
SPECIAL ISSUE PAPER

Video Extruder: a semi-dense point tracker for extracting beams
of trajectories in real time

Matthieu Garrigues • Antoine Manzanera •

Thierry M. Bernard

Received: 25 July 2013 / Accepted: 12 March 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract Two crucial aspects of general-purpose embed-

ded visual point tracking are addressed in this paper. First,

the algorithm should reliably track as many points as pos-

sible. Second, the computation should achieve real-time

video processing, which is challenging on low power

embedded platforms. We propose a new multi-scale semi-

dense point tracker called Video Extruder, whose purpose is

to fill the gap between short-term, dense motion estimation

(optical flow) and long-term, sparse salient point tracking.

This paper presents a new detector, including a new salience

function with low computational complexity and a new

selection strategy that allows to obtain a large number of

keypoints. Its density and reliability in mobile video sce-

narios are compared with those of the FAST detector. Then,

a multi-scale matching strategy is presented, based on hybrid

regional coarse-to-fine and temporal prediction, which pro-

vides robustness to large camera and object accelerations.

Filtering and merging strategies are then used to eliminate

most of the wrong or useless trajectories. Thanks to its high

degree of parallelism, the proposed algorithm extracts beams

of trajectories from the video very efficiently. We compare it

with the state-of-the-art pyramidal Lucas–Kanade point

tracker and show that, in short range mobile video scenarios,

it yields similar quality results, while being up to one order of

magnitude faster. Three different parallel implementations

of this tracker are presented, on multi-core CPU, GPU and

ARM SoCs. On a commodity 2010 CPU, it can track 8,500

points in a 640 9 480 video at 150 Hz.

Keywords Point tracking � Optical flow � Beam of

trajectories � Semi-dense � Real time

1 Introduction

Estimating the apparent displacement of points in a video

sequence of a dynamic scene is a fundamental primitive in

many applications of computer vision. In real-time sys-

tems, such a primitive must naturally be much faster than

the processing rate.

A notable difficulty of motion estimation is the measure of

reliability: how trustworthy are the estimated velocities? On

the other hand, it is often desirable to get the densest possible

estimation, i.e. computing the displacement for (almost)

every point in the image. This occurs when segmenting

motion [21] or when spatial statistics need to be computed on

velocities, e.g. to extract dominant planes by cumulative

structure from motion [2] or to recognise actions [5]. In

applications using long-term trajectory estimation (e.g.

activity recognition), dense spatial sampling also performs

better than sparse trajectories of interest points [25].

However, there is a certain antagonism between reliability

and density and, practically, one has to choose between sparse

tracking or dense optical flow. Tracking algorithms aim at

providing reliable motion parameters for a reduced set of

points, using spatial selection and long-term temporal ana-

lysis. Optical flow algorithms aim at providing an acceptable

estimation of velocity for every pixel, using short-term point

matching and spatial regularisation of the motion field.

M. Garrigues � A. Manzanera (&) � T. M. Bernard

ENSTA-ParisTech, 828 Boulevard des Maréchaux,

91762 Palaiseau Cedex, France

e-mail: antoine.manzanera@ensta.fr;

antoine.manzanera@ensta-paristech.fr

URL: http://www.ensta-paristech.fr

M. Garrigues

e-mail: matthieu.garrigues@ensta-paristech.fr

T. M. Bernard

e-mail: thierry.bernard@ensta-paristech.fr

123

J Real-Time Image Proc

DOI 10.1007/s11554-014-0415-0

The origins of such dichotomy are well known: the

aperture problem subordinates motion estimation to the

existence of salient structures whereas the piecewise con-

tinuity of the projected velocity field requires spatial

smoothness. But this incompatibility is only apparent, since

salience or smoothness are not intrinsic to the physical

object, but related to the scale of analysis. In practice, the

distinction is mostly driven by implementation choices: is

it better to put the computational effort in spatial selection

and extraction of descriptors for long-term prediction and

tracking, or to put it in spatial regularisation for globally

estimating the motion field? The choice, which limits the

versatility of the system, may depend on the application.

As an attempt to fill the gap between sparse tracking and

dense optical flow, we propose an intermediate approach

that performs long-term tracking of a set of points (parti-

cles), designed to be as dense as possible. It results in a

versatile motion estimation primitive, in that it can provide

both a beam of trajectories with temporal consistency and a

field of displacements with spatial consistency. It is

designed to be almost fully parallel, thus extremely fast on

multi-core chips such as nowadays GPUs or multi-core

CPUs.

There exist different real-time compatible algorithms for

sparse point tracking, e.g. Tomasi and Kanade [24], Fas-

sold et al. [9], and for dense optical flow, e.g. d’Angelo

et al. [6], but these techniques do not provide the level of

versatility we are looking for. Parallelization of motion

estimation algorithms has been addressed using different

models and architectures: Botella et al. [1] implemented a

bio-inspired dense optical flow on FPGA. Sinha et al. [22,

23] ported a sparse feature tracking and matching on GPU.

Rabe et al. [15] used a GPU-based optical flow to build a

dense 3D motion field, whereas Doyle et al. [7] offloaded

only the corner detector to the GPU.

Our approach is closer to the Particle Video algorithm

of Sand and Teller [19] yet not based on dense optical flow

algorithm. We use temporal and spatial coarse-to-fine

prediction and filtering for each particle but no explicit

spatial filtering. Eventually, our method is real-time by

design. Following [19], we use the term ‘‘particles’’ to refer

to trackable image points in space-time. This meaning

differs from the one used in ‘‘particle filter’’ methods,

where they designate a sample point in a state space, which

may globally represent an object in tracking methods [12].

The contributions of our work are the following. We

introduce a new point detector called MIEL, whose goal is to

eliminate only the points whose matching will be ambiguous.

It provides the semi-dense candidate particle field. We pro-

pose an evaluation method of point detectors adapted to short

range fast video. We propose a massively parallel matching

algorithm based on hybrid temporal and coarse-to-fine spatial

prediction, which is robust to large camera and object

acceleration. In our method, spatial consistency is not

enforced by explicit spatial filtering but only used as part of a

test to reject unreliable particle matching. Finally, we show

real-time implementations on three different platforms:

multi-core CPU, GPU, and embedded ARM processor.

The proposed tracking procedure is split into three main

steps: matching, filtering and new particle detection. Figure

1 shows an overview of the tracker, whose inputs are the

current frame of the video stream and the (multi-resolution)

particle set at time t - 1. The matching step function is to

locate each particle in the new frame, and remove occluded

particles. The filtering step uses heuristics to check the

validity of each particle state and to remove invalid parti-

cles. The last step extracts new particles from the current

image.

The paper is organised as follows. Section 2 presents our

study on the weak keypoint selection algorithms and

defines the feature vector used for matching. Section 3

details our pyramidal tracking algorithm, the filter-merge

procedures, and presents a comprehensive evaluation of

our algorithm, compared with the OpenCV LK tracker [3]

and Farnebäck’s dense optical flow algorithm [8]. Finally

Sect. 4 discusses implementation issues and presents time

benchmarks obtained with different architectures.

Fig. 1 Overview of the tracker. Only the matching operator (in red)

has to be run every frame. The filtering and detection operations may

be less frequent. In our applications, they are typically triggered every

five frames

J Real-Time Image Proc

123

2 Weak keypoint selection and description

The goal of keypoint detection is to provide a high spatial

density of particles, wherever possible, while avoiding

points whose matching may be ambiguous (homogeneous

zones, straight edges). To this end, we select weak key-

points. Compared to dense regular sampling, it saves a lot

of useless computational effort on points whose matching

is either very costly or unreliable, often both.

To get a particle field that is as dense as possible, the

detector is better applied at different scales. We choose to

apply the same single scale detector on a dyadic image

pyramid. Section 2.1 details the classical FAST detector

[17] and our own MIEL detector, which is an improvement

of previous works [10]. Both are computed on the same

spatial support B3 (see Fig. 7),

To assess the different detectors with respect to our

requirements, we compare (1) the number of keypoints and (2)

the matching errors made by the tracking algorithm on these

keypoints. We present our evaluation method and discuss the

results in Sect. 2.2. The repeatability property is usually given

much importance [20]. But it does not make much sense here.

First because with a high number of keypoints, the repeat-

ability should always be close to 100 %. Second, the detector

is only applied to create new particles: an existing particle is

matched to a position, not to another particle.

A description vector must be attached to each particle to

be used for comparison purposes by the matching proce-

dure. This descriptor is defined in Sect. 2.3.

2.1 Detectors

2.1.1 The FAST detector

The FAST [16] detector computes local statistics using

B3(p), the Bresenham circle of radius 3 (Fig. 7, left) centred

on the candidate keypoint p. Let I be the grayscale image.

The detection computes the two sets S- and S?:

– S�t ðpÞ ¼ fq 2 B3ðpÞ; IðqÞ� IðpÞ � tg
– Sþt ðpÞ ¼ fq 2 B3ðpÞ; IðqÞ� IðpÞ þ tg
FAST selects keypoints p for which either S�t or Sþt contains n

contiguous neighbours in B3(p). It appears that t is a contrast

parameter, whereas n is a geometric (cornerness) parameter.

To avoid selecting adjacent keypoints, FAST restricts

the selection to local maxima (over the 3 9 3 neighbour-

hood) of the following salience function:

RFAST
t ðpÞ ¼ max

X

q2Sþt ðpÞ
dtðp; qÞ;

X

q2S�t ðpÞ
dtðp; qÞ

0

@

1

A

with dtðp; qÞ ¼ jIðqÞ � IðpÞj � t. FAST is renowned to

combine low computational complexity and high repeatability.

We will show further that it can also be well suited to our

requirement of getting as many points as possible, by adapting

the selection strategy.

2.1.2 The MIEL detector

The MIEL (French word for ‘‘HONEY’’) detector is

computed on the same support B3(p) as FAST. Let

fqig0� i� 15 be the 16 points of B3(p), numbered clock-

wise. MIEL is based on the following salience function:

RMIELðpÞ ¼ min
7

i¼0
j2IðpÞ � IðqiÞ � Iðqiþ8Þj

It is based on the hypothesis that matching will be

ambiguous for points where there exists at least one

direction along which the gray levels vary linearly. The

function is eventually equivalent to the minimum absolute

value of the 2nd derivative in the eight directions,

approximated by the simplest discrete kernel to minimise

the number of pixel reads.

The keypoints are then selected using a threshold s on

the salience function. A local maxima strategy like FAST

can then be used, but we describe hereunder another

selection strategy that better suits our needs.

2.1.3 Keypoints selection strategy

As explained in Sect. 2.1.1, FAST selects local maxima of

the computed salience function. It limits the redundancy of

salient points by preventing two adjacent points from being

selected together. However, this is not ideally suited to

track a high number of keypoints, because a point with

high salience may be trackable even if it is not a local

maximum.

For high-density purposes, we use another selection

method that allows to extract more points on salient areas:

for each 3 9 3 cell, if more than one pixel are selected, we

keep only the one with the highest salience. In the fol-

lowing, we call this strategy blockwise maxima (BM).

Figure 2 compares the two strategies.

2.1.4 Lowering the detector computational cost

From a computational point of view, FAST and MIEL have

similar worst-case complexity. But it has been shown [18]

that, for specific values of the geometric parameter n,

FAST computation can be significantly accelerated by

testing subsets of B3(p), to quickly discard a high propor-

tion of non-keypoints. Nevertheless, the optimisation is

specific to each value of n, and we will show in Sect. 2.2

that, for our criteria, the best geometric parameter depends

on the targeted number of keypoints.

J Real-Time Image Proc

123

On the contrary, MIEL does not have geometric

parameters and lends itself to more straightforward opti-

misations. As the salience function computes a minimum,

it is possible to discard a candidate as soon as a diameter is

found along which the second derivative is lower than

threshold s. This dramatically reduces the average number

of pixel reads per candidate. For example, two pixel reads

are enough to discard points in homogeneous areas.

As opposed to some other tracking algorithms, the

matching does not rely on point redetection in each new

frame. This limits the use of the detector to new particle

detection and thus allows not to run the detector on every

frame.

Another straightforward optimisation is to look for new

keypoints only on pixels that are not adjacent to existing

particles. This reduces the number of pixels the detector

has to scan.

2.2 Detector evaluation

This section presents the benchmark used to evaluate the

ability of a detector to provide trackable particles. As

detailed later, to match one particle p from one frame to the

other, our method predicts the next position of p and uses a

gradient descent to refine the matching. Then, errors appear

where the good matching is not directly accessible by

gradient descent. If the prediction is consistent, this hap-

pens when neighbouring points have the same appearance:

on homogeneous areas (road, sky,...) or on straight con-

tours (building border, poles,...). The quality of a detector

depends on its ability to select the highest number of non-

redundant particles with the smallest matching error.

Thus, a detector can be characterised by the sum of

matching errors on all selected particles for a given number

of particles. Such a number will actually depend on the

contrast threshold t (as far as the geometric parameter n of

the FAST detector is concerned, different sample values

will be evaluated separately hereunder, cf. Fig. 5).

Since the thresholds (t and s) have different roles in the

two detectors, comparing the output of the detectors with

the same thresholds does not make sense. Instead, we run

the detectors with all possible values of t and s, and extract

for each run the keypoints quality and the number of

extracted keypoints. It allows us to compare the detectors

in terms of quality with respect to the number of keypoints.

2.2.1 Protocol

The evaluation consists in analysing particles created by the

different detectors using the following method. For 100

random translation vectors v of norm 5 (as explained below):

– Run the detector on a real-world image.

– Translate the image according to vector v.

– Alter image gray levels with a Gaussian noise

(r = 5.0) to simulate camera artifacts.

– Match the particles extracted at step 1 to find their new

position in the transformed image.

– The error on one particle is the distance (in pixels)

between its new position and v.

Because detectors, even isotropic, behave slightly differ-

ently according to orientation, scores are averaged on all

images orientations, using a step of 1 degree.

Figure 3 shows the test image with the points extracted by

FAST, MIEL and the ideal detector (cf. Sect. 2.2.2). This

image has several advantages for evaluating a keypoint

detector. First, its size and the amount of information it

contains allow to get thousands of keypoints on different

kinds of texture. Indeed, this urban scene includes highly

textured areas of different natures (buildings, cars, tree,...),

non-textured areas like the sky, and the road containing a

Fig. 2 Comparison of the local maxima (LM) selection (top image)

and the blockwise maxima (BM) (bottom image) using salience. In

both cases, 9,000 points are extracted using the MIEL salience (see

Sect. 2.1.2). It turns out that, to get a high number of points, the LM

method must select unreliable points, whereas our blockwise strategy

provides a denser mapping of salient areas

J Real-Time Image Proc

123

very high frequency texture. It also contains challenging

parts like straight lines, where the matcher often fails. Fur-

thermore, the perspective of the street offers a variety of

texture scales: large objects on the foreground, very small

objects close to the vanishing point. For all these reasons, this

urban scene is well suited to evaluate a keypoint detector and

we chose it as input to our benchmark.

As we target video tracking, and thanks to the prior

displacement vector estimated for each particle, we assume

that the distance between prediction and true match is

small. Thus, we limit the displacement of our evaluation to

a norm of 5 pixels.

2.2.2 Results

In this section, several detectors with different selection

strategies are compared according to the previous protocol.

They should outperform the random detector, which ran-

domly selects a given number of points, and be outper-

formed by the ideal selection, which can be applied a

Fig. 3 From top to bottom: 1—test image of the detector benchmark. 2—Points extracted with an ideal detector based on the matching error map

(10k points with the smallest matching error). 3—10k FAST keypoints. 4—10k MIEL keypoints

Fig. 4 Selection strategy comparison. Although simpler to compute,

blockwise maxima is close or even better (more than 5,000 MIEL or

8,000 FAST points) than the local maxima strategy

J Real-Time Image Proc

123

posteriori using the matching error map. The random

detector uses a random image as salience function, whereas

the ideal detector uses the inverse of the matching error.

Figure 4 shows the impact of our BM selection strategy

(cf. Sect. 2.1.3). It allows to extract more points and, above

8,000 FAST points or 5,000 MIEL points, results in smaller

matching errors.

Figure 5 compares several versions of the FAST detector.

It shows that extraction is optimal with n = 9 for less than

20,000 points, whereas n = 8 is better for more than 20,000

points. Using our selection strategy, up to 34,133 points are

extracted from the 640 9 480 pixels of the test image.

Finally Fig. 6 compares the quality of the best FAST and

MIEL keypoints versus the ideal and random detectors.

Those results can be outlined as follows:

– Up to a certain limit (around 30,000 particles in our

benchmark, that is 10 % of the whole image area),

there is a significant benefit in using a geometric

selection instead of a random selection.

– The MIEL and FAST detectors have approximately the

same quality for less than 10,000 points; it actually

seems from our experiments that many different

detectors with the same support [B3(p)] and complexity

can achieve similar performance.

– Changing the selection strategy from local maxima to

blockwise maxima, as described in Sect. 2.1.3, does

improve the detector by allowing a higher density of

keypoints.

– The comparison with the ideal detector shows that there

is still a large margin of improvement for better detectors.

2.3 Keypoint descriptor

This section introduces a new keypoint descriptor,

designed for real-time tracking and specially adapted to the

matching algorithm introduced later. Generally speaking, a

descriptor has two main characteristics:

– Discrimination power: descriptors should be able to

distinguish one image location from a set of matching

candidates. This characteristic is related to the size of

the descriptor: the larger the descriptor, the more it can

distinguish a particle from its neighbours, thus limiting

the temporal aliasing problem.

– Invariance: descriptors should be robust to the geomet-

ric and photometric changes that may occur from one

frame to the other, like viewpoint changes, non-rigid

object motions, illumination changes, etc.

Those two characteristics are, to a large extent, antagonist.

Besides, high invariance implies a computationally

Fig. 5 Profiling the FAST detectors. Best performance is obtained for

n = 9 below 20,000 extracted points) and n = 8 (above)

Fig. 6 Comparison of FAST and MIEL. MIEL turns out comparable

to FAST tuned at its best, though a little weaker below 25,000 particle

J Real-Time Image Proc

123

expensive descriptor construction. Our descriptor is justi-

fied by the following arguments: (1) using prediction and

coarse-to-fine matching, the search space can be reduced,

which lowers the importance of discrimination. However,

looking for semi-dense particle flow, similar particles can

be expected near the search area, so there must be enough

bins to distinguish them. (2) Since the target is video

tracking, the appearance of objects is not expected to vary

significantly between consecutive frames. This lowers the

importance of invariance.

Our semi-dense tracker uses a feature vector of dimension

16, corresponding to two sets of eight values evenly sampled

on the Bresenham circles of radius 3 (first scale) and 6 (second

scale), as shown in Fig. 7. Those values are simply taken from

the input image, smoothed by a Gaussian kernel of standard

deviation 1.0 for the first scale and 2.0 for the second scale.

The matching algorithm presented in the next section uses the

L1 distance between these vectors as a similarity metrics.

This descriptor has two advantages. First, it has a low

computational complexity. Second, the use of the Gaussian

blur allows to reduce the number of local minima in the

distance map, thus improving the accuracy of the matching

based on a gradient descent (see Sect. 3.3).

3 Tracking algorithm

This section presents how particle positions are tracked

from one frame to the other. It involves prediction,

matching, filtering and merging mechanisms.

We first give an overview of the algorithm and then go

into the details of each step.

3.1 Overview

We track particles from coarse to fine scales using a dyadic

pyramid. Statistics extracted at scale s ? 1 and/or motion

estimated at time t -1 are used to predict particles at time

t and scale s (Sect. 3.2).

The new position of each particle is then estimated by

searching its best matching position using a two-scale

gradient descent (Sect. 3.3).

To avoid particle drift around occlusions, particles are

discarded when the matcher converged to a pixel that is too

dissimilar according to the descriptor distance. Error fil-

tering then discards remaining false matches, using spatial

statistics (Sect. 3.4).

Finally, to minimise redundant tracking, adjacent parti-

cles with similar trajectories are merged (Sect. 3.5).

3.2 Coarse-to-fine prediction

To be robust to large motion due to sudden camera accelera-

tions or fast moving objects, particle positions are predicted

using a hybrid temporal and coarse-to-fine spatial method.

Given a particle living at time t and at scale s, let Ps
t be its

position in the current frame and Vs
t ¼ Ps

t � Ps
t�1 be its velocity.

To initialise the pyramidal matching framework, at the coarsest

scale s = smax, particle positions are predicted to be:

dPsmax
t ¼ Psmax

t�1 þ Vsmax

t�1
:

The position is refined using the matching algorithm (Sect.

3.3), providing Psmax
t and then Vsmax

t .

Then, particles at finer scales (s \ smax) essentially

inherit from particles at coarser scales. However, because

of sparsity, particles at scale s do not always have corre-

sponding particles at scale s ? 1. The following strategy is

used to maximise the probability that a particle inherits a

flow vector. For all scales s \ smax:

– Vsþ1
t , the velocity field calculated at the previous

(upper) scale, is sub-sampled by replacing the values

within every 8 9 8 block by the average value of the

velocities of all particles present in this block. The

modified field is denoted gVsþ1
t .

– The position of each particle is predicted as:

cPs
t ¼ Ps

t�1 þ 2 gVsþ1
t ½Ps

t�1=2� :

– If the corresponding block gVsþ1
t ½Ps

t�1=2� is empty, the

position of the particle is predicted as:

cPs
t ¼ Ps

t�1 þ Vs
t�1

:

– The matching procedure (Sect. 3.3) is used to refine the

particle position Ps
t and velocity Vs

t .

A slight disadvantage of this prediction strategy is that it

may induce errors on the borders of moving objects.

However, it has two significant advantages:

– It needs less memory to store gVsþ1
t .

– It smooths matching errors.

Fig. 7 The two neighbourhoods B3 and B6 used to compute the

detector and the description vectors

J Real-Time Image Proc

123

3.3 Matching

To refine the position search of each particle, we use a

hierarchical sequence of two gradient descents. The fol-

lowing algorithm takes as inputs a point descriptor

Fref and a predicted new position p and returns a refined

new position, given a matching distance d. Function

F(x) computes the descriptor located at position x.

To improve matching robustness and speed, we use a two-

step coarse-to-fine gradient descent. It exploits the two-scale

components of our descriptor (see Sect. 2.3). Let F1 (resp.

F2) be the part of the descriptor containing values extracted

at the first (resp. second) scale. Let d1 (resp d2) be the L1

distance between sub-descriptors F1 (resp F2).

For a given particle with a descriptor Fref and a pre-

dicted position p, we estimate its final refined position with

the following:

The first (coarse) descent finds the local minimum accord-

ing to d2, whereas the second (fine) descent uses d1 ? d2.

To handle occlusions, matches are rejected when the

similarity distance d1 ? d2 is above a given threshold h
which sets a balance between robustness to appearance

changes and occlusion detection. We used h = 300 to

obtain the results shown in Table 1, which correspond to

7.5 % of the theoretical maximal value of d1 ? d2.

3.4 Error filtering

Being able to detect false matches is essential to com-

pensate for errors. The latter are mainly due to (1) the

limited discrimination power of the detector and (2) the

reduced search performed by the gradient descents.

We chose not to perform spatial smoothing but only to

remove particles with a spatially inconsistent velocity vector.

The false matching detection uses the sub-sampled velocity

map presented earlier (Sect. 3.2) to estimate the velocity

divergence between the particle and its neighbourhood. Par-

ticles verifying the following properties are discarded:

jjVs
t �fVs

t jj[k

We use k = 10 pixels in our experiments. Further-

more, isolated particles in their 8 9 8 block are

deleted.

Table 1 Comparison of PyrLK [3], using three different integration

window sizes (WS), with our tracker

PyrLK

WS = 5

PyrLK

WS = 11

PyrLK

WS = 21

Our

tracker

Scenario SA— 5,000 particles

Matching error 1.74 0.92 1.03 1.12

Lost particles 8.27 % 8.26 % 7.91 % 8.82 %

Undetected

occlusions

10.80 % 1.41 % 3.39 % 12.82 %

Scenario SB—5,000 particles

Matching error 3.62 1.12 1.18 0.94

Lost particles 10.59 % 7.99 % 7.88 % 8.48 %

Undetected

occlusions

9.93 % 1.01 % 1.95 % 5.47 %

ScenarioSA—15,000 particles

Matching error 2.45 0.99 1.03 1.14

Lost particles 8.92 % 8.39 8.54 % 8.33 %

Undetected

occlusions

15.00 % 1.12 % 1.98 % 9.28 %

Scenario SB—15,000 particles

Matching error 3.82 1.19 1.19 0.95

Lost particles 12.80 % 8.13 % 8.56 % 8.74 %

Undetected

occlusions

8.98 % 0.72 % 1.19 % 4.11 %

Lost particles and undetected occlusions are expressed in percentage

of computed trajectories

J Real-Time Image Proc

123

Fig. 8 From left to right: the input video, the particles (in red) and their trajectories (in black), and the semi-dense motion field, representing

polar coordinates of velocity vectors using an (intensity, hue) colour code

J Real-Time Image Proc

123

Although these two strategies can delete good particles,

it has negligible impact on the high number of particles,

while improving significantly the average matching error.

On the other hand, using statistics already computed for the

prediction, this error filtering function has minor compu-

tational cost, for the benefit of the overall tracking speed.

3.5 Particle merging strategy

When tracking a semi-dense field of particles, the proba-

bility that two particles converge to the same trajectory is

high. It can lead to redundant computations, which lowers

the performance of the tracker. To avoid this problem,

particles which are 1-pixel distant or less are simply

merged by removing the youngest. Looking for superposed

or adjacent particles can be performed in O(1) time com-

plexity thanks to the spatial index described in Sect. 4.2.

3.6 Evaluation of the tracker

Some results of the semi-dense tracker can be seen on Fig.

8, on different scenarios and scenes. In this section, we

propose a method to evaluate our semi-dense tracking

algorithm and compare it with others. Comparison is per-

formed with (1) the OpenCV pyramidal Lukas-Kanade

(pyrLK) tracker [3] that is widely used as a state-of-the-art

algorithm for tracking a high number of points in real time,

and (2) Farnebäck’s dense optical flow algorithm [8], also

available on OpenCV.

The pyrLK tracker does not perform direct search

matching, but uses an iterative Euler Lagrange resolution

scheme instead. The result quality is related to the smooth-

ness of the function to minimise, which depends on the size

of the window used to integrate the derivatives [3]. Since

such size has a major influence on the computation time, we

use different window sizes for PyrLK on our benchmarks

(the default size is 21 pixels in the OpenCV function).

The Farnebäck’s dense optical flow [8] is based on

polynomial expansion, which estimates coefficients from

weighted least squares on the image. The window size of

the Gaussian kernel used to calculate the weights also has a

strong impact on both quality and robustness to fast

motion, so we consider different sizes for Farnebäck too

(the default size is 15 pixels in the OpenCV function).

For Video Extruder, the smoothness of the similarity

function is related to the size and scales of the descriptor.

One single version is evaluated, with two scales and eight

sample values per scale as described in Sect. 2.3.

3.6.1 Generating sequences with ground truth motion

To benchmark tracking algorithms, we generated synthetic

videos with their associated ground truth motion data. The

generator produces flat-world dynamic scenarios using a

very large image as panoramic background and three small

images of objects inserted in the video stream. Two kinds

of motion are simulated: camera pan-tilt that affects the

whole scene (background and objects), and object-specific

motion.

Let at be the pan-tilt random acceleration vector at

frame t, and bi
t the random acceleration vector of object i at

frame t. Orientations of these acceleration vectors are

randomly changed every five frames, while their norms are

kept constant.

Two scenarios are used in our evaluation. The first one,

with small accelerations, is denoted SA, with jjatjj ¼ 1 and

jjbi
tjj ¼ 2. The second one, with large accelerations, is

denoted SB, with jjatjj ¼ 15 and jjbi
tjj ¼ 5 (units in pixels

per frame2).

3.6.2 Qualitative evaluation

A qualitative evaluation is first performed, by comparing

the trajectories extracted by the tracking algorithms with

the true trajectories obtained from the ground truth

sequences.

For each scenario, the tracking algorithms are run on a

generated sequence of 100 frames. Each computed trajec-

tory c is compared to the reference trajectory r corre-

sponding to the ground truth trajectory starting at the same

position. More precisely, let Tc ¼ fpc
s ; . . .; pc

eg be a com-

puted trajectory, starting at frame s and ending at frame e.

The corresponding reference trajectory is Tr ¼ fpr
s ; . . .;

pr
fg, such that pr

s ¼ pc
s , and f is the final frame of the ref-

erence trajectory.

1. The average error along Tc is defined as:

X

s� t� minðe;f Þ

jjpc
t � pr

t jj
1þminðe; f Þ � s

2. The particle is considered lost if (f - e) [g.

3. There is an undetected occlusion if (e - f) [g.

We set g = 10 frames to allow small tracking errors, which

represents 0.40 seconds in a 25 Hz input video. For all

computed trajectories, we then calculate: (1) the mean

average error along the trajectories, which measures the

ability to track particle positions without drifting (2) the

percentage of lost particles that shows the robustness to

motion and appearance change and, (3) the percentage of

undetected occlusions. In all these statistics, all trajectories

have the same weight, whatever their length.

Table 1 compares the Video Extruder with the OpenCV

pyrLK tracker [3] parametrised with different window sizes

(WS) on the two scenarios SA and SB. It shows that, while

being significantly faster (see Sect. 4), the global quality of

J Real-Time Image Proc

123

our tracker is close to that of PyrLK in terms of matching

error (1). Measures 2 and 3 are in favour of PyrLK because,

unlike our tracker, it does not update point descriptors over

time. This allows to detect occlusions more easily, espe-

cially when they progressively occlude the particle neigh-

bourhood, at the cost of a weaker robustness to appearance

changes.

One counter-intuitive observation is that scenario SA,

while featuring small motion, is actually harder to deal

with because it contains slow occlusions that trigger pro-

gressive drift of the descriptor leading to matching errors

smaller than h.

3.6.3 Comparison with a dense optical flow

Our approach being hybrid between sparse tracker and

dense optical flow, it is also legitimate to compare it to the

latter. However, it cannot be done as directly as with a

tracker like PyrLK, because the output is different. Thus,

we have performed a limited comparison with Farnebäck’s

optical flow [8], a state-of-the-art dense optical flow

algorithm provided by the OpenCV library.

Since it does not provide point trajectory but only

optical flow 2D vectors, we cannot compare trajectory

quality. Instead, we evaluate the accuracy of its optical

flow vectors. Since our ground truth video sequences pro-

vide a reference optical flow, the average error per point

can be easily calculated. Table 2 shows the average error in

pixels for the two scenarios SA and SB.

The interest of this comparison is to better evaluate the

issues of sparsity vs density or semi-density in a real-time

context. Globally, those figures are not in favour of [8]

since they average the error on all pixels, including

homogeneous areas where the errors are the most impor-

tant. However, our experiments showed that, on average,

Farnebäck’s algorithm provides better point

correspondences than Video Extruder on its salient points.

It would then make sense to use a dense optical flow as an

input to guide the particles, as done in Particle Video

algorithm [19]. But Particle Video is not real time and the

computational cost of Farnebäck’s algorithm (which would

be only a part of a dense particle tracker) is one order of

magnitude higher than the semi dense Video Extruder (See

Table 3).

4 Implementation

4.1 Parallelism on the CPU and the GPU

In recent years, the growing market of smart phones urged

processor designers to increase significantly the efficiency

of embedded low power chips. Because high frequency

cores are subject to physical limits, chips are made

increasingly parallel to raise computational power while

reducing energy consumption.

To leverage this trend, our tracker is essentially based on

two kinds of highly parallel building blocks:

– Pixel-wise operations involved in the tracking pipeline

are convolutions with Gaussian kernels and the key-

point detector. We can split them in as many threads as

the number of pixels.

– Particle-wise operations are at the heart of all the other

parts of the tracker, i.e. prediction, matching, and error

filtering. They use a contiguous buffer of particles

(Sect. 4.2), smaller than the input image, thus involving

less memory transfers than pixel-wise operations.

Because of the high number of particles, it is also

worth splitting them into thousands of threads, able to

make the most of the GPU parallelism.

So in the GPU implementation, there is one thread per

pixel or particle. When targeting the CPU, which is a

coarse-grained parallel architecture, we assign to each core

a subset of the image, or of the particle buffer. To leverage

the CPU cache, adjacent subsets are assigned to consecu-

tive cores, and all memory ranges (input and output buf-

fers) needed by all the CPU threads at a given time must

exactly fit the available cache size.

The parallel implementations of the tracker are trivial in

that they do not use advanced techniques such as GPU

Table 2 Average error (in pixels) per optical flow vector computed

by Farnebäck algorithm [8] with different integration window sizes

(WS)

Farnebäck

WS = 5

Farnebäck

WS = 15

Farnebäck

WS = 25

Scenario SA 3.25 2.14 1.73

Scenario SB 5.35 3.46 2.86

Table 3 Comparing computation times, averaged on the 1,000 first frames of a 640 9 480 pixels video (CamVid data set)

PyrLK WS = 5 PyrLK WS = 11 PyrLK WS = 21 Färneback Our tracker

MPixels/s (frames/s) 31 (101.11) 9.6 (31.25) 2.7 (8.95) 3.4 (11.1) 46.66 (151.9)

ls per particle 1.21 3.50 14.44 0.29 (per pixel) 0.77

PyrLK and our tracker were set to track around 8,500 particles per frame. The detectors were run every five frames. The platform used is a Core

i5 2,500k at 3.3 GHz

J Real-Time Image Proc

123

shared memory or explicit use of single instruction multi-

ple data (SIMD) extentions. They simply split the data into

chunks that are processed by threads without need of any

inter thread synchronisation.

The GPU and CPU implementations of Video Extruder

are open source and available online: http://www.ensta-

paristech.fr/*garrigues/video_extruder.html.

4.2 Particle container

To lower the computation time of both the tracker and the

applications using it, we use a particle container which

allows to:

– Provide at each frame a contiguous buffer of alive

particles.

– Get the particle located on a given pixel in constant

time.

The first property is needed to efficiently iterate over all

alive particles, and the second one to efficiently look for

particles at a given location. We choose to store particle

data in a contiguous 1D array P and to reference them in a

2D image R. That is, R(p) = i if P(i), the particle at index i,

is located at pixel p.

Keeping up to date a contiguous buffer of alive particles

is a complicated task. Particles appear and die at each

frame and P needs to be updated accordingly. Also, dead

particle deletion and the subsequent compaction procedure

that is needed change particle positions in memory, which

makes it difficult to attach data to particles. Thus, we

provide a procedure to synchronise attribute data with the

particle buffer, optionally saving attributes of dead

particles.

This provides third-party applications with a way to

attach data to moving particles instead of static pixels. This

is useful for object segmentation and tracking or particle’s

depth estimation.

To better use the processor cache, the container

reorders the particle buffer every N frames, in such a way

that close particles in the 2D space are also close in

memory. To achieve this, a coarse-grained parallel

compaction algorithm is used on the CPU and a fined

grained parallel version of the Thrust library [11] is used

on the GPU.

4.3 Time benchmark

Eventually, the density and matching quality of Video

Extruder are comparable to those of the OpenCV PyrLK

tracker as shown in Sect. 3. But its overriding advantage is

speed. We show in this section that it outperforms PyrLK

tracker, reaching real-time processing rates even on low

power architectures such as ARM systems-on-chip

embedded in current middle end smart phones.

Table 3 provides some speed figures and ratios, mea-

sured on the Camvid [4] urban driving video data set. The

proposed tracking algorithm features speedup factors

ranging from 91.5 to 917 over PyrLK with different

window sizes.

Figure 9 shows the computation time distribution among

the different parts of the tracker. The two most expensive

tasks are the matching and the two Gaussian blurs per scale

needed by the descriptor. All the other parts are negligible

because they only involve a few memory fetches per par-

ticles and basic arithmetic.

We developed three main implementations of our

tracker. Two run on standard desktop hardware, respec-

tively, a GPU and a CPU, and achieve ultra fast processing

for high frame rate video sources. The third one targets low

power ARM processors and achieves real-time video pro-

cessing at a lower resolution (see Fig. 10). As far as we

know, this is the first implementation able to track such a

high number of particles at such a frame rate. Note that,

except for the convolutions, none of those implementations

makes explicit (i.e. not automatically done by the compiler)

use of architecture specific optimisations like SSE, NEON

Table 4 Time performance of our tracker on different architectures (with the detector and filtering steps run every five frames)

Architecture Resolution Number of particles Mpixels/s (frames/s) Cycles per particle

GPU Geforce GTX 460 1.35GHz 640 9 480 8,500 50 (166) 957

CPU quad-core I5 2500k 3.3GHz 640 9 480 8,500 46 (152) 2,550

ARM dual-core STE U8500 1GHz 320 9 240 3,000 0.84 (11) 30,300

ARM single-core IMX.53 1GHz 720 9 288 2,000 2.07 (10) 50,000

Matcher 43 %

Descriptor 42 %

Detector 10%

Pyramid 2%

Filter 1.4%

Misc

Fig. 9 Processing time distribution among the different parts of the

algorithm running on a quad-core x86

J Real-Time Image Proc

123

http://www.ensta-paristech.fr/~garrigues/video_extruder.html
http://www.ensta-paristech.fr/~garrigues/video_extruder.html

or other SIMD extensions, so exploiting them could pro-

vide further speedup.

Table 4 presents the computation time of our tracker on

different architectures, ranging from high performance

processors (GPU) to low power ARM processors.

5 Conclusion and perspectives

In this paper, we proposed a visual point tracking algorithm

called Video Extruder. It is designed to be used as a basic

primitive in many embedded video processing systems.

Indeed, it lends itself to very fast computation on different

architectures, including low power SoCs, thanks to its

highly regular and parallel friendly task arrangement and

thanks to its efficient data management. Furthermore, it

achieves a valuable trade-off between dense optical flow

and long-term point tracking. This makes it a versatile brick

that can be used in numerous applications: non-rigid object

tracking, structure from motion, video stabilisation, video

segmentation, action recognition and so on. It has already

been used to build action descriptors using beam of tra-

jectories [13, 14]. In [13], it is shown that the performance

of action classification is higher when the number of tra-

jectory increases, up to a certain limit: when the quality of

matching begins to drop. This confirms the interest of semi

dense tracking with respect to sparse tracking and regular/

dense sampling. Other contributions of our work are:

– A new salience function which allows fast detection of

weakly salient points.

– A new selection mechanism providing much more

points than classical local maxima.

– A hybrid temporal and medium range coarse-to-fine

scale spatial prediction mechanism which makes the

tracker robust to large camera and object accelerations.

– A two scale descriptor with low memory footprint

combined with a simple and efficient gradient-descent-

based matching algorithm.

– An evaluation protocol adapted to fast mobile video

point tracking scenarios.

In our ongoing and future work, we shall use the tracker to

build different real-time applications, like software video

stabilisation and 3D reconstruction. Besides, the reader is

invited to try it for his/her own needs, by downloading the

open source version available via the project web page:

http://www.ensta-paristech.fr/*garrigues/video_extruder.

html.

Other demonstrations and applications are also available

on this same page.

Acknowledgments This work was part of a EUREKA-ITEA2

project and was funded by the French Ministry of Economy (General

Directorate for Competitiveness, Industry and Services).

References

1. Botella, G., Martı́n, H.J.A., Santos, M., Meyer-Baese, U.: FPGA-

based multimodal embedded sensor system integrating low- and

mid-level vision. Sensors 11(12), 8164–8179 (2011). doi:10.

3390/s110808164, URL: http://www.mdpi.com/1424-8220/11/8/

8164/

2. Bouchafa, S., Zavidovique, B.: c-velocity: a flow-cumulating

uncalibrated approach for 3d plane detection. Int. J. Comput. Vis.

97(2), 148–166 (2012)

3. Bouguet, J.Y.: Pyramidal implementation of the affine Lucas

Kanade feature tracker description of the algorithm. Intel Cor-

poration (2001)

4. Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmenta-

tion and recognition using structure from motion point clouds. In:

ECCV (1) pp. 44–57 (2008)

5. Chaudhry, R., Ravichandran, A., Hager, G., Vidal, R.: Histo-

grams of oriented optical flow and Binet–Cauchy kernels on

nonlinear dynamical systems for the recognition of human

actions. In: Computer Vision and Pattern Recognition, CVPR

2009, IEEE Conference, pp. 1932–1939 (2009)

6. d’Angelo, E., Paratte, J., Puy, G., Vandergheynst, P.: Fast TV-L1

optical flow for interactivity. In: IEEE International Conference

on Image Processing (ICIP’11), pp. 1925–1928. Brussels (2011)

7. Doyle, D.D., Jennings, A.L., Black, J.T.: Optical flow back-

ground estimation for real-time pan/tilt camera object tracking.

Measurement 48, 195–207 (2014). doi:10.1016/j.measurement.

2013.10.025, URL: http://linkinghub.elsevier.com/retrieve/pii/

S0263224113005241

8. Farnebäck, G.: Two-frame motion estimation based on polyno-

mial expansion. In: Image Analysis, Springer, pp. 363–370

(2003)

9. Fassold, H., Rosner, J., Schallaeur, P., Bailer, W.: Realtime KLT

feature point tracking for high definition video. In: Computer

Graphics, Computer Vision and Mathematics (GraVisMa’09),

Plzen (2009)

10. Garrigues, M., Manzanera, A.: Real time semi-dense point

tracking. In: Campilho, A., Kamel, M. (eds) International Con-

ference on Image Analysis and Recognition (ICIAR 2012),

Springer, Aveiro. Lecture Notes in Computer Science, vol. 7324,

pp. 245–252 (2012)

Fig. 10 The tracker running at 10Hz on a low-end Xperia U smart

phone embedding an ARM dual-core STE U8500

J Real-Time Image Proc

123

http://www.ensta-paristech.fr/~garrigues/video_extruder.html
http://www.ensta-paristech.fr/~garrigues/video_extruder.html
http://dx.doi.org/10.3390/s110808164
http://dx.doi.org/10.3390/s110808164
http://www.mdpi.com/1424-8220/11/8/8164/
http://www.mdpi.com/1424-8220/11/8/8164/
http://dx.doi.org/10.1016/j.measurement.2013.10.025
http://dx.doi.org/10.1016/j.measurement.2013.10.025
http://linkinghub.elsevier.com/retrieve/pii/S0263224113005241
http://linkinghub.elsevier.com/retrieve/pii/S0263224113005241

11. Hoberock, J., Bell, N.: Thrust: A parallel template library. URL:

http://thrust.github.io/, version 1.7.0 (2010)

12. Isard, M., Blake, A.: Condensation—conditional density propa-

gation for visual tracking. Int. J. Comput. Vis. 29, 5–28 (1998)

13. Nguyen, T., Manzanera, A.: Action recognition using bag of

features extracted from a beam of trajectories. In: International

Conference on Image Processing (IEEE-ICIP’13), Melbourne

(2013)

14. Nguyen, T., Manzanera, A., Garrigues, M.: Motion trend patterns

for action modelling and recognition. In: International Confer-

ence on Computer Analysis of Images and Patterns (CAIP’13),

New York (2013)

15. Rabe, C., Franke, U., Koch, R.: Dense 3D motion field estimation

from a moving observer in real time. Smart Mobile In-Veh. Syst.

(2014). URL: http://link.springer.com/chapter/10.1007/978-1-

4614-9120-0_2

16. Rosten, E., Drummond, T.: Fusing points and lines for high

performance tracking. IEEE Int. Conf. Comput. Vis. 2,

1508–1511 (2005)

17. Rosten, E., Drummond, T.: Machine learning for high-speed

corner detection. In: European Conference on Computer Vision

(ECCV’06), vol. 1, pp. 430–443 (2006)

18. Rosten, E., Porter, R., Drummond, T.: Faster and better: a

machine learning approach to corner detection. IEEE Trans.

Pattern Anal. Mach. Intell. 32, 105–119 (2010)

19. Sand, P., Teller, S: Particle video: long-range motion estimation

using point trajectories. In: Computer Vision and Pattern Rec-

ognition (CVPR’06), pp. 2195–2202. New York (2006)

20. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point

detectors. Int. J. Comput. Vis. 37(2), 151–172 (2000)

21. Sekkati, H., Mitiche, A.: Joint optical flow estimation, segmen-

tation, and 3d interpretation with level sets. Comput. Vis. Image

Underst. 103(2), 89–100 (2006)

22. Sinha, S.N., Frahm, J.M., Pollefeys, M., Genc, Y.: GPU-based

video feature tracking and matching. In: EDGE, Workshop on

Edge Computing Using New Commodity Architectures, vol 278,

p 4321 (2006)

23. Sinha, S.N., Frahm, J.M., Pollefeys, M., Genc, Y.: Feature

tracking and matching in video using programmable graphics

hardware. Mach. Vis. Appl. 22(1), 207–217 (2007)

24. Tomasi, C., Kanade, T.: Detection and tracking of point features.

Carnegie Mellon University Technical, Report CMU-CS-91-132

(1991)

25. Wang, H., Kläser, A., Schmid, C., Chen, g., Lin, L.: Action

recognition by dense trajectories. IEEE Conference on Computer

Vision and Pattern Recognition, pp. 3169–3176. Colorado

Springs (2011)

Matthieu Garrigues got the engineer degree from EPITA. He

attended the R&D curriculum at LRDE and made a research period at

Siemens CR in Princeton in 2009. He is interested in image

processing and embedded implementations for vision systems-on-

chip. Since 2010, he has been a research engineer at ENSTA-

ParisTech in the Robotics and Computer Vision (RCV) group from

the Computer Science and System Engineering (U2IS) Laboratory.

He began a PhD thesis in 2012, on parallel vision algorithms for real-

time urban scene analysis.

Antoine Manzanera got B.S. degree in Mathematics (1991) and M.S.

degree in Theoretical Computer Science (1993) from Lyon I

University, Ph.D. from Télécom ParisTech in 2000, and Habilitation

degree (HDR) from Paris VI University in 2012. He has been a high

school teacher in Paraguay (1994–1996) and a R&D engineer (CIFRE

Grant) at Aérospatiale-Missiles (1997–2000). Since 2001, he has been

an associate professor at ENSTA-ParisTech in the RCV group from

the U2IS laboratory. His research domains are image processing

models and algorithms for embedded vision systems, with special

interest in motion analysis and understanding.

Thierry M. Bernard got engineer degrees from Ecole Polytechnique

in 1983 and ENSTA-ParisTech in 1985. He got M.S. degrees from

Paris VI University in 1985, and from CalTech in 1986, and the Ph.D.

from Paris XI University in 1992. Formerly with the CTA defence

research center, in particular as principal investigator of the Artificial

Retina project over 1993–1998 and as scientific manager of the

Perception System lab over 1996–1998, he is now an associate

professor at ENSTA-ParisTech in the RCV group from the U2IS

Laboratory. His research interests are architectures and algorithms for

vision systems-on-chip applied to robotics.

J Real-Time Image Proc

123

http://thrust.github.io/,
http://link.springer.com/chapter/10.1007/978-1-4614-9120-0_2
http://link.springer.com/chapter/10.1007/978-1-4614-9120-0_2

	Video Extruder: a semi-dense point tracker for extracting beams of trajectories in real time
	Abstract
	Introduction
	Weak keypoint selection and description
	Detectors
	The FAST detector
	The MIEL detector
	Keypoints selection strategy
	Lowering the detector computational cost

	Detector evaluation
	Protocol
	Results

	Keypoint descriptor

	Tracking algorithm
	Overview
	Coarse-to-fine prediction
	Matching
	Error filtering
	Particle merging strategy
	Evaluation of the tracker
	Generating sequences with ground truth motion
	Qualitative evaluation
	Comparison with a dense optical flow

	Implementation
	Parallelism on the CPU and the GPU
	Particle container
	Time benchmark

	Conclusion and perspectives
	Acknowledgments
	References

