is a tree, with a voting mechanism
as its root node. At depth 1, there are a set of one or more Chromosomes.

Chromosomes consist of trees which begin with a Class Bit — this bit determines
whether or not the Chromosome votes for “PRIMARY” or “NON-PRIMARY”.
Following the Class Bit is a tree of one or more Cells, connected into a logical
structure by AND and NOT nodes. A Chromosome may be represented as a string
as follows:

Class BIT C [NOT] Cell1 AND [NOT] Cell2 AND . . .

Hence, the latter part is a logical statement, which returns TRUE or FALSE. A
Chromosome will return C if the logical statement returns TRUE — otherwise it
will remain silent.

A Net is a collection of such Chromosomes, connected via a Vote mechanism.
The Vote mechanism collects input from each Chromosome (although some Chro-
mosomes will remain silent), consisting of a series of zero or more values of “PRI-
MARY” or “NON-PRIMARY”. The Vote mechanism will tally the number of each,
and output the majority, or “UNCERTAIN” in the case of no input or a tie.



January 9, 2006 17:6 WSPC/157-IJCIA 00144

Using Competitive Co-Evolution to Evolve Better Pattern Recognisers 311

Fig. 1. Tree diagram of the example agent.

For example, consider the following Example Agent, specified by the two Chro-
mosomes — chromosome1 and chromosome2:

chromosome1: C1 Cell1
chromosome2: C2 Cell2 AND NOT Cell3

This Example Agent may be drawn as a tree, shown in Fig. 1.
A Hunter is a Net — that is, a Hunter is an organised collection of one or

more Cells, which when presented with an image, will return one of “PRIMARY”,
“NON-PRIMARY” or “UNCERTAIN”. The complexity of a Hunter is the number
of cells it contains, regardless of organisation.

2.1.3. Examples of hunters of complexity one

The following are some examples of Hunters with complexity one, and interpreta-
tions in a two-dimensional feature space. Assume the Primary class is “ONE”, and
consists the non-primary class is “NOT-ONE”.

Our first Hunter, A1, consists of a single cell in a single chromosome — it is
illustrated in Fig. 2. It is instructive to consider the Feature Space of all images
on the basis of Feature F1 and F2 — every image maps to an 〈x,y〉 coordinate in
this space, and hence may be drawn in a unit square. Agent A1 may be viewed

Fig. 2. Agent A1 and its partition of Feature Space.



January 9, 2006 17:6 WSPC/157-IJCIA 00144

312 T. Kowaliw et al.

Fig. 3. Agent A2 and its partition of Feature Space.

as a statement which partitions Feature Space into three disjoint sets — this is
also illustrated in Fig. 2. A second Hunter, A2, is illustrated in Fig. 3; this agent’s
partition of the same feature space is also illustrated.

2.1.4. Merger

Thus far, we have given examples only of Hunters with complexity one — this is
the state of the CellNet Co-Ev system when initialised. What follows is a system
of cooperative co-evolution which generates agents of increasing complexity.

Cooperative Co-evolution is achieved through the inclusion of a new Genetic
Operator, augmenting the typical choices of Crossover and Mutation. This new
operator, Merger, serves to accept two Hunters and produce a single new Hunter
of greater complexity. The complexity of the merged Hunter will be the sum of the
complexities of the parents.

Merger operates at the level of Chromosomes — when merging two Hunters,
Chromosomes are paired randomly, and merged either Horizontally or Vertically.
Vertical Merger simply places both Chromosomes in parallel under the Vote
mechanism — they are now in direct competition to determine the outcome of
the Vote. Horizontal Merger, on the other hand, combines the two Chromosomes
to produce a single and more complex Chromosome, where the two original Chro-
mosomes are connected via a AND or AND-NOT connective. Hence, Horizontal
Merger serves to refine a particular statement in the vote mechanism.

There are several decisions made when selecting which type of Merger is under-
taken, and how connections are made in the Horizontal case — these decisions are
under the control of two Affinity bits which are associated with each Chromosome.
These Affinity bits ensure that all decisions are under genetic control, and may be
selected for. For more detail, refer to Ref. 7.

2.1.5. Horizontal and Vertical Merger

The Cooperative Co-evolution of Hunters, as realised through Merger is a technical
process, more easily explained visually. We reconsider agents A1 and A2 of Sec. 3.1.3,
considering their children through the Merger operator.



January 9, 2006 17:6 WSPC/157-IJCIA 00144

Using Competitive Co-Evolution to Evolve Better Pattern Recognisers 313

Fig. 4. Agent A3 and its partition of Feature Space.

Fig. 5. Agent A4 and its partition of Feature Space

Consider the Horizontal Merger of Hunters A1 and A2 — here, we produce agent
A3 by combining the Chromosomes of A1 and A2 into one new one, linked via an
AND connective. As is visible in Fig. 4, Horizontal Merger may be viewed as the
refinement of a partition created by two Chromosomes.

In contrast, consider the Vertical Merger of these same two Hunters, producing
agent A4 — in this case, the Chromosomes are combined directly under the Vote
mechanism. As shown in Fig. 5, Vertical Merger may be loosely be viewed as the
union of the partitions generated by two Chromosomes.

2.2. Prey

In a divergence from the methodology in the original CellNet,6 the second popula-
tion in the CellNet Co-Ev system consist of Prey; Prey are primarily images, drawn
from the CEDAR database of handwritten digits. In addition to the image, Prey
disguise themselves via a set of camouflage functions, controlled genetically.

A Prey consists of a simple genome — an image index and a series of bits:

Image Index I Bit b1 Bit b2 . . . Bit bk

The Image Index points to a particular image in the database. The Bits are Boolean
parameters, indicating whether a particular camouflage function is to be applied
or not.



January 9, 2006 17:6 WSPC/157-IJCIA 00144

314 T. Kowaliw et al.

Prey exist to be passed to Hunters for classification — prior to this, however, all
camouflage functions specified by the series of bits in a Preys genome are applied —
hence, a Hunter views a transformed version of the original Image specified by the
Image Index.

Camouflage functions used by the CellNet Co-Ev system consist of
{Salt&Pepper, Scaling, Translation, Rotation} (Made explicit in Appendix A).
These particular functions were chosen as they were topologically invariant (save
Salt-Pepper, unlikely to have an effect). Parameters for the functions were chosen
such that simultaneous application of all to an image would still yield a human-
readable image.

Crossover for a Prey is single-point and fixed-length, occurring within the series
of bits. Mutation flips a single bit in the series. This scheme was chosen as it appears
to be the simplest example of a GA on a bit string, and closest to the “standard”
method.

2.3. Agent fitness and competitive co-evolution

The relationship between Hunters and Prey in the CellNet Co-Ev system is defined
through their interaction in the Genetic Algorithm. Both populations are initially
spawned randomly. For each generation, each agent is evaluated against the entirety
of the opposing population. Explicitly:

Let h be a member of the Hunter population H , p a member of the Prey popu-
lation P . For each generation, each Hunter h attempts to classify each Prey p — let

classAttempt(h, p) =




1; h correctly classfies p

0.5; h responds uncertain
0; h incorrectly classifies p.

(1)

Then the accuracytrain of a hunter h is

accuracytrain(h) =
1
p

∑
p∈P

classAttempt(h, p). (2)

Note that accuracytrain differs from the traditional definition of the accuracy of
a classifier. Later, when discussing the Validation Accuracy of a Hunter, we shall use
a different measure on an independent validation set of (non-camouflaged) images,
im in I.

classAttemptvalidation(h, im) =
{

1; h correctly classifies im

0; otherwise.
(3)

Leading to the familiar measure of accuracy, which we shall call accuracyvalidation .

accuracyvalidation(h) =
1
I

∑
im∈I

classAttemptvalidation(h, im). (4)

Fitness of a hunter is defined as

fitness(h) = accuracy2
train(h) − α · complexity(h) (5)



January 9, 2006 17:6 WSPC/157-IJCIA 00144

Using Competitive Co-Evolution to Evolve Better Pattern Recognisers 315

where α is a system parameter designed to limit Hunter complexity, and
complexity(h) is the number of cells in Hunter h.

In contrast, the fitness of a Prey p is defined as

fitness(p) =
1
H

∑
h∈H

(1 − classAttempt(h, p)) (6)

which is proportional to the inverse of fitness for Hunters.
As is evident from the relation between Hunters and Prey, the two popula-

tions exist in a state of Competitive Co-Evolution. The purpose of the addition of
Camouflage functions to the database of images is two-fold:

(1) It artificially increases the size of the database of images provided, by creating
subtle changes in existing images. Hence, the system has a broader palette of
training data.

(2) The dynamics of the populations creates a more difficult problem for the Hunter
population — not only do Hunters have to deal with an artificially large num-
ber of agents, it is precisely the transformation which they most often fail to
recognise which will comprise the bulk of the next population of Prey. Hence,
a Hunter population’s weak points are emphasised.

3. Data and Analysis

The CellNet system was tested using the CEDAR database of handwritten numbers.
Unlike previous experiments, only one pattern recognition task was attempted,
although it is expected that scale-up to other handwritten languages, such as Indian
or Chinese digits, is still possible. The system was configured to generate five binary
hunters for each digit — these are labelled h.x.y , where x is the digit number, and
y an index from 0 to 4. Each hunter was trained using a base set of 250 training
images, and tested via an independent set of 150 validation images.

All hunters were developed using identical system parameters, although train-
ing and validation images for each run were chosen randomly from a pool of 1,000
images. The hunters were placed in a genetic algorithm, using fitness-proportional
selection and elitism (for definitions, refer to Mitchell’s introductory text 9). Param-
eters were a rate of crossover of 0.8, a rate of mutation of 0.02, a rate of merger
of 0.02, and a rate of elitism of 0.1. The complexity penalty used in fitness was set
to 0.0002. Prey were evaluated similarly — fitness-proportional selection, elitism of
0.1, crossover of 0.8 and mutation of 0.02.

Each run was executed for a maximum of 250 generations, outputting data
regarding validation accuracy each 10 generations. A typical run may be seen in
the evolution of the h.0 hunters, as illustrated in Fig. 6. Training and validation
accuracies are very close, although validation accuracy tends to achieve slightly
higher levels — this behaviour is typical of all digits. This is in contrast to pre-
vious experiments involving CellNet on handwritten characters, where overfitting



January 9, 2006 17:6 WSPC/157-IJCIA 00144

316 T. Kowaliw et al.

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

generation (x10)

ac
cu

ra
cy

h.0.0 val
h.0.0 train
h.0.1 val
h.0.1 train
h.0.2 val
h.0.2 train
h.0.3 val
h.0.3 train
h.0.4 val
h.0.4 train

Fig. 6. Maximum training (light lines) and validation (dark lines) accuracies for the h.0 hunters.

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25

generation (x10)

co
m

p
le

xi
ty

com h.0.0

mean h.0.0

com h.0.1

mean h.0.1

com h.0.2

mean h.0.2

com h.0.3

mean h.0.3

com h.0.4

mean h.0.4

Fig. 7. Complexity of most fit agents (dark lines), and mean complexity (light lines) for the h.0
runs.

of approximately 2–3% was reported consistently.6 It is also noted that in initial
generations of the runs, overfitting is common, as it can clearly be seen that the
training plots are more accurate than the validation plots; this initial bonus, how-
ever, disappears by generation 60, where the validation plots overtake. However, also
in contrast to previous experiments, complexity is vastly increased — in the case
of the zero digit, mean complexity jumps from approximately 35 cells to approx-
imately 65 cells, while the complexity of the most accurate agent jumps from 40
cells to seemingly random oscillations in the range of 50 cells to 350 cells. Figure 7
shows the complexities of the most accurate agents and the mean for the h.0 runs.



January 9, 2006 17:6 WSPC/157-IJCIA 00144

Using Competitive Co-Evolution to Evolve Better Pattern Recognisers 317

Table 1. Maximum training and validation accuracies for the binary classifiers.

h.dig.0 h.dig.1 h.dig.2 h.dig.3 h.dig.4 Mean

Train Valid Train Valid Train Valid Train Valid Train Valid Train Valid Diff

0 0.951 0.955 0.977 0.955 0.946 0.945 0.951 0.944 0.941 0.946 0.953 0.949 +0.004
1 0.992 0.981 0.984 0.971 0.992 0.982 0.987 0.977 0.990 0.984 0.981 0.979 +0.002
2 0.906 0.906 0.935 0.932 0.895 0.904 0.881 0.896 0.906 0.920 0.905 0.912 −0.007
3 0.922 0.910 0.894 0.919 0.894 0.910 0.895 0.908 0.906 0.926 0.902 0.915 −0.013
4 0.944 0.941 0.972 0.967 0.957 0.962 0.956 0.962 0.957 0.952 0.957 0.957 +0.000
5 0.890 0.919 0.935 0.937 0.899 0.919 0.919 0.922 0.894 0.914 0.907 0.922 −0.015
6 0.914 0.941 0.925 0.940 0.923 0.953 0.945 0.917 0.931 0.923 0.928 0.935 −0.007
7 0.937 0.934 0.937 0.954 0.954 0.954 0.946 0.940 0.961 0.939 0.947 0.944 +0.003
8 0.900 0.914 0.933 0.918 0.932 0.939 0.875 0.905 0.914 0.931 0.911 0.921 −0.010
9 0.882 0.911 0.938 0.944 0.915 0.917 0.918 0.926 0.924 0.939 0.915 0.927 −0.012

mean − 0.006

Table 2. Percentage agreement in errors made by classifiers by digit.

Digit 0 1 2 3 4 5 6 7 8 9 Mean

Number of errors 38 22 62 58 34 80 58 55 73 29 60.9
Agreement 0.26 0.05 0.40 0.52 0.47 0.19 0.19 0.35 0.25 0.25 0.29

Table 1 shows the maximum training and validation accuracies for each binary
hunter. The final columns compute the means for the validation and training accu-
racies for each class of hunter, and compare the difference. It is shown that the
mean difference between training and validation data is −0.006, implying slight
underfitting of the classifiers to the training data.

Finally, a series of experiments was undertaken regarding the classifications of
the evolved binary classifiers. The scope of these experiments was the determination
of the relative independence of the errors made by the classifiers when classifying
images. Hence, our goal was a measure of the variance found between the errors of
the hunters for each particular digit.

Each hunter evaluated a set of 300 previously unseen images — a note was made
for each error. Each classifier for any particular digit then had an associated error
list of images, These lists were contrasted, computing the total number of errors (for
all 5 hunters) and the percentage of the list shared by two or more hunters. These
results are shown in Table 2. It is evident that there is much variance between the
errors made by the various hunters.

4. Conclusions

Relative to the original CellNet experiments, our augmented system performs
admirably. The creation of binary classifiers is accomplished for each digit, show-
ing little variance between results. This is contrasted against the original CellNet
project’s use of 30 runs to find a good classifier.



January 9, 2006 17:6 WSPC/157-IJCIA 00144

318 T. Kowaliw et al.

Additionally, the problem of over-fitting has been eliminated through the inclu-
sion of competitive co-evolution. The inclusion of a genome for patterns and cam-
ouflage functions for diversification has resulted in a more difficult problem for the
classifiers, increasing overall performance.

Finally, it has been demonstrated that although the reliability of the system’s
ability to generate classifiers has been improved, the produced classifiers’ error sets
are largely independent. This matter is crucial for the creation of multi-classifiers
(combinations of the binary classifiers to form a single multiple-class recogniser), a
step which a practitioner may wish to take. The independence of the error rates of
the classifiers implies that several hunters for each class may be used in a bagging
or bootstrapping technique, methods which are expected to improve the accuracy
of the overall multi-classifier.

These results represent a significant step forward for the goal of an autonomous
pattern recogniser: competitive co-evolution and camouflage is expected to aid in
the problem of over-fitting and reliability without expert tuning, and also in the
generation of a larger and more diverse data set.

Appendix A: Camouflage Functions

Translation Left – similarily for Up, Down and Right

translation = translationRatio * width;
If (translation > left most pixel width value)

then translation = left most pixel width value

Pass over the pixels (j, j)in the image

If (pixels stays within the bound after translation)

set pixels(i, j) to pixels(i, j +translation)

else

set pixel(i, j) = 0

Rotation CounterClockwise – similarily for Clockwise

Create an image with pixels(x, y) set to 0

Pass over the pixels (i, j) of the original image

If (pixels (i, j) not equal to 0)

set x = (int)(j*cos(rotationAngel*PI/180) - (height-1)

*sin(rotationAngel*PI/180));

Set y = height-1-(int)(j*sin(rotationAngel*PI/180)
+(height-1-i)*cos(rotationAngel*PI/180));

if (x, y) is within image bounds

set pixels(x, y) = 1

else

set pixels(x, y) = 1



January 9, 2006 17:6 WSPC/157-IJCIA 00144

Using Competitive Co-Evolution to Evolve Better Pattern Recognisers 319

Salt and Pepper
Set pepper ratio to pr = 1.0- noisePercent/100.0;

Generate random number between -1.0 and +1.0

random = 2.0*(rand()-RAND{_}MAX/2.0)/RAND{_}MAX;

if (pixel not equal to 0)

if (random > pr)

set pixels(i, j) to 1

Scaling
Create temporary image with pixels(x, y) set to 0

Pass over the pixels (i, j) of the original image

if (pixels(i, j) not equal to 0)
if (s{_}factor*i<height)

if (s{_}factor*j<width)

set temporary image pixels(s_factor*I,

s_factor*j) = 1.

References

1. Y. Al-Ohali, M. Cheriet and C. Suen, Databases for recognition of handwritten Arabic
cheques, Pattern Recogn. 36 (2003) 111–121.

2. S. P. Brumby, J. Theiler, S. J. Perkins, N. R. Harvey, J. J. Szymanski, J. J. Bloch
and M. Mitchell, Investigation of image feature extraction by a genetic algorithm, in
Proc. SPIE 3812 (1999) 24–31.

3. G. Fung, J. Liu and R. Lau, Feature selection in automatic signature verification
based on genetic algorithms, ICONIP’96 (1996), pp. 811–815.

4. D. E. Goldberg, B. Korb and K. Deb, Messy genetic algorithms: motivation, analysis,
and first results, Complex Syst. 3(5) (1989) 493–530.

5. S. Gunter and H. Bunke, Optimization of weights in a multiple classifier handwritten
word recognition system using a genetic algorithm, Electronic Letters on Computer
Vision Image Analysis 3(1) (2004) 25–41.

6. Z. Guo and R. Uhrig, Using genetic algorithms to select inputs for neural networks,
in Proc. COGANN’92 (1992) 223–234.

7. N. Kharma, T. Kowaliw, E. Clement, C. Jensen, A. Youssef and J. Yao, Project
CellNet: evolving an autonomous pattern recogniser, Int. J. Pattern Recogn. Artif.
Intell. 18(6) (2004).

8. M. Kudo and J. Sklansky, A comparative evaluation of medium- and large-scale fea-
tures selectors for pattern recognition, Kybernetika 34(4) (1998) 429–434.

9. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1998)
10. A. Moser, A distributed vertical genetic algorithm for feature selection, ICDAR ’99

(1999), pp. 1–9 (late submissions’ supplement).
11. M. Rizki, M. Zmuda and L. Tamburino, Evolving pattern recognition systems, IEEE

Trans. Evol. Comput. 6(6) (2002) 594–609.
12. R. Sarker, J. Kamruzzaman and C. Newton, Evolutionary optimization (EvOpt): a

brief review and analysis, Int. J. Comput. Intell. Appl. 3(4) (2003) 311–330.
13. D. Shi, W. Shu and H. Liu, Feature selection for handwritten Chinese character

recognition based on genetic algorithms, IEEE Int. Conf. Syst. Man Cybernet. 5
(1998) 4201–4206.



January 9, 2006 17:6 WSPC/157-IJCIA 00144

320 T. Kowaliw et al.

14. W. Siedlicki and J. Sklansky, On automatic feature selection, Int. J. Pattern Recogn.
2 (1998) 197–220.

15. F. W. M. Stentiford, Automatic feature design for optical character recognition using
an evolutionary search procedure, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-
7(3) (1985) 349–355.

16. H. Vafaie and K. De Jong, Robust feature selection algorithms, in Proc. IEEE Int.
Conf. Tools Artif. Intell. (1993) 356–363.

17. C. Veenman, M. Reinders and E. Backer, A cellular co-evolutionary algorithm for
image segmentation, IEEE Trans. Image Process. 12(3) (2003) 304–316.


