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Abstract. Functional identification of G-Protein Coupled Receptors (GPCRs) is 
one of the current focus areas of pharmaceutical research. Although thousands 
of GPCR sequences are known, many of them are orphan sequences (the 
activating ligand is unknown). Therefore, classification methods for automated 
characterization of orphan GPCRs are imperative. In this study, for predicting 
Level 1 subfamilies of  GPCRs, a novel method for obtaining class specific 
features, based on the existence of activating ligand specific patterns, has been 
developed and utilized for a majority voting classification. Exploiting the fact 
that there is a non-promiscuous relationship between the specific binding of 
GPCRs into their ligands and their functional classification, our method 
classifies Level 1 subfamilies of GPCRs with a high predictive accuracy 
between 99% and 87% in a three-fold cross validation test. The method also 
tells us which motifs are significant for class determination which has important 
design implications. The presented machine learning approach, bridges the gulf 
between the excess amount of GPCR sequence data and their poor functional 
characterization. 
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1   Introduction 

GPCR (G-Protein Coupled Receptors) are a large family of trans-membrane proteins 
responsible for signal transduction. The GPCRs receive various external stimuli 
ranging from chemical to physical and in turn activate intracellular G-proteins. Cells 
can accept and respond different extracellular and physical signals. Acceptance of a 
signal occurs principally in two different transduction pathways. One is mediated by 
tyrosine kinase receptors and the other by G protein-coupled receptors (GPCR)[4]. 

GPCR is an essential subject of many recent biomolecular projects. They are 
responsible for diverse physiological processes such as neurotransmission, secretion, 
cellular metabolism rowth and cellular differentiation as well as inflammatory and 
immune responses. Therefore, they are vital for the research and development for new 
drugs [3].  
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Various databases have been created in order to observe and categorize different 
characteristics of GPCRs. These databases hold sequences, mutation data and ligand 
binding data. Moreover, these databases are further improved by multiple sequence 
alignments, two dimensional visualization tools, three dimensional models and 
phylogenetic trees [5]. 

Even though thousands of GPCR sequences are known as a result of ongoing 
genomics projects , the crystal structure has been solved only for one GPCR sequence 
using electron diffraction at medium resolution (2.8 A) to date and for many of the 
GPCRs the activating ligand is unknown, which are called orphan GPCRs [11]. 
Hence, based on sequence information, a functional classification method of those 
orphan GPCRs and new upcoming GPCR sequences is crucial to identify and 
characterize novel GPCRs. 

In the current literature, to classify GPCRs in different levels of families, there 
exist different attempts, such as using prim database search tools, e.g., BLAST [1], 
FASTA [8]. However, these methods only work if the query protein sequence is 
highly similar to the existing database sequences in order to work properly. In 
addition to these database search tools, the same problem is addressed by using 
Hidden Markov Models [10], bagging classification trees [6] and SVMs [7]. One 
other method studies the tertiary structure of GPCRs by using only the amino acid 
sequence (MembStruck) and the binding site and binding energy of various ligands to 
GPCRs (HierDock) [9]. Out of all these methods Karchin et al. (2001) showed that 
SVMs gave the highest accuracy in recognizing GPCR families [7]. In SVMs, an 
initial step to transform each protein sequence into a fixed-length vector is required 
and the predictive accuracy of SVMs significantly depends on this particular fixed-
length vector. Karchin et al., pointed out that the SVM performance could be 
increased by using  most relevant feature vectors, since SVMs do not identify the 
features most responsible for class discrimination. Therefore, for an accurate SVM 
classification, feature vectors should reflect the unique biological information 
contained in sequences, which is specific to the type of classification problem. In a 
recent work Bakir et al. used a fixed length feature vector of 40 most distinguishing 
patterns to classify amine sub-family GPCRs with 97% accuracy using SVMs[2]. 

2   System and Methods 

In this paper we used several machine learning approaches to classify GPCRs 
according to their ligand specificities rather than their subfamilies. The GPCR groups 
we chose to work on were selected according to the ligands they bind to: amines, 
peptides, olfactory and rhodopsin. The binding of ligand to GPCR occurs outside of 
the cell therefore to understand interaction of GPCR and ligands; we decided to 
examine the primary sequence information of extracellular regions of GPCRs. Since 
The GPCR is a 7TM protein, meaning that it has 7 trans-membrane regions, the 
regions we observed were an N-terminus and three extracellular loops. We acquired 
the GPCR amino acid sequences from GPCRDB database which also groups GPCR 
proteins into subfamilies (http://www.gpcr.org/7tm/multali/multali.html) [12]. Total of 
352, 1998, 595, 355 and 56 proteins from amine, olfactory, peptide, rhodopsin and 
prostanoid subfamilies derived from GPCRDB respectively. After derivation of 
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proteins from database their secondary structure is determined by using TMHMM 
(trans-membrane hidden Markov model) server. The dataset is available upon request. 
Thus we could isolate the n-terminus and extracellular loop sequences. Using 
different alphabetic coding systems for amino acids, we created a database consisting 
of amino acid triplet frequencies of each  extracellular sequences for each ligand class 
studied. 

Our database was created using MYSQL due to its user friendly nature. Another 
important factor in choosing MYSQL as our database system was being able to 
control the MYSQL database through Microsoft Visual C++ by MYSQL++ 
implementation (http://tangentsoft.net/mysql++).  

We randomly separated each existing GPCR group into 2 subgroups as ‘train’ and 
‘test’ in a 2:1 ratio for amine, rhodopsin, prostanoid subfamilies, 5:1 ratio for peptide 
subfamily and 9:1 ratio for olfactory subfamily. For both subgroups, the amino acid 
sequence of n-terminus, loop1, loop2 and loop3 regions were grouped into triplets. 
For ‘n’ amino acid long sequences, this would provide us with ‘n-2’ possible triplets. 
Using triplets seemed to be the optimal choice since using single amino acids would 
not help to determine neighborhood information in the sequence. The reasoning 
behind this was to focus on more specific patterns in the amino acid sequence while 
not losing vital patterns. Since it is too specific, using 5-amino-acid bundles would 
greatly diminish the number of matches, possibly ignoring positive matches that 
would have been spotted using triplets.  

The ‘train’ subgroups were loaded into the database to create the basis for 
prediction patterns which would later be applied to the ‘test’ subgroup. These final 
results would show us how efficient the prediction patterns were. 

The results of these pattern searches provided us with certain information such as 
the number of triplet occurrences and in how many proteins a certain pattern was 
spotted. In order to find specific patterns for different ligand groups we compared the 
results of each group with one another. The over-expression of a specific pattern in 
one of the two GPCR groups compared showed us that this pattern was characteristic 
of that certain GPCR group. However, this method was not precise enough since a 
pattern that separates amines-peptides might not do so for amines-olfactory. 
Therefore, to further enhance our statistical precision, we compared the results of 
each group to that of all the remaining GPCR groups combined. 

We also applied an index search on amino acid sequences to check whether the 
positions of dominant triplets carried an importance in the separation of GPCR 
groups. We were hoping to spot a parallelism between triplet densities and their 
positions in the extra cellular portions of the protein. 

All of these comparison methods were first used on a 11-letter amino acid alphabet 
(Table 1), then repeated on 6-letter and 20-letter alphabets. The usage of different 
alphabet systems allowed us to examine the effect of a single amino acid compared to 
the general biochemical properties of the group it belongs to. The classifications of 
amino acids were done according to their physical and chemical properties. Evolution 
allows for conserved mutations that do not change the physical and chemical nature of 
mutation site since these mutations do not disrupt the function of the molecule. By  
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Table 1. Classification of amino acids 

Class Amino Acid(s) Class Amino Acid(s) 
a I,V,L,M g G 

b R,K,H h W 

c D,E i C 

d Q,N j Y,F 

e S,T k X,P 

f A   

using classification of amino acids we can capture this nature of evolution. Since the 
patterns we expect to observe can vary allowing acceptable mutations.  

For each comparison of classes we found the ratio of existence of a triplet at a 
certain location (e.g loop 1) in one class against the other class.  We ranked the 
triplets with these ratios. The words with highest ratios would make up the important 
features. This is done for six times comparing each class to another class. These 
important features are selected from training set only. Then starting from the highest 
ratio we search how many sequences in the training set can be selected with this motif 
only. Going down the ratio ranking we add a new motif to important motif list if it 
helps to identify new sequences other than the previous motifs. We carry on until no 
new sequence can be identified with the rest of the motifs. This is done for each 
classification problem and we get a list of important motifs for each class. Then given 
the test sequence we look at existence of these motifs in the query sequence. We 
assign the query sequence to the class that has the highest hits on the query sequence. 
Unlike the patterns obtained in Bakir’s work, the selected patterns  are observed only 
in the specific group and not the other groups [2]. In the previous work, selected 
patterns had to be present in at least 50% of the sequences in the selected group, 
presence of the same pattern in other classes were not checked. 

3   Results 

The motifs obtained from amine peptide comparison are listed in Table 2. Showing 
how many sequences in the training set they occur and how many new sequences they 
help to identify.  We keep the motifs that cause no misclassification between these 
classes.  In determining the most important motifs the patterns that occur in most of 
the given class that do not occur in the other classes are ranked according to number 
of occurrences in the given class. The most important motif distinguishing amine 
from the peptide is existence of word bhe in loop1. Since it helps to classify 33 amine 
GPCRs without any misclassification.  

By running all possible comparisons of classes we obtain the list of important 
features that helps us to identify a given class. The list is derived from ranked 
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Table 2. Occurences of motifs for amine versus peptide classification 

n-terminal loop2 loop1 loop3 

motif occur new motif occur New motif occur new motif Occur new 

Ddh 13 13 dkf 26 26 bhe 33 33 ibc 27 27 

Ief 11 11 cij 22 21 egb 27 12 bak 20 19 

Dif 10 3 ckg 19 14 aic 26 23 fai 19 12 

Fkh 8 8 kbi 15 12 hka 25 9 kia 13 13 

Hfa 7 3 dic 14 14 ihj 16 16 abk 12 8 

Chc 6 6 ggi 12 12 afi 15 14 kkc 12 6 

Hff 6 5 kdi 12 8 ejg 14 4 cid 10 9 

Ffh 5 5 iic 11 3 abi 13 13 jbk 9 4 

Hck 5 3 bij 10 5 aha 12 7 kcj 9 3 

Hdg 5 5 cci 10 9 bah 12 8 gke 8 8 

Fbh 4 3 jfa 10 4 jhf 12 11 jid 7 6 

Dhk 3 3 eki 5 4 ehi 11 9 jef 5 4 

   gdi 5 5 fgj 10 10 dai 4 4 

   hdd 4 3 jic 8 3 ibf 4 3 

   jbi 4 4 bfh 6 6 aie 3 3 

   cig 3 3 bhc 4 4 bfh 3 3 

      fjh 3 3 icc 3 3 

         jig 3 3 
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important features table. We start from the most distinguishing feature and add on a 
new feature if it helps us to classify a new GPCR sequence correctly. The motif list  
ends when the remaining motifs s can only classify already distinguished sequences 
thus yielding to no new classifications. Using these motif lists, we try to determine the 
class of the sequences in the test set. The results can be seen in Table 3. Success rate 
of classification varies between 87% and 99% and we can also determine the 
important motifs for each class. 

We had problem with prostanoids therefore we eliminated them from our search. 
There were only few prostanoids to be able determine any kind of significant patterns. 
The search yielded very few patterns with such stringent determination of patterns. 
Therefore any class compared with the prostanoid binding group gave more hits. 
Therefore only 28% of the prostanoids could be identified and all the others were 
classified to other classes. Currently we are allowing for more errors in pattern 
identification to overcome this problem. 

In order to check how accurate the results were, we used a program called CART, 
a software program or building regression trees. For testing the accuracy of patterns 
that recognize amines, 40 patterns were given as  predictors and 18 test proteins were 
used. The result of patterns comparing amine versus all ligand classes are shown in 
Figure 1. The importance of the patterns in classification of amines are summarized in  
Table 4. Unlike the patterns used in the previous method, the patterns used in CART 
distinguish one ligand class from all the other 4 ligand classes. For example 
distinguishing patterns for amines used in CART are the best patterns in the 
combination of amines vs. peptides, amines vs. olfactory, amines vs. rhodopsin and 
amines vs. prostanoid pattern sets in the first method. Thus patterns in Table 4 can 
differ from the ones in Table 2. For example pattern ‘caa’ is the most important 
pattern in Table 4 but it is not seen in Table 2. This is because ‘caa’ is  important for 
amines vs. rhodopsin and amines vs. prostanoid  classification but not as important for 
amines vs. peptides and amines vs. olfactory classification. Since Table 2 shows the 
patterns for amines vs. peptides, ‘caa’ pattern is not seen.  

The main novelty of this method is to determine motifs using reduced alphabet 
representation and using information theory for determining significance of the 
motifs. This increased the prediction accuracy drastically while enabling the end users 
(pharmaceutical companies) to determine significant motifs for ligand determination 
that can be used for drug design purposes. 

Table 3. Total success rates of classifications 

 Correct total success 
amines 104 120 0.87 

peptides 98 102 0.96 
olfactory 195 195 1 
rhodopsin 87 111 0.87 
prostanoid 5 18 0.28 
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Fig. 1. The classification table showing the only patterns determining amines from all others. 
The figure shows that pattern “iak” occurring in 3rd loop of extracellular region is the most 
crucial pattern determining amines of all ligand groups with weight 90. The increasing number 
of the nodes are in the decreasing order of importance of determining amines. W is the number 
of sequences populating a given node. 

Table 4. Variable importance of the amine determining patterns 

Patterns Relative Importance 
Loop 1 ‘caa’ 100 
Loop 1 ‘gbh’ 97.46 
Loop 3 ‘iak’ 83.767 
Loop 1 ‘gjh’ 64.62 
Loop 1 ‘gda’ 51.101 
Loop 2 ‘aed’ 44.942 
Loop 1 ‘agj’ 43.636 
Loop 1 ‘aag’ 31.099 
Loop 1 ‘dca’ 22.736 
Loop 3 ‘akc’ 17.737 
Loop 1 ‘hjj’ 16.511 
N-term ‘afa’ 12.811 
N-term ‘eea’ 0 
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