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Abstract—The low-rank matrix completion problem is a
fundamental machine learning problem with many important
applications. The standard low-rank matrix completion meth-
ods relax the rank minimization problem by the trace norm
minimization. However, this relaxation may make the solution
seriously deviate from the original solution. Meanwhile, most
completion methods minimize the squared prediction errors
on the observed entries, which is sensitive to outliers. In this
paper, we propose a new robust matrix completion method
to address these two problems. The joint Schatten 𝑝-norm and
ℓ𝑝-norm are used to better approximate the rank minimization
problem and enhance the robustness to outliers. The extensive
experiments are performed on both synthetic data and real
world applications in collaborative filtering and social network
link prediction. All empirical results show our new method
outperforms the standard matrix completion methods.

Keywords-recommendation system; matrix completion; low-
rank matrix recovery; optimization;

I. INTRODUCTION

The prediction of the incomplete observations of an evolv-
ing matrix is a challenge of interest in many machine learn-
ing applications [1], [2], [3], such as friendship prediction in
social network, rating value estimation in recommendation
system and collaborative filtering, link prediction in protein-
protein interaction network. All these problem can be seen
as a special case of matrix completion where the goal is
to impute the missing entries of the data matrix. As one
emerging technique of compressive sensing, the problem
of matrix completion has been extensively studied on both
theory and algorithms [4], [5], [6], [7], [8], [2], and also
became popular after the recent concluded million-dollar
Netflix competition.

The matrix completion methods assume that the values in
the data matrix (graph) are correlated and the rank of the data
matrix is low. The missing entries can be recovered using the
observed entries by minimizing the rank of the data matrix,
which is an NP hard problem. Instead of solving such an
NP hard problem, the researchers minimize the trace norm
(the sum of the singular values of the data matrix) as the
convex relaxation of the rank function. Many recent research
has been focusing on solving such trace norm minimization
problem [9], [10], [11], [12], [7]. Meanwhile, instead of

strictly keeping the values of the observed entries, the recent
research work relaxed it to minimize the prediction errors
(using squared error function) on the observed entries.

Although the trace norm minimization based matrix com-
pletion objective is a convex problem with global solution,
the relaxation may make the solution seriously deviate
from the original solution. It is desired to solve a better
approximation of the rank minimization problem without
introducing much computational cost. In this paper, we re-
formulate the matrix completion problem using the Schatten
𝑝-norm. When 𝑝 → 0, our new objective can approximate
the rank minimization better than the trace norm. Moreover,
to improve the robustness of matrix completion method,
we introduce the ℓ𝑝-norm (0 < 𝑝 ≤ 1) error function
for the prediction errors on the observed entries. Thus, our
new objective minimizes the joint Schatten 𝑝-norm and ℓ𝑝-
norm (0 < 𝑝 ≤ 1). When 𝑝 → 0, our objective is more
robust and effective than the standard matrix completion
methods, which is a special case of our objective when
𝑝 = 1. Although our objective function is not a convex
problem (when 𝑝 < 1), we derive an efficient algorithm
based on the Alternating Direction Method. With extensive
experiments we observe that under a large number of random
initializations, our new non-convex objective can always find
a better convergency result for the matrix completion without
introducing much extra computational cost. We evaluate our
new method using both synthetic and real world data sets.
Six benchmark data sets from collaborative filtering and
social network link prediction applications are utilized in
our validations. All empirical results show our new robust
matrix completion method outperforms the standard missing
value prediction approaches. In summary, we highlight the
main contributions of this paper as follows:
1, We propose a new and reasonable objective function for
the robust matrix completion task.
2, Optimizing the objective function is a non-trivial problem,
we derive an optimization algorithm to solve this problem.
3, We derive the optimal solution to the problem (20), which
generalizes a famous soft thresholding result in [8], and
can be used in many other Schatten 𝑝-norm minimization
problems.
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II. A NEW ROBUST MATRIX COMPLETION

A. Definitions of ℓ𝑝-Norm and Schatten 𝑝-Norm

The ℓ𝑝-norm1 (0 < 𝑝 < ∞) of a vector 𝑣 ∈ ℝ
𝑛×1 is

defined as ∥𝑣∥𝑝 = (
∑𝑛

𝑖 ∣𝑣𝑖∣𝑝)
1
𝑝 , where 𝑣𝑖 is the 𝑖-th element

of 𝑣. Thus the 𝑝-norm of a vector 𝑣 ∈ ℝ
𝑛×1 to the power 𝑝

is ∥𝑣∥𝑝𝑝 =
∑𝑛

𝑖 ∣𝑣𝑖∣𝑝.
The extended Schatten 𝑝-norm (0 < 𝑝 < ∞) of a matrix

𝑋 ∈ ℝ
𝑛×𝑚 is defined as

∥𝑋∥𝑆𝑝
=

⎛
⎝min{𝑛,𝑚}∑

𝑖=1

𝜎𝑝𝑖

⎞
⎠

1
𝑝

, (1)

where 𝜎𝑖 is the 𝑖-th singular value of 𝑋 . Thus the Schatten
𝑝-norm of a matrix 𝑋 ∈ ℝ

𝑛×𝑚 to the power 𝑝 is

∥𝑋∥𝑝𝑆𝑝
=

min{𝑛,𝑚}∑
𝑖=1

𝜎𝑝𝑖 . (2)

When 𝑝 = 1, the Schatten 1-norm is the trace norm or
nuclear norm. If we define 00 = 0, then when 𝑝 = 0, Eq. (2)
is the rank of 𝑋 .

B. Robust Matrix Completion Objective

We denote 𝑋Ω = {𝑋𝑖𝑗 ∣(𝑖, 𝑗) ∈ Ω}, and ∥𝑋Ω∥𝑝𝑝 =∑
(𝑖,𝑗)∈Ω ∣𝑋𝑖𝑗 ∣𝑝. Suppose we are given the observed values

𝐷Ω = {𝐷𝑖𝑗 ∣(𝑖, 𝑗) ∈ Ω} in a matrix 𝐷, the matrix comple-
tion task is to predict the unobserved values in the matrix 𝐷.
The general rank minimization problem solves the following
problem:

min
𝑋
∥𝑋Ω −𝐷Ω∥22 + 𝛾rank(𝑋), (3)

This problem is NP-hard due to the rank function in the
objective. In practice, the rank is relaxed to the Schatten
1-norm and then we solve the following relaxed problem:

min
𝑋
∥𝑋Ω −𝐷Ω∥22 + 𝛾 ∥𝑋∥𝑆1

. (4)

However, the relaxation may make the solution deviate
seriously from the original solution. Meanwhile, the used
squared error is sensitive to outliers.

When 𝑝 → 0, the Schatten 𝑝-norm ∥𝑋∥𝑝𝑆𝑝
will approxi-

mate the rank of𝑋 [13]. In this paper, we replace the ∥𝑋∥𝑆1

by ∥𝑋∥𝑝𝑆𝑝
, the value of 𝑝 can be selected from (0, 1]. When

𝑝 is set to a value smaller than 1, then the resulted problem
will better approximate the original problem. We also use
the ℓ𝑝-norm (0 < 𝑝 ≤ 1) as the error function to improve
the robustness to outliers in given data [14], and propose to
solve the following robust matrix completion problem (we

1When 𝑝 ≥ 1, ∥v∥𝑝 =
(∑𝑛

𝑖=1 ∣𝑣𝑖∣𝑝
) 1

𝑝 strictly defines a norm that
satisfies the three norm conditions, while it defines a quasinorm when 0 <
𝑝 < 1. The quasinorm extends the standard norm in the sense that it
replaces the triangle inequality by ∥x+ y∥𝑝 ≤ 𝐾

(
∥x∥𝑝 + ∥y∥𝑝

)
for

some 𝐾 > 1. Because the mathematical formulations and derivations in
this paper equally apply to both norm and quasinorm, we do not differentiate
these two concepts for notation brevity.

use the same 𝑝 for two norms to avoid one more parameter):

min
𝑋
𝐽 = ∥𝑋Ω −𝐷Ω∥𝑝𝑝 + 𝛾 ∥𝑋∥𝑝𝑆𝑝

. (5)

III. PROPOSED ALGORITHM

Solving the problem in Eq. (5) is challenge since both of
the terms in Eq. (5) are non-smooth and the Schatten 𝑝-norm
is somewhat intractable. We use the Augmented Lagrangian
Method [15], [16], [17] to solve this problem, and focus on
the solutions to the related subproblems.

A. Brief Description of Augmented Lagrangian Method

Consider the constrained optimization problem:

min
ℎ(𝑋)=0

𝑓(𝑋) (6)

The algorithm using the Augmented Lagrangian Method
(ALM) to solve the problem (6) is described in Algorithm
1

It has been proved that under some rather general condi-
tions, the Algorithm 1 converges Q-linearly to the optimal
solution [17]. This property makes ALM very attractive.

Set 1 < 𝜌 < 2. Initialize 𝜇 > 0, Λ ;
while not converge do

1. Update 𝑋 by min
𝑋
𝑓(𝑋) + 𝜇

2

∥∥∥ℎ(𝑋) + 1
𝜇Λ

∥∥∥2
𝐹

;

2. Update Λ by Λ = Λ+ 𝜇ℎ(𝑋) ;
3. Update 𝜇 by 𝜇 = 𝜌𝜇 ;

end while
Algorithm 1: Algorithm to solve the problem (6).

B. Solving Problem (5) Using ALM

We equivalently rewritten Problem (5) as:

min
𝑋,𝐸Ω=𝑋Ω−𝐷Ω,𝑋=𝑍

∥𝐸Ω∥𝑝𝑝 + 𝛾 ∥𝑍∥𝑝𝑆𝑝
. (7)

According to step 1 in Algorithm 1, we need to solve the
following problem:

min
𝑋,𝐸Ω,𝑍

∥𝐸Ω∥𝑝𝑝 + 𝛾 ∥𝑍∥𝑝𝑆𝑝

+
𝜇

2

∥∥∥∥𝐸Ω − (𝑋Ω −𝐷Ω) +
1

𝜇
ΛΩ

∥∥∥∥
2

𝐹

+
𝜇

2

∥∥∥∥𝑋 − 𝑍 +
1

𝜇
Σ

∥∥∥∥
2

𝐹

.

(8)

An accurate, joint minimization with respect to 𝑋,𝐸Ω, 𝑍
is difficult and costly, we can use the Alternating Direction
Method (ADM) [18] to solve this problem. Specifically, we
optimize the problem with respect to one variable when fix
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Set 1 < 𝜌 < 2. Initialize 𝜇 > 0, ΛΩ, Σ, 𝐸Ω, 𝑍 ;
while not converge do

1. Update 𝑋 by Eq. (10) ;
2. Update 𝐸Ω by the optimal solution to problem (11) ;
3. Update 𝑍 by the optimal solution to problem (12) ;
4. Update ΛΩ by ΛΩ = ΛΩ + 𝜇(𝐸Ω −𝑋Ω +𝐷Ω), Update Σ by Σ = Σ+ 𝜇(𝑋 − 𝑍) ;
5. Update 𝜇 by 𝜇 = 𝜌𝜇 ;

end while
Algorithm 2: Algorithm to solve the problem (5).

the other two variables, which result in the following three
subproblem.

When fix 𝐸Ω, 𝑍, the problem (8) is simplified to the
following problem:

min
𝑋
∥𝑋Ω −𝑀Ω∥2𝐹 + ∥𝑋 −𝑁∥2𝐹 , (9)

where 𝑀Ω = (𝐸Ω+𝐷Ω+
1
𝜇ΛΩ) and 𝑁 = (𝑍− 1

𝜇Σ) Denote
𝑋Ω̄ = {𝑋𝑖𝑗 ∣(𝑖, 𝑗) /∈ Ω}, the optimal solution to problem (9)
can be easily obtained by

𝑋Ω =
𝑀Ω +𝑁Ω

2
, 𝑋Ω̄ = 𝑁Ω̄ (10)

When fix𝑋,𝑍, the problem (8) is simplified to the following
problem:

min
𝐸Ω

1

2
∥𝐸Ω −𝐻Ω∥2𝐹 +

1

𝜇
∥𝐸Ω∥𝑝𝑝 , (11)

where 𝐻Ω = 𝑋Ω −𝐷Ω − 1
𝜇ΛΩ

When fix 𝑋,𝐸Ω, the problem (8) is simplified to the
following problem:

min
𝑍

1

2
∥𝑍 −𝐺∥2𝐹 +

𝛾

𝜇
∥𝑍∥𝑝𝑆𝑝

, (12)

where 𝐺 = 𝑋 + 1
𝜇Σ

The detailed algorithm to solve the problem in Eq. (5) is
described in Algorithm 2.

Subsequently, we derive the optimal solution to subprob-
lems in Eq. (11) and (12), respectively.

C. Solving the Subproblem (11)

Note that the elements {𝑋𝑖𝑗 ∣(𝑖, 𝑗) ∈ Ω} in subproblem
(11) can be decoupled. For each element, we only need to
solve the following problem:

min
𝑥

1

2
(𝑥− 𝑎)2 + 𝜆 ∣𝑥∣𝑝 (13)

Denote the objective function in the problem (13) by ℎ(𝑥),
i.e.,

ℎ(𝑥) =
1

2
(𝑥− 𝑎)2 + 𝜆 ∣𝑥∣𝑝 . (14)

We can see that the gradient of ℎ(𝑥) is

𝑔(𝑥) = ℎ′(𝑥) = 𝑥− 𝑎+ 𝜆𝑝 ∣𝑥∣𝑝−1 sgn(𝑥). (15)

Note that ℎ(𝑥) is a quadratic equation in one variable, its
convexity can be easily analyzed. Denote a constant 𝑣 as

𝜈 =

(
𝜆𝑝(1− 𝑝)

2

) 1
2−𝑝

. (16)

The optimal solution to problem (13) can be obtained by⎧⎨
⎩

𝑔(𝜈) ≥ 0, 𝑔(−𝜈) ≤ 0 𝑥∗ = 0
𝑔(𝜈) < 0, 𝑔(−𝜈) ≤ 0 𝑥∗ = argmin𝑥∈{0,𝑥1} ℎ(𝑥)
𝑔(𝜈) ≥ 0, 𝑔(−𝜈) > 0 𝑥∗ = argmin𝑥∈{0,𝑥2} ℎ(𝑥)
𝑔(𝜈) < 0, 𝑔(−𝜈) > 0 𝑥∗ = argmin𝑥∈{0,𝑥1,𝑥2} ℎ(𝑥)

(17)
where 𝑥1 = 0 and 𝑥2 = 0 the root of 𝑔(𝑥) = 0, which can
be easily obtained with Newton method initialized at 2𝜈 and
−2𝜈, respectively.

Similarly, consider the following problem which will be
used later:

min
𝑥≥0

1

2
(𝑥− 𝑎)2 + 𝜆 ∣𝑥∣𝑝 , (18)

the optimal solution to problem (18) can be obtained by{
𝑔(𝜈) ≥ 0 𝑥∗ = 0
𝑔(𝜈) < 0 𝑥∗ = argmin𝑥∈{0,𝑥1} ℎ(𝑥)

(19)

D. Solving the Subproblem (12)

We rewrite the subproblem (12) as follows to simplify the
notation.

min
𝑋

1

2
∥𝑋 −𝐴∥2𝐹 + 𝜆 ∥𝑋∥𝑝𝑆𝑝

(20)

Denote the SVD of 𝑋 by 𝑋 = 𝑈Δ𝑉 𝑇 . We prove in the
Appendix that for the optimal solution 𝑋 , 𝑈 and 𝑉 are the
left and right singular vector of 𝐴 respectively, and the 𝑖-th
singular value 𝛿𝑖 is the optimal solution of the following
problem:

min
𝛿𝑖≥0

1

2
(𝛿𝑖 − 𝑎𝑖)2 + 𝜆𝛿𝑝𝑖 (21)

where 𝑎𝑖 is the 𝑖-th singular value of 𝐴. The optimal solution
to the problem (21) can be obtained according to Eq. (19). It
is interesting to see that when 𝑝 = 1, the derived solution
is exactly the same as in [8], and our result extend the
result in [8] to the case of 0 < 𝑝 < 1.
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IV. EXPERIMENTS

In this section, we empirically evaluate the proposed
method in both the matrix completion task on synthetic data
and two real world applications of collaborative filtering and
link discovery in social networks.

For simplicity, the regularization parameter 𝛾 in Eq. (5)
is set to 1 in all our experiments.

A. Numerical Results on Synthetic Data

To demonstrate the practical applicability of the pro-
posed method for recovering low-rank matrices from their
entries, we first perform the following numerical experi-
ments. Following [4], for each (𝑛, 𝑟, 𝑞) triplet, where 𝑛
(we set 𝑚 = 𝑛) is the matrix dimension, 𝑟 is the pre-
determined rank, and 𝑞 is the number of known entries,
we experiment with the following procedures. We generate
𝑀 = 𝑀𝐿𝑀

𝑇
𝑅 as suggested in [4], where 𝑀𝐿 and 𝑀𝑅

are 𝑛× 𝑟 matrices with i.i.d. standard Gaussian entries. We
then select a subset Ω of 𝑞 elements uniformly at random
from {(𝑖, 𝑗) : 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛} as known entries,
and our goal is to recover the rest entries of 𝑀 given the
incomplete input matrix.

The stopping criterion we use for our algorithm in all our
experiments is as follows:∥∥𝑋(𝑘) −𝑋(𝑘−1)∥∥

𝐹

max (∥𝑋𝑘∥𝐹 , 1)
≤ Tol , (22)

where Tol is a moderately small number. In our experiments,
we set Tol = 10−4.

We measure the accuracy of the computed solution 𝑋sol of
our algorithm by the relative error (RE) [9], which is widely
used metric in matrix completion and defined by:

RE := ∥𝑋sol −𝑀∥𝐹 / ∥𝑀∥𝐹 , (23)

where 𝑀 is the original matrix created in the above process.

Study of parameter 𝑝. Because 𝑝 in Eq. (5) is the most
important parameter of the proposed method, we first in-
vestigate its impact on our model. We vary the value of
𝑝 in the range of {0.1, 0.2 . . . , 1}, and perform incomplete
matrix recovery as described above. For each value of 𝑝, we
repeat the experiment for 50 times and report the average
relative error in Figure 1, from which we can see that the
matrix recovery performance increases when the value of 𝑝
decreases. This result clearly justifies the usefulness of the
proposed method to introduce 𝑝 (< 1)-norm in the proposed
objective. Upon this preliminary result, unless otherwise
specified, we will set 𝑝 = 0.1 in all subsequent experiments.

Comparison with other matrix completion methods on
noiseless data. In order to demonstrate the effectiveness
of the proposed method, we compare the performance of
the proposed method against the following two matrix com-
pletion methods: Fixed Point Continuation (FPC) method

[12] and Accelerated Proximal Gradient singular value
thresholding (APG) method [9], which are the most recent
methods and have demonstrated superior performances. We
implement these two methods using the codes published
by the respective authors, and setup their parameters using
the same settings as in [9]. In order for a fair comparison,
we perform our experiments using the procedures described
above with the same (𝑛, 𝑟, 𝑞) triplet settings as in [9]. For
each triplet setting, we repeat the experiment for 50 times
and report the average performance in Table I. The average
number of iterations (denoted as iter) is also reported in
Table I, as well as the ratio (denoted by 𝑞/𝑑𝑟) between the
number of known entries and the degree freedom of an 𝑛×𝑛
matrix of rank 𝑟. Following [8], the degree of an 𝑛×𝑛 matrix
of rank 𝑟 depends on 𝑑𝑟 = 𝑟 (2𝑛− 𝑟) degrees of freedom.
As can be seen, 𝑞 is selected to be 3, 4 and 5 times of the
degrees of freedom of the corresponding input matrices.

From Table I, we can see that the proposed method
achieves more accurate matrix recovery than those delivered
by the two compared methods. Moreover, our method uses
substantially less iterations than the other two methods.
These results clearly demonstrate the effectiveness of the
proposed method in incomplete matrix recovery in terms of
both quality and speed.

Comparison with other matrix completion methods on
noisy data. Besides performing matrix completion on noise-
less data, we also evaluate the proposed method on noisy
data. Following [9], given a matrix 𝑀 created by the
aforementioned procedures, we corrupt it by a noise matrix
𝑁 whose element are i.i.d. standard Gaussian variables.
Then we carry out the same procedures as before for matrix
completion on 𝑀 + 𝜎𝑁 , where 𝜎 = 𝑛𝑓 ∥𝑀∥𝐹∥𝑁∥𝐹 and 𝑛𝑓 is a
given noise factor. We set 𝑛𝑓 = 0.1. Same as before, the
experiment for each (𝑛, 𝑟, 𝑞) triplet setting is repeated for
50 times, and the average results are reported in Table II.

Again, the proposed method performs the best. Most
importantly, the relative errors of our method are smaller
than the noise level (𝑛𝑓 = 0.1), which is consistent with (or
even more accurate than) the theoretical results established
in [19] and further confirm the correctness of our method.

B. Improved Collaborative Filtering by Our Method

Collaborative filtering is an important topic in data mining
and has been widely used in recommendation system, which
aims to predict unknown users’ opinions to a set of items
upon those known and is often formalized as a matrix
completion problem [20]. In this section, we evaluate the
proposed method in the task of collaborative filtering.

Data sets. We perform our experiments using the following
data sets.

The MovieLens data contains 10,000,054 ratings and
95,580 tags applied to 10,681 movies by 71,567 users of
the online movie recommender service MovieLens, which
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Table I
MATRIX COMPLETION PERFORMANCES OF THE COMPARED METHODS ON NOISELESS DATA.

Unknown 𝑀 FPC APG Our method

𝑛/𝑟 𝑞 𝑞/𝑑𝑟 iter relative error iter relative error iter relative error

100/10 5666 3 439 1.08e-3 78 1.59e-4 26 7.47e-5
200/10 15665 4 496 4.66e-4 74 1.19e-4 25 6.17e-5
500/10 49471 5 491 5.92e-4 76 9.86e-5 27 5.34e-5

Table II
MATRIX COMPLETION PERFORMANCES OF THE COMPARED METHODS ON NOISY DATA.

Unknown 𝑀 FPC APG Our method

𝑛/𝑟 𝑞 𝑞/𝑑𝑟 iter relative error iter relative error iter relative error

100/10 5666 3 442 2.45e-2 81 2.36e-3 24 6.39e-4
200/10 15665 4 486 6.61e-3 77 3.21e-3 23 5.15e-4
500/10 49471 5 488 8.81e-3 73 2.21e-3 21 4.92e-4

Table III
PERFORMANCE OF THE COMPARED METHODS MEASURED BY NMAE IN COLLABORATIVE FILTERING. TOP: 20% RATINGS ARE KNOWN AS TRAINING

SAMPLES; BOTTOM: 50% RATINGS ARE KNOWN AS TRAINING SAMPLES.

Data FPC APG PMF WNMF Our (𝑝 = 1) Our (𝑝 = 0.1)

movie-100K 2.49e-01 1.94e-01 2.26e-01 2.31e-01 1.81e-01 8.92e-2
movie-1M 2.53e-01 1.96e-01 2.32e-01 2.42e-01 1.89e-01 9.04e-2
movie-10M 2.38e-01 1.89e-01 2.21e-01 2.36e-01 1.78e-01 8.09e-2
Epinion 3.15e-01 2.37e-01 2.75e-01 3.07e-01 2.23e-01 1.75e-1

movie-100K 2.09e-01 1.74e-01 2.16e-01 2.04e-01 1.66e-01 8.14e-2
movie-1M 2.13e-01 1.84e-01 2.22e-01 2.02e-01 1.71e-01 8.36e-2
movie-10M 1.98e-01 1.77e-01 2.11e-01 1.95e-01 1.53e-01 7.94e-2
Epinion 2.45e-01 2.13e-01 2.55e-01 2.48e-01 2.03e-01 1.84e-1

has been filtered and refined by GroupLens lab2 as three
data sets with the following characteristics (1) movie-100K:
100,000 ratings for 1682 movies by 943 users; (2) movie-
1M: 1 million ratings for 3900 movies by 6040 users; (3)
movie-10M: 10 million ratings for 10681 movies by 71567
users.

In addition, we also experiment with Epinion data3. In
Epinion.com, users can assign products or reviewers integer
ratings. These ratings and reviews will influence future users
when they are deciding whether a product is worth buying
or a movie is worth watching. The data set contains 2671

2http://www.grouplens.org/
3http://www.trustlet.org/wiki/DownloadedEpinionsdataset

users and 1375 items with 75308 ratings.

Evaluation metric. In collaborative filtering, some entries
of the input matrix are missing, therefore we cannot compute
the relative error of the estimated output matrix as we did
in Section IV-A. Instead, we compute the Normalized Mean
Absolute Error (NMAE) as in [12], [21]:

NMAE =

∑
(𝑖,𝑗)∈Γ ∣𝑀𝑖𝑗 −𝑋𝑖𝑗 ∣
∣Γ∣ (𝑟max − 𝑟min)

, (24)

where 𝑀𝑖𝑗 denotes the rating given by user 𝑖 to item 𝑗, 𝑋𝑖𝑗

denotes the predicted rating given by user 𝑖 to item 𝑗, and
𝑟max and 𝑟min are the upper and lower bounds of the ratings.
Because the user ratings in all the data sets range from 1 to
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Figure 1. Matrix recovery performance of the proposed method with different values of 𝑝.

5, we have 𝑟min = 1 and 𝑟max = 5.

Experimental results. For each data set, we randomly select
20% and 50% ratings as known samples, and our task
is to recovery the rest ratings from the incomplete input
matrices. Besides comparing to the two matrix completion
methods used in Section IV-A, we also compare the results
of our method against two state-of-the-art collaborative filter
methods: Probabilistic Matrix Factorization (PMF) method
and Weighted Nonnegative Matrix Factorization (WNMF)
method. The former uses probabilistic model, while the latter
is devised by extending nonnegative matrix factorization.
Both of them have reported promising empirical results.
We implement our method for two different settings of
𝑝 = 1 and 𝑝 = 0.1. For each data set, we run each
compared method for 20 times and report the average results
in Table III.

The results in Table III show that our method consistently
outperforms the compared methods, sometimes very signifi-
cantly, which provide one more concrete evidence to support
the advantage of the proposed method. Moreover, as can be
seen in Table III, the results of our method when 𝑝 = 0.1
is much better than those when 𝑝 = 1. This observation
is in accordance with our theoretical analysis in that, the
smaller the value of 𝑝 is, the better the Schatten 𝑝-norm
approximates the matrix rank; and the smaller the vale of 𝑝
is, the more robust of our loss function is against outliers.

C. Improved Link Discovery on Social Networks by Our
Method

Link discovery on social graphs, which explores the rela-
tionships between users, plays a central role in understanding
the structure of related social communities. Because most
users on a social network only know a very small fraction of
users and tag even fewer explicitly, the resulted social graphs
are sparse and link discovery is necessary to mine more
useful information to better understand a community. In this
section, we evaluate the proposed matrix completion method
by exploring link discovery problem on social networks.

Data sets. We evaluate the performance of our method using
the Wikipedia 2 [22] and Slashdot 3 [23] data set. The
former contains more than 7,000 users with 103,000 trust
links and the latter contains about 80,000 users with 900,000
trust links. The link coverage of these two graphs are as
low as 0.21% and 0.01%, therefore they are very sparse
and skewed due the domination of the non-interacting user
pairs. To alleviate the data skewness for fair comparison, we
select top 2,000 highest degree users from each data set for
experiments.

Experimental setups. The goal of our method is to infer
the unobservable links in the network. However, due to
the lack of ground truth, we have to hide existing links to
simulate missing one. In this paper, we emulate to hide 90%
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Table IV
PERFORMANCE COMPARISON FOR THE TASK ON LINK DISCOVERY ON SOCIAL NETWORKS

Method
Wikipedia 2 Slashdot 3

Precision Recall Precision Recall

CN 0.071 0.205 0.058 0.149
SVD 0.088 0.211 0.064 0.166
FPC 0.107 0.244 0.084 0.189
APG 0.114 0.251 0.089 0.194
Our (𝑝 = 1) 0.135 0.301 0.101 0.224
Our (𝑝 = 0.1) 0.142 0.322 0.112 0.245

entries and do the imputation based on the remaining 10%
available information. The reason we hide large percentage
of entries is to simulate the fact that most users from social
web sites such as Facebook and Linkedin, according to our
observation, only explicitly express trust and distrust to a
small fraction of peer users considering total number of
users.

In order to make prediction, we need a threshold. Empir-
ically, we select as the mean of the available entries as the
threshold to convert the prediction into the binary matrix.

Experimental results. Besides comparing the matrix com-
pletion methods as in previous subsections, we also compare
our method to two link prediction methods which are widely
used in the studies of social networks, including common
neighbors (CN) method [24] and SVD method [25]. The
settings of the matrix completion methods including ours
are same as before. For SVD method, we fine tune the rank
by searching the grid of {100, 200, . . . , 1, 000}.

We evaluate the compared methods two standard perfor-
mance metrics broadly used in statistical learning, including
precision and recall. The results of the compared methods
on the two data sets are reported in Table IV. A first
glance at Table IV shows that the proposed methods again
is superior to other compared methods, which demonstrate
their effectiveness in the task of link discovery on social
networks. Moreover, when 𝑝 = 0.1, our method achieved
better results than those when 𝑝 = 1, which once again
validate the usage of small 𝑝 for matrix completion.

V. CONCLUSIONS

In this paper, we proposed a new robust matrix com-
pletion method using joint Schatten 𝑝-norm and ℓ𝑝-norm
(0 < 𝑝 ≤ 1). When 𝑝 → 0, the Schatten 𝑝-norm based
objective can approximate the rank minimization problem
much better than the standard trace norm minimization
to achieve better matrix completion results. The ℓ𝑝-norm
based error function enhances the robustness of the proposed
objective. Both Schatten 𝑝-norm and ℓ𝑝-norm are non-
smooth terms. To solve this difficult optimization problem,

we derive the algorithm based on the Alternating Direction
Method. Extensive experiments show that under arbitrarily
random initializations, our new method can always get
better matrix completion results without introducing much
extra computational cost. The extensive experiments were
performed on both synthetic and real world applications
(collaborative filtering and social network link prediction)
data. All empirical results demonstrate the effectiveness of
the proposed approach.

APPENDIX

Denote 𝜎(𝐴) as the ordered eigenvalue matrix of 𝐴, i.e.
a diagonal matrix with the diagonal elements being the
ordered eigenvalues of 𝐴. We have the following two results:

Theorem 1 (von Neumann): For any two matrices
𝐴,𝐵 ∈ ℝ

𝑚×𝑛, 𝑡𝑟(𝐴𝑇𝐵) ≤ 𝑡𝑟(𝜎(𝐴)𝑇𝜎(𝐵)).
Corollary 1: For any orthonormal matrices 𝑄,𝑅 ∈

ℝ
𝑛×𝑛, and any diagonal matrices Σ,Λ ∈ ℝ

𝑛×𝑛, where the
diagonal elements of Σ,Λ are ordered with the same order,
we have 𝑡𝑟(Σ𝑄Λ𝑅) ≤ 𝑡𝑟(ΣΛ).

In the following, we suppose all the eigenvalue matrices
in compact SVD are the ordered eigenvalue matrix with the
same order.

Suppose the compact SVD of 𝑋 is 𝑋 = 𝑈Δ𝑉 𝑇 , then
∥𝑋∥𝑝𝑆𝑝

= 𝑡𝑟Δ𝑝. Denote the objective function in the
problem (20) by 𝑓(𝑋), i.e.,

𝑓(𝑋) = 𝑓(𝑈,Δ, 𝑉 ) =
1

2

∥∥𝑈Δ𝑉 𝑇 −𝐴∥∥2
𝐹
+𝜆𝑡𝑟(Δ𝑝) (25)

As 𝑈 and 𝑉 are the left and right singular vectors of 𝑋
respectively, they are both orthogonal matrices, i.e., 𝑈𝑇𝑈 =
𝐼 and 𝑉 𝑇𝑉 = 𝐼 . Denote the Lagrangian function of the
problem (20) by

ℒ(𝑈,Δ, 𝑉, 𝜂, 𝜔) = 𝑓(𝑈,Δ, 𝑉 )− 𝑡𝑟(𝜂𝑇 (𝑈𝑇𝑈 − 𝐼))
−𝑡𝑟(𝜔𝑇 (𝑉 𝑇𝑉 − 𝐼)). (26)

By setting the derivative of ℒ(𝑈,Δ, 𝑉, 𝜂, 𝜔) with respect to
𝑈 and 𝑉 respectively, we have the following two equations:

𝐴𝑉Δ− 2𝑈𝜂𝑇 = 0 (27)

1071572



𝐴𝑇𝑈Δ− 2𝑉 𝜔𝑇 = 0 (28)

According to Eq. (28), we have

𝐴𝐴𝑇𝑈Δ− 2𝐴𝑉 𝜔𝑇 = 0

⇒ 𝐴𝐴𝑇𝑈Δ− 4𝑈𝜂𝑇Δ−1𝜔𝑇 = 0 (29)

⇒ 𝐴𝐴𝑇𝑈 = 4𝑈𝜂𝑇Δ−1𝜔𝑇Δ−1 (30)

⇒ 𝑈𝑇𝐴𝐴𝑇𝑈 = 4𝜂𝑇Δ−1𝜔𝑇Δ−1 (31)

where Eq. (29) holds according to Eq. (27). From Eq. (31)
we know 4𝜂𝑇Δ−1𝜔𝑇Δ−1 must be symmetrical. Suppose
the eigenvalue decomposition 4𝜂𝑇Δ−1𝜔𝑇Δ−1 = 𝑄Π𝑄𝑇 ,
then according to Eq. (30) we have

𝐴𝐴𝑇𝑈 = 𝑈𝑄Π𝑄𝑇

⇒ 𝐴𝐴𝑇𝑈𝑄 = 𝑈𝑄Π
(32)

Therefore, 𝑈𝑄 should be the left singular vectors of 𝐴.
On the other hand, According to Eq. (27), we have

𝐴𝑇𝐴𝑉Δ− 2𝐴𝑇𝑈𝜂𝑇 = 0

⇒ 𝐴𝑇𝐴𝑉Δ− 4𝑉 𝜔𝑇Δ−1𝜂𝑇 = 0 (33)

⇒ 𝐴𝑇𝐴𝑉 = 4𝑉 𝜔𝑇Δ−1𝜂𝑇Δ−1 (34)

⇒ 𝑉 𝑇𝐴𝑇𝐴𝑉 = 4𝜔𝑇Δ−1𝜂𝑇Δ−1 (35)

where Eq. (33) holds according to Eq. (28). From Eq. (35)
we know 4𝜔𝑇Δ−1𝜂𝑇Δ−1 must be symmetrical. Suppose
the eigenvalue decomposition 4𝜔𝑇Δ−1𝜂𝑇Δ−1 = 𝑅Π𝑅𝑇 ,
then according to Eq. (34) we have

𝐴𝑇𝐴𝑉 = 𝑉 𝑅Π𝑅𝑇

⇒ 𝐴𝑇𝐴𝑉 𝑅 = 𝑉 𝑅Π
(36)

Therefore, 𝑉 𝑅 should be the right singular vectors of 𝐴.
Denote the compact SVD of 𝐴 by 𝐴 = 𝑈𝑄Π1𝑅

𝑇𝑉 𝑇 ,
then we have

𝑓(𝑈,Δ, 𝑉 ) = 1
2

∥∥𝑈Δ𝑉 𝑇 − 𝑈𝑄Π1𝑅𝑇𝑉 𝑇
∥∥2 + 𝜆𝑡𝑟Δ𝑝

=
∑
𝑖

( 12𝛿
2
𝑖 + 𝜆𝛿

𝑝
𝑖 )− 𝑇𝑟(Δ𝑄Π1𝑅𝑇 )

≥∑
𝑖

( 12𝛿
2
𝑖 + 𝜆𝛿

𝑝
𝑖 )− 𝑇𝑟(ΔΠ1)

=
∑
𝑖

( 12 (𝛿𝑖 − 𝑎𝑖)2 + 𝜆𝛿𝑝𝑖 − 1
2𝑎

2
𝑖 )

(37)
where 𝛿𝑖 ≥ 0 is the 𝑖-th diagonal element of Δ, 𝑎𝑖 is the 𝑖-th
diagonal element of Π1, and the inequality holds according
to Corollary 1. Therefore, minimizing 𝑓(𝑈,Δ, 𝑉 ) is reduced
to minimizing the following problem:

min
𝛿𝑖≥0

∑
𝑖

1

2
(𝛿𝑖 − 𝑎𝑖)2 + 𝜆𝛿𝑝𝑖 , (38)

which can be solved by solving the problem (21) for each
𝑖.

It is worth to mentioning that this work and the above
proof were finished one year ago, now we find a more
concise proof as follows. Suppose the SVD of 𝑋 and 𝐴
are 𝑋 = 𝑈Δ𝑉 𝑇 and 𝐴 = 𝑄Σ𝑅𝑇 respectively, where
Δ,Σ are ordered eigenvalue matrices with the same order.

then ∥𝑋 −𝐴∥2𝐹 = 𝑡𝑟(Δ𝑇Δ) + 𝑡𝑟(Σ𝑇Σ) − 2𝑡𝑟(𝑋𝑇𝐴) ≥
𝑡𝑟(Δ𝑇Δ)+ 𝑡𝑟(Σ𝑇Σ)− 2𝑡𝑟(Δ𝑇Σ) = ∥Δ− Σ∥2𝐹 , where the
inequality holds based on Theorem 1. Therefore minimizing
𝑓(𝑈,Δ, 𝑉 ) is reduced to minimizing Eq.(38).
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