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The issue of how people acquire knowledge in the course of individual development has

fascinated researchers for thousands of years. Perhaps the earliest recorded effort to put

forth a theoretical account belongs to Plato, who famously advocated the idea that knowl-

edge of many abstract categories (e.g., ‘‘equivalence’’) is innate. Although Plato argued

with his contemporaries who advocated the empirical basis of knowledge, it was the British

empiricists who most forcefully put forth the idea of the empirical basis of knowledge, with

John Locke offering the famous ‘‘tabula rasa’’ argument.

The first comprehensive psychological treatment of the problem of knowledge acquisition

was offered by Piaget (1954), who suggested that knowledge emerges as a result of inter-

actions between individuals and their environments. This was a radical departure from both

extreme nativism and extreme empiricism. However, these ideas, as well those of empiri-

cist-minded behaviorists, fell short of providing a viable account of many human abilities,

most notably, language acquisition.

This inability prompted Chomsky to propose an argument that language cannot be

acquired from the available linguistic input because it does not contain enough information

to enable the learner to recover a particular grammar, while ruling out alternatives (Chom-

sky, 1980). Therefore, some knowledge of language must be innate to enable fast, efficient,

and invariable language learning under the conditions of the impoverished linguistic input.

This argument (i.e., known as the Poverty of the Stimulus argument) has been subsequently

generalized to perceptual, lexical, and conceptual development. The 1990 Special Issue of

Cognitive Science is an example of such generalization.

The current Special Issue on the mechanisms of cognitive development has arrived

exactly 20 years after the first Special Issue. In the introduction to the 1990 Special Issue of

Cognitive Science, Rochel Gelman stated:
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Experience is indeterminant or inadequate for the inductions that children draw from it in
that, even under quite optimistic assumptions about the nature and extent of the experiences
relevant to a given induction, the experience is not, in and of itself, sufficient to justify, let
alone compel, the induction universally drawn from it in the course of development. For
example, there is nothing in the environment that supports a child’s conclusion that the
integers never end. (R. Gelman, 1990, p. 4)

If input is too impoverished to constrain possible inductions and to license the concepts

that we have, the constraints must come from somewhere. It has been proposed that these

constraints are internal—they come from the organism in the form of knowledge of ‘‘core’’

domains, skeletal principles, biases, or conceptual assumptions. To be useful in solving the

indeterminacy problem, these constraints have to be (a) top-down, with higher-levels of

abstraction appearing prior to lower levels (i.e., elements of an abstract structure must guide

processing of specific instances), (b) a priori (i.e., these constraints have to precede learning

rather than being consequence of learning), and (c) domain-specific (because generalizations

in the domain of number differ drastically from those in the domain of biology, the princi-

ples guiding these generalizations should differ as well).

Formally, the Poverty of the Stimulus argument has the following structure: If (a) correct

generalizations require many constraints and (b) the environment provides few, then (c) the

constraints enabling correct generalizations do not come from the environment. While this

argument is formally valid, its premise (b) and its conclusion (c) are questionable. Most

important, do we know that the environment truly provides few constraints? And how do we

know that?

The research featured in this Special Issue proposes an alternative way of meeting the

challenge of understanding cognitive development. Instead of assuming top-down, a priori,

domain-specific constraints, this research tries to understand how domain-general learning

mechanisms may enable acquisition of knowledge for an organism functioning in an infor-

mation-rich environment.

Chater and Christiansen (2010) focus on language learning and evolution and propose

two critical ideas: (a) the idea of language adapting to biological machinery existing prior to

the emergence of language and (b) the idea of ‘‘C-induction.’’ First, they argue that there is

no credible account of how a richly structured, domain-specific, innate Universal Grammar

could have evolved. They suggest that the solution to the logical problem of language evolu-

tion requires abandoning the notion of a domain-specific and innate Universal Grammar. As

part of their second argument, Chater and Christiansen (2010) offer a critical distinction

between ‘‘natural’’ and ‘‘cultural’’ induction (i.e., N-induction and C-induction). N-induc-

tion involves the ability to understand the natural world, whereas C-induction involves the

ability to coordinate with other people. They argue that the problem of language acquisition

has been traditionally misconstrued as a solution to an extremely difficult N-induction prob-

lem (i.e., the discovery of abstract syntax); however, according to the authors, the problem

should be construed as a much easier problem of C-induction. Instead of inducing an arbi-

trary set of constraints (i.e., the problem of N-induction), individuals simply have to make

the same guesses as everyone else. Crucially, this process of C-induction is made easier by
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the fact that the others have the same biases as the learner and because language has been

shaped by cultural evolution to fit those exact biases. Chater and Christiansen (2010) further

suggest that the same line of argumentation is likely to extend to other kinds of development

for which the learning of a culturally mediated system of knowledge is important.

Johnson’s (2010) paper focuses on perceptual development. Perception has been at the

center of our attempts to understand sources and origins of knowledge: How do people parse

cluttered and occluded visual experience into separable objects? Does this ability develop

over time through experience and learning, or is it based on some form of a priori knowl-

edge (e.g., such as knowledge of objects)? In contrast to those advocating innate knowledge

of objects, Johnson (2010) argues that there is no need to posit such innate knowledge. In

his view, although some components of object perception (e.g., edge detection) may emerge

from prenatal development (or even prenatal learning), other major components of object

perception (e.g., perception of objects over occlusion) develop postnatally. According to

Johnson’s (2010) developmental proposal, initially perception of occluded objects requires

support from multiple features, including the size of the occluding gap, the alignment of

edges, and common motion. In the course of development, infants learn to perceive

occluded objects independently of these features.

Kemp, Goodman, and Tenenbaum (2010) discuss how people learn about causal systems

and generalize this knowledge to new situations. In particular, having learned that drug D

has side effect E in person P, the learner may eventually generalize this knowledge to con-

clude that drugs have side effects on people. How is this learning achieved? One possible

way of solving this problem is for the learner to have a highly constrained hypothesis space,

specific to each knowledge domain. This fact has been at the heart of the nativist proposals

arguing for innate sets of constraints specific to certain domains of knowledge. Although

Kemp et al. (2010) agree that constraints are important for learning, they propose that these

constraints do not have to be a priori—children can learn inductive constraints in some

domains—and that these constraints subsequently support rapid learning within these

domains. They develop and test a computational model of causal learning, demonstrating

that constraints can be acquired and later used to facilitate learning of new causal structures.

The critical idea is that when learners first encounter a new inductive task, their hypothesis

space with respect to this task could be relatively broad and unconstrained. However, after

experiencing several induction problems from that family, they induce a schema, or a set of

abstract principles describing the structure of tasks in the family. These abstract principles

constrain the hypotheses that learners apply to subsequent problems from the same family,

and allow them to solve these problems given just a handful of relevant observations.

Sloutsky’s (2010) paper discusses the development of concepts. It has been widely

acknowledged that concepts allow nontrivial generalizations (e.g., that plants and animals

are alive) and that concepts support reasoning. How do people acquire concepts? And given

that generalizations are constrained (people generalize the property of being alive to garden

flowers, but not to plastic flowers), where do these constraints come from? Unlike proposals

arguing for a priori constraints, Sloutsky’s (2010) proposal attempts to link conceptual

development to a more general ability to form perceptual categories, which exhibits early

developmental onset and is present across a wide variety of species. Sloutsky (2010) argues
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that conceptual development progresses from simple perceptual grouping to highly abstract

scientific concepts. This proposal of conceptual development has four parts. First, it is

argued that categories in the world have different structure. Second, there might be different

learning systems (subserved by different brain mechanisms) that evolved to learn categories

of differing structures. Third, these systems exhibit differential maturational course, which

affects how categories of different structures are learned in the course of development. And

finally, an interaction of these components may result in the developmental transition from

perceptual groupings to more abstract concepts.

Smith, Colunga, and Yoshida (2010) consider the role of attention in acquiring knowl-

edge. They note that in her introduction to the 1990 Special Issue of Cognitive Science,

Rochel Gelman asked, ‘‘How is it that our young attend to inputs that will support the devel-

opment of concepts they share with their elders?’’ Gelman’s analysis suggested that the

problem cannot be solved without some form of innate knowledge (e.g., ‘‘skeletal princi-

ples’’) that guides learning in particular domains. Smith et al. (2010) give a different answer

to this question. They suggest that the so-called knowledge domains are marked by multiple

cue-outcome correlations that in turn correlate with context cues (e.g., the context of word

learning may differ from the context of spatial orientation). In the course of learning, chil-

dren learn to allocate attention to bundles of predictive cues in a given context (this process

is called attentional learning). The outcome of this process has the appearance of domain

specificity—children learn to differentially allocate attention to different cues in different

contexts. In short, Smith et al. (2010) present an account of how domain-general processes

(e.g., attentional learning) may give rise to behaviors that have the appearance of domain-

specific knowledge.

One set of competencies appearing as a ‘‘knowledge domain,’’ or even as a dedicated

module, is spatial cognition. Young children as well as a variety of nonhuman species have

been found to exhibit sensitivity to spatial information, thus prompting some researchers to

propose the existence of a dedicated and encapsulated geometric module. Twyman and

Newcombe (2010) consider reasons to doubt the existence of this geometric module and

offer a different account of the development of spatial abilities. This account is based on the

idea of adaptive cue combination originally proposed by Newcombe and Huttenlocher

(2006). According to the proposal, although some biological predispositions for processing

of spatial information may exist, fully fledged representation and processing of spatial infor-

mation emerges through interactions with and feedback from the environment. As a result,

multiple sources of spatial and nonspatial information are integrated into a nonmodular and

unified representation. Information that is high in salience, reliability, familiarity, and cer-

tainty, and low in variability, is given priority over other sources of information. In contrast

to modularity proposals, according to the adaptive combination view, experience affects

which cues are used in the combination and, as a consequence, the resulting representation.

In particular, cues that lead to adaptive behaviors are more likely to be used again in the

future, whereas cues that lead to maladaptive behaviors are less likely to be used. This

position offers a clear view of how spatial abilities emerge and change in the course of

development.
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In addition to discussing the papers appearing in this Special Issue of Cognitive Science,

Goldstone and Landy (2010) offer their view on the problem. They start with a simple

observation that the idea of ‘‘skeletal principles’’ does not obviate the need for developmen-

tal explanations because skeletal structures themselves are subject to growth and develop-

ment. Goldstone and Landy (2010) exemplify this idea by many systems (e.g., neural

networks is but one example) whose internal structure is shaped by the nature of input. They

conclude that the field of cognitive development has witnessed a major shift since the 1990

publication of the Special Issue of Cognitive Science—the field has moved from delineating

specific constraints in domains such as language, motion, quantitative reasoning, social per-

ception, and navigation to explicating mechanisms of how some of these constraints may

emerge. Goldstone and Landy (2010) conclude that a new challenge for the study of cogni-

tive development is to understand how general learning processes can give rise to learned

domains, dimensions, categories, and contexts.

This Special Issue is a result of multiple efforts by multiple individuals. First, the authors

deserve thanks for their willingness to write the papers and subject their work to a standard

rigorous peer-review process that required multiple revisions. A set of anonymous reviewers

who read the papers (and then revisions) also deserve appreciation. And special thanks go to

Art Markman (the Executive Editor of Cognitive Science) and Caroline Verdier (the Manag-

ing Editor of Cognitive Science) who encouraged, supported, and guided the authors through

the challenging process of putting together this Special Issue.

The collection of papers featured in this Special Issue focuses on the same topic as

the 1990 Special Issue. However, the current set of papers offers solutions that are

different from those offered in 1990. While in the 1990 issue the main argument was for

domain-specific constraints that were considered to be the starting point of development, the

current set attempts to understand how constraints emerge in the course of learning

and development. Although particular accounts of how this knowledge emerges from

domain-general processes may (and most likely will) change over time, the approach itself

represents a substantial paradigm shift. Time will tell how successful this approach will be

in answering the challenging questions of cognitive development.
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Abstract

Recent research suggests that language evolution is a process of cultural change, in which linguis-

tic structures are shaped through repeated cycles of learning and use by domain-general mechanisms.

This paper draws out the implications of this viewpoint for understanding the problem of language

acquisition, which is cast in a new, and much more tractable, form. In essence, the child faces a prob-

lem of induction, where the objective is to coordinate with others (C-induction), rather than to model

the structure of the natural world (N-induction). We argue that, of the two, C-induction is dramati-

cally easier. More broadly, we argue that understanding the acquisition of any cultural form, whether

linguistic or otherwise, during development, requires considering the corresponding question of how

that cultural form arose through processes of cultural evolution. This perspective helps resolve

the ‘‘logical’’ problem of language acquisition and has far-reaching implications for evolutionary

psychology.

Keywords: Biological adaptation; Cognitive development; Cultural evolution; Evolutionary psychol-

ogy; Induction; Language acquisition; Language evolution; Natural selection; Universal grammar

1. Introduction

In typical circumstances, language changes too slowly to have any substantial effect on

language acquisition. Vocabulary and minor pronunciation shifts aside, the linguistic envi-

ronment is typically fairly stable during the period of primary linguistic development. Thus,

researchers have treated language as, in essence, fixed, for the purposes of understanding lan-

guage acquisition. Our argument, instead, attempts to throw light on the problem of language

acquisition, by taking an evolutionary perspective, both concerning the biological evolution
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of putative innate domain-specific constraints, and more importantly, the cultural evolution

of human linguistic communication. We argue that understanding how language changes

over time provides important constraints on theories of language acquisition; and recasts,

and substantially simplifies, the problem of induction relevant to language acquisition.

Our evolutionary perspective casts many apparently intractable problems of induction in

a new light. When the child aims to learn an aspect of human culture (rather than an aspect

of the natural world), the learning problem is dramatically simplified—because culture

(including language) is the product of past learning from previous generations. Thus, in

learning about the cultural world, we are learning to ‘‘follow in each other’s footsteps’’—so

that our wild guesses are likely to be right—because the right guess is the most popular

guess by previous generations of learners. Hence, considerations from language evolution
dramatically shift our understanding of the problem of language acquisition; and we suggest

that an evolutionary perspective may also require rethinking theories of the acquisition of

other aspects of culture. In particular, in the context of learning about culture, rather than

constraints from the natural world, we suggest that a conventional nativist picture, stressing

domain-specific, innately specified modules, cannot be sustained.

The structure of the paper is as follows. In the next section, Language as shaped by the
brain, we describe the logical problem of language evolution that confronts traditional

nativist approaches, which propose that the brain has been adapted to language. Instead, we

argue that language evolution is better understood in terms of cultural evolution, in which

language has been adapted to the brain. This perspective results in a radically different way

of looking at induction in the context of cultural evolution. In C-induction and N-induction,

we outline the fundamental difference between inductive problems in which we must learn

to coordinate with one another (C-induction), and those in which we learn aspects of the

noncultural, natural world (N-induction). Crucially, language acquisition is, on this account,

a paradigm example of C-induction. Implications for learning and adaptation shows: (a)

that C-learning is dramatically easier than N-induction; and (b) that while innate domain-

specific modules may have arisen through biological adaption to deal with problems of

N-induction, this is much less likely for C-induction. Thus, while Darwinian selection may

have led to dedicated cognitive mechanisms for vision or motor control, it is highly implau-

sible that narrowly domain-specific mechanisms could have evolved for language, music,

mathematics, or morality. The next section, The emergence of binding constraints, provides

a brief illustration of our arguments, using a key case study from language acquisition.

Finally, in Discussion and implications, we draw parallels with related work in other aspects

of human development and consider the implications of our arguments for evolutionary

psychology.

2. Language as shaped by the brain

Before most children can count to 10 or stand on one leg with their eyes closed for more

than 10 s, they are already quite competent users of their native language. It seems that

whatever inductive guesses children make about how language works, they tend to get it
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right—even when presented with noisy and incomplete input. It is therefore widely assumed

that there must be a tight fit between the mechanisms that children employ when acquiring

language and the way in which language is structured and used. One way of explaining this

close relationship is to posit the existence of domain-specific brain mechanisms dedicated to

language acquisition—a Universal Grammar (UG)—through which the linguistic input is

funneled (e.g., Chomsky, 1965, 1980). Current conceptions of UG vary considerably in

terms of what is genetically specified, ranging from a set of universal linguistic principles

with associated parameters in Principles and Parameter Theory (e.g., Crain, Goro, & Thorn-

ton, 2006; Crain & Pietroski, 2006), to a language-specific ‘‘toolkit’’ that includes structural

principles relating to phrase structure (X-bar theory), agreement, and case-marking in Sim-

pler Syntax (Culicover & Jackendoff, 2005; Pinker & Jackendoff, 2009), to the intricate

recursive machinery that implements Merge within the Minimalist Program (e.g., Boeckx,

2006; Chomsky, 1995). However, despite the important theoretical differences between cur-

rent approaches to UG, they all share the central assumption that the core components of

UG, whatever their form, are fundamentally arbitrary, from the standpoint of building a sys-

tem for communication. Thus, the abstract properties of UG do not relate to communicative

or pragmatic considerations, nor from limitations on the mechanisms involved in using or

acquiring language, or any other functional sources. Indeed, it has been argued that many

aspects of UG may even hinder communication (e.g., Chomsky, 2005; Lightfoot, 2000),

further highlighting the nonfunctional nature of UG.

The UG framework has been challenged with regard to its ability to account for language

acquisition (e.g., Bates & MacWhinney, 1987; Pullum & Scholz, 2002; Tomasello, 2003),

the neural basis of language (e.g., Elman et al., 1996; Müller, 2009), and purely linguistic

phenomena (e.g., Croft, 2001; Goldberg, 2006; O’Grady, 2005). Whatever the merits are of

these challenges (c.f., e.g., Crain & Pietroski, 2001; Laurence & Margolis, 2001; Wexler,

2004; Yang, 2002), our focus here is on what may be an even more fundamental predica-

ment for UG theories: the logical problem of language evolution (Botha, 1999; Christiansen

& Chater, 2008; Roberts, Onnis, & Chater, 2005; Zuidema, 2003). We argue that there is no

credible account of how a richly structured, domain-specific, innate UG could have evolved.

Instead, we propose that the direction of causation needs to be reversed: the fit between the

neural mechanisms supporting language and the structure of language itself is better

explained in terms of how language has adapted to the human brain, rather than vice versa.

This solution to the logical problem of language evolution, however, requires abandoning

the notion of a domain-specific UG.

2.1. The logical problem of language evolution

As for any other biological structure, an evolutionary story for a putative UG can

take one of two routes. One route is to assume that brain mechanisms specific to language

acquisition have evolved over long periods of natural selection by analogy with the intricate

adaptations for vision (e.g., Pinker & Bloom, 1990). The other rejects the idea that UG has

arisen through adaptation and proposes that UG has emerged by nonadaptationist means

(e.g., Bickerton, 1995; Gould, 1993; Jenkins, 2000; Lightfoot, 2000).
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The nonadaptationist account can rapidly be put aside as an explanation for a domain-

specific, richly structured UG. The nonadaptationist account boils down to the idea that

some process of chance variation leads to the creation of UG. Yet the probability of ran-

domly building a fully functioning, and completely novel, biological system by chance is

infinitesimally small (Christiansen & Chater, 2008). To be sure, so-called evo-devo research

in biology has shown how a single mutation can lead, via a cascade of genetic ramifications,

to dramatic phylogenetic consequences (e.g., additional pairs of legs instead of antennae;

Carroll, 2001). But such mechanisms cannot explain how a new, intricate, and functional

system can arise de novo.1

What of the adaptationist account? UG is intended to characterize a set of universal gram-

matical principles that hold across all languages; it is a central assumption that these princi-

ples are arbitrary. This implies that many combinations of arbitrary principles will be

equally adaptive—as long as speakers adopt the same arbitrary principles. Pinker and Bloom

(1990) draw an analogy between UG and protocols for communication between computers:

It does not matter what specific settings are adopted, as long as every agent adopts the same

settings. Yet the claim that a particular linguistic ‘‘protocol’’ can become genetically embed-

ded through adaptation faces three fundamental difficulties (Christiansen & Chater, 2008).

The first problem stems from the dispersion of human populations. Each subpopulation

would be expected to create highly divergent linguistic systems. But, if so, each population

will develop a UG as an adaptation to a different linguistic environment—and hence, UGs

should, like other adaptations, diverge to fit their local environment. Yet modern human

populations do not seem to be selectively adapted to learn languages from their own lan-

guage groups. Instead, every human appears, to a first approximation, equally ready to learn

any of the world’s languages.2 The second problem is that natural selection produces adap-

tations designed to fit the specific environment in which selection occurs, that is, a language

with a specific syntax and phonology. It is thus puzzling that an adaptation for UG would

have resulted in the genetic encoding of highly abstract grammatical properties, rather than

fixing the superficial properties of one specific language. The third, and perhaps most funda-

mental, problem is that linguistic conventions change much more rapidly than genes do,

thus creating a ‘‘moving target’’ for natural selection. Computational simulations have

shown that even under conditions of relatively slow linguistic change, arbitrary principles

do not become genetically fixed—this also applies when the genetic make-up of the learners

is affecting the direction of linguistic change (Chater, Reali, & Christiansen, 2009;

Christiansen, Chater, & Reali, in press).

Together, these arguments against adaptationist and nonadaptationist explanations of UG

combine to suggest that there is no viable account of how such an innate domain-specific

system for language could have evolved (for details, see Christiansen & Chater, 2008). It

remains possible, though, that the origin of language did have a substantial impact on human

genetic evolution. The above arguments only preclude biological adaptations for arbitrary
features of language. There might have been features that are universally stable across lin-

guistic environments that led to biological adaptations, such as the means of producing

speech (e.g., Lieberman, 1984; but see also Hauser & Fitch, 2003), the need for enhanced

memory capacity (Wynne & Coolidge, 2008), or complex pragmatic inferences (de Ruiter
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& Levinson, 2008). However, these language features are likely to be functional—to facili-

tate language use—and thus would typically not be considered part of UG.

2.2. Language as shaped by multiple constraints

To escape the logical problem of language evolution, we need to invert the pattern of

explanation underpinning the postulation of UG. Instead of viewing the brain as having a

genetically specified, domain-specific system for language, which must somehow have

arisen over the course of biological evolution, we see the key to language evolution to be

evolutionary processes over language itself. Specifically, we view language as an evolving

system, and the features of languages as having been shaped by repeated processes of acqui-

sition and transmission across successive generations of language users (e.g., Christiansen,

1994; Culicover & Nowak, 2003; Deacon, 1997; Kirby & Hurford, 2002; Tomasello, 2003;

for reviews, see Brighton, Smith, & Kirby, 2005; Christiansen & Chater, 2008). Aspects of

language that are easy to learn and process, or are communicatively effective, tend to be

retained and amplified; aspects of language which are difficult to learn or process, or which

hinder communication, will, if they arise at all, rapidly be stamped out. Thus, the fit between

the structure of language and the brains of language users comes about not because the brain

has somehow evolved a genetically specified UG capturing the universal properties of

language, but instead because language itself is shaped by the brain.

A key assumption of this evolutionary perspective is that language has been shaped by

constraints from neural mechanisms that are not dedicated to language. But to what extent

can such nonlinguistic constraints be identified and employed to explain linguistic structure

previously ascribed to an innate UG? Christiansen and Chater (2008) identify four classes of

constraint which simultaneously act to shape language.

2.2.1. Perceptuo-motor factors
The motor and perceptual machinery underpinning language seems inevitably to influ-

ence language structure. The seriality of vocal output, most obviously, forces a sequential

construction of messages. A perceptual system with a limited capacity for storing sensory

input forces a code that can be interpreted incrementally (rather than the many practical

codes in communication engineering, in which information is stored in large blocks). The

noisiness and variability (across contexts and speakers) of vocal or signed signals may,

moreover, provide a pressure toward dividing the phonological space across dimensions

related to the vocal apparatus and to ‘‘natural’’ perceptual boundaries (e.g., de Boer, 2000;

Oller, 2000; Oudeyer, 2005)—though such subdivisions may differ considerably from

language to language and thus do not form a finite universal phonological inventory (Evans

& Levinson, 2008).

2.2.2. Cognitive limitations on learning and processing
Another source of constraints derives from the nature of cognitive architecture, including

learning, processing, and memory. In particular, language processing involves extracting

regularities from highly complex sequential input, pointing to a connection between
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sequential learning and language: Both involve the extraction and further processing of dis-

crete elements occurring in complex temporal sequences. It is therefore not surprising that

sequential learning tasks have become an important experimental paradigm for studying

language acquisition and processing (sometimes under the guise of ‘‘artificial grammar ⁄
language learning’’ or ‘‘statistical learning’’; for reviews, see Gómez & Gerken, 2000;

Saffran, 2003); and, indeed, some linguists have argued that some important cross-

linguistic regularities arise from sequential processing constraints (e.g., Hawkins, 1994,

2004; Kirby, 1999).

2.2.3. Constraints from thought
The structure of mental representation and reasoning must, we suggest, have a fundamen-

tal impact on the nature of language. The structure of human concepts and categorization

must strongly influence lexical semantics; the infinite range of possible thoughts presumably

is likely to promote tendencies toward compositionality in natural language (Kirby, 2007);

the mental representation of time is likely to have influenced linguistic systems of tense and

aspect (Suddendorf & Corballis, 2007); and, more broadly, the properties of conceptual

structure may profoundly and richly influence linguistic structure (Jackendoff, 2000). While

the Whorfian hypothesis that language influences thought remains controversial, there can

be little doubt that thought profoundly influences language.

2.2.4. Pragmatic constraints
Similarly, language is likely to be substantially shaped by the pragmatic constraints

involved in linguistic communication. Pragmatic processes may, indeed, be crucial in under-

standing many aspects of linguistic structure, as well as the processes of language change.

Levinson (2000) notes that ‘‘discourse’’ and syntactic anaphora have interesting parallels,

which provide the starting point for a detailed theory of anaphora and binding. As we dis-

cuss further below, Levinson argues that initially pragmatic constraints may, over time,

become ‘‘fossilized’’ in syntax, leading to some of the complex syntactic patterns described

by binding theory. Thus, one of the paradigm cases for arbitrary UG constraints may derive,

at least in part, from pragmatics.

Christiansen and Chater (2008) note that the four types of constraints interact with one

another, such that specific linguistic patterns may arise from a combination of several differ-

ent types of constraints. For example, the patterns of binding phenomena discussed below

are likely to require explanations that cut across the four types of constraints, including con-

straints on cognitive processing (O’Grady, 2005) and pragmatics (Levinson, 1987; Reinhart,

1983). That is, the explanation of any given aspect of language is likely to require the inclu-

sion of multiple overlapping constraints deriving from perceptuo-motor factors, from cogni-

tive limitations on learning and processing, from the way our thought processes work, and

from pragmatic sources.

The idea of explaining language structure and use through the interaction of multiple con-

straints has a long pedigree within functionalist approaches to the psychology of language

(e.g., Bates & MacWhinney, 1979; Bever, 1970; Slobin, 1973). The integration of multiple
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constraints—or ‘‘cues’’—has risen to prominence in contemporary theories of language

acquisition (see e.g., contributions in Golinkoff et al., 2000; Morgan & Demuth, 1996;

Weissenborn & Höhle, 2001; for a review, see Monaghan & Christiansen, 2008). For exam-

ple, 2nd-graders’ initial guesses about whether a novel word refers to an object or an action

is affected by the sound properties of that word (Fitneva, Christiansen, & Monaghan, in

press), 3-4-year-olds’ comprehension of relative clause constructions are affected by prior

experience (Roth, 1984), 7-year-olds use visual context to constrain on-line sentence inter-

pretation (Trueswell, Sekerina, Hill, & Logrip, 1999), and preschoolers’ language produc-

tion and comprehension is constrained by perspective taking (Nadig & Sedivy, 2002).

Similarly, many current theories of adult language processing also involve the satisfaction

of multiple constraints (e.g., MacDonald, Pearlmutter, & Seidenberg, 1994; Tanenhaus &

Trueswell, 1995), perhaps as a product of processes of language development driven by the

integration of multiple cues to linguistic structure (e.g., Farmer, Christiansen, & Monaghan,

2006; Seidenberg & MacDonald, 2001; Snedeker & Trueswell, 2004).

We have considered some of the ways in which language is shaped by the brain. We now

turn to the implications of this perspective on the induction problem that the child must

solve in language acquisition.

3. C-induction and N-induction

Human development involves solving with two, inter-related, challenges: acquiring the

ability to understand and manipulate the natural world (N-induction); and acquiring the abil-

ity to coordinate with each other (C-induction). Pure cases of these two types of problem are

very different. In N-induction, the world imposes an external standard, against which perfor-

mance is assessed. In C-induction, the standard is not external, but social: The key is that

we do the same thing, not that we all do an objectively ‘‘right’’ thing. In reality, most

challenges facing the child involve an intricate mixture of N- and C-induction—and teasing

apart the elements of the problem that involve understanding the world, versus coordinating

with others, may be very difficult. Nonetheless, we suggest that the distinction is crucially

important, both in understanding development in general, and in understanding the acquisi-

tion of language, in particular.

To see why the distinction between N- and C-induction is important, consider the differ-

ence between learning the physical properties of the everyday world, and learning how to

indicate agreement or disagreement using head movements. In order to interact effectively

with the everyday world, the child needs to develop an understanding of persistent objects,

exhibiting constancies of color and size, which move coherently, which have weight and

momentum, and which have specific patterns of causal influences on other objects. The

child’s perceptuo-motor interactions with the everyday world (e.g., catching a ball; Dienes

& McLeod, 1993) depend crucially on such understanding; and do so individualistically—in

the sense that success or failure is, to a first approximation, independent of how other chil-

dren, or adults, understand the everyday world. The child is a lone scientist (Gopnik,

Meltzoff, & Kuhl, 1999; Karmiloff-Smith & Inhelder, 1973).
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By contrast, in C-learning, the aim is to do as others do. Thus, consider the problem of

appropriately deploying a repertoire of head movements to indicate agreement. Whereas

there are rich objective constraints, derived from physics, on catching a ball, the problem of

communication via head movements is much less constrained—from an abstract point of

view, several mappings between overt expressions and underlying mental states may be

equivalent. For example, in Northern Europe nodding one’s head indicates ‘‘yes,’’ but in

Greece nodding signals ‘‘no.’’ Similarly, in many places across the world, shaking one’s

head is used for ‘‘no,’’ but in Sri Lanka it indicates general agreement (Wang & Li, 2007).

What is crucial for the child is that it comes to adopt the same pattern of head movement to

indicate agreement as those around it. The child is here not a lone scientist, but a musician

whose objective is not to attain any absolute pitch, but to be ‘‘in tune’’ with the rest of the

orchestra.

Before we turn to the question of why C-induction is dramatically easier than N-induc-

tion, note that the distinction between N- and C-induction is conceptually distinct from the

debate between nativist and empiricist accounts of development (although it has striking

implications for these accounts, as we shall see). Table 1 illustrates this point with a range

of examples from animal behavior. Thus, in many species, innate constraints appear funda-

mental to solving N- and C-induction problems. Innate solutions concerning problems of

N-induction include basic processes of flying, swimming, and catching prey, as well as

highly elaborate and specific behaviors such as nest building. And such innate constraints

are equally dominant in determining coordination between animals. Thus, for example, from

a functional point of view, patterns of movement might translate into information about food

sources in a range of ways; but genetic constraints specify that honey bees employ a particu-
lar dance (Dyer, 2002). This amounts to solving a problem of C-induction (although solving

it over phylogenetic time, via natural selection, rather than solving it over ontogenetic time,

via learning), because it is a problem of coordination: The bees must adopt the same dance

with the same interpretation (and indeed dances do differ slightly between bee species).

Courtship, rutting, and play behaviors may often have the same status—the ‘‘rules’’ of

Table 1

A tentative classification of a sample of problems of understanding and manipulating the world (N-induction)

versus coordinating with others (C-induction) in nonhuman animals

Innate Constraints Dominant Learning Dominant

N-induction Locomotion and perceptual-motor control

(Alexander, 2003); hunting, foraging, and

feeding (Stephens et al., 2007); nest

building (Healy et al., 2008)

Learning own environment (Healy &

Hurly, 2004), identifying kin (Holmes &

Sherman, 1982), learned food preferences

and aversion (Garcia et al., 1955)

C-induction Insect social behavior (Wilson, 1971),

fixed animal communication systems

(Searcy & Nowicki, 2001), including the

bee waggle dance (Dyer, 2002), many

aspects of play (Bekoff & Byers, 1998),

and mate choice (Anderson, 1994)

Social learning (Galef & Laland, 2005),

including imitative song-birds (Marler &

Slabbekoorn, 2004)
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social interactions are genetically specified; but they are also somewhat arbitrary. The key is

that these rules are coordinated across individuals—that a male courtship display is recog-

nizable by relevant females, for example.

Equally, both N- and C-induction can be solved by learning. Animals learn about their

immediate environment, where food is located, what is edible, and, in some cases, the iden-

tity of conspecifics—this is N-induction, concerning objective aspects of the world. Indeed,

some learned behaviors (such as milk-bottle pecking in blue tits or food preparation tech-

niques in chimpanzees or gorillas) may be learned from conspecifics, although whether by

processes of emulation, imitation, or simpler mechanisms, is not clear (Hurley & Chater,

2005). To a modest degree, some nonhuman animals also learn to coordinate their behavior.

For example, some song birds and whales learn their songs from others. Reproductive suc-

cess depends on producing a ‘‘good’’ song defined in terms of the current dialect (Marler &

Slabbekoorn, 2004), rather than achieving any ‘‘objective’’ standard of singing.

The distinction between problems of C- and N-induction is, then, conceptually separate

from the question of whether an induction problem is solved over phylogenetic time, by

natural selection (and specifically, by the adaptation of genetically encoded constraints), or

over ontogenetic time, by learning. Nonetheless, the distinction has two striking implica-

tions for the theory of development, and, in particular, for language acquisition. First, as we

shall argue, C-induction is dramatically easier than N-induction; and many aspects of lan-

guage acquisition seem paradoxically difficult because a problem of C-induction is mischar-

acterized as a problem of N-induction. Second, the child’s ability to solve C-induction

problems, including language acquisition, must primarily be based on cognitive and neural

mechanisms that predate the emergence of the cultural form to be learned. That is, natural

selection cannot lead to the creation of dedicated, domain-specific learning mechanisms for

solving C-induction problems (e.g., innate modules for language acquisition). By contrast,

such mechanisms may be extremely important for solving N-induction problems. Table 2,

Table 2

A tentative classification of sample problems of understanding and manipulating the world (N-induction) versus

coordinating with others (C-induction) in human development

Innate Constraints Dominant Learning Dominant

N-induction Low-level perception, motor control

(Crowley & Katz, 1999), perhaps core

naı̈ve physics (Carey & Spelke, 1996)

Perceptual, motor, and spatial learning

(Johnson, this issue, Newcombe, this

issue; Shadmehr & Wise, 2005); science

and technology (Cartwright, 1999)

C-induction Understanding other minds (Tomasello

et al., 2005), pragmatic interpretation

(de Ruiter & Levinson, 2008), social

aspects of the emotions (Frank, 1988),

basic principles of cooperation,

reciprocation, and punishment (Fehr &

Gächter, 2002; Olson & Spelke, 2008)

Language, including syntax, phonology,

word learning, and semantics (Smith, this

issue), linguistic categorization

(Sloutsky, this issue; Tenenbaum, this

issue). Other aspects of culture (Geertz,

1973), including music, art, social

conventions, ritual, religion, and moral

codes
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somewhat speculatively, considers examples from human cognition, including some of the

topics considered in this special issue. Rather than focusing in detail on each of these cases,

we focus here on the general distinction between N-induction and C-induction, before turn-

ing to our brief illustrative example, binding constraints.

4. Implications for learning and adaptation

Suppose that some natural process yields the sequence 1, 2, 3… How does it continue?

Of course, we have far too little data to know. It might oscillate (1, 2, 3, 2, 1, 2, 3, 2, 1…),

become ‘‘stuck’’ (1, 2, 3, 3, 3, 3…), exhibit a Fibonacci structure (1, 2, 3, 5, 8…), and any

of an infinity of more or less plausible alternatives. This indeterminacy makes the problem

of N-induction of structure from the natural world difficult, although not necessarily hope-

lessly so, in the light of recent developments in statistics and machine learning (Chater &

Vitányi, 2007; Harman & Kulkarni, 2007; Li & Vitányi, 1997; Tenenbaum, Kemp, &

Shafto, 2007).

But consider the parallel problem of C-learning—we need not guess the ‘‘true’’ continua-

tion of the sequence. We only have to coordinate our predictions with those of other people

in the community. This problem is very much easier. From a psychological point of view,

the overwhelmingly natural continuation of the sequence is ‘‘…4, 5, 6….’’ That is, most

people are likely to predict this. Thus, coordination emerges easily and unambiguously on a

specific infinite sequence, even given a tiny amount of data.

Rapid convergence of human judgments, from small samples of data, is observed across

many areas of cognition. For example, Feldman (1997) and Tenenbaum (1999) show that

people converge on the same categories incredibly rapidly, given a very small number of

perceptual examples; and rapid convergence from extremely limited data is presupposed in

intelligence testing, where the majority of problems are highly indeterminate, but responses

nonetheless converge on a single answer (e.g., Barlow, 1983). Moreover, when people are

allowed to interact, they rapidly align their choice of lexical items and frames of reference,

even when dealing with novel and highly ambiguous perceptual input (e.g., Clark &

Wilkes-Gibbs, 1986; Pickering & Garrod, 2004). Finally, consider a striking, and important

class of examples from game theory in economics. In a typical coordination game, two

players simultaneously choose a response; if it is the same, they both receive a reward;

otherwise, they do not. Even when given very large sets of options, people often converge

in ‘‘one shot.’’ Thus, if asked to select time and meeting place in New York, Schelling

(1960) found that people generated several highly frequent responses (so-called focal

points) such as ‘‘twelve noon at Grand Central Station,’’ so that players might potentially

meet successfully, despite choosing from an almost infinite set of options. The correspond-

ing problem of N-induction (i.e., of guessing the time and place of an arbitrarily chosen

event in New York) is clearly hopelessly indeterminate; but as a problem of C-induction,

where each player aims to coordinate with the other, it is nonetheless readily solved.

C-induction is, then, vastly easier than N-induction—essentially because, in C-induction,

human cognitive biases inevitably work in the learner’s favor as those biases are shared
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with other people, with whom coordination is to be achieved. In N-induction, the aim is to

predict Nature—and here, our cognitive biases will often be an unreliable guide.

Language acquisition is a paradigm example of C-induction. There is no human-

independent ‘‘true’’ language, to which learners aspire. Rather, today’s language is the

product of yesterday’s learners; and hence language acquisition requires coordinating with

those learners. What is crucial is not which phonological, syntactic, or semantic regularities

children prefer, when confronted with linguistic data; it is that they prefer the same linguis-

tic regularities—each generation of learners needs only to follow in the footsteps of the last.

Note that the existence of very strong cognitive biases is evident across a wide range of

learning problems—from categorization, to series completion, to coordinating a meeting.

Thus, the mere existence of strong biases in no way provides evidence for a dedicated innate

‘‘module’’ embodying such biases. From this point of view, a key research question con-

cerns the nature of the biases that influence language acquisition—these biases will help

explain the structures that are, or are not, observed in the world’s languages. Moreover, the

stronger the biases (e.g., flowing from the interaction of perceptuo-motor factors, cognitive

limitations on learning and processing, and constraints from thought and pragmatics, as

described above), the greater the constraints on the space of possible languages, and hence

the easier the problem of language acquisition.

Language, and other cultural phenomena, can therefore be viewed as evolving systems,

and one of the most powerful determinants of which linguistic or cultural patterns are

invented, propagated, or stamped out, is how readily those patterns are learned and pro-

cessed. Hence, the learnability of language, or other cultural structures, is not a puzzle

demanding the presence of innate information, but rather an inevitable consequence of the

process of the incremental construction of language, and culture more generally, by succes-

sive generations (Deacon, 1997; Kirby & Hurford, 2002; Zuidema, 2003).

The first implication we have drawn from the distinction between C-induction and

N-induction is that C-induction is dramatically easier than N-induction. But there is a

second important implication, concerning the feasibility of the biological adaptation of

specific inductive biases—that is, whether genetically encoded domain-specific modules

could have arisen through Darwinian selection. This possibility looks much more plausible

for problems of N-induction than for C-induction.

Many aspects of the natural world are fairly stable. Thus, across long periods of evolu-

tionary time, there is little change in the low-level statistical regularities in visual images

(Field, 1987), in the geometric properties of optic flow, stereo, or structure-from-motion

(Ullman, 1979), or in the coherence of external visual and auditory ‘‘objects’’ (e.g.,

Bregman, 1990). These aspects of the environment therefore provide a stable selectional

pressure over which natural selection can operate—often over times scales of tens or

hundreds of millions of years. Just as the sensory and motor apparatus are exquisitely

adapted to deal with the challenges of the natural environment, so it is entirely plausible that

the neural and cognitive machinery required to operate this apparatus is equally under

genetic control, at least to some substantial degree (e.g., Crowley & Katz, 1999). Indeed, in

many organisms, including many mammals, much complex perceptual-motor behavior is

functioning within hours of birth. Perceptuo-motor function appears to be considerably
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delayed in human infancy, but it is nonetheless entirely plausible that some innate neural

structures are conserved, or perhaps even elaborated, in humans. More broadly, it is at least

prima facie plausible that biases regarding many problems of N-induction might be estab-

lished by natural selection.

Consider, by contrast, the case of C-induction. While the natural world is stable, the

behaviors on which people coordinate are typically highly unstable. Thus, the choice of

meeting place in New York will, clearly, depend on contingent historical and cultural fac-

tors; but more importantly, cultural and linguistic conventions are in general highly labile—

for example, the entire Indo-European language group, including Armenian, Finnish, Hindi,

Ukrainian, and Welsh, which exhibit huge variations in case systems, word order, and

phonology, have diverged in just 10,000 years (Gray & Atkinson, 2003). Moreover, ‘‘focal

points’’ on which people can converge may emerge very rapidly during an experiment; for

example, different pairs of participants rapidly develop one of a wide range of classifications

in a task involving novel tangrams (Clark & Wilkes-Gibbs, 1986), and complex patterns of

conventions can arise very rapidly in the emergence of languages. For example, Nicaraguan

sign language has emerged within three decades, created by deaf children with little

exposure to established languages (Senghas, Kita, & Özyürek, 2004). Thus, from this

perspective, Pinker and Bloom’s (1990) analogy between the evolution of vision and lan-

guage breaks down because the former is primarily a problem of N-induction and the latter

a problem of C-induction.

To summarize, C-induction involves learning what others will do; but what others will do

is highly variable—and, crucially, changes far more rapidly than genetic change. Suppose

that a particular set of cultural conventions is in play (a specific language, or religious or

moral code). Learners with an inductive bias which, by chance, makes these conventions

particularly easy to acquire will be favored. But there is no opportunity for those innate

biases to spread through the population, because long before substantial natural selection

can occur, those conventions will no longer apply, and a bias to adopt them will, if anything,

be likely to be a disadvantage (Chater et al., 2009; Christiansen et al., in press). Hence,

Darwinian selection will favor agents that are generalists—that is, can adapt to the changing

cultural environment. It will, in particular, not involve the coevolution of genes and specific,

though initially arbitrary, cultural conventions. Rapid cultural evolution (e.g., fast-changing

linguistic, moral, or social systems) will automatically lead to a fit between culture and

learners—because cultural patterns can only be created and propagated if they are easy to

learn and use. But cultural evolution will work against biological (co)evolution in the case

of malleable aspects of culture—rapid cultural change leads to a fast-changing cultural

environment, which serves as a ‘‘moving target’’ to which biological adaptation cannot

occur (c.f., Ancel, 1999).

There has, indeed, been extensive computational and mathematical analysis of the pro-

cess of cultural evolution, including some models of language change (e.g., Batali, 1998;

Hare & Elman, 1995; Kirby, Dowman, & Griffiths, 2007; Nettle, 1999; Niyogi, 2006;

Nowak, Komarova, & Niyogi, 2001; Richerson & Boyd, 2005). Learning or processing

constraints on learners provide one source of constraint on how such cultural evolution

proceeds. Under some restricted conditions, learning biases specify a ‘‘fixed’’ probability
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distribution of linguistic ⁄ cultural forms, which from cultural evolution can be viewed as

sampling (Griffiths & Kalish, 2005). In the general case, though, historical factors can also

be crucially important—once a culture ⁄ language has evolved in a particular direction, there

may be no way to reverse the process. This observation seems reasonable in the light of

numerous one-directional ‘‘clines’’ observed in empirical studies of language change

(Comrie, 1989).

While arbitrary conventions, in language or other aspects of culture, typically change rap-

idly, and hence do not provide a stable target upon which biological evolution can operate,

there may be important aspects of language and culture that are not arbitrary—that is, for

which certain properties have functional advantages. For example, the functional pressure

for communicative efficiency might explain why frequent words tend to be short (Zipf,

1949), and the functional pressure to successfully engage in repeated social interactions

may explain the tendency to show reciprocal altruism (Trivers, 1971). Such aspects of cul-

ture could potentially provide a stable environment against which biological selection might

take place. Moreover, ‘‘generalist’’ genes for dealing with a fast-changing cultural environ-

ment may also be selected for. Thus, it is in principle possible that the human vocal appara-

tus, memory capacity, and perhaps the human auditory system, might have developed

specific adaptations in response to the challenges of producing and understanding speech,

although the evidence that this actually occurred is controversial (e.g., Lieberman, 1984; but

see also Hauser & Fitch, 2003). But genes encoding aspects of culture that were initially

freely varying, and not held constant by functional pressure, could not have arisen through

biological evolution (Chater et al., 2009).

While the issues discussed above apply across cognitive domains, we illustrate the pay-

off of this standpoint by considering a particularly central aspect of language—binding con-

straints—which has been viewed as especially problematic for nonnativist approaches to

language acquisition, and to provide strong grounds for the postulation of innate language-

specific knowledge.

5. The emergence of binding constraints

The problem of binding, especially between reflexive and nonreflexive pronouns and

noun phrases, has for a long time been a theoretically central topic in generative linguistics

(Chomsky, 1981); and the principles of binding appear both complex and arbitrary. Binding

theory is thus a paradigm case of the type of information that has been proposed to be part

of an innate UG (e.g., Crain & Lillo-Martin, 1999; Reuland, 2008), and it provides a chal-

lenge for theorists who do not assume UG. As we illustrate, however, there is a range of

alternative approaches that provide a promising starting point for understanding binding as

arising from domain-general factors. If such approaches can make substantial in-roads into

the explanation of key binding principles, then the assumption that binding constraints are

arbitrary language universals and must arise from an innate UG is undermined. Indeed,

according to the latter explanation, apparent links between syntactic binding principles and

pragmatic factors must presumably be viewed as mere coincidences—rather than as
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originating from the ‘‘fossilization’’ of pragmatic principles into syntactic patterns by pro-

cesses such as grammaticalization (Hopper & Traugott, 1993).

The principles of binding capture patterns of use of, among other things, reflexive

pronouns (e.g., himself, themselves) and accusative pronouns (e.g., him, them). Consider

the following examples, where subscripts indicate co-reference and asterisks indicate

ungrammaticality:

(1) That Johni enjoyed himselfi ⁄ *himi amazed himi ⁄ *himselfi.

(2) Johni saw himselfi ⁄ *himi ⁄ *Johni.

(3) *Hei ⁄ hej said Johni won.

Why is it possible for the first, but not the second, pronoun to be reflexive, in (1)? According

to generative grammar, the key concept here is binding. Roughly, a noun phrase binds a pro-

noun if it c-commands that pronoun, and they are co-referring. In an analogy between linguis-

tic and family trees, an element c-commands its siblings and all their descendents. A noun

phrase, NP, A-binds a pronoun if it binds it; and, roughly, if the NP is in either subject or object

position. Now we can state simplified versions of Chomsky’s (1981) three binding principles:

Principle A. Reflexives must be A-bound by an NP.

Principle B. Pronouns must not be A-bound by an NP.

Principle C. Full NPs must not be A-bound.

Informally, Principle A says that a reflexive pronoun (e.g., herself) must be used, if

co-referring to a ‘‘structurally nearby’’ item (defined by c-command), in subject or object

position. Principle B says that a nonreflexive pronoun (e.g., her) must be used otherwise.

These principles explain the pattern in (1) and (2). Principle C rules out co-reference such

as (3). John cannot be bound to he. For the same reason, John likes John, or the man likes
John do not allow co-reference between subject and object.

Need the apparently complex and arbitrary principles of binding theory be part of the

child’s innate UG? Or can these constraints be explained as a product of more basic per-

ceptual, cognitive, or communicative constraints? One suggestion, due to O’Grady (2005),

considers the possibility that binding constraints may in part emerge from processing con-

straints (see Section 2.2.2). Specifically, he suggests that the language processing system

seeks to resolve linguistic dependencies (e.g., between verbs and their arguments) at the first

opportunity—a tendency that might not be specific to syntax, but which might be an instance

of a general cognitive tendency to resolve ambiguities rapidly in linguistic (Clark, 1975) and

perceptual input (Pomerantz & Kubovy, 1986). The use of a reflexive is assumed to signal

that the pronoun co-refers with an available NP, given a local dependency structure.

Thus, in parsing (1), the processor reaches That John enjoyed himself… and makes the

first available dependency relationship between enjoyed, John, and himself. The use of the

reflexive, himself, signals that co-reference with the available NP, John, is intended (c.f.,

Principle A). With the dependencies now resolved, the internal structure of the resulting

clause is ‘‘closed off’’ and the parser moves on: [That [John enjoyed himself]] surprised
him ⁄ *himself. The latter himself is not possible because there is no appropriate NP available
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to connect with (the only NP is [that John enjoyed himself]) which is used as an argument of

surprised, but which clearly cannot co-refer with the himself. But in John enjoyed himself,
John is available as an NP when himself is encountered.

By contrast, plain pronouns, such as him, are used in roughly complementary distribution

to reflexive pronouns (c.f., Principle B). It has been argued that this complementarity arises

pragmatically (Levinson, 1987; Reinhart, 1983); that is, given that the use of reflexives is

highly restrictive, they are, where appropriate, more informative. Hence, by not using them,

the speaker signals that the co-reference is not appropriate.3 Thus, we can draw on the addi-

tional influence of pragmatic constraints (Section 2.2.4).

Finally, simple cases of Principle C can be explained by similar pragmatic arguments.

Using John sees John (see [2] above), where the object can, in principle, refer to any indi-

vidual named John, would be pragmatically infelicitous if co-reference were intended—

because the speaker should instead have chosen the more informative himself in object

position. O’Grady (2005) and Reinhart (1983) consider more complex cases related to

Principle C, in terms of a processing bias toward so-called upward feature-passing, though

we do not consider this here.

The linguistic phenomena involved in binding are extremely complex and not fully cap-

tured by any theoretical account (indeed, the minimalist program [Chomsky, 1995]; has no

direct account of binding but relies on the hope that the principles and parameters frame-

work, in which binding phenomena have been described, can eventually be reconstructed

from a minimalist point of view). We do not aim here to argue for any specific account of

binding phenomena; but rather to indicate that many aspects of binding may arise from

general processing or pragmatic constraints—such apparent relations to processing and

pragmatics are, presumably, viewed as entirely coincidence according to a classical account

in which binding constraints are communicatively arbitrary and expressions of an innate

UG. Note, in particular, that it is quite possible that the complexity of the binding constraints

arises from the interaction of multiple constraints. For example, Culicover and Jackendoff

(2005) have recently argued that many aspects of binding may be semantic in origin. Thus,

John painted a portrait of himself is presumed to be justified due to semantic principles

concerning representation (the portrait is a representation of John), rather than any syntactic

factors. Indeed, note too that, we can say: Looking up, Tiger was delighted to see himself at
the top of the leaderboard where the reflexive refers to the name ‘‘Tiger,’’ not Tiger himself.

And violations appear to go beyond mere representation—for example, After a wild tee-shot,
Ernie found himself in a deep bunker, where the reflexive here refers to his golfball. More

complex cases, involving pronouns and reflexives are also natural in this type of context, for

example, Despite Tigeri’s mis-cued drive, Angelj still found himself(j’s golfball) 10 yards
behind him(i’s golfball). There can, of course, be no purely syntactic rules connecting golfers

and their golfballs; and presumably no general semantic rules either, unless such rules are

presumed to be sensitive to the rules of golf (among other things, that each player has

exactly one ball). Rather, the reference of reflexives appears to be determined by pragmatics

and general knowledge—for example, we know from context that a golfball is being referred

to; that golfballs and players stand in one-to-one correspondence; and hence that picking out

an individual could be used to signal the corresponding golfball.
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The very multiplicity of constraints involved in the shaping of language structure, which

arises naturally from the present account, may be one reason why binding is so difficult to

characterize in traditional linguistic theory. But these constraints do not pose any challenges

for the child—because these constraints are the very constraints with which the child is

equipped. If learning the binding constraints were a problem of N-induction (e.g., if the lin-

guistic patterns were drawn from the language of intelligent aliens; or deliberately created

as a challenging abstract puzzle), then learning would be extraordinarily hard. But it is not:

it is a problem of C-induction. To the extent that binding can be understood as emerging

from a complex of processing, pragmatic, or other constraints operating on past generations

of learners, then binding will be readily learned by the new generations of learners, who will

necessarily embody those very constraints.

It might be argued that if binding constraints arise from the interaction of a multiplicity

of constraints, one might expect that binding principles across historically unrelated lan-

guages would show strong family resemblances (as they would, in essence, be products of

cultural co-evolution), rather than being strictly identical, as is implicit in the claim that

binding principles are universal across human languages. Yet it turns out that the binding

constraints, like other putatively ‘‘strict’’ language universals, may not be universal at all,

when a suitably broad range of languages is considered (e.g., Evans & Levinson, 2008).

Thus, Levinson (2000) notes that, even in Old English, the equivalent of He saw him can

optionally allow coreference (apparently violating Principle A). Putative counterexamples

to binding constraints, including the semantic ⁄ pragmatic cases outlined above, can poten-

tially be fended off, by introducing further theoretical distinctions—but such moves run the

real risk of stripping the claim of universality of real empirical bite (Evans & Levinson,

2008). If we take cross-linguistic data at face value, the pattern of data seems, if anything,

more compatible with the present account, according to which binding phenomena results

from the operation of multiple constraints during the cultural evolution of language, than

the classical assumption that binding constraints are a rigid part of a fixed UG, ultimately

rooted in biology.

To sum up: Binding has been seen as paradigmatically arbitrary and specific to language;

and the learnability of binding constraints has been viewed as requiring a language-specific

UG. If the problem of language learning were a matter of N-induction—that is, if the bind-

ing constraints were merely a human-independent aspect of the natural world—then this

viewpoint would potentially be persuasive. But language learning is a problem of C-induc-

tion—people have to learn the same linguistic system as each other. Hence, the patterns of

linguistic structure will themselves have adapted, through processes of cultural evolution, to

be easy to learn and process—or more broadly, to fit with the multiple perceptual, cognitive,

and communicative constraints governing the adaptation of language. From this perspective,

binding is, in part, determined by innate constraints—but those constraints predate the emer-

gence of language (de Ruiter & Levinson, 2008).

In the domain of binding, as elsewhere in linguistics, this type of cultural evolutionary

story is, of course, incomplete—though to no greater degree, arguably, than is typical

in genetic evolutionary explanations in the biological sciences. We suggest that viewing

language as a cultural adaptation provides, though, a powerful and fruitful framework within
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which to explore the evolution of linguistic structure and its consequences for language

acquisition.

6. Discussion and implications

The theme of this special issue concerns one of the fundamental questions in cognitive

development: the degree to which development is driven by domain-general learning

mechanisms or by innate domain-specific constraints. The papers herein illustrate a variety

of key developments in approaches that stress the importance of domain-general mecha-

nisms, in areas ranging from conceptual development, to spatial cognition, to language

acquisition. Here, our narrow focus has been on language. But our argument involved step-

ping back from questions concerning the acquisition of language, to take an evolutionary

perspective, both concerning the biological evolution of putative innate constraints and the

cultural evolution of human linguistic communication. Based on an evolutionary analysis,

we proposed reconsidering development in terms of two types of inductive problems:

N-induction, where the problem involves learning some aspect of the natural world, and

C-induction, where the key to solving the learning problem is to coordinate with others.

In this light, we then briefly reevaluated a key puzzle for language acquisition—the

emergence of binding constraints—which has traditionally been interpreted as providing

strong support for the existence of an innate UG. In this final discussion, we point to

some of the broader implications of our approach for language acquisition and human

development.

6.1. The logical problem of language acquisition reconsidered

We have argued that viewing the evolution of language as the outcome of cultural,

rather than biological evolution (and hence as a problem of C-induction, rather than

N-induction) leads to a dramatically different perspective on language acquisition.

The ability to develop complex language from what appears to be such poor input has

traditionally led many to speak of the ‘‘logical’’ problem of language acquisition (e.g.,

Baker & McCarthy, 1981; Hornstein & Lightfoot, 1981). One solution to the problem is

to assume that learners have some sort of biological headstart in language acquisi-

tion—that their learning apparatus is precisely meshed with the structure of natural

language. This viewpoint is, of course, consistent with theories according to which there

is a genetically specified language module, language organ, or language instinct (e.g.,

Chomsky, 1986; Crain, 1991; Piattelli-Palmarini, 1989; Pinker, 1994; Pinker & Bloom,

1990). But if we view language acquisition as a problem of C-induction, then the

learner’s objective is merely to follow prior learners—and hence the patterns in language

will inevitably be those that are most readily learnable. It is not that people have evolved

to learn language; rather, language has evolved to fit the multiple constraints of human

learning and processing abilities.
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Whatever learning biases people have, so long as these biases are shared across individu-

als, learning should proceed successfully. Moreover, the viewpoint that children learn lan-

guage using general-purpose cognitive mechanisms, rather than language-specific

mechanisms, has also been advocated on independent grounds (e.g., Bates & MacWhinney,

1979, 1987; Deacon, 1997; Elman et al., 1996; Monaghan & Christiansen, 2008; Seidenberg

& MacDonald, 2001; Tomasello, 2000, 2003).

This alternative characterization of language acquisition additionally offers a different

perspective on linguistic phenomena that have typically been seen as requiring a UG

account for their explanation, such as specific language impairment (SLI) and creolization.

These phenomena are beyond the scope of this paper, so we can only sketch how they may

be approached. For example, the acquisition problems in SLI may, on our account, be lar-

gely due to deficits in underlying sequential learning mechanisms that support language (see

Ullman & Pierpont, 2005; for a similar perspective), rather than impaired language-specific

modules (e.g., Gopnik & Crago, 1991; Pinker, 1994; Van der Lely & Battell, 2003). Consis-

tent with this perspective, recent studies have shown that children and adults with SLI have

impaired sequential learning abilities (e.g., Evans & Saffran, 2005; Hsu, Christiansen,

Tomblin, Zhang, & Gómez, 2006; Tomblin, Mainela-Arnold, & Zhang, 2007). Although

processes of creolization, in which children acquire consistent linguistic structure from

noisy and inconsistent input, have been seen as evidence of UG (e.g., Bickerton, 1984), we

suggest that creolization may be better construed as arising from cognitive constraints on

learning and processing. The rapid emergence of a consistent subject-object-verb word order

in the Al-Sayyid Bedouin Sign Language (Sandler, Meir, Padden, & Aronoff, 2005) is

consistent with this suggestion. Additional research is required to flesh out these accounts in

detail, but a growing bulk of work indicates that such accounts are indeed viable (e.g.,

Chater & Vitányi, 2007; Goldberg, 2006; Hudson Kam & Newport, 2005; O’Grady, 2005;

Reali & Christiansen, 2005; Tomasello, 2003).

6.2. Cultural evolution meets evolutionary psychology

How far do these arguments generalize from language acquisition to the development of

the child’s knowledge of culture more broadly? How far might this lead to a new perspec-

tive in evolutionary psychology, in which the fit between the brain and cultural forms is not

explained in terms of domain-specific modules, but by the shaping of cultural forms to pre-

existing biological machinery?

Human development involves the transmission of an incredibly elaborate culture from

one generation to the next. Children acquire language; lay theories and concepts about the

natural, artificial, and psychological worlds; social and moral norms; a panoply of practical

lore and skills; and modes of expression, including music, art, and dance. The absorption of

this information is all the more remarkable given that so much of it appears to be acquired

incidentally, rather than being a topic of direct instruction.

As with language, it is prima facie unclear how this astonishing feat of learning is

accomplished. One natural line of explanation is to assume that there is a close fit

between the cultural information to be transmitted and the prior assumptions of the child,
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whether implicit or explicit. The strongest form of this position is that some, and perhaps

the most central, elements of this information are actually innately ‘‘built in’’ to each

learner—and hence that cultural transmission is built over a skeleton of genetically fixed

constraints (e.g., Hauser, 2006). Generalizing from the case of UG, some evolutionary

psychologists have likened the mind to a Swiss army knife, consisting of a variety of

special-purpose tools (Barkow, Cosmides, & Tooby, 1992). The design of each of these

special-purpose tools is presumed to have arisen through biological selection. More

broadly, the key suggestion is that there is a close mesh between genes and culture—and

that this mesh helps explain how cultural complexity can successfully be transmitted from

generation to generation.

The processes by which any putative connection between genes and culture might arise

are central to the study of human development; and understanding such processes is part of

the wider project of elucidating the relationship between biological and cultural explanation

in psychology, anthropology, and throughout the neural and social sciences. But here we

wish to take a wider view of these familiar issues, from the point of view of historical

origins: How did the mesh between genes and culture arise?

The origin of a close mutual relationship between any two systems raises the question:

Which came first? A natural line, in considering this type of problem, is to consider the

possibility of co-evolution—and hence that the claim that one, or the other, must come

first is misleading. As we have argued, in the case of genes and language, the conditions

under which such co-evolution can occur are surprisingly limited; but the same issues

arise in relation to the putative co-evolution of genes and any cultural form. Let us now

broaden the argument and consider the two clear-cut options: that culture comes first, and

biological adaptation brings about the fit with cultural structure; or the biological struc-

tures come first, and cultural adaptation brings about the fit with these biological struc-

tures. As a short hand, let us call these the biological evolution and cultural evolution
perspectives.

How might biological evolution work? If cultural conventions have a particular form,

then people within that culture will, we may reasonably assume, have a selective advantage

if they are able to acquire those conventions rapidly and easily. So, for example, suppose

that human cultures typically (or even always) fit some specific moral, social, or communi-

cative pattern. Hence, children who are able rapidly to learn these constraints will presum-

ably have a selective advantage. Thus, it is possible that, after a sufficiently long period of

biological adaptation to an environment containing such constraints, learners who are genet-

ically biased in favor of those constraints might emerge, so that they learn these constraints

from very little cultural input; and, at the extreme, learners might be so strongly biased that

they require no cultural input at all.4

If, though, we assume that genetic (or more generally biological) structure is developmen-
tally prior (i.e., that learners acquire their culture via domain-specific genetic constraints,

adapted to cultural patterns), then it appears that culture must be historically prior. The cul-

tural structure (e.g., the pattern of specific syntactic regularities) provides the key aspect of

the environment to which genes have adapted. Thus, if a genetically specified and domain-

specific system containing specific cultural knowledge has arisen through Darwinian
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processes of selection, then such selection appears to require a preexisting cultural environ-

ment, to which biological adaptation occurs. However, this conclusion is in direct contradic-

tion to the key assumption of the biological approach—because it presupposes that the

cultural forms do not arise from biological constraints, but predate them. If culture could

preexist biological constraints, then the reason to postulate such constraints almost entirely

evaporates.5

But it is clear, in the light of the arguments above, that there is alternative cultural evolu-

tion perspective: that biological structure is prior, and that it is cultural forms that adapt,

through processes of cultural transmission and variation (e.g., Boyd & Richerson, 2005;

Mesoudi, Whiten, & Laland, 2006) to fit biological structure as well as possible. Specifi-

cally, the culture is viewed as shaped by endless variation and winnowing, in which forms

and patterns which are readily learned and processed are adopted and propagated, whereas

forms which are difficult to learn or process are eliminated. Not merely language, but

culture in general, is shaped by the brain, rather than the reverse.

Cultural forms will, of course, also be shaped by functional considerations: Just as lan-

guage has been shaped to support flexible and expressive communication, tool use may have

been shaped by efficacy in hunting, flaying, and food preparation. But according to this

viewpoint, the fit between learners and culture is underpinned by prior biological ‘‘machin-

ery’’ that predates that culture, and hence is not itself shaped to deal with cultural prob-
lems. This biological machinery may very well be the product of Darwinian selection, but in

relation to preexisting goals. Thus, for example, the perceptuo-motor and planning systems

may be highly adapted for the processing of complex hierarchically structured sequences

(e.g., Byrne & Byrne, 1993); and such abilities may then be co-opted as a partial basis for

producing and understanding language (Conway & Christiansen, 2001). Similarly, the abil-

ity to ‘‘read’’ other minds may have developed to deal with elaborate social challenges in

societies with relatively little cultural innovation (as in nonhuman primates); but such mind-

reading might be an essential underpinning for language and the development of social and

moral rules (Tomasello, Carpenter, Call, Behne, & Moll, 2005).

6.3. Conclusion

A key challenge for future research will be to identify the specific biological, cognitive,

and social constraints that have shaped the structure of language through cultural transmis-

sion; to show how the selectional pressures imposed by these constraints lead to specific

patterns in the world’s languages; and to demonstrate how these constraints can explain par-

ticular patterns of language acquisition and processing. If we generalize our evolutionary

approach to other aspects of cultural evolution and human development, then similar chal-

lenges will also lie ahead here in identifying specific constraints and explaining how these

capture cross-cultural patterns in development. Importantly, this perspective on human

evolution and development does not construe the mind as a blank slate; far from it: We need

innate constraints to explain the various patterns observed across phylogenetic and

ontogenetic time. Instead, we have argued that there are many innate constraints that

shape language and other culturally based human skills but that these are unlikely to be
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domain specific. Thus, as Liz Bates put it so elegantly (cited in Goldberg, 2008), ‘‘It’s not a

question of Nature versus Nurture; the question is about the Nature of Nature.’’

Notes

1. It might be objected, in the light of the minimalist program in linguistics, that only a

very modest biological adaptation specific to language—recursion—may be required

(Hauser, Chomsky, & Fitch, 2002). This response appears to fall on the horns of a

dilemma. On the one hand, if UG consists only of the operation of recursion, then tra-

ditional generativist arguments concerning the poverty of the stimulus, and the exis-

tence of language universals, have been greatly exaggerated—and indeed, an

alternative, non-UG-based explanation of the possibility of language acquisition and

the existence of putative language universals is required. This position, if adopted,

seems to amount to a complete retraction of the traditional generativist position

(Pinker & Jackendoff, 2005). On the other hand, if the argument from the poverty of

the stimulus is still presumed to hold good, with its implication that highly specific

regularities such as the binding constraints must be part of an innate UG, then the

probability of such complex, arbitrary systems of constraints arising by chance is

vanishingly small. To be sure, the minimalist explanation of many linguistic regu-

larities is based on the recursive operation Merge—but, in reality, explanations of

specific linguistic data require drawing on extensive and highly abstract linguistic

machinery, which goes far beyond simple recursion (Adger, 2003; Boeckx, 2006).

2. Dediu and Ladd (2007) present statistical analyses of typological and genetic variation

across Old World languages, suggesting that there may be differences in genetic

biases for learning tonal versus sequential phonology. They argue that these biases are

unlikely to be due to biological adaptations for language because the same mutations

would have had to arise independently several times; instead, they propose that these

genetic biases may have arisen for other reasons independent of language but once in

place they would slowly have shaped individual languages over generations toward

either incorporating tonal contrasts or not. This suggestion fits closely with our argu-

ment below that language has been shaped by the brain.

3. It is also possible, of course, that as with pragmatic patterns in general, this pattern

may become increasingly conventionalized through use—a typical pattern in gram-

maticalization (Hopper & Traugott, 1993).

4. This style of explanation, by which traits that are initially acquired during environ-

mental exposure during development may ultimately become innate—that is, indepen-

dent of environmental input—is known as the Baldwin effect (Baldwin, 1896; see

Weber & Depew, 2003, for discussion).

5. Of course, possible co-evolutionary processes between genes and culture complicates

the argument but does not change the conclusion. For a more detailed discussion of

these issues, in the context of language, see Christiansen and Chater (2008).
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Chater, N., & Vitányi, P. (2007). ‘‘Ideal learning’’ of natural language: Positive results about learning from posi-

tive evidence. Journal of Mathematical Psychology, 51, 135–163.

Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.

Chomsky, N. (1980). Rules and representations. Oxford, England: Blackwell.

Chomsky, N. (1981). Lectures on government and binding. Dordrecht, The Netherlands: Foris Publications.

Chomsky, N. (1986). Knowledge of language. New York: Praeger.

Chomsky, N. (1995). The minimalist program. Cambridge, MA: MIT Press.

Chomsky, N. (2005). Three factors in language design. Linguistic Inquiry, 36, 1–22.

Christiansen, M. H. (1994). Infinite languages, finite minds: Connectionism, learning and linguistic structure.

Unpublished doctoral dissertation, Centre for Cognitive Science, University of Edinburgh.

Christiansen, M. H., & Chater, N. (2008). Language as shaped by the brain. Behavioral and Brain Sciences, 31,

489–558.

Christiansen, M. H., Chater, N., & Reali, F. (in press). The biological and cultural foundations of language.

Communicative and Integrative Biology.

Clark, H. H. (1975). Bridging. In R. C. Schank & B. L. Nash-Webber (Eds.), Theoretical issues in natural
language processing (pp. 169–174). New York: Association for Computing Machinery.

Clark, H. H., & Wilkes-Gibbs, D. (1986). Referring as a collaborative process. Cognition, 22, 1–39.

Comrie, B. (1989). Language typology and language change. Oxford, England: Blackwell.

Conway, C. M., & Christiansen, M. H. (2001). Sequential learning in non-human primates. Trends in Cognitive
Sciences, 5, 539–546.

Crain, S. (1991). Language acquisition in the absence of experience. Behavioral and Brain Sciences, 14, 597–

650.

Crain, S., Goro, T., & Thornton, R. (2006). Language acquisition is language change. Journal of Psycholinguis-
tic Research, 35, 31–49.

Crain, S., & Lillo-Martin, D. C. (1999). An introduction to linguistic theory and language acquisition. Oxford,

England: Blackwell.

Crain, S., & Pietroski, P. (2001). Nature, nurture and universal grammar. Linguistics and Philosophy, 24, 139–

186.

Crain, S., & Pietroski, P. (2006). Is generative grammar deceptively simple or simply deceptive? Lingua, 116,

64–68.

Croft, W. (2001). Radical construction grammar: Syntactic theory in typological perspective. New York: Oxford

University Press.

Crowley, J., & Katz, L. (1999). Development of ocular dominance columns in the absence of retinal input.

Nature Neuroscience, 2, 1125–1130.

Culicover, P. W., & Jackendoff, R. (2005). Simpler syntax. New York: Oxford University Press.

Culicover, P. W., & Nowak, A. (2003). Dynamical grammar. Oxford, England: Oxford University Press.

Deacon, T. W. (1997). The symbolic species: The co-evolution of language and the brain. New York:

W. W. Norton.

Dediu, D., & Ladd, D. R. (2007). Linguistic tone is related to the population frequency of the adaptive hap-

logroups of two brain size genes, Microcephalin and ASPM. Proceedings of the National Academy of
Sciences, 104, 10944–10949.

Dienes, Z., & McLeod, P. (1993). How to catch a cricket ball. Perception, 22, 1427–1439.

Dyer, F. C. (2002). The biology of the dance language. Annual Review of Entomology, 47, 917–949.

N. Chater, M. H. Christiansen ⁄ Cognitive Science 34 (2010) 1153



Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking
innateness: A connectionist perspective on development. Cambridge, MA: MIT Press.

Evans, N., & Levinson, S. (2008). The myth of language universals: Language diversity and its importance for

cognitive science. Behavioral and Brain Sciences.

Evans, J., & Saffran, J. R. (2005). Statistical learning in children with specific language impairment. Boston,

MA: Paper presented at the Boston University Conference on Language Development.

Farmer, T. A., Christiansen, M. H., & Monaghan, P. (2006). Phonological typicality influences on-line sentence

comprehension. Proceedings of the National Academy of Sciences, 103, 12203–12208.
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Abstract

The visual world of adults consists of objects at various distances, partly occluding one another,

substantial and stable across space and time. The visual world of young infants, in contrast, is often

fragmented and unstable, consisting not of coherent objects but rather surfaces that move in unpre-

dictable ways. Evidence from computational modeling and from experiments with human infants

highlights three kinds of learning that contribute to infants’ knowledge of the visual world: learning

via association, learning via active assembly, and learning via visual-manual exploration. Infants

acquire knowledge by observing objects move in and out of sight, forming associations of these dif-

ferent views. In addition, the infant’s own self-produced behavior—oculomotor patterns and manual

experience, in particular—is an important means by which infants discover and construct their visual

world.

Keywords: Visual development; Cognitive development; Models of development; Object perception;

Infants; Learning

1. Introduction

When we look around us, we encounter environments characterized by numerous objects

and people at varying distances. The scene depicted in Fig. 1 is typical. It shows a garden in

Southern California occupied by flora, people, and artifacts such as buildings and walkways.

The scene is busy and cluttered. The objects have multiple parts and are located at various

distances from the observer; nearer objects obscure farther objects—the trees hide part of

the building’s roof, and many of the people on the patio cannot be seen. In some instances,

color, texture, size, and shape can serve as information for the unity of objects. The leaves

on the trees, for example, are all roughly similar in appearance, and they are perceived as
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grouping together. In other instances, however, we see objects as unified despite consider-

able discrepancies in these kinds of visual information: The girls on the stairs wear blue

shorts and red shirts, yet we do not see these distinctions in color as denoting four ‘‘parts’’

of girls, but instead we see them as belonging to objects in common. In real-world scenes,

motion of observers and of objects provides additional information to determine the contents

of our surroundings. We can move through the environment, obtain new perspectives, and

see parts of objects invisible from previous vantage points. And as objects move, we can

track them across periods of temporary invisibility, often predicting their reappearance.

These facts about the visual world are at once ordinary and remarkable. They are ordinary

because virtually every sighted observer experiences the environment as composed of sepa-

rate, distinct objects of varying complexity and appearance. Yet they are nonetheless

remarkable because of the intricate cortical machinery needed to produce them (Zeki,

1993): Several dozen areas of the brain, each responsible for processing a distinct aspect of

the visual scene or coordinating the outputs of other areas, working in concert to yield a

more-or-less seamless and coherent experience. Action systems are likewise elaborate

(Gibson, 1950): eyes, head, and body, each with distinct control systems, working in concert

to explore the visual environment.

In this article, I consider theory and research on the development of infants’ perception

of the visual environment, in particular object perception. The garden example illustrates

some of the issues faced by researchers who wish to better understand these processes.

Visual perception has a ‘‘bottom-up’’ foundation built upon coding and integrating distinc-

tive kinds of visual information (variations in color, luminance, distance, texture, orienta-

tion, motion, and so forth). Visual perception also relies on ‘‘top-down’’ knowledge that

observers bring to the scene, knowledge that aids in interpreting potentially ambiguous jux-

tapositions of visual attributes (such as the blue and red clothing on the girls). Both operate

continuously in mature, sighted individuals who have had sufficient time and experience

with which to learn about specific kinds of objects.

Fig. 1. A visual scene.
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Young infants have not had as much time and experience with which to learn about

objects, yet they inhabit the same world as adults and they encounter the same kinds of

visual information. How do infants interpret visual scenes? Are they restricted to bottom-up

processing, lacking the cognitive capacity to interpret visual information in a meaningful

fashion, however that might be defined? Or might there be some capacity to perceive objects

that is independent of visual experience? These questions have long been dominated by a

tension between arguments for a learned or constructed versus an unlearned or innate sys-

tem of object knowledge in humans. This article will examine the question of infants’ object

perception by considering these theoretical perspectives, and it attempts to answer the ques-

tion with evidence from modeling of developmental processes and from empirical studies. I

will restrict discussion to the developmental origins, in humans, of the ability to represent

objects as coherent and complete across space and time—that is, despite partial or full

occlusion—a definition of object perception akin to the object concept that was originally

described by the eminent developmental psychologist Jean Piaget (more on this subse-

quently). The limited scope necessarily omits many interesting literatures on other topics

related to object knowledge, such as object identity, numerosity, animacy, object-based

attention, and so forth. Nevertheless, there has been a great deal of research effort directed

at object concept development, and these investigations continue to bear on the question of

infants’ object perception by providing an increasingly rich base of evidence.

2. Theoretical considerations: Constructivism versus nativism

A perennial question of infant epistemology is the extent to which knowledge necessarily

develops over time through learning and experience or whether some kinds of knowledge

are available—‘‘built in’’—without any experience. This question has motivated innumer-

able experiments investigating infant knowledge of the physical and social environment (for

recent reviews, see Carey, 2009; Johnson, 2010), and it has not yet been fully satisfied,

although there have been suggestions to abandon it in light of mounting evidence from

systems theory for multiple levels of developmental process (Spencer et al., 2009). I will

illustrate these opposing views by outlining two theories of infant object perception:

constructivist theory and nativist theory.

2.1. Constructivist theory

Piaget was the first to provide a detailed theory of development of object knowledge in

humans, and he amassed a great deal of evidence to support it (Piaget, 1954). The evidence

was derived from observations of infants and young children as he engaged them in child-

friendly games, such as hiding a desired toy under a cover and then observing the child’s

attempts to retrieve it. Piaget suggested that knowledge of objects and knowledge of space

were inseparable—without knowledge of spatial relations, there could be no knowledge of

objects qua distinct entities. Instead, objects, early in life, were disconnected forms that

moved capriciously and randomly.
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Objectification was Piaget’s term for knowledge of the self and external objects as dis-

tinct entities, spatially segregated, persisting across time and space, and obeying causal con-

straints. Piaget suggested that objectification is rooted in the child’s recognition of her own

body as an independent object and her own movements as movements of objects through

space, corresponding to movements of other objects she sees. This recognition, in turn, was

thought to stem exclusively from exploration of objects via manual activity—that is, object

knowledge is constructed by the child.

Because skilled reaching and grasping of objects is not available until some time after

4–6 months, Piaget proposed that object knowledge likewise is beyond the ken of young

infants. Until this time, objects consist of little more than fleeting images, as noted previ-

ously. Active, intentional search behavior marks the inception of objectification, beginning

with infants’ visual accommodation to dropped objects (by looking at the floor), and culmi-

nating with infants’ systematic, organized search for hidden objects in multiple possible

locations (in one of Piaget’s more complicated games) some time during the second year.

As the action systems develop, therefore, so develops the capacity to interact with objects

and discover their properties, most importantly the maintenance of object properties across

disruptions in perceptual contact, as when objects go out of sight.

Piaget’s theory enjoys strong support for many of the details of behavior that he so assid-

uously captured, and for raising awareness of the problems faced by infants as they navigate

the visual world. The reasoning behind the developmental changes in behavior, however,

has not seen the same level of enthusiasm. Numerous experiments have revealed that by

2–4 months, infants appear to maintain representations of partly and fully hidden objects

across short delays, somewhat younger than allowed for on Piaget’s account, and inconsis-

tent with the emphasis on manual activity as the principal agent of developmental change.

These experiments have led to views of infant object knowledge as relying on unlearned, or

innate, foundations, and some of these views are described in the following section.

2.2. Nativist theory

A central tenet of nativist theory is that some kinds of initial, unlearned knowledge form

a central core around which more diverse, mature cognitive capacities are elaborated

(Spelke, 1990; Spelke, Breinlinger, Macomber, & Jacobson, 1992). That is, some kinds of

knowledge, including concepts of objects as coherent and continuous across occlusion, are

innate. Philosophical discussions of innateness are ancient. Plato and Descartes, for exam-

ple, proposed that some ideas, such as concepts of geometry or God or justice, were univer-

sal and available innately because they were unobservable or arose in the absence of any

direct tutoring or instruction. With respect to infant knowledge, the focus of modern nativist

theory is on learnability: According to this line of reasoning, in the absence of any viable

theory of how humans come to understand object concepts so quickly after birth, in some

cases well in advance of the manual search skills emphasized by Piaget, the assumption is

that these concepts necessarily arise independent of experience.

Researchers of a nativist persuasion have offered three arguments for hypothesized innate

object concepts. First, veridical object knowledge can be elicited in very young infants—as
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young as 2 months of age, or perhaps even at birth—under a variety of circumstances,

suggesting that early concepts emerge too quickly to have derived from postnatal learning.

Second, infants’ acquisition of object knowledge has been proposed to arise from

contrastive evidence: opportunities to observe conditions under which an object behaves in

a manner consistent or inconsistent with a particular concept (Baillargeon, 1994). On this

view, a concept of persistence across occlusion, for example, must be innate, because there

are no opportunities in the real world to observe objects going out of existence! Third, there

is evidence from one nonhuman species—domestic chickens—for an unlearned capacity for

unity perception, recognition of partly occluded shapes as similar to an unoccluded version

of the same form (Regolin & Vallortigara, 1995). (In this experiment, newly hatched chicks

were imprinted on a partly occluded cardboard triangle, and they subsequently chose to

associate with a fully visible version of the triangle, rather than a version consisting of the

previously seen triangle fragments. An experiment in which the imprinting ⁄ association

objects were reversed showed the same result.)

As noted, there is compelling evidence from a variety of laboratories and experimental

settings for representations of objects as solid entities that are spatiotemporally coherent and

persistent by 2–4 months after birth. (Some of these experiments will be discussed in detail

in subsequent sections of this article.) Nevertheless, the developmental origins of object

concepts in human infants as a topic of investigation cannot be dismissed merely by noting

competence in these experiments at a young age. Moreover, suggesting that infants learn

about objects through only a single means, such as contrastive evidence, does not seem

realistic. Unequivocal support for innate object concepts in humans would come from

evidence for their emergence in the absence of visual experience—say, functionality at

birth, or veridical object perception in blind individuals who have their sight restored. As

we will see, experiments on infants’ perception of partly occluded objects cast doubt on

the viability of any of these varieties of innateness as the best descriptor of the development

of object concepts. (Parenthetically, it is worth noting as well that the finding of unity

perception in chicks remains an isolated phenomenon in the literature, inconsistent with

experiments with another avian species—pigeons—which, as adults, apparently see partly

occluded objects only in terms of their visible surfaces, not as having hidden parts; Sekuler,

Lee, & Shettleworth, 1996.)

2.3. Summary

Piaget set the stage for decades of fruitful research that has established the availability of

functional object concepts in the first year after birth, and Piaget’s own theory of how

knowledge may be constructed by the child’s own behavior has been tremendously influen-

tial. Numerous experiments in the past few decades, however, have suggested that Piaget

underestimated young infants’ capacity to perceive object unity and boundaries under occlu-

sion, so much so that alternate theories stressing innate contributions to object knowledge

have appeared.

In the next section of this article, I describe evidence for developmental change early in

postnatal life in how infants respond to partly and fully hidden objects. Evidence comes
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from experiments that assess three kinds of perceptual completion in infancy: spatial
completion (perception of partly hidden surfaces as continuous), spatiotemporal completion
(perception of objects as continuing to exist upon becoming occluded), and 3D object
completion (perception of objects as solid in 3D space, with a back and sides that cannot be

viewed from any one vantage point). Because evidence for developmental change requires

an explanation, in the sections after that I describe models of development and empirical

investigations of developmental mechanisms in infants. These models and investigations

posit a central role for learning, and they suggest specific means by which learning—in

models and in human infants—can lead to the kinds of object knowledge I have discussed.

3. Developmental change in infants’ object perception

Piaget’s observations led him to conclude that newborn infants have no true concepts of

objects or space (Piaget, 1952). Neonates can discriminate among visible objects and track

their motions, but when objects move out of sight or the baby’s gaze falls elsewhere, previ-

ously encountered objects cease to exist for the infant. The first inklings of object concepts

come from recognition memory, say when infants smile upon mother’s return, beginning a

few months after birth. Knowledge of objects as complete and coherent across gaps in per-

ceptual contact imposed by occlusion did not come until later, after infants can grasp and

reach objects and thereby come to more fully appreciate properties such as solidity, volume,

and existence independent of the infant. These concepts did not come all at once. Piaget

described one important concept as ‘‘reconstruction of an invisible whole from a visible

fraction,’’ and it was evinced by retrieval of an object from under a cover when only a part

of the object was visible. An appreciation of continued existence despite complete occlusion

was evinced by removal of a obstacle hiding a desired toy, or pulling away a cover from a

parent’s face during peekaboo. These behaviors were not seen consistently until 6–8 months

or so, marking for Piaget the advent of a wholly new set of object and spatial concepts.

As noted previously, research over the past several decades has yielded a wealth of

evidence from multiple measures (e.g., looking, reaching, and cortical activity) making it

clear that infants represent object properties even when the objects are partly or fully

hidden, and these findings have led, in turn, to nativist theoretical views that have sought to

overturn Piagetian ideas about how these representations arise in infants. Yet two important

facts remain, facts suggesting that Piagetian theory may not be so far off the mark as

concerns developmental changes in infants’ object knowledge. First, newborn infants do not

seem to perceive partly occluded objects as having hidden parts. Instead, neonates construe

such stimuli solely in terms of their visible parts, failing to achieve spatial completion

(Slater, Johnson, Brown, & Badenoch, 1996; Slater et al., 1990; but see Valenza, Leo, Gava,

& Simion, 2006). There is a clear developmental progression in perceptual completion

(Johnson, 2004), and this calls for an explanation of underlying mechanisms of change. And

second, the majority of research on infants’ perceptual completion in reality is broadly con-

sistent with Piaget’s observations: Infants provide evidence of representing partly occluded

objects a few months after birth, and fully occluded objects by about the middle of the first
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year. Some have claimed object permanence in infants on the basis of evidence from look-

ing time studies (e.g., Baillargeon, 2008), but the short-term representations of hidden

objects demonstrated in such experiments fall short of Piaget’s criteria for full object perma-

nence: accurate search in multiple locations for a hidden object, demonstrating knowledge

of object persistence and the spatial relations between the object, the hiding locations, and

the infant (Haith, 1998; Kagan, 2008).

In the remainder of this section, I will describe investigations of perceptual completion in

infants. These investigations provide clear evidence for developmental change in how

infants perceive occlusion events.

3.1. Spatial completion

Adults and 4-month-old infants construe the ‘‘rod-and-box’’ display depicted in Fig. 2,

left, as consisting of two parts, a single elongated object moving back and forth behind an

occluding box (Kellman & Spelke, 1983). Neonates, in contrast, construe this display as

consisting of three parts: two distinct object parts and occluder (Slater et al., 1990, 1996).

These conclusions stem from looking time experiments in which infants first view the rod-

and-box display repeatedly until habituation of looking occurs, defined as a decline in look-

ing times toward the display (judged by an observer) according to a predetermined criterion.

Following habituation, infants see two new displays, and their posthabituation looking pat-

terns are thought to reflect a novelty preference. The 4-month-olds and neonates showed

opposite patterns of preference. Looking longer at the ‘‘broken’’ rod parts indicates that

they were relatively novel compared to the rod-and-box display—the 4-month-olds’

response, suggestive of unity perception. Looking longer at the ‘‘complete’’ rod indicates

that infants likely construed the rod-and-box display as composed of disjoint objects—the

newborns’ response. These results led to the more general conclusion that neonates are

unable to perceive occlusion, and that occlusion perception emerges over the first several

postnatal months (Johnson, 2004). That is, ‘‘piecemeal’’ or fragmented perception of the

visual environment extends from birth through the first several months afterwards.

Two-month-olds were found to show an ‘‘intermediate’’ pattern of performance—no

reliable posthabituation preference—implying that spatial completion is developing at this

Fig. 2. Displays used in experiments that investigate spatial completion in young infants. Adapted from Johnson

and Náñez (1995).
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point but not yet complete (Johnson & Náñez, 1995). Additional studies examined the possi-

bility that 2-month-olds will perceive unity if given additional perceptual support. The

amount of visible rod surface revealed behind the occluder was enhanced by reducing box

height and by adding gaps in it, and under these conditions 2-month-olds provided evidence

of unity perception (Johnson & Aslin, 1995). (With newborns, however, this manipulation

failed to reveal similar evidence—even with enhanced displays, newborns perceived the

moving rod parts as disjoint objects; Slater et al., 1996; Slater, Johnson, Kellman, & Spelke,

1994.) These experiments served to pinpoint more precisely the time of emergence of

spatial completion in infancy: the first several weeks or months after birth under typical

circumstances.

Additional experiments explored the kinds of visual information infants use to perceive

spatial completion. Kellman and Spelke (1983) reported that 4-month-olds perceived spatial

completion only when the rod parts, with aligned outer edges, moved in tandem behind a

stationary occluder. We replicated and extended this finding, showing in addition that

4-month-olds provided evidence of completion only when the rod parts were aligned

(Johnson & Aslin, 1996). Later experiments revealed similar patterns of performance in

2-month-olds when tested using displays with different occluder sizes and edge arrange-

ments, as seen in Fig. 3 (Johnson, 2004). Infants provided evidence of spatial completion

obtained only when rod parts were aligned across a narrow occluder; in the other displays,

infants provided evidence of disjoint surface perception.

One possible interpretation of these findings is that alignment, motion, and occluder

width (i.e., the spatial gap) are interdependent contributions to spatial completion, such

that common motion is detected most effectively when rod parts are aligned (Kellman &

Arterberry, 1998). I examined this possibility by testing 2-month-olds’ discrimination of

different patterns of rod motion with varying orientations of rod parts and occluder widths.

Under all tested conditions, infants discriminated the motion patterns, implying that motion

discrimination was neither impaired nor facilitated by misalignment or occluder width

(Johnson, 2004). It might be that motion contributes to infants’ spatial completion in

multiple ways, first serving to segment the scene into its constituent surfaces, and then

serving to bind moving surfaces into a single object (Johnson, Davidow, Hall-Haro, &

Frank, 2008).

Fig. 3. Displays used to test the roles of occluder size and edge alignment in 2-month-olds’ perception of spatial

completion. Adapted from Johnson (2004).
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In summary, experiments that explored development of spatial completion suggest that

young infants analyze the motions and arrangements of visible surfaces. At birth, newborns

perceive partly occluded surfaces as separate from one another and the background. Only

later do infants integrate these surfaces into percepts of coherent, partly occluded objects.

On this view, therefore, development of object knowledge begins with perception of visible

object components, and it proceeds with increasing proficiency at representation of those

object parts that cannot be discerned directly.

3.2. Spatiotemporal completion

A number of studies using different methods have shown that young infants can maintain

representations for hidden objects across brief delays (e.g., Aguiar & Baillargeon, 1999;

Berger, Tzur, & Posner, 2006; Clifton, Rochat, Litovsky, & Perris, 1991). Yet newborn

infants provide little evidence of spatial completion, raising the question of how perception

of complete occlusion emerges during the first few months after birth. Apart from Piaget’s

observations, this question has received little serious attention until recently, in favor of

accounts that stress innate object concepts (e.g., Baillargeon, 2008; Spelke, 1990).

To address this gap in our knowledge, my colleagues and I conducted experiments with

object trajectory displays, asking whether infants perceive the trajectory as continuous

across occlusion—spatiotemporal completion. We reasoned that manipulation of spatial and

temporal characteristics of the stimuli, and observation of different age groups, might pro-

vide insights into development of spatiotemporal completion, as they did in the case of spa-

tial completion.

These investigations revealed a fragmented-to-holistic developmental pattern and

revealed spatial and temporal processing constraints as well, both sets of results in parallel

with the investigations of spatial completion described in the previous section. Spatiotempo-

ral completion was tested using similar methods: habituation to an occlusion display

(Fig. 4), followed by broken and complete test displays, different versions of the partly hid-

den trajectory seen during habituation. At 4 months, infants treat the ball-and-box display

depicted in Fig. 4 as consisting of two disconnected trajectories, rather than a single, partly

hidden path (Johnson, Bremner, et al. 2003); evidence comes from a reliable preference for

the continuous version of the test trajectory. By 6 months, infants perceived this trajectory

as unitary, as revealed by a reliable preference for the discontinuous trajectory test stimulus.

When occluder size was narrowed, however, reducing the spatiotemporal gap across which

the trajectory had to be interpolated, 4-month-olds’ posthabituation preferences (and thus,

by inference, their percepts of spatiotemporal completion) were shifted toward the discon-

tinuous, partway by an intermediate width, and fully by a narrow width, so narrow as to be

only slightly larger than the ball itself. In 2-month-olds, this manipulation appeared to have

no effect.

Reducing the spatiotemporal gap, therefore, facilitates spatiotemporal completion.

Reducing the temporal gap during which an object is hidden, independently from the spatial
gap, also supports spatiotemporal completion. Increasing the ball size (Fig. 5) can minimize

the time out of sight as it passes behind the occluder, and this led 4-month-olds to perceive
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its trajectory as complete. Accelerating the speed of a smaller ball as it passed behind the

occluder (and appeared more quickly) had a similar effect (Bremner et al., 2005). On the

other hand, altering the orientation of the trajectory impaired path completion (Fig. 5),

unless the edges of the occluder were orthogonal to the path; these findings are similar to

outcomes of experiments on edge misalignment described in the previous section (Bremner

et al., 2007).

This work leads to three conclusions. First, spatiotemporal completion proceeds from

processing parts of paths to complete trajectories. Second, there may a lower age limit for

trajectory completion (between 2 months and 4 months), just as there appears to be for

spatial completion (between birth and 2 months). Third, young infants’ spatiotemporal com-

pletion is based on relatively simple parameters. Either a short time or short distance out of

sight leads to perception of continuity, and this may occur because the processing load is

reduced by these manipulations. The fragile nature of emerging spatiotemporal completion

is underscored as well by results showing its breakdown when either occluder or path orien-

tation is nonorthogonal.

Fig. 5. Displays used to test the roles of occlusion duration and path orientation in 4-month-olds’ perception of

spatiotemporal completion. Adapted from Bremner et al. (2005, 2007).

Fig. 4. Displays used in experiments that investigate spatiotemporal completion in young infants. Adapted from

Johnson, Bremner, et al. (2003).
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3.3. 3D object completion

Spatial and spatiotemporal completion consist of filling in the gaps in object surfaces that

have been occluded by nearer ones. Solid objects also occlude parts of themselves such that

we cannot see their hidden surfaces from our present vantage point, yet our experience of

most objects is that of filled volumes rather than hollow shells. Perceiving objects as solid in

three-dimensional space despite limited views constitutes 3D object completion. In contrast

to spatial and spatiotemporal completion, little is known about development of 3D object

completion. We recently addressed this question with a looking time paradigm similar

to those described previously (Soska & Johnson, 2008). Four- and six-month-olds were

habituated to a wedge rotating through 15 degrees around the vertical axis such that the far

sides were never revealed (Fig. 6). Following habituation infants viewed two test displays

in alternation, one an incomplete, hollow version of the wedge, and the other a complete,

whole version, both undergoing a full 360 degree rotation revealing the entirety of the object

shape. Four-month-olds showed no consistent posthabituation preference, but 6-month-olds

looked longer at the hollow stimulus, indicating perception of the wedge during habituation

as a solid, volumetric object in 3D space.

In a follow-up study (Soska, Adolph, & Johnson, 2010), we used these same methods with

a more complex stimulus: a solid ‘‘L’’-shaped object with eight faces and vertices, as opposed

to the five faces and six vertices in the wedge-shaped object described previously (Fig. 7). We

tested 4-, 6-, and 9.5-month-olds. As in the Soska and Johnson (2008) study with the wedge

stimulus, we found a developmental progression in 3D object completion: 4-month-olds’

posthabituation looking times revealed no evidence for completion, whereas 9.5-month-olds

consistently looked longer at the hollow test display, implying perception of the habituation

object as volumetric in 3D space. At 6 months, interestingly, only the male infants showed

this preference; females looked about equally at the two test displays. At 9.5 months, the male

advantage had disappeared: Both males and females looked longer at the hollow shape.

One interpretation of the sex difference at 6 months is that infants who were successful at

3D object completion engaged in mental rotation in this task: manipulation of a mental

image of the object and imagining it from a different perspective. Mental rotation is a cogni-

tive skill for which men have an advantage relative to women (Shepard & Metzler, 1971),

Fig. 6. Displays used in experiments that investigate 3D object completion in infants. Adapted from Soska and

Johnson (2008).
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and two recent reports have provided evidence of a male advantage in young infants as well

(Moore & Johnson, 2008; Quinn & Liben, 2008). It remains to be determined definitely

whether mental rotation is involved in 3D object completion.

In summary, these data provide evidence for a developmental progression in infants’ 3D

object completion abilities, and for a role for stimulus complexity in infant performance.

Both effects are consistent with the work on spatial and spatiotemporal completion

described previously.

3.4. To be explained

The research described in this section can be summarized as follows. Infants are born

with a functional visual system sufficient to identify distinct regions of the visual scene and

discriminate different regions from one another. Newborns can detect edges and motion,

and there is even a rudimentary capacity for depth perception (e.g., size and shape con-

stancy; Slater, 1995). Yet newborns do not perceive objects as do adults, and therefore they

do not ‘‘know’’ the world to consist of overlapping objects at different distances that have

hidden parts. These kinds of knowledge arise over the first several postnatal months. I

described three kinds of perceptual completion—spatial, spatiotemporal, and 3D object

completion— and described evidence for a developmental progression in each.

How does this happen? One way to deal with this question is to ignore or deny it, which in

essence is the nativist position as it is commonly presented in the infant cognition literature

(e.g., Spelke, 1990; Spelke & Kinzler, 2007; Spelke et al., 1992). Considering cognition

more broadly, this is not necessarily an illegitimate approach. There are phenomena in the

literature that would appear to be impossible to explain otherwise, such as the emergence of

linguistic structures in the absence of any input (Goldin-Meadow & Mylander, 1998;

Senghas, Kita, & Özyürek, 2004). Such instances are rare, however, and this fact leads many

of us to a second way to deal with the question of origins of object knowledge: Confront it

and determine what is needed to account for the developmental progression I have presented.

In the remainder of the article, I consider arguments and evidence in favor of a learning

account of how infants come to perceive object occlusion. The hypothesis is that

infants learn certain features of the world such as edges (and perhaps faces) from prenatal

Fig. 7. Displays used in experiments that investigate 3D object completion in infants, with a more complex

object relative to the Soska and Johnson (2008) study. Adapted from Soska and Johnson (unpublished data).
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developmental mechanisms tantamount to a kind of ‘‘visual experience.’’ Occlusion, in

contrast, must be learned postnatally.

4. Evidence for prenatal ‘‘visual experience’’ and memory

Newborn infants have two prerequisite skills for the ability to learn occlusion: They are

born seeing and they are born with the capacity for short-term recall. The oculomotor sys-

tem is sufficiently functional to guide the point of gaze to desired targets in the environment.

Three kinds of stimulus are particularly salient: high-contrast edges, motion, and faces

(Kessen, Salapatek, & Haith, 1972; Slater, Morison, Town, & Rose, 1985; Valenza, Simion,

Macchi Cassia, & Umiltà, 1996). Newborn infants look at such stimuli preferentially—that

is, they tend to look longer at high-contrast contours and patterns of motion relative to

homogenous regions, for example, and at face-like patterns relative to arrangements of simi-

lar features that do not match human faces (Slater, 1995; Slater et al., in press). The devel-

opmental mechanisms that yield these behaviors, consequently, must be in effect prior to

birth.

An interesting fact about prenatal visual development prior to the onset of patterned

visual input is that there is spontaneous yet organized activity in visual pathways from early

on, activity that contributes to retinotopic ‘‘mapping’’ (Sperry, 1963). Mapping refers to the

preservation of sensory structure, for example, the relative positions of neighboring points

of visual space, from retina through the thalamus, primary visual cortex, and higher visual

areas. One way in which mapping occurs is by ‘‘waves’’ of coordinated, spontaneous firing

of receptors in the retina, prior to eye opening, observed in some nonhuman species such as

chicks and ferrets (Wong, 1999). Waves of activity are propagated across the retinal surface

at a point in development after connections to higher visual areas have formed; the wave

patterns are then systematically propagated through to the higher areas. This might be one

way by which correlated inputs remain coupled and dissimilar inputs become dissociated,

and a likely means by which edges (which can be defined as simple, local interactions in the

input) can be detected upon exposure to patterned visual scenes (Albert, Schnabel, & Field,

2008). Retinal waves also can serve as a foundation for development of representations

of more complex visual patterns as infants gain exposure to the environment (Bednar &

Miikkulainen, 2007).

Evidence for short-term memory at birth was presented previously: Neonates habituate to

repeated presentation of stimuli, implying recognition of familiar patterns, and they recover

interest to new stimuli, implying recognition of novel patterns. The rudiments of memory,

therefore, undergo developments prenatally sufficient to support recognition across brief

delays. These developments include the emergence and strengthening of neural connections

within and between regions of cortical and subcortical regions known in adult primates to

maintain activity to visual and spatial input across temporary delays in presentation. These

regions include areas of prefrontal cortex (e.g., the principal sulcus, anterior arcuate,

and inferior convexity) and their connections to areas that are involved in object and face

processing, such as the temporal lobe (Goldman-Rakic, 1987, 1996).
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The newborn baby, therefore, is equipped with perceptual and cognitive mechanisms suf-

ficient to begin the process of learning about objects—to detect edges in the visual scene, to

track motion, to recognize familiar items, and to discriminate different items presented

simultaneously or in sequence. These facts have motivated a number of attempts to explore

the developmental process of coming to perceive and act on objects using connectionist or

other kinds of computational models. Some of these models are described next.

5. Modeling developmental processes

How can computational models help us understand the developmental process of occlu-

sion perception? Models can address questions of object perception development and other

developmental phenomena by constraining hypotheses about preexisting skill sets, the nec-

essary inputs from the environment, and specific learning regimens, and how these consider-

ations influence learning outcomes. Models have five features in common: (a) specification

of a starting point, (b) a particular kind of training environment, (c) a particular means of

gathering and retaining information, (d) a particular means of expressing acquired knowl-

edge, and (e) learning from experience—that is, modification of responses based on some

change in internal representations of the external environment that stem from feedback.

These features can be manipulated by the modeler to shed light on the developmental pro-

cess, analogous to variations in experimental designs in the laboratory. (For a recent review

of models of infant object perception, see Mareschal & Bremner, 2009.)

Models of object perception development that have been presented in the literature

learn by association in a simple two- or three-dimensional environment. They are trained

with particular inputs and are ‘‘queried’’ periodically for the state of their learning about

hidden regions or continued existence, when occluded, of the objects they ‘‘see,’’ and per-

formance interpreted in light of the starting points, environment, and so forth, as mentioned

previously.

5.1. Modeling association learning

Mareschal and Johnson (2002) devised a connectionist model of unity perception based

on three assumptions. First, infants can detect visual information relevant to object percep-

tion tasks prior to the effective utilization of this information. Second, experience viewing

objects in motion is vital to perception of unity, because far objects move behind

and emerge from near objects, providing support for the formation of associations between

fully visible and partly occluded views. (In addition, young infants provide evidence of

unity perception only when the visible parts undergo common motion; Kellman & Spelke,

1983.) Third, infants are equipped with short-term memory. None of these assumptions

should reasonably be considered controversial or objectionable.

Given these assumptions, Mareschal and Johnson (2002) built a model using connection-

ist architecture: an input layer of inputs corresponding to a retina, hidden units whose

computations formed representations of spatial completion, and an output layer that
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provided a response in the form of a representation of a complete object, object parts, or an

indeterminate response, after particular amounts of training in a specified environment. The

architecture can be seen in Fig. 8, and an example of the training regimen can be seen in

Fig. 9. Between the input and hidden units was a series of modules that processed the visual

information in the training environment: the occluder, the motion patterns and orientation of

rod parts, background texture, and points of intersection of the rod parts and occluder. The

occluder remained stationary throughout each event, and the rod parts moved independently

or in tandem. The model’s task was to determine whether one or two objects (not including

the occluder) were presented in the display. When the rod or rod parts were fully visible, the

decision was accomplished directly, but it had to be inferred when there was an intersection

of the rod and occluder. A memory trace of the previous portion of each event was stored

and accumulated with increasing experience.

The model was set up to minimize the error between direct perception and the inference

demanded by occlusion in response to training, and learned primarily by association: associ-

ations between views of partly hidden and fully visible ‘‘objects,’’ and how unity perception

was best predicted by the visual cues present in each display. Because human infants are

especially sensitive to motion patterns and orientation of the rod parts and rely on these cues

to perceive unity (Johnson, 1997), we trained the models with events in which these cues

were available or absent, in different combinations, to examine their contributions to unity

perception alone or in tandem with other cues.

The models were able to learn unity readily, and their performance was strongly affected

by the cues available, in particular a combination of cues to which infants, likewise, are sen-

sitive and use to perceive unity in the lab setting: common motion, orientation, and relatabil-

ity of the rod parts, and T-junctions (cues that specify the intersection of the rod parts and

occluder). These models, therefore, demonstrate that object knowledge, at some level, can

Fig. 8. Architecture of the Mareschal and Johnson (2002) model of perception of spatial completion. Adapted

from Mareschal and Johnson (2002).
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be learned from proper experience in a structured environment, given appropriate lower-

level perceptual skills—in this case, sensitivity to relevant visual information.

Models of fully hidden objects likewise have shown an important role for learning by

association. Models described by Mareschal, Plunkett, and Harris (1999) were trained in a

simple environment consisting of an occluder and a moving object that was small enough to

be invisible for a number of time steps during an event in which it passed repeatedly back

and forth along a horizontal trajectory. The models’ task was to predict the location of this

moving object in a future time step, and they learned to do this very quickly when it was

fully visible. They were able to do so as well given repeated experience with a partly hidden

trajectory—that is, a trajectory in which the object was briefly hidden. In other words, the

models developed a representation of the moving object even in the absence of direct

evidence for its existence—by virtue of a memory trace built from experience.

As noted previously, models are like experiments: A single modeling effort should not be

taken to suggest that the specifics of the model’s architecture or training provide any greater

(or lesser) insights into human developmental processes than would a single set of experi-

mental conditions tested in the lab. No doubt infants learn via association, but this is not

all there is to how infants learn about the world at large. Other developmental phenomena

are at work, and some of these phenomena have attracted the attention of modelers inter-

ested in exploring the origins of object knowledge. In the following section I will describe

two recent models of visual development, each of which bears implications for infant object

perception.

5.2. Modeling visual development

The scope and contributions of the models I have described are limited, in part because

the human visual system does not work or develop in the same way: Our retinas have a

fovea and we move our eyes to points of interest in the scene, and visual development in

human infants consists of formation and strengthening of neural circuits within, to, and from

visual areas of the brain (Atkinson, 2000), as opposed to updating of weights within fixed

connections between hard-wired, fully operational modules characteristic of many models

(Rumelhart, McClelland, and the PDP Research Group, 1986), including ours. With these

caveats in mind, Schlesinger, Amso, and Johnson (2007) created a computational model of

infants’ gaze patterns based on the idea of ‘‘salience maps’’ produced by visual modules

Fig. 9. Sample time steps illustrating the training regimen of the Mareschal and Johnson (2002) model.
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tuned to luminance, motion, color, and orientation in an input image (Itti & Koch, 2000).

Salience was computed in part via a process of competition between visual features as the

model received repeated exposures (or iterations) to the images, a strategy motivated by

patterns of activity in the posterior parietal cortex that are suppressed in response to visual

features that remain constant across exposure while increasing responses to features that

change—thus highlighting their salience (Gottlieb, Kusunoki, & Goldberg, 1998). The

model had a simulated fovea and the ability to direct ‘‘gaze’’ toward the most salient region

in the image. We input an image of a moving rod-and-box stimulus to the model. After

several iterations, the model quickly developed a salience map in which the rod segments

were strongly activated, as activity for the edges of the occluder receded (Fig. 10). The

model was intended to examine development of visual attention, not spatial completion per

se, but given the success of this model and that of Mareschal and Johnson (2002), a model

of ‘‘learning from scanning’’ seems feasible and likely to achieve important insights into

human development.

The Schlesinger et al. (2007) model was designed to examine three kinds of cortical

visual development in human infants, and their effects of these developments on scanning

behavior and unity perception. The first was neural ‘‘noise,’’ uncorrelated activity among

neurons within and across networks of cortical cells, which is characteristic of young

infants’ cortical function (Skoczenski & Norcia, 1998), and might make pattern detection

initially difficult across disparate regions of the visual scene. The second was horizontal
connections in visual area V1, which serve to strengthen responses of neighboring cells that

code for a common edge in the visual scene (Burkhalter, Bernardo, & Charles, 1993), and

whose development is likely to facilitate perception of edge connectedness across a gap.

The third was recurrent processing of visual information, akin to repetition of the input

within working memory and accomplished in primate parietal cortex (Gottlieb et al., 1998),

which is analogous to modulating the time spent covertly ‘‘comparing’’ two or more targets.

Fig. 10. Salience map yielded by the model of visual development produced by Schlesinger et al. (2007).

Adapted from Schlesinger et al. (2007).
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The parameters representing neural noise had little effect on performance, but the interac-

tion of developments in horizontal connections and recurrent processing had a substantial

effect on unity perception, with an ‘‘ideal’’ value for the horizontal connections set to a

fairly low number, and the addition of recurrent loops beneficial to the model’s ability to

detect the unity of rod parts separated by the occluder. In other words, our model shows that

growth of horizontal connections is neither necessary nor sufficient, whereas an increase in

the duration of recurrent parietal activation is necessary and almost sufficient (i.e., it works

for many values of horizontal connections).

5.3. Modeling vision and reaching

In humans, eyes are situated in a head, which is situated on a body, which can move

through space and to which are attached arms and hands that serve to act on objects. Part of

the exploration process involves moving to and around objects, bringing them closer and

rotating them to produce new points of view for further visual inspection. Models of motor

development have demonstrated that neural networks can learn to coordinate vision and

reaching during bouts of exploration of the environment. Kuperstein (1988) described a

model in which representations of posture and arm position emerged from correlations

between self-produced movement and sensory information about external target positions in

space. The model was endowed with two retinas located in a head on a trunk, and a hand on

an arm, all of which were free to move in 3D space. The model was allowed to grasp an

object as information about its position was input from both the motor system and the visual

system. The developmental process was similar to the Piagetian notion of circular reactions
(Piaget, 1954), in which a developing system’s behaviors are gradually honed after initial,

sometimes lengthy, bouts of variability. The periods of variability were presumably used by

the neural network to work out the coordination between sensorimotor feedback from differ-

ent postures and positions of the limbs and the visual transformations they yielded. After

correlations became more stable, the network learned to produce new, accurate patterns of

reaching and grasping for objects that had not been encountered previously. In other words,

the model had internalized the spatial mapping of limb position and visual coordi-

nates—representations of the locations of the self and of external objects—from signals

derived exclusively from sensory receptors and motor feedback, with no a priori knowledge

of the objective ‘‘features’’ of objects.

Bullock, Grossberg, and Guenther (1993) introduced a model of eye-hand coordination

with a similar goal: to examine emergence of correlations across sensory and motor systems

without prespecified knowledge of how outputs from the two systems should be combined

into a unitary representation. The phase of exploratory movements was termed motor
babbling and constituted the principal learning period about the effects of movement on

visual input. The goal of the model was to enact a reaching trajectory toward the object that

was as direct as possible, on the basis of visual and sensory feedback. Following training,

the model’s reaches for objects of different sizes and shapes were geared toward transform-

ing visual information about the target and the effector (the hand) so as to produce maxi-

mally efficient, goal-oriented movements.
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These models demonstrate that the visual input from objects is determined by the action

capabilities of the system and the affordances of objects in the context of those actions.

They illustrate in addition that cognitive development is constrained by expanding motor

control over actions that provide increasingly detailed information about objects and events

in the world.

6. How infants learn about objects

In the previous two sections, I described the capacities of newborns to detect and remem-

ber key information about the visual world, information that is important for specifying

objects: their segregation from one another and their relative distances, and the retention of

this information for brief intervals sufficient to support recognition upon repeated encoun-

ters. I also described models of development object perception. These models demonstrated

that a naı̈ve system, given appropriate perceptual, cognitive, and motor skills and a suitable

environment in which to learn, can perceive objects as complete and persistent despite

occlusion, and can act on objects by detecting relevant information about their properties.

Does the developmental process in human infants accord with these findings?

6.1. Infants learn about objects via association

Consider first the possibility that infants learn about object occlusion via association. How

might this work? The Mareschal and Johnson (2002) model learned to perceive partly hidden

objects as complete in two ways: by associating objects with different visual cues in the input

(i.e., texture, motion, junctions, and orientation), and by associating different views of objects

with each other—a fully visible, complete rod that moved behind the occluder and then

became partly occluded. The Mareschal et al. (1999) model was exposed to an object moving

on a repetitive trajectory and quickly learned to predict its reappearance from behind an

occluder. The model was set up to predict the location of the moving object based on its pre-

ceding position and trajectory, and the model maintained a memory trace of it when it was

rendered invisible by the occluder. Is there evidence for similar processes in human infants?

To my knowledge, no one has tested the possibility that infants learn about objects by

associating individual visual attributes with their coherence and persistence across occlu-

sion, though the contributions of such visual attributes to perceptual completion have been

investigated. Spatial completion has been observed in young infants (younger than

6 months) only when the rod parts are aligned, and moving in tandem behind the occluder

(Johnson, 1997, 2004), in displays with the four visual cues examined in the Mareschal

and Johnson (2002), but in the absence of one or more cues, spatial completion is disrupted

(Kellman & Spelke, 1983). And spatiotemporal completion has been observed in young

infants only when the trajectory is horizontal, not angled, and when the spatiotemporal gap

imposed by the occluder is relatively short (Bremner et al., 2005, 2007; Johnson, Bremner,

et al. 2003). But it is not clear that these studies provide evidence that association per se is

an important mechanism of development in perceiving object occlusion.
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Such evidence comes from experiments by Johnson, Amso, and Slemmer (2003), who

examined 4- and 6-month-old infants’ responses to object trajectory displays by recording

predictive eye movements. We reasoned that a representation of a moving object would be

revealed by a consistent pattern of fixations toward the far side of the occluder upon its

occlusion. Infants were tested in one of four conditions. In the baseline condition, infants

were shown the ball-box display depicted in Fig. 4 as eye movements were recorded with a

corneal-reflection eye tracker. The display was presented for eight 30-s trials. In the random
condition, infants viewed eight presentations of displays that were identical to the ball-box

stimulus except the ball’s point of reemergence after occlusion was randomized (left or

right). In this case, anticipation offers no gain to the observer, who is just as likely to make

perceptual contact with the ball if the point of gaze remains where the object moved out of

view. (We hypothesized that anticipations in the random condition might be random eye

movements themselves.) In the training condition, infants were first presented with four tri-

als of the ball only, fully visible on its lateral trajectory (no occluder), followed by four trials

with the ball-box display, as in the predictable condition. Finally, in the generalization con-

dition, infants first viewed four trials with a vertical unoccluded trajectory, followed by four

trials with a partly occluded horizontal trajectory.

In the baseline condition, 6-month-olds produced a significantly higher proportion of

anticipatory eye movements than 4-month-olds, and a comparison of 4-month-olds’ perfor-

mance in the baseline versus random conditions revealed no reliable differences. This latter

finding implies that any predictive eye movements we observed by 4-month-olds were actu-

ally not based on a mental representation of the occluded object and its motion, but instead

were simply random eye movements scattered about the display that, by chance, happened to

fit the criteria for categorization as predictive. Moreover, 4-month-olds’ performance in the

baseline condition did not improve across trials (as would be expected if the infants learned

the repetitive sequence). In fact, there was a significant decline in anticipations across trials.

These results indicate that eye movement patterns may have been driven more in the older

age group by a veridical representation of the object on its path behind the occluder.

However, 4-month-olds in the training condition showed reliably more predictive eye

movements relative to 4-month-olds in the baseline condition. Comparisons of the two

6-month-old groups, in contrast, revealed no significant differences. The boost in anticipa-

tion performance seen in the 4-month-old training group generalized from exposure to the

vertical trajectory orientation, implying that infants in the training condition were not simply

trained for facilitation of horizontal eye movements, but instead true representation-based

anticipations.

How long does this effect of training last? Johnson and Shuwairi (2009) addressed this

question with a replication of the Johnson, Amso, et al. (2003) experiment: Baseline and

training conditions with 4-month-olds yielded similar results as the previous study. We

extended these findings with three additional conditions: a delay condition, in which a

30-min wait was imposed between training (with an unoccluded trajectory) and test (with a

partly occluded trajectory), and a reminder condition, identical to the delay condition except

for the addition of a single additional training trial immediately before test. Performance in

the delay condition was not significantly different from that of baseline, implying that the
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gains produced by brief training did not survive the 30-min interruption prior to test. How-

ever, eye movement anticipations were facilitated by the reminder condition to the same

extent as in the (immediate) training condition. (A fifth condition, brief training, consisted

of a single training trial prior to immediate test, and this did not have any discernible effect

on performance.)

Taken together, these findings suggest that there are consequential changes around

4 months after birth in representations of moving, occluded objects (Johnson, Bremner,

et al. 2003). Such representations are sufficiently strong by 6 months to guide anticipatory

looking behaviors consistently when viewing predictable moving object event sequences.

Four-month-olds’ anticipations under these conditions provided little evidence of veridical

object representations. However, a short exposure to an unoccluded object trajectory

induces markedly superior performance in our tracking task in this age group, and with a

reminder, this training effect can last for a period of time outside the scope of short-term

memory. These findings also help clarify the role of associative learning in object perception

development. Infants did not seem to learn by viewing repetitive events that are perfectly

predictable to adults (otherwise infants in the baseline conditions would have begun to show

increased levels of anticipation after several trails viewing the occluded trajectory). Instead,

infants learned by associating views of the fully visible object trajectory and the partly

occluded object trajectory.

6.2. Infants learn about objects via ‘‘active assembly’’

The Schlesinger et al. (2007) model discussed in the previous section highlighted two

aspects of visual development that might have a key role in development of spatial comple-

tion: growth of horizontal connections among neurons and circuits in cortical visual area

V1, and recurrent processing, which, we reasoned, served to compare aspects of the visual

scene. How might these influence developing object perception skills?

Burkhalter and colleagues (Burkhalter, 1991; Burkhalter et al., 1993) have reported

evidence for developments in horizontal connections in V1 from deceased fetuses and

infants, across the period from 26 weeks postconception to 7 months after birth, but the

precise role of these developments in object perception has not been documented. However,

there are findings from experiments on spatial completion that bear on this question. Two-

month-old infants have been found to perceive spatial completion in displays with a

relatively narrow occluder, such that the rod parts are close together across the gap imposed

by occlusion, but not when the occluder is wide (Johnson, 2004). (Similar findings were

obtained in studies of spatiotemporal completion—reducing gap size facilitates perception

of completion here as well.) Older infants are less susceptible to effects of widening this gap

(Johnson, 1997). In addition, 4-month-old infants are more likely to look back and forth

across a wide gap at the rod parts than are 2-month-olds (Johnson & Johnson, 2000). These

results are to be expected if the visual system becomes better able to link aligned edges

across a gap as connections between receptive fields become strengthened.

Other experiments examined the possibility that spatial completion develops from a

constructive process—which I have termed active assembly—serving to integrate parts of

1178 S. P. Johnson ⁄ Cognitive Science 34 (2010)



the visual scene into a coherent whole, in like fashion to recurrent processing discussed

previously. Amso and Johnson (2006) and Johnson, Slemmer, and Amso (2004) observed

3-month-old infants in a spatial completion task and recorded infants’ eye movements with

a corneal reflection eye tracker during the habituation phase of the experiment. We found

systematic differences in oculomotor scanning patterns between infants whose posthabitua-

tion test display preferences indicated unity perception and infants who provided evidence

of perception of disjoint surfaces: ‘‘Perceivers’’ tended to scan more in the vicinity of the

two visible rod segments, and to scan back and forth between them (Fig. 11). In a younger

sample, Johnson et al. (2008) found a correlation between posthabituation preference—our

index of spatial completion—and targeted visual exploration, operationalized as the propor-

tion of eye movements directed toward the moving rod parts, which we reasoned was the

most relevant aspect of the stimulus for perception of completion. (Precise localization of

the point of gaze can be a challenge for these very young infants, attested by the fact that

targeted scans almost always followed the rod as it moved, rarely anticipating its position.)

A relation between targeted visual exploration and spatial completion does not by itself

pinpoint a causal role. Such evidence would come from experiments in which individual

differences in oculomotor patterns were observed in both spatial completion and some other

visual task, and this was recently reported by Amso and Johnson (2006). We found that both

spatial completion and scanning patterns were strongly related to performance in an inde-

pendent visual search task in which targets, defined by a unique feature (either motion or

orientation) were placed among a large set of distracters. There were substantial individual

differences in successful search, both in terms of detecting the target and the latency to do

so, and these differences mapped clearly onto the likelihood of spatial completion. This

finding is inconsistent with the possibility that scanning patterns were tailored specifically to

perceptual completion, and instead suggests that a general facility with targeted visual

behavior leads to improvements across multiple tasks.

Targeted visual exploration may make a vital contribution to the emergence of veridical

object perception. As scanning patterns develop, they support binding of disparate visual

features into unified percepts—active assembly of coherent objects from surface fragments,

confirming the outcome of the Schlesinger et al. (2007) model of visual development. With

the emergence of selective attention and other perception-action systems, infants become

Fig. 11. Examples of individual differences in oculomotor scanning as 3-month-old infants view a rod-and-box

display (Johnson et al., 2004).
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increasingly active participants in their own perceptual development rather than passive

recipients of information. Active engagement of the infant’s visual attention is consistent

with a key tenet of Piagetian theory—the central role of the child’s own behavior in

cognitive development—and with a constructivist view—the building of structure from con-

stituent pieces. The following section describes another of these perception-action systems,

visual-manual exploration, and its role in constructing volumetric objects.

6.3. Infants learn about objects via visual-manual exploration

The Kuperstein (1988) and Bullock et al. (1993) models demonstrated that when

perception and action develop in tandem their coordination can be an emergent property,

with each influencing the other to the benefit of the exploratory capacity of the organism.

Developments in perception and action have long been of interest to developmental psychol-

ogists, and there has been recent evidence to show that 3D object completion emerges as a

consequence of improvements in infants’ motor skills. Two types of motor skill, both of

which develop rapidly at the same time that 3D object completion seems to emerge—4

to 6 months—may play a particularly important role: self-sitting and coordinated visual-

manual exploration. Independent sitting frees the hands for play and promotes gaze stabiliza-

tion during manual actions (Rochat & Goubet, 1995), and, therefore, self-sitting might

encourage coordination of object manipulation with visual inspection as infants begin to

play with objects, providing the infants with multiple views. In addition, manipulation of

objects—touching, squeezing, mouthing—may promote learning about object form from

tactile information.

To examine these possibilities, Soska, Adolph, and Johnson (2010) observed infants

between 4.5 months and 7.5 months in a replication of the Soska and Johnson (2008)

habituation experiment with the rotating wedge stimuli (Fig. 6). In the same testing session

we assessed infants’ manual exploration skills by observing spontaneous object manipula-

tion in a controlled setting and obtained parental reports of the duration of infants’ sitting

experience. We reasoned that infants who had more self-sitting experience would in turn

show a greater tendency to explore objects from multiple viewpoints and therefore have

more opportunities to learn about objects’ 3D forms outside the lab. Thus, within this age

range, individual differences in self-sitting experience and coordinated visual-manual

exploration were predicted to be related to individual differences in infants’ looking

preferences to the complete and incomplete object displays, our index of 3D object

completion.

Our predictions were supported. We found strong and significant relations between both

self-sitting and visual-manual coordination, from parents’ reports and the motor skills

assessment, and 3D object completion performance, assessed with the habituation paradigm.

We recorded a number of other motor skills to explore how widespread the relations were

within the perception-action systems under investigation, such as grasping, holding, and

manipulation without visual inspection, and none were related to 3D object completion.

Self-sitting experience and coordinated visual-manual exploration were the strongest pre-

dictors of performance on the visual habituation task. The results of a regression analysis
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yielded evidence that the role of self-sitting was indirect, influencing 3D completion chiefly

in its support of infants’ visual-manual exploration. Self-sitting infants performed more

manual exploration while looking at objects than did nonsitters, and visual-manual object

exploration is precisely the skill that provides active experience viewing objects from multi-

ple viewpoints, thereby facilitating perceptual completion of 3D form. These results provide

evidence for a cascade of developmental events following from the advent of visual-motor

coordination, including learning from self-produced experiences.

7. Concluding remarks

In principle, perceptual completion and other object perception skills available early in

postnatal life might develop solely from ‘‘passive’’ perceptual experience, because natural

scenes are richly structured and characterized by a high degree of redundancy (Graham &

Field, 2007) and infants gain a great deal of exposure to the visual world—on the order of

several hundred hours—by 2 months after birth (Johnson, Amso, et al. 2003). Thus—in

principle—infants might learn about objects by observing the world and acquiring associa-

tions between views of objects when fully visible and partly or fully occluded. But the find-

ings yielded by the Amso and Johnson (2006) and Soska, Adolph, and Johnson (2010)

experiments indicate that passive experience may be insufficient to learn about the full range

of occlusion phenomena, and, together with modeling accounts of object perception devel-

opment, broaden our conceptions of how infants learn about the visual world. Active assem-

bly and visual-manual exploration provide information to the infant about her own control

of an event while simultaneously generating multimodal information to inform developing

object perception skills. For complex kinds of perceptual completion, such as 3D object

completion, the coordination of posture, reaching, grasping, and visual inspection seems

to be critical: Only the visual-manual skills involved in generating changes in object

viewpoint—rotating, fingering, and transferring while looking—were related to 3D object

completion.

Careful consideration of the evidence I have described reveals that no one account, such

as Piagetian or nativist theories, encompasses the full range of changes that underlie the

emergence of object concepts in infancy. Significant advances, nevertheless, have been

achieved. The rudiments of object knowledge are evident in the first 6 months after birth,

revealed by detailed observations of information-gathering processes available to infants,

from which more complex representations of objects are constructed. But, notably, there is

no pure case of development caused in the absence of either intrinsic or external influences

(Elman et al., 1996; Quartz & Sejnowski, 1997). The question is what mechanisms are

responsible for perceptual and cognitive development.
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Senghas, A., Kita, S., & Özyürek, A. (2004). Children creating core properties of language: Evidence from an

emerging sign language in Nicaragua. Science, 305, 1779–1782.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703.

Skoczenski, A. M., & Norcia, A. M. (1998). Neural noise limitations on infant visual sensitivity. Nature, 391,

697–700.

Slater, A. (1995). Visual perception and memory at birth. In C. Rovee-Collier & L. P. Lipsitt (Eds.), Advances in
infancy research, Vol. 9. (pp. 107–162). Norwood, NJ: Ablex.

Slater, A., Johnson, S. P., Brown, E., & Badenoch, M. (1996). Newborn infants’ perception of partly occluded

objects. Infant Behavior & Development, 19, 145–148.

Slater, A., Johnson, S. P., Kellman, P. J., & Spelke, E. S. (1994). The role of three-dimensional depth cues in

infants’ perception of partly occluded objects. Early Development and Parenting, 3, 187–191.

Slater, A., Morison, V., Somers, M., Mattock, A., Brown, E., & Taylor, D. (1990). Newborn and older infants’

perception of partly occluded objects. Infant Behavior and Development, 13, 33–49.

Slater, A., Morison, V., Town, C., & Rose, D. (1985). Movement perception and identity constancy in the

new-born baby. British Journal of Developmental Psychology, 3, 211–220.

Slater, A., Quinn, P. C., Kelly, D. J., Lee, K., Longmore, C. A., McDonald, P. R., & Pascalis, O. (in press).

The shaping of the face space in early infancy: Becoming a native face processor. Child Development
Perspectives.

Soska, K. C., Adolph, K. A., & Johnson, S. P. (2010). Systems in development: Motor skill acquisition facilitates

3D object completion. Developmental Psychology, 46, 129–138.

Soska, K. C., & Johnson, S. P. (2008). Development of 3D object completion in infancy. Child Development,
79, 1230–1236.

Spelke, E. S. (1990). Principles of object perception. Cognitive Science, 14, 29–56.

Spelke, E. S., Breinlinger, K., Macomber, J., & Jacobson, K. (1992). Origins of knowledge. Psychological
Review, 99, 605–632.

Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10, 89–96.

Spencer, J. P., Blumberg, M. S., McMurray, B., Robinson, S. R., Samuelson, L. K., & Tomblin, J. B. (2009).

Short arms and talking eggs: Why we should no longer abide the nativist-empiricist debate. Child Develop-
ment Perspectives, 3, 79–87.

Sperry, R. W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and their connections.

Proceedings of the National Academy of Sciences (USA), 50, 703–710.

Valenza, E., Leo, I., Gava, L., & Simion, F. (2006). Perceptual completion in newborn human infants. Child
Development, 77, 1810–1821.
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Abstract

Learning to understand a single causal system can be an achievement, but humans must learn

about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian

framework that helps to explain how learning about several causal systems can accelerate learning

about systems that are subsequently encountered. Given experience with a set of objects, our frame-

work learns a causal model for each object and a causal schema that captures commonalities among

these causal models. The schema organizes the objects into categories and specifies the causal pow-

ers and characteristic features of these categories and the characteristic causal interactions between

categories. A schema of this kind allows causal models for subsequent objects to be rapidly learned,

and we explore this accelerated learning in four experiments. Our results confirm that humans learn

rapidly about the causal powers of novel objects, and we show that our framework accounts better

for our data than alternative models of causal learning.

Keywords: Causal learning; Learning to learn; Learning inductive constraints; Transfer learning;

Categorization; Hierarchical Bayesian models

1. Learning to learn causal models

Children face a seemingly endless stream of inductive learning tasks over the course of

their cognitive development. By the age of 18, the average child will have learned the mean-

ings of 60,000 words, the three-dimensional shapes of thousands of objects, the standards of

behavior that are appropriate for a multitude of social settings, and the causal structures

underlying numerous physical, biological, and psychological systems. Achievements like

Correspondence should be send to Charles Kemp, Department of Psychology, Carnegie Mellon University,

5000 Forbes Avenue, Baker Hall 340T, Pittsburgh, PA 15213. E-mail: ckemp@cmu.edu

Cognitive Science 34 (2010) 1185–1243
Copyright � 2010 Cognitive Science Society, Inc. All rights reserved.
ISSN: 0364-0213 print / 1551-6709 online
DOI: 10.1111/j.1551-6709.2010.01128.x



these are made possible by the fact that inductive tasks fall naturally into families of related

problems. Children who have faced several inference problems from the same family may

discover not only the solution to each individual problem but also something more general

that facilitates rapid inferences about subsequent problems from the same family. For exam-

ple, a child may require extensive time and exposure to learn her first few names for objects,

but learning a few dozen object names may allow her to learn subsequent names much more

quickly (Bloom, 2000; Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002).

Psychologists and machine learning researchers have both studied settings where learners

face multiple inductive problems from the same family, and they have noted that learning

can be accelerated by discovering and exploiting common elements across problems. We

will refer to this ability as ‘‘learning to learn’’ (Harlow, 1949; Yerkes, 1943), although it is

also addressed by studies that focus on ‘‘transfer learning,’’ ‘‘multitask learning,’’ ‘‘lifelong

learning,’’ and ‘‘learning sets’’ (Caruana, 1997; Stevenson, 1972; Thorndike & Woodworth,

1901; Thrun, 1998; Thrun & Pratt, 1998). This paper provides a computational account

of learning to learn that focuses on the acquisition and use of inductive constraints. After

experiencing several learning problems from a given family, a learner may be able to induce

a schema, or a set of constraints that captures the structure of all problems in the family.

These constraints may then allow the learner to solve subsequent problems given just a

handful of relevant observations.

The problem of learning to learn is relevant to many areas of cognition, including word

learning, visual learning, and social learning, but we focus here on causal learning and

explore how people learn and use inductive constraints that apply to multiple causal sys-

tems. A door, for example, is a simple causal system, and experience with several doors

may allow a child to rapidly construct causal models for new doors that she encounters. A

computer program is a more complicated causal system, and experience with several pieces

of software may allow a user to quickly construct causal models for new programs that she

encounters. Here we consider settings where a learner is exposed to a family of objects and

learns causal models that capture the causal powers of these objects. For example, a learner

may implicitly track the effects of eating different foods and may construct a causal model

for each food that indicates whether it tends to produce indigestion, allergic reactions, or

other kinds of problems. After experience with several foods, a learner may develop a

schema (Kelley, 1972) that organizes these foods into categories (e.g., citrus fruits) and

specifies the causal powers and characteristic features of each category (e.g., citrus fruits

cause indigestion and have crescent-shaped segments). A schema of this kind should allow

a learner to rapidly infer the causal powers of novel objects: for example, observing that a

novel fruit has crescent-shaped segments might be enough to conclude that it causes indiges-

tion.

There are three primary reasons why causal reasoning provides a natural setting for

exploring how people learn and use inductive constraints. First, abstract inductive con-

straints play a crucial role in causal learning. Some approaches to causal learning focus on

bottom-up statistical methods, including methods that track patterns of conditional indepen-

dence or partial correlations (Glymour, 2001; Pearl, 2000). These approaches, however, offer

at best a limited account of human learning. Settings where humans observe correlational
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data without the benefit of strong background knowledge often lead to weak learning even

when large amounts of training data are provided (Lagnado & Sloman, 2004; Steyvers,

Tenenbaum, Wagenmakers, & Blum, 2003). In contrast, both adults and children can infer

causal connections from observing just one or a few events of the right type (Gopnik &

Sobel, 2000; Schulz & Gopnik, 2004)—far fewer observations than would be required to

compute reliable measures of correlation or independence. Top-down, knowledge-based

accounts provide the most compelling accounts of this mode of causal learning (Griffiths &

Tenenbaum, 2007).

Second, some causal constraints are almost certainly learned, and constraint learning

probably plays a more prominent role in causal reasoning than in other areas of cognition,

such as language and vision. Fundamental aspects of language and vision do not change

much from one generation to another, let alone over the course of an individual’s life. It is

therefore possible that the core inductive constraints guiding learning in language and vision

are part of the innate cognitive machinery rather than being themselves learned (Bloom,

2000; Spelke, 1994). In contrast, cultural innovation never ceases to present us with new

families of causal systems, and the acquisition of abstract causal knowledge continues over

the life span. Consider, for example, a 40-year-old who is learning to use a cellular phone

for the first time. It may take him a while to master the first phone that he owns, but by the

end of this process—and certainly after experience with several different cell phones—he is

likely to have acquired abstract knowledge that will allow him to adapt to subsequent

phones rapidly and with ease.

The third reason for our focus on causal learning is methodological, and it derives from

the fact that learning to learn in a causal setting can be studied in adults and children alike.

Even if we are ultimately interested in the origins of abstract knowledge in childhood,

studying analogous learning phenomena in adults may provide the greatest leverage for

developing computational models, at least at the start of the enterprise. Adult participants in

behavioral experiments can provide rich quantitative judgments that can be compared with

model predictions in ways that are not possible with standard developmental methods. The

empirical section of this paper therefore focuses on adult experiments. We discuss the deve-

lopmental implications of our approach in some detail, but a full evaluation of our approach

as a developmental model is left for future work.

To explain how abstract causal knowledge can both constrain learning of specific causal

relations and can itself be learned from data, we work within a hierarchical Bayesian frame-

work (Kemp, 2008; Tenenbaum, Griffiths, & Kemp, 2006). Hierarchical Bayesian models

include representations at several levels of abstraction, where the representation at each

level captures knowledge that supports learning at the next level down (Griffiths &

Tenenbaum, 2007; Kemp, Perfors, & Tenenbaum, 2007; Kemp & Tenenbaum, 2008).

Statistical inference over these hierarchies helps to explain how the representations at each

level are learned. Our model can be summarized as a three-level framework where the top

level specifies a causal schema, the middle level specifies causal models for individual

objects, and the bottom level specifies observable data. If the schema at the top level is

securely established, then the framework helps to explain how abstract causal knowledge

supports the construction of causal models for novel objects. If the schema at the upper level
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is not yet established, then the framework helps to explain how causal models can be

learned primarily from observable data. Note, however, that top-down learning and bottom-

up learning are just two of the possibilities that emerge from our hierarchical approach. In

the most general case, a learner will be uncertain about the information at all three levels,

and will have to simultaneously learn a schema (inference at the top level) and a set of

causal models (inference at the middle level) and make predictions about future obser-

vations (inference at the bottom level).

Several aspects of our approach draw on previous psychological research. Cognitive

psychologists have discussed how abstract causal knowledge (Lien & Cheng, 2000; Shanks

& Darby, 1998) might be acquired, and they have studied the bidirectional relationship

between categorization and causal reasoning (Lien & Cheng, 2000; Waldmann & Hagmayer,

2006). Previous models of categorization have used Bayesian methods to explain how people

organize objects into categories based on their features (Anderson, 1991) or their relation-

ships with other objects (Kemp, Tenenbaum, Griffiths, Yamada, & Ueda, 2006), although not

in a causal context. In parallel, Bayesian models of knowledge-based causal learning have

often assumed a representation in terms of object categories, but they have not attempted to

learn these categories (Griffiths & Tenenbaum, 2007). Here we bring together all of these

ideas and explore how causal learning unfolds simultaneously across multiple levels of

abstraction. In particular, we show how learners can simultaneously make inferences about

causal categories, causal relationships, causal events, and perceptual features.

2. Learning causal schemata

Later sections will describe our framework in full detail, but this section provides an

informal introduction to our general approach. As a running example we consider the

problem of learning about drugs and their side-effects: for instance, learning whether

blood-pressure medications cause headaches. This problem requires inferences about two

domains—people and drugs—and can be formulated as a domain-level problem:

ingestsðperson; drugÞ!? headacheðpersonÞ ð1Þ

The domain-level problem in Eqn. 1 sets up an object-level problem for each combination

of a person and a drug. For example,

ingestsðAlice; DoxazosinÞ!? headacheðAliceÞ ð2Þ

represents the problem of deciding whether there is a causal relationship between Alice tak-

ing Doxazosin and Alice developing a headache, and

ingestsðBob; PrazosinÞ!? headacheðBobÞ ð3Þ

represents a second problem concerning the effect of Prazosin on Bob. Our goal is to learn

an object-level causal model for each object-level problem. In Fig. 1A there are six people
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Fig. 1. Three settings where causal schemata can be learned. (A) The drugs and headaches example. The people

are organized into two categories and the drugs are organized into three categories. The category-level causal

models indicate that alpha blockers cause headaches in A-people and beta blockers cause headaches in B-people.

There are 54 object-level causal models in total, one for each combination of a person and a drug, and three of

these models are shown. The first indicates that Doxazosin often gives Alice headaches. The event data for learn-

ing these causal models are shown at the bottom level: Alice has taken Doxazosin 10 times and experienced a

headache on seven of these occasions. (B) The allergy example. The schema organizes plants and people into

two categories each, and the object-level models and event data are not shown. (C) The summer camp example.

The schema organizes the counselors, the children, and the orders into two categories each.
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and nine drugs, which leads to 54 object-level problems and 54 object-level models in total.

Fig. 1A shows three of these object-level models, where the first example indicates that

ingesting Doxazosin tends to cause Alice to develop headaches. The observations that allow

these object-level models to be learned will be called event data or contingency data, and

they are shown at the bottom level of Fig. 1A. The first column of event data indicates, for

example, that Alice has taken Doxazosin 10 times and has experienced headaches on seven

of these occasions.

The 54 object-level models form a natural family, and learning several models from this

family should support inferences about subsequent members of the family. For example,

learning how Doxazosin affects Alice may help us to rapidly learn how Doxazosin affects

Bob, and learning how Alice responds to Doxazosin may help us to rapidly learn how Alice

responds to Prazosin. This paper will explore how people learn to learn object-level causal

models. In other words, we will explore how learning several of these models can allow sub-

sequent models in the same family to be rapidly learned.

The need to capture relationships between object-level problems like Eqns. 2 and 3 moti-

vates the notion of a causal schema. Each possible schema organizes the people and the

drugs into categories and specifies causal relationships between these categories. For exam-

ple, the schema in Fig. 1A organizes the six people into two categories (A-people and

B-people) and the nine drugs into three categories (alpha blockers, beta blockers, and ACE

inhibitors). The schema also includes category-level causal models that specify relationships

between these categories. Because there are two categories of people and three categories of

drugs, six category-level models must be specified in total, one for each combination of a

person category and drug category. For example, the category-level models in Fig. 1A

indicate that alpha blockers tend to produce headaches in A-people, beta blockers tend to

produce headaches in B-people, and ACE inhibitors rarely produce headaches in either

group. Note that the schema supports inferences about the object-level models in Fig. 1A.

For example, because Alice is an A-person and Doxazosin is an alpha-blocker, the schema

predicts that ingesting Doxazosin will cause Alice to experience headaches.

To explore how causal schemata are learned and used to guide inferences about object-

level models, we work within a hierarchical Bayesian framework. The diagram in Fig. 1A

can be transformed into a hierarchical Bayesian model by specifying how the information at

each level is generated given the information at the level immediately above. We must

therefore specify how the event data are generated given the object-level models, how the

object-level models are generated given the category-level models, and how the category-

level models are generated given a set of categories.

Although our framework is formalized as a top-down generative process, we will use

Bayesian inference to invert this process and carry out bottom-up inference. In particular,

we will focus on problems where event data are observed at the bottom level and the learner

must simultaneously learn the object-level causal models, the category-level causal models

and the categories that occupy the upper levels. After observing event data at the bottom

level, our probabilistic model computes a posterior distribution over the representations at

the upper levels, and our working assumption is that the categories and causal models

learned by people are those assigned maximum posterior probability by our model. We do
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not discuss psychological mechanisms that might allow humans to identify the representa-

tions with maximum posterior probability, but future work can explore how the computa-

tions required by our model can be implemented or approximated by psychologically

plausible mechanisms.

Although it is natural to say that the categories and causal models are learned from the

event data available at the bottom level of Fig. 1A, note that this achievement relies on sev-

eral kinds of background knowledge. We assume that the learner already knows about the

relevant domains (e.g., people and drugs) and events (e.g., ingestion and headache events)

and is attempting to solve a problem that is well specified at the domain level (e.g., the prob-

lem of deciding whether ingesting drugs can cause headaches). We also assume that the

existence of the hierarchy in Fig. 1A is known in advance. In other words, our framework

knows from the start that it should search for some set of categories and some set of causal

models at the category and object levels, and learning is a matter of finding the candidates

that best account for the data. We return to the question of background knowledge in the

General Discussion and consider the extent to which some of this knowledge might be the

outcome of prior learning.

We have focused on the drugs and headaches scenario so far, but the same hierarchical

approach should be relevant to many different settings. Suppose that we are interested in the

relationship between touching a plant and subsequently developing a rash. In this case the

domain-level problem can be formulated as

touchesðperson; plantÞ!? rashðpersonÞ

We may notice that only certain plants produce rashes, and that only certain people are

susceptible to rashes. A schema consistent with this idea is shown in Fig. 1B. There are two

categories of plants (allergens and nonallergens), and two categories of people (allergic and

nonallergic). Allergic people develop rashes after touching allergenic plants, including poi-

son oak, poison ivy, and poison sumac. Allergic people, however, do not develop rashes

after touching nonallergenic plants, and nonallergic people never develop rashes after touch-

ing plants.

As a third motivating example, suppose that we are interested in social relation-

ships among the children and the counselors at a summer camp. In particular, we

would like to predict whether a given child will become angry with a given counselor

if that counselor gives her a certain kind of order. The domain-level problem for this

setting is:

ordersðcounselor; child; orderÞ!? angryðchild; counselorÞ

One possible schema for this setting is shown in Fig. 1C. There are two categories of

counselors (popular and unpopular), two categories of children (polite and rebellious), and

two categories of orders (fair and unfair). Rebellious children may become angry with a

counselor if that counselor gives them any kind of order. Polite children accept fair orders
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from popular counselors, but may become angry if a popular counselor gives them an unfair

order or if an unpopular counselor gives them any kind of order.

Our experiments will make use of a fourth causal setting. Consider the blocks and the

machine in Fig. 2A. The machine has a GO button, and it will sometimes activate and flash

yellow when the button is pressed. Each block can be placed inside the machine, and

whether the machine is likely to activate might depend on which block is inside. The

domain-level problem for this setting is:

insideðblock; machineÞ & button pressedðmachineÞ!? activateðmachineÞ

Note that the event on the left-hand side is a compound event which combines a state (a

block is inside the machine) and an action (the button is pressed). In general, both the left-

and right-hand sides of a domain-level problem may specify compound events that are

expressed using multiple predicates.

One schema for this problem might organize the blocks into two categories: active blocks

tend to activate the machine on most trials, and inert blocks seem to have no effect on the

machine. Note that the blocks and machine example is somewhat similar to the drugs and

headaches example: Blocks and drugs play corresponding roles, machines and people play

Fig. 2. Stimuli used in our experiments. (A) A machine and some blocks. The blocks can be placed inside the

machine and the machine sometimes activates (flashes yellow) when the GO button is pressed. The blocks used

for each condition of Experiments 1, 2, and 4 were perceptually indistinguishable. (B) Blocks used for Experi-

ment 3. The blocks are grouped into two family resemblance categories: blocks on the right tend to be large,

blue, and spotted, and tend to have a gold boundary but no diagonal stripe. These blocks are based on stimuli

created by Sakamoto and Love (2004).
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corresponding roles, and the event of a machine activating corresponds to the event of a

person developing a headache.

The next sections introduce our approach more formally and we develop our framework

in several steps. We begin with the problem of learning a single object-level model—for

example, learning whether ingesting Doxazosin causes Alice to develop headaches

(Fig. 3A). We then turn to the problem of simultaneously learning multiple object-level

models (Fig. 3B) and show how causal schemata can help in this setting. We next extend

our framework to handle problems where the objects of interest (e.g., people and drugs)

have perceptual features that may be correlated with their categories (Fig. 3C). Our final

analysis addresses problems where multiple members of the same domain may interact to

produce an effect—for example, two drugs may produce a headache when paired although

neither causes headaches in isolation.

Fig. 3. A hierarchical Bayesian approach to causal learning. (A) Learning a single object-level causal model. (B)

Learning causal models for multiple objects. The schema organizes the objects into categories and specifies the

causal powers of each category. (C) A generative framework for learning a schema that includes information

about the characteristic features of each category. (D) A generative framework that includes (A)–(C) as special

cases. Nodes represent variables or bundles of variables and arrows indicate dependencies between variables.

Shaded nodes indicate variables that are observed or known in advance, and unshaded nodes indicate variables

that must be inferred. We will collectively refer to the categories, the category-level causal models, and the cate-

gory-level feature means as a causal schema. Note that the hierarchy in Fig. 1A is a subset of the complete

model shown here.
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Although we develop our framework in stages and consider several increasingly sophisti-

cated models along the way, the result is a single probabilistic framework that addresses all

of the problems we discuss. The framework is shown as a graphical model in Fig. 3D. Each

node represents a variable or bundle of variables, and some of the nodes have been anno-

tated with variable names that will be used in later sections of the paper. Arrows between

nodes indicate dependencies—for example, the top section of the graphical model indicates

that a domain-level problem such as

ingestsðperson; drugÞ!? headacheðpersonÞ

is formulated in terms of domains (people and drugs) and events (ingests(Æ,Æ) and head-

ache(Æ)). Shaded nodes indicate variables that are observed (e.g., the event data) or specified

in advance (e.g., the domain-level problem), and the unshaded nodes indicate variables that

must be learned. Note that the three models in Fig. 3A–C correspond to fragments of the

complete model in Fig. 3D, and we will build up the complete model by considering these

fragments in sequence.

3. Learning a single object-level causal model

We begin with the problem of elemental causal induction (Griffiths & Tenenbaum, 2005)

or the problem of learning a causal model for a single object-level problem. Our running

example will be the problem

ingestsðAlice; DoxazosinÞ!? headacheðAliceÞ

where the cause event indicates whether Alice takes Doxazosin and the effect event indi-

cates whether she subsequently develops a headache. Let o refer to the object Doxazosin,

and we overload our notation so that o can also refer to the cause event ingests(Alice,

Doxazosin). Let e refer to the effect event headache(Alice).

Suppose that we have observed a set of trials where each trial indicates whether or not

cause event o occurs, and whether or not the effect e occurs. Data of this kind are often

called contingency data, but we refer to them as event data V. We assume that the outcome

of each trial is generated from an object-level causal model M that captures the causal rela-

tionship between o and e (Fig. 5). Having observed the trials in V, our beliefs about the cau-

sal model can be summarized by the posterior distribution P(MjV):

Fig. 4. Causal graphical models that capture three possible relationships between a cause o and an effect e. Vari-

able a indicates whether there is a causal relationship between o and e, variable g indicates whether this

relationship is generative or preventive, and variable s indicates the strength of this relationship. A generative

background cause of strength b is always present.

1194 C. Kemp, N. D. Goodman, J. B. Tenenbaum ⁄ Cognitive Science 34 (2010)



PðM jVÞ / PðV jMÞPðMÞ: ð4Þ

The likelihood term P(V j M) indicates how compatible the event data V are with model

M, and the prior P(M) captures prior beliefs about model M.

We parameterize the causal model M using four causal variables (Figs. 4 and 5). Let a
indicate whether there is an arrow joining o and e, and let g indicate the polarity of this

causal relationship (g ¼ 1 if o is a generative cause and g ¼ 0 if o is a preventive cause).

Suppose that s is the strength of the relationship between o and e.1 To capture the possibility

that e will be present even though o is absent, we assume that a generative background cause

of strength b is always present. We specify the distribution P(e j o) by assuming that gener-

ative and preventive causes combine according to a network of noisy-OR and noisy-

AND-NOT gates (Glymour, 2001).

Now that we have parameterized model M in terms of the triple (a,g,s) and the back-

ground strength b, we can rewrite Eq. 4 as

Pða; g; s; b jVÞ / PðV j a; g; s; bÞPðaÞPðgÞPðsÞPðbÞ: ð5Þ

To complete the model we must place prior distributions on the four causal variables. We

use uniform priors on the two binary variables (a and g), and we use priors P(s) and P(b)

that capture the expectation that b will be small and s will be large. These priors on s and b
are broadly consistent with the work of Lu, Yuille, Liljeholm, Cheng and Holyoak (2008),

who suggest that learners typically expect causes to be necessary (b should be low) and

sufficient (s should be high). Complete specifications of P(s) and P(b) are provided in

Appendix A.

To discover the causal model M that best accounts for the events in V, we can search for

the causal variables with maximum posterior probability according to Eq. 5. There are many

empirical studies that explore human inferences about a single potential cause and a single

effect, and previous researchers (Griffiths & Tenenbaum, 2005; Lu et al., 2008) have shown

that a Bayesian approach similar to ours can account for many of these inferences. Here,

however, we turn to the less-studied case where people must learn about many objects, each

of which may be causally related to the effect of interest.

Fig. 5. (A) Learning an object-level causal model M from event data V (see Fig. 3A). The event data specify the

number of times the effect was (e+) and was not (e)) observed when o was absent (;) and when o was present.

The model M shown has a ¼ 1, g ¼ 1, s ¼ 0.9, and b ¼ 0.2, and it is a compact representation of the graphical

model in (B).
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4. Learning multiple object-level models

Suppose now that we are interested in simultaneously learning multiple object-level cau-

sal models. For example, suppose that our patient Alice has prescriptions for many different

drugs and we want to learn about the effect of each drug:

ingestsðAlice; DoxazosinÞ!? headacheðAliceÞ

ingestsðAlice; PrazosinÞ!? headacheðAliceÞ

ingestsðAlice; TerazosinÞ!?
..
.
headacheðAliceÞ

For now we assume that Alice takes at most one drug per day, but later we relax this

assumption and consider problems where patients take multiple drugs and these drugs may

interact. We refer to the ith drug as object oi, and as before we overload our notation so that

oi can also refer to the cause event ingests(Alice, oi).

Our goal is now to learn a set {Mi} of causal models, one for each drug (Figs. 3b and 6).

There is a triple (ai,gi,si) describing the causal model for each drug oi, and we organize these

variables into three vectors, a, g, and s. Let W be the tuple (a, g, s, b) which includes all the

parameters of the causal models. As before, we assume that a generative background cause

of strength b is always present.

One strategy for learning multiple object-level models is to learn each model separately

using the methods described in the previous section. Although simple, this strategy will not

succeed in learning to learn because it does not draw on experience with previous objects

when learning a causal model for a novel object that is sparsely observed. We will allow

information to be shared across causal models for different objects by introducing the notion

of a causal schema. A schema specifies a grouping of the objects into categories and

includes category-level causal models which specify the causal powers of each category.

The schema in Fig. 6 indicates that there are two categories: objects belonging to category

cA tend to prevent the effect and objects belonging to category cB tend to cause the effect.

The strongest possible assumption is that all members of a category must play identical cau-

sal roles. For example, if Doxazosin and Prazosin belong to the same category, then the cau-

sal models for these two drugs should be identical. We relax this strong assumption and

assume instead that members of the same category play similar causal roles. More precisely,

we assume that the object-level models corresponding to a given category-level causal

model are drawn from a common distribution.

Formally, let zi indicate the category of oi, and let �a, �g, �s, and �b be schema-level analogs

of a, g, s, and b. Variable �aðcÞ is the probability that any given object belonging to category

c will be causally related to the effect, variables �gðcÞ and �sðcÞ specify the expected polarity

and causal strength for objects in category c, and variable �b specifies the expected strength

of the generative background cause. Even though a and g are vectors of probabilities, Fig. 6

simplifies by showing each �aðcÞ and �gðcÞ as a binary variable. To generate a causal model

for each object, we assume that each arrow variable ai is generated by tossing a coin with

1196 C. Kemp, N. D. Goodman, J. B. Tenenbaum ⁄ Cognitive Science 34 (2010)



weight �aðziÞ, that each polarity gi is generated by tossing a coin with weight �gðziÞ, and that

each strength si is drawn from a distribution parameterized by �sðziÞ. Let �W be a tuple

ð�a; �g; �s; �bÞ that includes all parameters of the causal schema. A complete description of each

parameter is provided in Appendix A.

Now that the generative approach in Fig. 1A has been fully specified we can use it to

learn the category assignments z, the category-level models �W, and the object-level models

W that are most probable given the events V that have been observed:

Pðz; �W;W jVÞ / PðV jWÞPðW j �W; zÞPð �W j zÞPðzÞ: ð6Þ

The distribution P(V j W) is defined by assuming that the contingency data for each

object-level model are generated in the standard way from that model. The distribution

PðW j �W; zÞ specifies how the model parameters W are generated given the category-level

models �W and the category assignments z. To complete the model, we need prior distribu-

tions on z and the category-level models �W. Our prior P(z) assigns some probability mass to

all possible partitions but favors partitions that use a small number of categories. Our prior

Pð �W j zÞ captures the expectation that generative and preventive causes are equally likely a

priori, that causal strengths are likely to be high, and that the strength of the background

cause is likely to be low. Full details are provided in Appendix A.

Fig. 6 shows how a schema and a set of object-level causal models (top two levels) can

be simultaneously learned from the event data V in the bottom level. All of the variables in

the figure have been set to values with high posterior probability according to Eq. 6: for

instance, the partition z shown is the partition with maximum posterior probability. Note

that learning a schema allows a causal model to be learned for object o7, which is very spar-

sely observed (see the underlined entries in the bottom level of Fig. 6). On its own, a single

trial might not be very informative about the causal powers of this object, but experience

Fig. 6. Learning a schema and a set of object-level causal models (see Fig. 3B). z specifies a set of categories,

where objects belonging to the same category have similar causal powers, and �a, �g, and �s specify a set of cate-

gory-level causal models. Note that the schema supports inferences about an object (o7, counts underlined in

red) that is very sparsely observed.
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with previous objects allows the model to predict that o7 will produce the effect about as

regularly as the other members of category cB.

To compute the predictions of our model we used Markov chain Monte Carlo methods to

sample from the posterior distribution in Eq. 6. A more detailed description of this inference

algorithm is provided in Appendix A, but note that this algorithm is not intended as a model

of psychological processing. The primary contribution of this section is the computational

theory summarized by Eq. 6, and there will be many ways in which the computations

required by this theory can be approximately implemented.

5. Experiments 1 and 2: Testing the basic schema-learning model

Our schema-learning model attempts to satisfy two criteria when learning about the cau-

sal powers of a novel object. When information about the new object is sparse, predictions

about this object should be based primarily on experience with previous objects. Relying on

past experience will allow the model to go beyond the sparse and noisy observations that

are available for the novel object. Given many observations of the novel object, however,

the model should rely heavily on these observations and should tend to ignore its observa-

tions of previous objects. Discounting past experience in this way will allow the model to be

flexible if the new object turns out to be different from all previous objects.

Our first two experiments explore this tradeoff between conservatism and flexibility. Both

experiments used blocks and machines like the examples in Fig. 2. As mentioned already,

the domain-level problem for this setting is:

insideðblock; machineÞ & button pressedðmachineÞ!? activateðmachineÞ

In terms of the notation we have been using, each block is an object oi, each button press

corresponds to a trial, and the effect e indicates whether the machine activates on a given

trial.

Experiment 1 studied people’s ability to learn a range of different causal schemata from

observed events and to use these schemata to rapidly learn about the causal powers of new,

sparsely observed objects. To highlight the influence of causal schemata, inferences about

each new object were made after observing at most one trial where the object was placed

inside the machine. Across conditions, we varied the information available during training,

and our model predicts that these different sets of observations should lead to the formation

of qualitatively different schemata, and hence to qualitatively different patterns of inference

about new, sparsely observed objects.

Experiment 2 explores in more detail how observations of a new object interact with a

learned causal schema. Instead of observing a single trial for each new object, participants

now observed seven trials and judged the causal power of the object after each one. Some

sequences of trials were consistent with the schema learned during training, but others were

inconsistent. Given these different sequences, our model predicts how and when learners

should overrule their schema-based expectations when learning a causal model for a novel
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object. These predicted learning curves—or ‘‘unlearning curves’’—were tested against the

responses provided by participants.

Our first two experiments were also designed in part to evaluate our model relative to

other computational accounts. Although we know of no previous model that attempts to cap-

ture causal learning at multiple levels of abstraction, we will consider some simple models

inspired by standard models in the categorization literature. These models are discussed and

analyzed following the presentation of Experiments 1 and 2.

5.1. Experiment 1: One-shot causal learning

Experiment 1 explores whether participants can learn different kinds of schemata and use

these schemata to rapidly learn about the causal powers of new objects. In each condition of

the experiment, participants initially completed a training phase where they placed each of

eight objects into the machine multiple times and observed whether the machine activated

on each trial. In different conditions they observed different patterns of activation across

these training trials. In each condition, the activations observed were consistent with the

existence of one or two categories, and these categories had qualitatively different causal

powers across the different conditions. After each training phase, participants completed a

‘‘one-shot learning’’ task, where they made predictions about test blocks after seeing only a

single trial involving each block.

5.1.1. Participants
Twenty-four members of the MIT community were paid for participating in this experi-

ment.

5.1.2. Stimuli
The experiment used a custom-built graphical interface that displayed a machine and

some blocks (Fig. 2A). Participants could drag the blocks around, and they were able to

place up to one block inside the machine at a time. Participants could also interact with the

machine by pressing the GO button and observing whether the machine activated. The

blocks used for Experiments 1 and 2 were perceptually indistinguishable, and their causal

powers could therefore not be predicted on the basis of their physical appearance.

5.1.3. Design
The experiment includes four within-participant conditions and the training data for

each condition are summarized in Fig. 7. The first condition (p ¼ {0, 0.5}) includes two

categories of blocks: blocks in the first category never activate the machine, and blocks

in the second category activate the machine about half the time. The second condition

(p ¼ {0.1, 0.9}) also includes two categories: blocks in the first category rarely activate

the machine, and blocks in the second category usually activate the machine. The remain-

ing conditions each include only one category of blocks: blocks in the third condition

(p ¼ 0) never activate the machine, and blocks in the fourth condition (p ¼ 0.1) activate

the machine rarely.
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5.1.4. Procedure
At the start of each condition, participants are shown an empty machine and asked to

press the GO button 10 times. The machine fails to activate on each occasion. One by one

the training blocks are introduced, and participants place each block in the machine and

press the GO button one or more times. The outcomes of these trials are summarized in

Fig. 7. For example, the p ¼ {0, 0.5} condition includes eight training blocks in total, and

the block shown as o1 in the table fails to activate the machine on each of 10 trials. After the

final trial for each block, participants are asked to imagine pressing the GO button 100 times

when this block is inside the machine. They then provide a rating which indicates how likely

it is that the total number of activations will fall between 0 and 20. All ratings are provided

on a seven-point scale where one is labeled as ‘‘very unlikely,’’ seven is labeled as ‘‘very

likely,’’ and the other values are left unlabeled. Ratings are also provided for four other

intervals: between 20 and 40, between 40 and 60, between 60 and 80, and between 80 and

100. Each block remains on screen after it is introduced, and by the end of the training phase

six or eight blocks are therefore visible onscreen. After the training phase two test blocks

are introduced, again one at a time. Participants provide ratings for each block before it has

been placed in the machine, and after a single trial. One of the test blocks (o+) activates the

machine on this trial, and the other (o)) does not.

The set of four conditions is designed to test the idea that inductive constraints and induc-

tive flexibility are both important. The first two conditions test whether experience with the

training blocks allows people to extract constraints that are useful when learning about the

causal powers of the test blocks. Conditions three and four explore cases where these

Fig. 7. Training data for the four conditions of Experiment 1. In each condition, the first column of each table

shows that the empty machine fails to activate on each of the 10 trials. Each remaining column shows the out-

come of one or more trials when a single block is placed inside the machine. For example, in the p ¼ {0, 0.5}

condition block o1 is placed in the machine 10 times and fails to activate the machine on each trial.
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constraints need to be overruled. Note that test block o+ is surprising in these conditions

because the training blocks activate the machine rarely, if at all.

To encourage participants to think about the conditions separately, machines and blocks

of different colors were used for each condition. Note, however, that the blocks within each

condition were always perceptually identical. The order in which the conditions were pre-

sented was counterbalanced according to a Latin square design. The order of the training

blocks and the test blocks within each condition was also randomized subject to several con-

straints. First, the test blocks were always presented after the training blocks. Second, in con-

ditions p ¼ {0, 0.5} and p ¼ {0.1, 0.9} the first two training blocks in the sequence always

belonged to different categories, and the two sparsely observed training blocks (o4 and o8)

were always the third and fourth blocks in the sequence. Finally, in the p ¼ 0 condition test

block o+ was always presented second, because this block is unlike any of the training blocks

and may have had a large influence on predictions about any block which followed it.

5.1.5. Model predictions
Fig. 8 shows predictions when the schema-learning model is applied to the data in Fig. 7.

Each plot shows the posterior distribution on the activation strength of a test block: the prob-

ability P(e j o) that the block will activate the machine on a given trial. Because the

background rate is zero, this distribution is equivalent to a distribution on the causal power

Fig. 8. Predictions of the schema-learning model for Experiment 1. Each subplot shows the posterior distribution

on the activation strength of a test block. There are three predictions for each condition: The first row shows

inferences about a test block before this block has been placed in the machine, and the remaining rows show

inferences after a single negative (o)) or positive (o+) trial is observed. Note that the curves represent probability

density functions and can therefore attain values greater than 1.
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(Cheng, 1997) of the test block. Recall that participants were asked to make predictions

about the number of activations expected across 100 trials. If we ask our model to make the

same predictions, the distributions on the total number of activations will be discrete distri-

butions with shapes similar to the distributions in Fig. 8.

The plots in the first row show predictions about a test block before it is placed in the

machine. The first plot indicates that the model has discovered two causal categories, and it

expects that the test block will activate the machine either very rarely or around half of the

time. The two peaks in the second plot again indicate that the model has discovered two

causal categories, this time with strengths around 0.1 and 0.9. The remaining two plots are

unimodal, suggesting that only one causal category is needed to explain the data in each of

the p ¼ 0 and p ¼ 0.1 conditions.

The plots in the second row show predictions about a test block (o)) that fails to activate

the machine on one occasion. All of the plots have peaks near 0 or 0.1. Because each condi-

tion includes blocks that activate the machine rarely or not at all, the most likely hypothesis

is always that o) is one of these blocks. Note, however, that the first plot has a small bump

near 0.5, indicating that there is some chance that test block o) will activate the machine

about half of the time. The second plot has a small bump near 0.9 for similar reasons.

The plots in the third row show predictions about a test block (o+) that activates the

machine on one occasion. The plot for the first condition peaks near 0.5, which is consistent

with the hypothesis that blocks which activate the machine at all tend to activate it around

half the time. The plot for the second condition peaks near 0.9, which is consistent with the

observation that some training blocks activated the machine nearly always. The plot for the

third condition has peaks near 0 and near 0.9. The first peak captures the idea that the test

block might be similar to the training blocks, which activated the machine very rarely.

Given that none of the training blocks activated the machine, one positive trial is enough to

suggest that the test block might be qualitatively different from all previous blocks, and the

second peak captures this hypothesis. The curve for the final condition peaks near 0.1, which

is the frequency with which the training blocks activated the machine.

5.1.6. Results
The four columns of Fig. 9 show the results for each condition. Each participant provided

ratings for five intervals in response to each question, and these ratings can be plotted as a

curve. Fig. 9 shows the mean curve for each question. The first row shows predictions

before a test block has been placed in the machine (responses for test blocks o) and o+ have

been combined). The second and third rows show predictions after a single trial for test

blocks o) and o+.

The first row provides a direct measure of what participants have learned during the

training for each condition. Note first that the plots for the four rows are rather different,

suggesting that the training observations have shaped people’s expectations about novel

blocks. A two-factor anova with repeated measures supports this conclusion, and it indicates

that there are significant main effects of interval [F(4,92) ¼ 31.8, p < .001] and condition

[F(3,69) ¼ 15.7, p < .001] but no significant interaction between interval and condition

[F(12,276) ¼ 0.74, p > .5].
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In three of the four conditions, the human responses in the top row of Fig. 9 are consistent

with the model predictions in Fig. 8. As expected, the curves for the p ¼ 0 and p ¼ 0.1 con-

ditions indicate an expectation that the test blocks will probably fail to activate the machine.

The curve for the p ¼ {0, 0.5} condition peaks in the same places as the model prediction,

suggesting that participants expect that each test block will either activate the machine very

rarely or about half of the time. The first (0.1) and third (0.5) bars in the plot are both greater

than the second (0.3) bar, and paired sample t tests indicate that both differences are statisti-

cally significant (p < .05, one-tailed). The p ¼ {0, 0.5} curve is therefore consistent with

the idea that participants have discovered two categories.

The responses for the p ¼ {0.1, 0.9} condition provide no evidence that participants have

discovered two causal categories. The curve for this condition is flat or unimodal and does

not match the bimodal curve predicted by the model. One possible interpretation is that

learners cannot discover categories based on probabilistic causal information. As suggested

by the p ¼ {0, 0.5} condition, learners might distinguish between blocks that never produce

the effect and those that sometimes produce the effect, but not between blocks that produce

the effects with different strengths. A second possible interpretation is that learners can form

categories based on probabilistic information but require more statistical evidence than we

provided in Experiment 1. Our third experiment supports this second interpretation and

demonstrates that learners can form causal categories on the basis of probabilistic evidence.

Fig. 9. Results for the four conditions in Experiment 1. Each subplot shows predictions about a new object that

will undergo 100 trials, and each bar indicates the probability that the total number of activations will fall within

a certain interval. The x-axis shows the activation strengths that correspond to each interval and the y-axis shows

probability ratings on a scale from one (very unlikely) to seven (very likely). All plots show mean responses

across 24 participants. Error bars for this plot and all remaining plots show the standard error of the mean.
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Consider now the third row of Fig. 9, which shows predictions about a test block (o+) that

has activated the machine exactly once. As before, the differences between these plots sug-

gest that experience with previous blocks shapes people’s inferences about a sparsely

observed novel block. A two-factor anova with repeated measures supports this conclusion,

and indicates that there is no significant main effect of interval [F(4,92) ¼ .46, p > .5], but

that there is a significant main effect of condition [F(3,69) ¼ 4.20, p < .01] and a significant

interaction between interval and condition [F(12,276) ¼ 6.90, p < .001]. Note also that all

of the plots in the third row peak in the same places as the curves predicted by the model

(Fig. 8A). For example, the middle (0.5) bar in the p ¼ {0, 0.5} condition is greater than

the bars on either side, and paired sample t tests indicate that both differences are statisti-

cally significant (p < .05, one-tailed). The plot for the p ¼ 0 condition provides some sup-

port for a second peak near 0.9, although a paired-sample t test indicates that the difference

between the fifth (0.9) and fourth (0.7) bars is only marginally significant (p < .1, one-

tailed). Our second experiment explores this condition in more detail, and it establishes

more conclusively that a single positive observation can be enough for a learner to decide

that a block is different from all previously observed blocks.

Consider now the second row of Fig. 9, which shows predictions about a test block (o))

that has failed to activate the machine exactly once. The plots in this row are all decaying

curves, because each condition includes blocks that activate the machine rarely or not at all.

Again, though, the differences between the curves are interpretable and match the predic-

tions of the model. For instance, the p ¼ 0 curve decays more steeply than the others, which

makes sense because the training blocks for this condition never activate the machine. In

particular, note that the difference between the first (0.1) and second (0.3) bars is greater in

the p ¼ 0 condition than the p ¼ 0.1 condition (p < .001, one-tailed).

Although our primary goal in this paper is to account for the mean responses to each

question, the responses of individual participants are also worth considering. Kemp (2008)

presents a detailed analysis of individual responses and shows that in all cases except one

the shape of the mean curve is consistent with the responses of some individuals. The one

exception is the o+ question in the p ¼ 0 condition, where no participant generated a

U-shaped curve, although some indicated that o+ is unlikely to activate the machine and

others indicated that o+ is very likely to activate the machine on subsequent trials. This

disagreement suggests that the p ¼ 0 condition deserves further attention, and our second

experiment explores this condition in more detail.

5.2. Experiment 2: Discovering new causal categories

Causal schemata support inferences about new objects that are sparsely observed, but

sometimes these inferences are wrong and will have to be overruled when a new object turns

out to be qualitatively different from all previous objects. Experiment 1 provided some sug-

gestive evidence that human learners will overrule a schema when necessary. In the p ¼ 0

condition, participants observed six blocks that never activated the machine, then saw a sin-

gle trial where a new block (o+) activated the machine. The results in Fig. 9 suggest that

some participants inferred that the new block might be qualitatively different from the
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previous blocks. This finding suggests that a single observation of a new object is sometimes

enough to overrule expectations based on many previous objects, but several trials may be

required before learners are confident that a new object is unlike any of the previous objects.

To explore this idea, Experiment 2 considers two cases where participants receive increas-

ing evidence that a new object is different from all previously encountered objects.

5.2.1. Participants
Sixteen members of the MIT community were paid for participating in this experiment.

5.2.2. Design and procedure
The experiment includes two within-participant conditions (p ¼ 0 and p ¼ 0.1) that cor-

respond to conditions 3 and 4 of Experiment 1. Each condition is very similar to the corre-

sponding condition from Experiment 1 except for two changes. Seven observations are now

provided for the two test blocks: for test block o), the machine fails to activate on each trial,

and for test block o+ the machine activates on all test trials except the second. Participants

rate the causal strength of each test block after each trial and also provide an initial rating

before any trials have been observed. As before, participants are asked to imagine placing

the test block in the machine 100 times, but instead of providing ratings for five intervals

they now simply predict the total number of activations out of 100 that they expect to see.

5.2.3. Model predictions
Fig. 10 shows the results when the schema-learning model is applied to the tasks in

Experiment 2. In both conditions, predictions about the test blocks track the observations

provided, and the curves rise after each positive trial and fall after each negative trial.

Fig. 10. Predictions of the schema-learning model for Experiment 2. A new block is introduced that is either

similar (o)) or different (o+) from all previous blocks, and the trials for each block are shown on the left of the

figure. Each plot shows how inferences about the causal power of the block change with each successive trial.
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The most interesting predictions involve test block o+, which is qualitatively different

from all of the training blocks. The o+ curves for both conditions attain similar values by the

final prediction, but the curve for the p ¼ 0 condition rises more steeply than the curve for

the p ¼ 0.1 condition. Because the training blocks in the p ¼ 0.1 condition activate the

machine on some occasions, the model needs more evidence in this condition before con-

cluding that block o+ is different from all of the training blocks.

The predictions about test block o) also depend on the condition. In the p ¼ 0 condition,

none of the training blocks activates the machine, and the model predicts that o) will also

fail to activate the machine. In the p ¼ 0.1 condition, each training block can be expected to

activate the machine about 15 times out of 100. The curve for this condition begins at

around 15, then gently decays as o) repeatedly fails to activate the machine.

5.2.4. Results
Fig. 11 shows average learning curves across 16 participants. The curves are qualitatively

similar to the model predictions, and as predicted the o+ curve for the p ¼ 0 condition rises

more steeply than the corresponding curve for the p ¼ 0.1 condition. Note that a simple

associative account might predict the opposite result, because the machine in condition p ¼
0.1 activates more times overall than the machine in condition p ¼ 0. To support our quali-

tative comparison between the o+ curves in the two conditions, we ran a two-factor anova

with repeated measures. Because we expect that the p ¼ 0 curve should be higher than the

p ¼ 0.1 curve from the second judgment onwards, we excluded the first judgment from each

condition. There are significant main effects of condition [F(1,15) ¼ 6.11, p < .05] and

judgment number [F(6,90) ¼ 43.21, p < .01], and a significant interaction between

condition and judgment number [F(6,90) ¼ 2.67, p < .05]. Follow-up paired-sample t tests

indicate that judgments two through six are reliably greater in the p ¼ 0 condition (in all

Fig. 11. Mean responses to Experiment 1. The average learning curves closely match the model predictions

in Fig. 10.
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cases p < .05, one-tailed), supporting the prediction that participants are quicker in the p ¼ 0

condition to decide that block o+ is qualitatively different from all previous blocks.

5.3. Alternative models

As mentioned already, our experiments explore the tradeoff between conservatism and

flexibility. When a new object is sparsely observed, the schema-learning model assumes

that this object is similar to previously encountered objects (Experiment 1). Once more

observations become available, the model may decide that the new object is different

from all previous objects and should therefore be assigned to its own category (Experi-

ment 2). We can compare the schema-learning model to two alternatives: an exemplar
model that is overly conservative, and a bottom-up model that is overly flexible. The

exemplar model assumes that each new object is just like one of the previous objects,

and the bottom-up model ignores all of its previous experience when making predictions

about a new object.

We implemented the bottom-up model by assuming that the causal power of a test block

is identical to its empirical power—the proportion of trials on which it has activated the

machine. Predictions of this model are shown in Fig. 12. When applied to Experiment 1, the

most obvious failing of the bottom-up model is that it makes identical predictions about all

four conditions. Note that the model does not make predictions about the first row of

Fig. 8A, because at least one test trial is needed to estimate the empirical power of a new

block. When applied to Experiment 2, the model is unable to make predictions before any

trials have been observed for a given object, and after a single positive trial the model

leaps to the conclusion that test object o+ will always activate the machine. Neither predic-

tion matches the human data, and the model also fails to predict any difference between the

p ¼ 0 and p ¼ 0.1 conditions.

We implemented the exemplar model by assuming that the causal power of each training

block is identical to its empirical power, and that each test block is identical to one of the

training blocks. The model, however, does not know which training block the test block will

match, and it makes a prediction that considers the empirical powers of all training blocks,

weighting each one by its proximity to the empirical power of the test block. Formally, the

distribution dn on the strength of a novel block is defined to be

dn ¼

P
i

widiP
i

wi
ð7Þ

where di is the distribution for training block i, and is created by dividing the interval [0,1]

into eleven equal intervals, setting di(x) ¼ 11 for all values x that belong to the same inter-

val as the empirical power of block i, and setting di(x) ¼ 0 for all remaining values. Each

weight wi is set to 1 ) j pn ) pi j, where pn is the empirical power of the novel block and pi

is the empirical power of training block i. As Eq. 7 suggests, the exemplar model is closely

related to exemplar models of categorization (Medin & Schaffer, 1978; Nosofsky, 1986).
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Predictions of the exemplar model are shown in Fig. 13. The model accounts fairly well

for the results of Experiment 1 but is unable to account for Experiment 2. Because the model

assumes that test object o+ is just like one of the training objects, it is unable to adjust when

o+ activates the machine more frequently than any previous object.

Overall, neither baseline model can account for our results. The bottom-up model is too

quick to throw away observations of previous objects, and the exemplar model is unable to

handle new objects that are qualitatively different from all previous objects. Other baseline

models might be considered, but we are aware of no simple alternative that will account for

all of our data.

Our first two experiments deliberately focused on a very simple setting where causal

schemata are learned and used, but real-world causal learning is often more complex. The

Fig. 12. Predictions of the bottom-up model for (A) Experiment 1 and (B) Experiment 2. In both cases the model

fails to account for the differences between conditions.
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rest of the paper will address some of these complexities: in particular, we show how our

framework can incorporate perceptual features and can handle contexts where causes

interact to produce an effect.

Fig. 13. Predictions of the exemplar model for (A) Experiment 1 and (B) Experiment 2. The model accounts

fairly well for Experiment 1 but fails to realize that test block o+ in Experiment 2 is qualitatively different from

all previous blocks.
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6. Learning causal categories given feature data

Imagine that you are allergic to nuts, and that one day you discover a small white sphere

in your breakfast cereal—a macadamia nut, although you do not know it. To discover the

causal powers of this novel object you could collect some causal data—you could eat it and

wait to see what happens. Probably, however, you will observe the features of the object,

including its color, shape, and texture, and decide to avoid it because it is similar to other

allergy-producing foods that you have encountered.

Our hierarchical Bayesian approach can readily handle the idea that members of a given

category tend to have similar features in addition to similar causal powers (Figs. 3C and

14). Suppose that we have a matrix F which captures many features of the objects under

consideration, including their sizes, shapes, and colors. We assume that objects belonging to

the same category have similar features. For instance, the schema in Fig. 14 specifies that

objects of category cB tend to have features f1 through f4, but objects of category cA tend not

to have these features. Formally, let the schema parameters include a matrix �F, where �fjðcÞ
specifies the expected value of feature fj within category c (Fig. 3D). Building on previous

models of categorization (Anderson, 1991), we assume that the value of fj for object oi is

generated by tossing a coin with bias �fjðziÞ. Our goal is now to use the features F along with

the events V to learn a schema and a set of object-level causal models:

Pðz; �F; �W;W jF;VÞ / PðF j �F; zÞPð �F j zÞPðV jWÞPðW j �W; zÞPð �W j zÞPðzÞ: ð8Þ

There are many previous models for discovering categories of objects with similar fea-

tures (Anderson, 1991; Love, Medin, & Gureckis, 2004), and feature-based categorization is

Fig. 14. Learning a schema and a set of object-level causal models given event and feature data (see Fig. 3C).

Objects belonging to the same category have similar causal powers and similar features, and �fi specifies the

expected value of feature fi within each category. Note that the schema supports inferences about the causal pow-

ers of two objects (o1 and o8, counts underlined in red) that are very sparsely observed. The event and feature

data shown are similar to the data used for Experiment 3.
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sometimes pitted against causal categorization (Gopnik & Sobel, 2000). Our schema-learn-

ing model is based on the idea that real-world categories are often distinguished both by

their characteristic features and their characteristic causal interactions. More often than not,

one kind of information will support the categories indicated by the other, but there will also

be cases where the causal data and the feature data conflict. In a later section we show how

our framework can learn whether causal data or feature data provide the more reliable guide

to category membership.

7. Experiment 3: Combining causal and feature data

Our first two experiments suggest that causal schemata allow causal models for novel

objects to be rapidly learned, sometimes on the basis of a single causal event. Our third

experiment explores whether learners can acquire a causal model for an object on the basis

of its perceptual features alone. The objects in this experiment can be organized into two

family resemblance categories on the basis of their perceptual features, and these two cate-

gories are associated with different causal powers. Observing the features of a novel object

should allow a learner to assign it to one of these categories and to make inferences about

its causal powers.

7.1. Participants

Twenty-four members of the MIT community were paid for participating in this

experiment.

7.2. Procedure

Participants are initially shown an empty machine that activates on 10 of the 20 trials.

Ten blocks then appear on screen, and the features of these blocks support two family

resemblance categories (see Figs. 2 and 15). Before any of the blocks is placed in the

machine, participants are informed that the blocks are laid out randomly, and they are

encouraged to drag them around and organize them in a way that will help them predict

what effect they will have on the machine. Participants then observe 20 trials for blocks

o1 through o8, and see that blocks o1 through o4 activate the machine rarely, but blocks

o5 through o8 activate the machine most of the time. After 20 trials for each block,

participants respond to the same question used in Experiment 1: They imagine 100 trials

involving the block and rate how likely it is that the total number of activations will fall

into each of five intervals. After this training phase, participants answer the same

question for test blocks o) and o+ without seeing any trials involving these blocks.

Experiment 1 explored one-shot learning, and this new task might be described as zero-

shot learning. After making predictions for the two test blocks, participants are asked to

sort the blocks into two categories ‘‘according to their effect on the machine’’ and to

explain the categories they chose.
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7.3. Model predictions

Predictions of the schema-learning model are shown in the left column of Fig. 16A. Each

plot shows the probability that a test block will activate the machine on any given trial.2

Both plots have two peaks, indicating that the model has discovered two categories but is

not certain about the category assignments of the test blocks. The plots are skewed in oppo-

site directions: based on the features of the test blocks, the model predicts that o) will

activate the machine rarely, and that o+ will activate the machine often. The left column of

Fig. 16B shows predictions about a control task that is identical to Experiment 3 except that

all blocks are perceptually identical. The curves are now symmetric, indicating that the

model has no basis for assigning the test blocks to one category or another.

Fig. 16. Results for Experiment 3. (A) Model predictions and mean responses across 24 participants. Even

though no trials are ever observed for objects o) and o+, participants use the features of these objects to make

predictions about their causal powers. (B) Model predictions and mean responses for a control task where all

objects are perceptually identical.

Fig. 15. Training data for Experiment 3. The event data are consistent with two categories: The first includes

objects that prevent the machine from activating, and the second includes objects that activate the machine.

Features f1 through f5 are ‘‘family resemblance’’ features that provide noisy information about the underlying

categories.
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Predictions about the sorting task are summarized in Fig. 17A. The top few sorts are

included, and the most probable solution according to the model is the family resemblance

sort. Although the model allows sorts with any number of categories (including one, three

or more), the probabilities shown in Fig. 17A are calculated with respect to the class of all

two-category solutions.

7.4. Results

Mean responses for the two test blocks are shown in the right column of Fig. 16A. Both

plots are U-shaped curves, suggesting that participants realize that some blocks activate the

machine rarely and others activate the machine often, but that few blocks activate the

machine half the time. As predicted, the curves are skewed in opposite directions, indicating

that o+ is considered more likely to activate the machine than o). We ran a two-factor anova

which compared ratings for the first (0–20) and last (80–100) intervals across the two test

blocks. There is no main effect of interval [F(1,23) ¼ 0.056, p > .5] or of test block

[F(1,23) ¼ 1.50, p > .1], but there is a significant interaction between interval and test block

[F(1,23) ¼ 6.90, p < .05]. Follow up paired-sample t tests support the claim that both plots

in Fig. 16 show skewed U-shaped curves. In the case of object o), the 0.1 bar is significantly

greater than the 0.9 bar (p < .05, one-sided) and the difference between the 0.9 bar and the

0.5 bar is marginally significant (p ¼ .07, one-sided). In the case of object o), the 0.9 bar is

significantly greater than the 0.1 bar (p < .05, one-sided) and the difference between the 0.1

bar and the 0.5 bar is marginally significant (p ¼ .07, one-sided).

We ran an additional 24 participants in a control task that was identical to Experiment 3

except that all blocks were perceptually identical. Mean responses are shown in the right

column of Fig. 16B, and participants now generate U-shaped curves that are close to sym-

metric. The anova analysis described in the previous paragraph now indicates that there is

no main effect of interval or test block, and no significant interaction between interval and

test block. Although both human curves in Fig. 16B are higher on the left than the right,

paired-sample t tests indicate that there is no significant difference between the 0.1 bar and

Fig. 17. Sorts for Experiment 3. (A) Relative probabilities of nine sorts according to the schema-learning model.

Each sort is represented as a vector that specifies category assignments for the 10 objects in Fig. 15. The model

prefers the family resemblance sort. (B) Sorts chosen by participants. Any sort not shown was chosen by at most

one participant. (C) Sorts chosen in the control condition when no causal information was available.
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the 0.9 bar in either case (p > .2). The differences between the 0.9 bar and the 0.5 bar fail to

reach significance in both cases, but the 0.1 bars are significantly greater than the 0.5 bars in

both cases (p < .05, one-sided).

The U-shaped curves in Fig. 16A,B resolve a question left open by Experiment 1.

Responses to the f ¼ f0:1; 0:9g condition of the first experiment did not indicate that par-

ticipants had identified two categories, but the U-shaped curves in Fig. 16B suggest that

participants recognized two categories of blocks. All of the blocks in Experiment 3 produce

the effect sometimes, and the U-shaped curves suggest that participants can use probabilistic

causal information to organize objects into categories. Two differences between Experiment

3 and the second condition of Experiment 1 seem particularly important. In Experiment 3,

more blocks were observed for each category (4 rather than 3), and more trials were

observed for each block (20 rather than 10). Experiment 3 therefore provides more statistical

evidence that there are two categories of blocks.

Responses to the sorting task are summarized in Fig. 17B. The most popular sort orga-

nizes the blocks into the two family resemblance categories, and it is chosen by eight of the

24 participants. Studies of feature-based categorization have consistently found that family

resemblance sorts are rare, and that participants prefer instead to sort objects according to a

single dimension (e.g., size or color) (Medin, Wattenmaker, & Hampson, 1987). To confirm

that this standard result applies in our case, we ran a control task where no causal observa-

tions were available and participants were asked to sort the blocks into categories on the

basis of their perceptual features. The results in Fig. 17C show that none of 24 participants

chose the family resemblance sort. A chi-square test confirms that the family resemblance

sort was chosen significantly more often in the causal task than the control task (p < .01,

one sided). Our results therefore suggest that the causal information provided in Experiment

3 overcomes the strong tendency to form categories based on a single perceptual dimension.

Regardless of the sort that they chose, most participants explained their response by stat-

ing that one category included ‘‘strong activators’’ or blocks that often lit up the machine,

and that the other included weak activators. For example, one participant wrote that the first

category ‘‘activates approximately 10% of the time’’ and the second category ‘‘activates

approximately 90% of the time.’’ Although most participants seem to have realized that

there were two qualitatively different kinds of blocks, only 13 of the 24 assigned the ‘‘strong

activators’’ (blocks o1 through o4) to one category and the ‘‘weak activators’’ (blocks o5

through o8) to the other category. Some of the remaining participants may have deliberately

chosen an alternative solution, but others gave explanations suggesting that they had lost

track of the training trials. Note that the sorting task is relatively demanding, and that partic-

ipants who do not organize the blocks carefully as they go along are likely to forget how

many times each block activated the machine.

8. Discovering causal interactions between categories

Our approach so far captures some kinds of interactions between categories. For example,

the schema in Fig. 1 captures interactions between categories of drugs and categories of
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people—alpha blockers tend to produce headaches, but only in A-people. This schema,

however, does not capture interactions between categories of drugs, and it makes no predic-

tions about what might happen when alpha blockers and beta blockers are simultaneously

ingested. Drugs may interact in surprising ways—for example, two drugs may produce a

headache when combined even though each one is innocuous on its own. We now extend

our model to handle cases of this kind where each event (e.g., ingestion) can involve varying

numbers of objects (e.g., drugs).

The first step is to extend our notation for domain-level problems to allow sets of objects.

The domain-level problem for the drugs and headaches example now becomes

ingestsðperson; fdruggÞ!? headacheðpersonÞ

where each cause event now specifies that a person ingests a set of drugs. Following Novick

and Cheng (2004) we will decompose each cause event into subevents, one for each subset

of the set of drugs. For example, the object-level problem

ingestsðAlice; fDoxazosin; AcebutololgÞ!? headacheðAliceÞ ð9Þ

can be viewed as a combination of four subproblems

ingestsðAlice; ½�Þ!? headacheðAliceÞ ð10aÞ

ingestsðAlice; ½Doxazosin�Þ!? headacheðAliceÞ ð10bÞ

ingestsðAlice; ½Acebutolol�Þ!? headacheðAliceÞ ð10cÞ

ingestsðAlice; ½Doxazosin; Acebutolol�Þ!? headacheðAliceÞ ð10dÞ

The difference between the curly brackets in Eq. (9) and the square brackets in Eq. (10d)

is significant. The subproblem in Eq. (10d) refers to a causal relationship that depends

exclusively on the interaction between Doxazosin and Acebutolol. In other words, the prop-

erties of this causal relationship depend only on the causal power of the pair of drugs, not on

the causal power of either drug taken in isolation. The problem in Eq. (9) refers to the over-

all relationship that results from combining all instances in Eqs. (10a–d). In other words, the

overall effect of taking Doxazosin and Acebutolol may depend on the base rate of experi-

encing headaches, the effect of Doxazosin alone, the effect of Acebutolol alone, and the

effect of combining the two drugs.

Building on the approach described in previous sections, we introduce a causal model for

each subproblem that depends on three parameters. The first indicates whether the subevent

is causally related to the effect, the second indicates the polarity of this causal relationship,

and the third indicates the strength of this relationship. As before, we organize the drugs into

categories, and we assume that object-level causal models are generated from category-level

models that capture the causal powers of each category acting in isolation. Now, however,
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we introduce additional category-level models that capture interactions between categories.

For instance, if Acebutolol and Atenolol are assigned to the same category, then the causal

models for the subproblems

ingestsðAlice; ½Doxazosin; Acebutolol�Þ!? headacheðAliceÞ

ingestsðAlice; ½Doxazosin; Atenolol�Þ!? headacheðAliceÞ

will be generated from the same category-level model. This approach captures the intuition

that members of the same category (e.g., Acebutolol and Atenolol) are expected to interact

with Doxazosin in a similar way.

To formalize these ideas, we extend the W in Eq. 6 to include an arrow a, a polarity g and

a strength s for each combination of objects. We extend the schema in a similar fashion and

include category-level models for each combination of categories. As before, the parameters

for each object-level causal model are generated from the parameters (�a, �g, and �s) for the

corresponding category-level model. For instance, Fig. 18 shows how the causal model for

the o9 + o18 pair is generated from a category-level model that states that categories cA and

cB interact to generate the effect.

Our main remaining task is to specify how the object-level models for the subinstances in

10 combine to influence the probability that Alice develops a headache after ingesting

Doxazosin and Acebutolol. We use the sequential interaction model of Novick and Cheng

(2004) and assume that subevents combine according to a network of noisy-OR and noisy-

AND-NOT gates (Fig. 19). To capture the idea that the causal powers of a set of objects can

be very different from the causal powers of the objects taken individually, we assume that

subevents involving small sets of objects {e.g., ingests(Alice, [Doxazosin])} act first and

can be overruled by subevents involving larger sets {e.g., ingests(Alice, [Doxazosin, Ate-

nolol])}. Although the sequential interaction model seems appropriate for our purposes, the

o1 o8

Fig. 18. Learning about interactions between objects. The schema includes category-level models for each indi-

vidual category and for each pair of categories. The schema shown here has two categories: Individual objects of

either category do not produce the effect, but any pair including objects from both categories will produce the

effect. The collection of object-level causal models includes a model for each object and each pair of objects.

Note that the schema supports inferences about sparsely observed individual objects (e.g., o9) and about pairs

that have never been observed to interact (e.g., o9 and o18, counts underlined in red).
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general framework we have developed allows room for accounts of schema learning that

incorporate alternative models of interaction.

9. Experiment 4: Causal interactions between categories

We designed an experiment to explore schema learning in a setting where pairs of objects

may interact to produce a cause. Our formal framework can now handle several kinds of

data, including contingency data for single objects, contingency data for pairs of objects,

and perceptual features of the objects. In real-world settings, these different kinds of data

will often reinforce each other and combine to pick out a single set of categories. Here, how-

ever, we explore whether information about pairwise interactions alone is sufficient for

learners to discover causal schemata.

Experiment 4 used the same scenario developed for our previous experiments, but now

participants were able to place up to two blocks inside the machine. Unlike Experiments 1

through 3, the individual causal powers of the blocks were identical, and unlike Experiment

3, the blocks were perceptually indistinguishable. The blocks, however, belonged to catego-

ries, and these categories determined the pairwise interactions between blocks. In the

pairwise activation condition, the machine never activated when it contained a single block

or two blocks from the same category, but always activated whenever it contained one block

from each category (Fig. 18). In the pairwise inhibition condition the machine always

activated when it contained a single block or two blocks from the same category, but never

activated when it contained one block from each category. Experiment 4 explores whether

Fig. 19. The sequential interaction model of Novick and Cheng (2004). (A) Network for the case where two

objects may interact to influence an effect event e. Event ei indicates whether the effect would have occurred

based on interactions of up to i objects. For example, eo indicates whether the background cause is active, and e1

indicates whether the effect would have occurred as a result of combining the background cause with the causal

contributions of each object taken individually. Variable e2 indicates whether the effect event actually occurs

when the interaction between the two objects is taken into account. The black arrows are generative with

strength 1, and the gray arrows may or may not exist, may be generative or preventive, and may have any causal

strength. Once the status of each gray arrow is specified, all events in the network combine according to a noisy-

OR/noisy-AND-NOT model. (B) The same general approach can handle interactions among any number of

cause events. Shown here is a case where three objects may interact to influence an effect event. In this case, var-

iable e3 indicates whether the effect event actually occurs.
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participants could infer the underlying causal categories based on pairwise interactions

alone and could use this knowledge to rapidly learn causal models for novel objects.

Our experiment builds on the work of Kemp, Tenenbaum, Niyogi, and Griffiths (2010),

who demonstrated that people can use relationships between objects to organize these

objects into categories.3 These authors considered interactions between objects, but their

stimuli did not allow for the possibility that individual objects might produce the effect in

isolation. We therefore designed a new experiment that relies on the same scenario used in

Experiments 1 through 3.

9.1. Participants

Thirty-two members of the CMU community participated for pay or course credit.

9.2. Stimuli and design

Experiment 4 used the same graphical interface developed for Experiment 1. All of the

blocks were perceptually indistinguishable. The experiment included two conditions and

sixteen participants were assigned to each condition. In the pairwise activation condition,

the machine never activated on its own and never activated when it contained a single block.

The blocks, however, belonged to two categories, and the machine always activated on trials

when it contained an A-block and a B-block. In the pairwise inhibition condition, the

machine always activated when it contained a single block or two blocks from the same

category, but it always failed to activate when it contained two blocks from different

categories.

9.3. Procedure

The experiment was divided into several phases. During phase 0, participants observed

five trials where the empty machine failed to activate. Three blocks were added to the screen

at the start of phase 1. Unknown to the participants, two blocks were A-blocks (o1 and o2)

and the third was a B-block (o10). Participants observed four trials for each individual block,

and the machine never activated (pairwise activation condition) or always activated

(pairwise inhibition condition). Before observing any interactions, participants predicted

what would happen when o1 and o10 were simultaneously placed in the machine. The word-

ing of the question was taken from our previous experiments: Participants imagined 100 trials

when the machine contained the two blocks, and they rated the probability that the total num-

ber of activations would fall within each of five intervals. Participants then saw two trials for

each pair of blocks. Phase 1 finished with a period of ‘‘free experimentation,’’ where partici-

pants were given the opportunity to carry out as many of their own trials as they wished.

Phases 2 through 6 were identical in structure. In each phase, three new blocks were

added to the screen, and one of these blocks served as the ‘‘test block.’’ In some phases the

test block was an A-block, and in others the test block was a B-block. Before observing any

trials involving the new blocks, participants were given a pretest which required them to
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predict how the test block would interact with two of the blocks already on screen, one (o1)

from category cA and the other (o10) from category cB. Participants then observed a single

trial where the test block was paired with one of the blocks already on screen (the probe

block). Armed with this single piece of information, participants completed a posttest that

was identical to the pretest. The phase then finished with a period of free experimentation.

A complete specification of the design is shown in Table 1. The experiment involves 20

blocks in total: blocks o1 through o9 belong to category cA, blocks o10 through o18 belong to

category cB, and there are two test blocks in the final phase (oA and oB). The first and second

rows of Table 1 list the blocks that are added to the screen in each phase, and the block that

serves as the test block in each phase. Participants were randomly assigned to one of four

groups (i through iv), and the probe blocks used for each group are shown in the final four

rows of Table 1. No significant differences between these groups were observed, and we

will collapse across these groups when reporting our results.

The final phase was very similar to phases 2 through 6, but only two new blocks were

added to the screen. One block (oA) was an A-block, and the second (oB) was a B-block. In

phases 2 through 6 only one of the new blocks served as the test block, but in the final phase

both oA and oB served as test blocks. In the pretest for phase 7, participants made predictions

about how oA and oB would interact with o1 and o10 before observing any pairwise trials

involving the test blocks. Participants then observed a single trial involving each test block

and responded to a posttest that was identical to the pretest. After providing these predic-

tions, participants were asked to sort the blocks into two categories ‘‘according to their

effect on the machine’’ and to ‘‘describe how the blocks and machine work.’’

9.4. Model predictions

Although participants made inferences during each phase of the experiment, our main

question is whether they had learned a causal schema by the end of the experiment. We

therefore compare inferences about the first and last phases of the experiment. Kemp et al.

(2010) describe a very similar task and show learning curves that include data from all

phases of the experiment.

Table 1

Design for Experiment 4

Phase 1 2 3 4 5 6 7

Blocks added o1, o2, o10 o3, o11, o12 o4, o13, o14 o5, o6, o15 o7, o8, o16 o9, o17, o18 oA, oB

Test blocks o11 o4 o5 o16 o17 oA, oB

Probe blocks (i) o2 o12 o3 o15 o8 o11, o4

Probe blocks (ii) o2 o12 o3 o15 o8 o4, o11

Probe blocks (iii) o2 o12 o3 o6 o16 o11, o4

Probe blocks (iv) o2 o12 o3 o6 o16 o4, o11

Note. Blocks o1 through o9 belong to category cA and blocks o10 through o18 belong to category cB. In each

pretest and posttest, participants make predictions about interactions between the test block and o1 (an A-block)

and between the test block and o10 (a B-block). Between each pretest and posttest, participants observe a single

trial where the test block is paired with a probe block. Probe blocks for the four groups of participants are shown.
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Figs. 20A.i, B.i show predictions about a pair of blocks before any pairwise trials have

been observed. In the pairwise activation condition, the model has learned by this stage that

individual blocks tend not to produce the effect, and the default expectation captured by the

interaction model is that pairs of blocks will also fail to produce the effect. The model

Fig. 20. Model predictions for Experiment 4. (A) Pairwise activation condition. (i) Before any pairwise trials

have been observed, the model predicts that pairs of objects are unlikely to activate the machine. (ii) Inferences

about test block oA. Before observing any trials involving this block, the model is uncertain about whether it will

activate the machine when paired with o1 or o10. After observing that oA activates the machine when paired with

o18 (a B-block), the model infers that oA will activate the machine when paired with o10 but not o1. (iii) Infer-

ences about test block oB show a similar pattern: The model is uncertain during the pretest, but one observation

involving oB is enough for it to make confident predictions on the posttest. (B) Pairwise inhibition condition.

The prediction in (i) and the posttest predictions in (ii) and (iii) are the opposite of the corresponding predictions

for the pairwise activation condition.
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allows for several possibilities: There may or may not be a conjunctive cause corresponding

to any given pair of blocks, and this conjunctive cause (if it exists) may be genera-

tive or preventive and may have high or low strength. Most of these possibilities lead

to the prediction that the pair of blocks will be unlikely to activate the machine. The

machine is only likely to activate if the pair of blocks corresponds to a conjunctive

cause with high strength, and this possibility receives a relatively low probability

compared to the combined probability assigned to all other possibilities. Similarly, in

the pairwise inhibition condition the model has learned that individual blocks tend to

produce the effect, and the default expectation captured by the interaction model is

that pairs of blocks will also produce the effect.

After observing several pairwise interactions, the model discovers that the default expec-

tation does not apply in all cases, and that some pairs of blocks activate the machine when

combined. By the final phase of the task, the model is confident that the blocks can be orga-

nized into two categories, where blocks o1 through o9 belong to category cA and blocks o10

through o18 belong to category cB. The model, however, is initially uncertain about the

category assignments of the two test blocks (blocks oA and oB) and cannot predict with

confidence whether either block will activate the machine when paired with o1 or o10

(Fig. 20ii–iii). Recall that the two categories have no distinguishing features, and that blocks

oA and oB cannot be categorized before observing how they interact with one or more previ-

ous blocks. After observing a single trial where oA is paired with one of the previous blocks,

the model infers that oA probably belongs to category A. In the pairwise activation condition,

the model therefore predicts that the pair {oA, o10} will probably activate the machine but

that the pair {oA, o1} will not (Fig. 20A.ii–iii). Similarly, in the pairwise activation condi-

tion, a single trial involving oB is enough for the model to infer that {oB, o1} will probably

activate the machine although the pair {oB, o10} will not.

9.5. Results

Figs. 21A.i, B.i show mean inferences about a pairwise interaction before any pairwise

trials have been observed. As expected, participants infer that two blocks which fail to acti-

vate the machine individually will fail to activate the machine when combined (pairwise

activation condition), and that two blocks which individually activate the machine will acti-

vate the machine when combined (pairwise inhibition condition). A pair of t tests indicates

that the 0.1 bar is significantly greater than the 0.9 bar in Fig. 21A.i (p < .001, one-sided)

but that the 0.9 bar is significantly greater than the 0.1 bar in Fig. 21B.i (p < .001, one-

sided). These findings are consistent with the idea that learners assume by default that

multiple causes will act independently of one another.

By the end of the experiment, participants were able to use a single trial involving a novel

block to infer how this block would interact with other previously observed blocks. The

mean responses in Fig. 21 match the predictions of our model and show that one-shot learn-

ing is possible even in a setting where any two blocks taken in isolation appear to have iden-

tical causal powers. A series of paired-sample t tests indicates that the difference between

the 0.1 and the 0.9 bars is not significant for any of the pretest plots in Fig. 21 (p > .3 in all
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cases), but the difference between these bars is significant for each posttest plot (p < .05 in

all cases). Although the model predictions are broadly consistent with our data, the model is

often extremely confident in cases where the mean human response appears to be a

U-shaped curve. In all of these cases, however, few individuals generate U-shaped curves,

and the U-shaped mean is a consequence of averaging over a majority of individuals who

match the model and a minority who generate curves that are skewed in the opposite

direction.

Responses to the sorting task provided further evidence that participants were able to dis-

cover a causal schema based on interaction data alone. In each condition, the most common

sort organized the 18 blocks into the two underlying categories. In the pairwise activation

condition, five of the 16 participants chose this response, and an additional three gave

responses that were within three moves of this solution. In the pairwise inhibition condition,

Fig. 21. Data for Experiment 4. All inferences are qualitatively similar to the model predictions in Fig. 20.
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nine of the 16 participants chose this response, and an additional two gave responses that

were within three moves of this solution. The remaining sorts appeared to vary idiosyncrati-

cally, and no sort other than the most common response was chosen by more than one par-

ticipant. As in Experiment 3, the sorting task is relatively challenging, and participants who

did not organize the blocks as they went found it difficult to sort them into two categories at

the end of the experiment. Several participants gave explanations suggesting that they had

lost track of the observations they had seen.

Other explanations, however, suggested that some participants had discovered an explicit

causal schema. In the pairwise activation condition, one participant sorted the blocks into

categories that she called ‘‘activators’’ and ‘‘partners,’’ and wrote that ‘‘the machine

requires both an activator and a partner to work.’’ In the pairwise inhibition condition, one

participant wrote the following:

The machine appears to take two different types of blocks. Any individual block
turns on the machine, and any pair of blocks from the same group turns on the
machine. Pairing blocks from different groups does not turn on the machine.

An approach similar to the exemplar model described earlier will account for people’s

inferences about test blocks oA and oB. For example, if oA is observed to activate o18 in the

pairwise activation condition, the exemplar model will assume that oA is similar to other

blocks that have previously activated o18, and will therefore activate o11 but not o1. Note,

however, that the exemplar model assumes that learners have access to the observations

made for all previous blocks, and we propose that this information can only be maintained if

learners choose to sort the blocks into categories. The exemplar model also fails to explain

the results of the sorting task, and the explanations that mention an underlying set of catego-

ries. Finally, Experiment 2 of Kemp et al. (2010) considers causal interactions, and it was

specifically designed to compare approaches like the exemplar model with approaches that

discover categories. The results of this experiment rule out the exemplar model, but they are

consistent with the predictions of our schema-learning framework.

10. Children’s causal knowledge and its development

We proposed that humans learn to learn causal models by acquiring abstract causal sche-

mata, and our experiments confirm that adults are able to learn and use abstract causal

knowledge. Some of the most fundamental causal schemata, however, are probably acquired

early in childhood, and learning abstract schemata may itself be a key component of cogni-

tive development. Although our experiments focused on adult learning, this section shows

how our approach helps to account for children’s causal learning.

Our experiments explored three learning challenges: grouping objects into categories

with similar causal powers (Fig. 6 and Experiments 1 and 2), categorizing objects based on

their causal powers and their perceptual features (Fig. 14 and Experiment 3), and forming

categories to explain causal interactions between objects (Fig. 18 and Experiment 4). All
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three challenges have been explored in the developmental literature, and we consider each

one in turn.

10.1. Categories and causal powers

The developmental literature on causal learning includes many studies that address the

relationship between categorization and causal reasoning. Researchers have explored

whether children organize objects into categories with similar causal powers, and whether

their inferences rely more heavily on causal powers or perceptual features. Many studies

that address these questions have used the blicket detector paradigm (Gopnik & Sobel,

2000; Nazzi & Gopnik, 2000; Sobel, Sommerville, Travers, Blumenthal, & Stoddard,

2009), and we will show how our model accounts for several results that have emerged from

this paradigm.

In a typical blicket detector study, children are shown a set of blocks and a detector.

Some blocks are blickets and will activate the detector if placed on top of it. Other blocks

are inert and have no effect on the detector. Many questions can be asked using this setup,

but for now we consider the case where all blocks are perceptually identical and the task is

to organize these blocks into categories after observing their interactions with the detector.

Gopnik and Sobel (2000) and others have established that young children can accurately

infer whether a given block is a blicket given only a handful of relevant observations. For

example, suppose that the detector activates when two blocks (A and B) are simultaneously

placed on top of it, but fails to activate when A alone is placed on top of it. Given these out-

comes, 3-year-olds correctly infer that block B must be a blicket.

Our formal approach captures many of the core ideas that motivated the original blicket

detector studies, including the idea that objects have causal powers and the idea that objects

with similar causal powers are organized into categories. Our work also formalizes the rela-

tionship between object categories (e.g., categories of blocks) and event data (e.g., observa-

tions of interactions between blocks and the blicket detector). In particular, we propose that

children rely on an intermediate level of knowledge which specifies the causal powers of

individual objects, and that they understand that the outcome of a causal event depends on

the causal powers of the specific objects (e.g., blocks) involved in that event.

Several previous authors have presented Bayesian analyses of blicket-detector experi-

ments (Gopnik, Glymour, Sobel, Schulz, Kushnir, & Danks, 2004), and it is generally

accepted that the results of these experiments are consistent with a Bayesian approach. Typi-

cally, however, the Bayesian models considered do not incorporate all of the intuitions

about causal kinds that are captured by our framework. A standard approach used by Gopnik

et al. (2004) and others is to construct a Bayes net where there is a variable for each block

indicating whether it is on the detector, an additional variable indicating whether the detec-

tor activates, and an arrow from each block variable to the detector variable only if that

block is a blicket. This simple approach provides some insight but fails to capture key

aspects of knowledge about the blicket detector setting. For example, if the experimenter

introduces a new block and announces that it is a blicket, the network must be extended by

adding a new variable that indicates whether the new block is on the detector and by draw-
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ing an arrow between this new variable and the detector variable. Knowing how to modify

the network in this way is critical, but this knowledge is not captured by the original net-

work. More precisely, the original network does not explicitly capture the idea that blocks

can be organized into categories, and that there is a predictable relationship between the cat-

egory membership of a block and the outcome of events involving that block.

To address these limitations of a basic Bayes net approach, Danks (2007) and Griffiths and

Tenenbaum (2007) proposed formalisms that explicitly rely on distinct causal models for

blickets and nonblickets. Both of these approaches assume that all blickets have the same

causal strength, but our model is more flexible and allows objects in the same category to

have different causal strengths. For example, in the p ¼ {0, 0.5} condition of Experiment 1,

block o6 activates the machine 4 times out of 10 and block o7 activates the machine 6 times

out of 10. Our model infers that o7 has a greater causal strength than o6, and the means of the

strength distributions for these blocks are 0.49 and 0.56, respectively. Although the blocks

vary in strength, the model is 90% certain that the two belong to the same category. To our

knowledge, there are no developmental experiments that directly test whether children under-

stand that blocks in the same category can have different causal strengths. This prediction of

our model, however, is supported by two existing results. Kushnir and Gopnik (2005) found

that 4-year-olds track the causal strengths of individual blocks, and Gopnik, Sobel, Shulz,

and Glymour (2001) found that 3-year-olds will categorize two objects as blickets even if one

activates the machine more often (three of three trials) than the other (two of three trials).

Combining these results, it seems likely that 4-year-olds will understand that two objects

have different causal strengths but recognize that the two belong to the same category.

Although most blicket detector studies present children with only a single category of

interest (i.e., blickets), our model makes an additional prediction that children should be

able to reason about multiple categories. In particular, our model predicts that children will

distinguish between categories of objects that have similar causal powers but very different

causal strengths. Consider a setting, for example, where there are three kinds of objects:

blickets, wugs, and inert blocks. Each blicket activates the detector 100% of the time, and

each wug activates the detector between 20% and 30% of the time. Our model predicts

that young children will understand the difference between blickets and wugs, and will be

able to organize novel blocks into these categories after observing their effects on the

detector.

10.2. Categories, causal powers, and features

This section has focused so far on problems where the objects to be categorized are per-

ceptually identical, but real-world object categories often vary in their perceptual properties

as well as their causal powers. A central theme in the developmental literature is the rela-

tionship between perceptual categorization (i.e., categorization on the basis of perceptual

properties) and conceptual or theory-based categorization (i.e., categorization on the basis

of nonobservable causal or functional properties). Many researchers have compared these

two kinds of categorization and have explored how the tradeoff between the two varies with

age. One influential view proposes that infants initially form perceptual categories and only
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later come to recognize categories that rely on nonobservable causal properties. Keil (1989)

refers to this position as ‘‘Original Sim,’’ and he and others have explored its implications.

The blicket detector paradigm can be used to explore a simple version of the tradeoff

between perceptual and causal categorization. Gopnik and Sobel (2000) considered a con-

flict task where the blocks to be categorized had different perceptual features, and where

these perceptual features were not aligned with the causal powers of these blocks. One task

used four blocks, where two blocks activated the blicket detector but two did not (Fig. 22A).

Each block therefore had a causal match, and each block was also perceptually identical to

exactly one other block in the set. Crucially, however, the perceptual match and the causal

match for each block were different. Children were told that one of the blocks that activated

the detector was a blicket and were asked to pick out the other blicket. Consistent with the

‘‘Original Sim’’ thesis, 2-year-olds preferred the perceptual match. Three- and four-year-

olds relied more heavily on causal information and were equally likely to choose the

perceptual and the causal match. A subsequent study by Nazzi and Gopnik (2000) used a

similar task and found that 4.5-year-olds showed a small but reliable preference for the

causal match. Taken together, these results provide evidence for a developmental shift from

perceptual to causal categorization.

Fig. 22. Modeling the shift from perceptual to causal categorization. (A) The four objects in the Gopnik and

Sobel (2000) conflict task. The two objects with the power to activate the blicket detector are marked with musi-

cal notes. Note that object o1 could be grouped with a causal match (o2) or a perceptual match (o3). The table

shows how the causal and perceptual data are provided as input to our model, and it includes a single feature f1
which indicates whether the objects are cubes or cylinders. (B) Our hierarchical Bayesian framework can be

extended to handle multiple systems of objects. Note that a single set of hyperparameters which specifies the

relative weights of causal (cc) and perceptual (cf) information is shared across all systems. Our model observes

how the objects in the first n ) 1 systems are organized into categories, and it learns that in each case the catego-

ries are better aligned with the causal observations than the feature data. The model must now infer how the

objects in the final system are organized into categories. (C) After learning that object o1 in the final system is a

blicket, the model infers whether o2 and o3 are likely to be blickets. Relative probabilities of these two outcomes

are shown. The curves show a shift from perceptual categorization (o3 preferred) to causal categorization

(o2 preferred).
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Unlike previous Bayes net models of blicket detector tasks, our approach can be applied

to problems like the conflict task where causal information and perceptual information are

both available. As demonstrated in our third experiment, a causal schema can specify infor-

mation about the appearance and the causal powers of the members of a given category, and

our schema learning model can exploit both kinds of information. In the conflict task of

Gopnik and Sobel (2000), the inference made by our model will depend on the relative

values of two hyperparameters: cc and cf, which specify the extent to which the blocks in

a given category are expected to have different causal powers (cc) and different features

(cf). For modeling our adult experiments we set cc to a smaller value than cf (cc ¼ 0.1 and

cf ¼ 0.5), which captures the idea that adults view causal information as a more reliable

guide to category membership than perceptual information. As initially configured, our

model therefore aims to capture causal knowledge at a stage after the perceptual to causal

shift has occurred.

A natural next step is to embed our model in a framework where the hyperparameters cc

and cf are learned from experience. The resulting approach is motivated by the idea that the

developmental shift from perceptual to causal categorization may be explained in part as a

consequence of rational statistical inference. Given exposure to many settings where causal

information provides a more reliable guide to category membership than perceptual infor-

mation, a child may learn to rely on causal information in future settings. To illustrate this

idea, we describe a simple simulation based on the Gopnik and Sobel (2000) conflict task.

Fig. 22B shows how our schema learning framework can be extended to handle multiple

systems of objects. We consider a simple setting where each system has two causal catego-

ries and up to six objects. Fig. 22B shows that the observations for the final test system are

consistent with the Gopnik and Sobel (2000) conflict task: objects o1 and o2 activate the

detector but the remaining objects do not, and object o1 is perceptually identical to o3 (both

have feature f1) but not o2 or o4. We assume that causal and feature data are available for

each previous system, that the category assignments for each previous system are observed,

and that these category assignments are always consistent with the causal data rather than

the feature data. Two of these previous systems are shown in Fig. 22B.

Fig. 22B indicates that the category assignments for the test system are unobserved, and

that the model must decide whether o1 is more likely to be grouped with o2 (the causal

match) or o3 (the perceptual match). If the test system is the first system observed (i.e., if

n ¼ 1), Fig. 22C shows that the model infers that the perceptual match (o3) is more likely to

be a blicket. Given experience with several systems, however, the model now infers that the

causal match (o2) is more likely to be a blicket.

The developmental shift in Fig. 22C is driven by the model’s ability to learn appropriate

values of the hyperparameters cc and cf given the first n ) 1 systems of objects. The hierar-

chy in Fig. 22B indicates that a single pair of hyperparameters is assumed to characterize all

systems, and the prior distribution used for each parameter is a uniform distribution over the

set {2)6,2)5,…,23}. Although the model begins with a symmetric prior over these hyper-

parameters, it initially prefers categories that match the features rather than the causal obser-

vations. The reason is captured by Fig. 3D, which indicates that the features are directly

generated from the underlying categories but that the event data are one step removed from
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these categories. The model assumes that causal powers rather than causal events are

directly generated from the categories, and it recognizes that a small set of event data may

not accurately reflect the causal powers of the objects involved. Given experience with sev-

eral previous systems, however, the model infers that cc is smaller than cf, and that causal

observations are a more reliable guide to category membership than perceptual features. A

similar kind of learning is discussed by Kemp et al. (2007), who describe a hierarchical

Bayesian model that learns that shape tends to be a more reliable guide to category member-

ship than other perceptual features such as texture and color.

The simulation results in Fig. 22C are based on a simple artificial scenario, and the pro-

posal that statistical inference can help to explain the perceptual to conceptual shift needs to

be explored in more naturalistic settings. Ultimately, however, this proposal may help to

resolve a notable puzzle in the developmental literature. Many researchers have discussed

the shift from perceptual to conceptual categorization, but Mandler (2004) writes that ‘‘no

one … has shown how generalization on the basis of physical appearance gets replaced by

more theory-based generalization’’ (p. 173). We have suggested that this shift might be

explained as a consequence of learning to learn, and that hierarchical Bayesian models like

the one we developed can help to explain how this kind of learning is achieved.

Although this section has focused on tradeoffs between perceptual and causal informa-

tion, in many cases children rely on both kinds of information when organizing objects into

categories. For example, children may learn that balloons and pins have characteristic fea-

tures (e.g., balloons are round and pins are small and sharp) and that there is a causal rela-

tionship between these categories (pins can pop balloons). Children must also combine

perceptual and causal information when acquiring the concept of animacy: Animate objects

have characteristic features, including eyes (Jones, Smith & Landau, 1991), but they also

share causal powers like the ability to initiate motion (Massey & Gelman, 1988). Under-

standing how concepts like animacy emerge over development is a challenging puzzle, but

models that combine both causal and perceptual information may contribute to the solution.

10.3. Causal interactions

Children make inferences about the causal powers of individual objects but also under-

stand how these causal powers combine when multiple objects act simultaneously. The origi-

nal blicket detector studies included demonstrations where multiple objects were placed on

the detector, and 4-year-olds correctly assumed that these interactions were consistent with

an OR function (i.e., that the detector would activate if one or more blickets were placed on

top of it). Consistent with these results, our model assumes by default that causal interactions

are governed by a noisy-OR function, but Experiment 4 demonstrates that both adults and our

model are able to learn about other kinds of interactions. Lucas and Griffiths (2010) present

additional evidence that adults can learn about a variety of different interactions, and future

studies can test the prediction that this ability is available relatively early in development.

Our modeling approach relies on the idea that causal interactions between individual

objects can be predicted using abstract laws that specify how categories of objects are

expected to interact. Recent work of Schulz, Goodman, Tenenbaum, and Jenkins (2008)
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supports the idea that young children can learn abstract laws, and they can do so on the basis

of a relatively small number of observations. These authors introduced preschoolers to a set

of seven blocks that included two red blocks, two yellow blocks, two blue blocks, and one

white block. Some pairs of blocks produced a sound whenever they came into contact—for

example, a train sound was produced whenever a red block and a blue block came into con-

tact, and a siren sound was produced whenever a yellow block and a blue block came into

contact (Fig. 23A). Other pairs of blocks produced no sound—for example, red blocks and

yellow blocks never produced a sound when paired. Here we consider two conditions that

differ only in the role played by the white block. In condition 1, the white block produced

the train sound when paired with a red block, but in condition 2 the white block produced

the train sound when paired with a blue block. No other observations involved the white

block—in particular, children never observed the white block come into contact with a

yellow block.

Using several dependent measures, Schulz and colleagues found that children in condi-

tion 1 expected the white block to produce the siren sound when paired with a yellow block,

but that children in condition 2 did not. Our model accounts for this result. The evidence in

condition 1 is consistent with the hypothesis that white blocks and blue blocks belong to the

Fig. 23. (A) Evidence provided in conditions 1 and 2 of Schulz et al. (2008). (B) Model predictions about an

interaction between a yellow block and a white block. Like preschoolers, the model infers that this combination

is likely to produce a siren noise in condition 1 but not in condition 2. (C) Input data used to generate the model

prediction for condition 1. Each entry in the first matrix shows the number of times that two blocks were touched

and the number of times that the train sound was heard. For example, the red blocks came into contact twice,

and the train sound was produced on neither trial. The second matrix specifies information about the siren

sound, and the third matrix captures the perceptual features of the seven blocks. The input data for condition 2

are similar but not shown here.
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same causal category—the category of WB blocks, say. Because the evidence suggests that

yellow blocks produce the siren sound when paired with WB blocks, our model infers that

the combination of a yellow block and a white block will probably produce the siren sound

(Fig. 23B). In condition 2, however, the evidence supports the hypothesis that white blocks

and red blocks belong to a category—the category of WR blocks. Because the evidence

suggests that WR blocks and yellow blocks produce no sound when paired, the model infers

that the combination of a yellow block and a white block will probably fail to produce the

siren sound. The input data used to generate the model predictions for condition 1 are shown

in Fig. 23C. The data include a matrix of observations for each effect (train sound and siren

sound) and a matrix of perceptual features that specifies the color of each block.

The result in Fig. 23B follows directly from the observation that white blocks are just like

blue blocks in condition 1, but that white blocks are just like red blocks in condition 2. This

observation may seem simple, but Schulz and colleagues point out that it cannot be captured

by the standard Bayes net approach to causal learning. The standard approach will learn a

Bayes net defined over variables that represent events, such as a contact event involving a

red block and a white block. The standard approach, however, has no basis for making pre-

dictions about novel events such as a contact event involving a yellow block and a white

block. Our model overcomes this limitation by learning categories of objects and recogniz-

ing that the outcome of a novel event can be predicted given information about the category

membership of the objects involved. The work of Schulz et al. suggests that young children

are also able to learn causal categories from interaction data and to use these categories to

make inferences about novel events.

We have now revisited three central themes addressed by our experiments—causal cate-

gorization, the tradeoff between causal and perceptual information, and causal inter-

actions—and showed how each one is grounded in the literature on cognitive development.

We described how our model can help to explain several empirical results, but future devel-

opmental experiments are needed to test our approach in more detail. Causal reasoning has

received a great deal of attention from the developmental community in recent years, but

there are still few studies that explore learning to learn. We hope that our approach will

stimulate further work in this area, and we expect in turn that future empirical results will

allow us to improve our approach as a model of children’s learning.

11. Discussion

This paper developed a computational model that can handle multiple inductive tasks,

and that learns rapidly about later tasks given experience with previous tasks from the same

family. Our approach is motivated by the idea that learning to learn can be achieved by

acquiring abstract knowledge that is relevant to all of the inductive tasks within a given fam-

ily. A hierarchical Bayesian approach helps to explain how abstract knowledge can be

learned after experience with the first few tasks in a family, and how this knowledge can

guide subsequent learning. We illustrated this idea by developing a hierarchical Bayesian

model of causal learning.
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The model we described includes representations at several levels of abstraction. Near

the top of the hierarchy is a schema that organizes objects into categories and specifies the

causal powers and characteristic features of these categories. We showed that schemata of

this kind support top-down learning and capture background knowledge that is useful when

learning causal models for sparsely observed objects. Our model, however, also supports

bottom-up learning, and we showed how causal schemata can be learned given perceptual

features and contingency data.

Our experiments suggest that our model matches the abilities of human learners in several

respects. Experiment 1 explored one-shot causal learning and suggested that people learn

schemata which support confident inferences given very sparse data about a new object.

Experiment 2 explored a case where people learn a causal model for an object that is quali-

tatively different from all previous objects. Strong inductive constraints are critical when

data are sparse, but Experiment 2 showed that people (and our model) can overrule these

constraints when necessary. Experiment 3 focused on ‘‘zero-shot causal learning’’ and

showed that people make inferences about the causal powers of an object based purely on

its perceptual features. Experiment 4 suggested that people form categories that are distin-

guished only by their causal interactions with other categories.

Our experiments used two general strategies to test the psychological reality of the hierar-

chy used by our model. One strategy focused on inferences at the bottom level of the hierar-

chy. Experiments 1, 3, and 4 considered one-shot or zero-shot causal learning and suggested

that the upper levels of the model explain how people make confident inferences given very

sparse data about a new object. A second strategy is to directly probe what people learn at

the upper levels of the hierarchy. Experiments 3 and 4 asked participants to sort objects into

categories, and the resulting sorts provide evidence about the representations captured by

the schema level of our hierarchical model. A final strategy that we did not explore is to

directly provide participants with information about the upper levels of the hierarchy, and to

test whether this information guides subsequent inferences. Consider, for instance, the case

of a science student who is told that ‘‘pineapple juice is an acid, and acids turn litmus paper

red.’’ When participants are sensitive to abstract statements of this sort, we have additional

evidence that their mental representations capture some of the same information as the hier-

archies used by our model.

11.1. Related models

Our work is related to three general areas that have been explored by previous research-

ers: causal learning, categorization, and learning to learn. This section compares our

approach to some of the formal models that have been developed in each area.

11.1.1.Learning to learn
The hierarchical Bayesian approach provides a general framework for explaining learning

to learn, and it has been explored by researchers from several communities. Statisticians and

machine learning researchers have explored the theoretical properties of hierarchical Bayes-

ian models (Baxter, 1998) and have applied them to challenging real-world problems (Blei,
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Ng, & Jordan, 2003; Gelman, Carlin, Stern, & Rubin, 2003; Good, 1980). Psychologists

have suggested that these models can help to explain human learning, and they have used

them to explore how children learn to learn words (Kemp et al., 2007) and feature-based

categories (Perfors & Tenenbaum, 2009).

Our work is motivated by many of the same general considerations as these previous

approaches, but it represents one of the first attempts to explore learning to learn in a causal

context. Our work also helps to demonstrate the flexibility of the hierarchical Bayesian

approach to learning. Previous hierarchical approaches in the psychological literature often

use hierarchies where the knowledge at the top level is very simple—for example, where

this knowledge is captured by one or two parameters (Kemp et al., 2007). Our work illus-

trates that the same basic approach can explain how richer kinds of abstract knowledge can

be acquired. We showed, for example, how causal schemata can be learned, where each

schema is a system that includes causal categories along with category-level causal models

that specify causal relationships between these categories.

11.1.2. Causal learning
Although there are few accounts of learning to learn in a causal setting, there are many

previous models of causal learning and reasoning. Like many of these models (Gopnik &

Glymour, 2002; Griffiths & Tenenbaum, 2005; Pearl, 2000), our work uses Bayesian net-

works to capture causal knowledge. For example, each object-level causal model in our

framework is formalized as a causal Bayesian network. Note, however, that our approach

depends critically on a level of representation that is more abstract than causal networks.

We suggest that human inferences rely on causal schemata or systems of knowledge that

capture expectations about object-level causal models.

11.1.3. Categorization
A causal schema groups a set of objects into categories, and our account of schema learn-

ing builds on two previous models of categorization. Our approach assumes that the cate-

gory assignments of two objects will predict how they relate to each other, and the same

basic assumption is made by the infinite relational model (Kemp et al., 2006), a probabilistic

approach that organizes objects into categories that relate to each other in predictable ways.

We also assume that objects belonging to the same category will tend to have similar fea-

tures, and we formalize this assumption using the same probabilistic machinery that lies at

the heart of Anderson’s rational approach to categorization (Anderson, 1991). Our model

can therefore be viewed as an approach that combines these two accounts of categorization

with a Bayesian network account of causal reasoning. Because all of these accounts work

with probabilities, it is straightforward to bring them together and create a single integrated

framework for causal reasoning.

11.1.4. Categorization and causal learning
Previous authors have studied the relationship between categorization and causal rea-

soning (Waldmann & Hagmayer, 2006), and Lien and Cheng (2000) present a formal

model that combines these two aspects of cognition. These authors consider a setting
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similar to our third experiment where learners must combine contingency data and

perceptual features to make inferences about sparsely observed objects. Their approach

assumes that the objects of interest can be organized into one or more hierarchies, and

that there are perceptual features which pick out each level in each hierarchy. Each

perceptual feature is assumed to be a potential cause of effect e, and the probabilistic
contrast for each cause c with respect to the effect is P(e+ j c+) ) P(e+ j c)). Lien and

Cheng suggest that the best explanation of the effect is the cause with maximal probabi-

listic contrast.

Although related to our own approach, the theoretical problem addressed by the principle

of maximal contrast is different from the problem of discovering causal schemata. In our

terms, Lien and Cheng assume that a learner already knows about several overlapping cate-

gories, where each category corresponds to a subtree of one of the hierarchies. They do not

discuss how these categories might be discovered in the first place, but they provide a

method for identifying the category that best explains a novel causal relation. We have

focused on a different problem: Our schema-learning model does not assume that the

underlying categories are known in advance, but it shows how a single set of nonoverlap-

ping categories can be discovered.

Our work goes beyond the Lien and Cheng approach in several respects. Our model

accounts for the results of Experiments 1, 2, and 4, which suggest that people organize

perceptually identical objects into causal categories. In contrast, the Lien and Cheng model

has no way to address problems where all objects are perceptually identical. In their own

experiments, Lien and Cheng apply their model to several problems where causal informa-

tion and perceptual features are both available, and where a subset of the perceptual fea-

tures pick out the underlying causal categories. Experiment 3, however, exposes a second

important difference between our model and their approach. Our model handles cases like

Fig. 14 where the features provide a noisy indication of the underlying causal categories,

but the Lien and Cheng approach can only handle causal categories that correlate perfectly

with a perceptual feature. Experiment 3 supports our approach by demonstrating that peo-

ple can discover categories in settings where perceptual features correlate roughly with the

underlying categories, but where there is no single feature that perfectly distinguishes

these categories.

Although the Lien and Cheng model will not account for the results of any of our

experiments, it goes beyond our work in one important respect. Lien and Cheng suggest

that potential causes can be organized into hierarchies—for example, ‘‘eating cheese’’ is

an instance of ‘‘eating dairy products’’ which in turn is an instance of ‘‘eating animal

products.’’ Different causal relationships are best described at different levels of these

hierarchies—for example, a certain allergy might be caused by ‘‘eating dairy products,’’

and a vegan may feel sick at the thought of ‘‘eating animal products.’’ Our model does

not incorporate the notion of a causal hierarchy—objects are grouped into categories, but

these categories are not grouped into higher-level categories. As described in the next

section, however, it should be possible to develop extensions of our approach where

object-level causal models and features are generated over a hierarchy rather than a flat set

of categories.
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11.2. Learning and prior knowledge

Any inductive learner must rely on prior knowledge of some kind and our model is no

exception. This section highlights the prior knowledge assumed by our approach and dis-

cusses where this knowledge might come from. Understanding the knowledge assumed by

our framework is especially important when considering its developmental implications.

The ultimate goal should be to situate our approach in a developmental sequence that helps

to explain the origin of each of its components, and we sketch some initial steps towards this

goal.

The five shaded nodes in Fig. 3D capture much of the knowledge assumed by our

approach. Consider first the nodes that represent domains (e.g., people) and events (e.g.,

ingests(Æ,Æ)). Domains can be viewed as categories in their own right, and these categories

might emerge as the outcome of prior learning. For example, our approach could help to

explain how a learner organizes the domain of physical objects into animate and inanimate

objects, and how the domain of animate objects is organized into categories like people and

animals. As these examples suggest, future extensions of our approach should work with

hierarchies of categories and explore how these hierarchies are learned. It may be possible,

for example, to develop a model that starts with a single, general category (e.g., physical

objects) and that eventually develops a hierarchy which indicates that people are animate

objects and that animate objects are physical objects. There are several probabilistic

approaches that work with hierarchies of categories (Kemp, Griffiths, Stromsten, & Tenen-

baum, 2004; Kemp & Tenenbaum, 2008; Schmidt, Kemp, & Tenenbaum, 2006), and it

should be relatively straightforward to combine one of these approaches with our causal

framework.

Although our model helps to explain how categories of objects are learned, it does not

explain how categories of events might emerge. There are several probabilistic approaches

that explore how event categories could be learned (Buchsbaum, Griffiths, Gopnik, &

Baldwin, 2009; Goodman, Mansinghka, & Tenenbaum, 2007), and it may be possible to

combine these approaches with our framework. Ultimately researchers should aim for

models that can learn hierarchies of event categories—for example, touching is a kind of

physical contact, and physical contact is a kind of event.

The third shaded node at the top of Fig. 3D represents a domain-level problem. Our

framework takes this problem for granted but could potentially learn which problems cap-

ture possible causal relationships. Given a set of domains and events, the learner could

consider a hypothesis space that includes all domain-level problems constructed from these

elements, and the learner could identify the problems that seem most consistent with the

available data. Different domain-level problems may make different assumptions about

which events are causes and which are effects, and intervention data and temporal data are

likely to be especially useful for resolving this issue: Effect events can be changed by

intervening on cause effects, but not vice versa, and event effects usually occur some time

after cause effects.

In many cases, however, the domain-level problem will not need to be learned from data,

but will be generated by inheritance over a hierarchy of events and a hierarchy of domains.
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For example, suppose that a learner has formulated a domain-level problem which recog-

nizes that acting on a physical object can affect the state of that object:

actionðphysical object 1; physical object 2Þ!? stateðphysical object 2Þ

If the learner knows that a touching is an action, that people and toys are both physical

objects, and that emitting sound is a state, then the learner can use domain and event inheri-

tance to formulate a domain-level problem which recognizes that humans can make toys

emit sound by touching them:

touchðperson; toyÞ!? emits soundðtoyÞ

A domain-level problem identifies a causal relationship that might exist, but additional

evidence is needed to learn a model which specifies whether this relationship exists in real-

ity. The distinction between domain-level problems and causal models is therefore directly

analogous to the distinction between possibility statements (this toy could be made out of

wood) and truth statements (this toy is actually made out of plastic). Previous authors have

suggested that possibility statements are generated by inheritance over ontological hierar-

chies (Keil, 1979; Sommers, 1963), and that these hierarchies can be learned (Schmidt et al.,

2006). Our suggestions about the origins of domain-level problems are consistent with these

previous proposals.

The final two shaded nodes in Fig. 3D represent the event and feature data that are pro-

vided as input to our framework. Like most other models, our current framework takes these

inputs for granted, but it is far from clear how a learner might convert raw sensory input into

a collection of events and features. We can begin to address this question by adding an addi-

tional level at the bottom of our hierarchical Bayesian model. The information observed at

this level might correspond to sensory primitives, and a learner given these observations

might be able to identify the events and features that our current approach takes for granted.

Goodman et al. (2007) and Austerweil and Griffiths (2009) describe probabilistic models

that discover events and features given low-level perceptual primitives, and the same

general approach could be combined with our framework.

Even if a learner can extract events and features from the flux of sensory experience, there

is still the challenge of deciding which of these events and features are relevant to the problem

at hand. We minimized this challenge in our experiments by exposing our participants to sim-

ple settings where the relevant features and events were obvious. Future analyses can con-

sider problems where many features and events are available, some of which are consistent

with an underlying causal schema, but most of which are noisy. Machine learning researchers

have developed probabilistic methods for feature selection that learn a weight for each feature

and are able to distinguish between features that carry useful information and those that are

effectively random (George & McCulloch, 1993; Neal, 1996). It should be possible to com-

bine these methods with our framework, and the resulting model may help to explain how

children and adults extract causal information from settings that are noisy and complex.
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We have now discussed how several components of the framework in Fig. 3D could be

learned rather than specified in advance. Although our model could be extended in several

directions, note that there are fundamental questions about the origins of causal knowledge

that it does not address. For example, our model suggests how a schema learner might dis-

cover the schema that accounts best for a given domain, but it does not explain how a lear-

ner might develop the ability to think about schemata in the first place. Similarly, our model

can learn about the causal powers of novel objects, but it does not explain how a precausal

learner might develop the ability to think about causal powers. There are two possible

solutions to developmental questions like these: Either concepts like causal schema and cau-

sal power could be innate, or one or both of these concepts could emerge as a consequence

of early learning. Our work is compatible with both possible solutions, and future modeling

efforts may help to suggest which of the two is closer to the truth.

12. Conclusion

We developed a hierarchical Bayesian framework that addresses the problem of learning

to learn. Given experience with the causal powers of an initial set of objects, our framework

helps to explain how learners rapidly learn causal models for subsequent objects from the

same family. Our approach relies on the acquisition and use of causal schemata, or systems

of abstract causal knowledge. A causal schema organizes a set of objects into categories and

specifies the causal powers and characteristic features of each categories. Once acquired,

these causal schemata support rapid top-down inferences about the causal powers of novel

objects.

Although we focused on causal learning, the hierarchical Bayesian approach can help to

explain learning to learn in other domains, including word learning, visual learning, and

social learning. The hierarchical Bayesian approach accommodates both abstract knowledge

and learning, and it provides a convenient framework for exploring two fundamental ques-

tions about cognitive development: how abstract knowledge is acquired, and how this

knowledge is used to support subsequent learning. Answers to both questions should help to

explain how learning accelerates over the course of cognitive development, and how this

accelerated learning can bridge the gap between knowledge in infancy and adulthood.

Notes

1. We will assume that g and s are defined even if a ¼ 0 and there is no causal relation-

ship between o and e. When a ¼ 0, g and s could be interpreted as the polarity and

strength that the causal relationship between o and e would have if this relationship

actually existed. Assuming that g and s are always defined, however, is primarily a

mathematical convenience.

2. Unlike Experiment 1, the background rate is nonzero, and these probability distribu-

tions are not equivalent to distributions on the causal power of a test block.
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3. In particular, the pairwise activation condition of Experiment 4 is closely related to the

symmetric regular condition described by Kemp et al. (2010).
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Appendix: A schema learning model

This appendix describes some of the mathematical details needed to specify our schema-

learning framework in full.

Learning a single object-level causal model

Consider first the problem of learning a causal model that captures the relationship

between a cause event and an effect event. We characterize this relationship using four

parameters. Parameters a, g, and s indicate whether a causal relationship exists, whether it is

generative, and the strength of this relationship. We assume that there is a generative back-

ground cause of strength b.

We place uniform priors on a and g, and we assume that the strength parameter s is drawn

from a logistic normal distribution:

logitðsÞ �Nðl;r2Þ
l �Nðg; sr2Þ

r2 � Inv-gammaða;bÞ
ð11Þ

The priors on l and r2 are chosen to be conjugate to the Gaussian distribution on logit(s),

and we set a ¼ 2, b ¼ 0.3, g ¼ 1, and s ¼ 10. The background strength b is drawn from

the same distribution as s, and all hyperparameters are set to the same values except for g
which is set to )1. Setting g to these different values encourages b to be small and s to be

large, which matches standard expectations about the likely values of these variables (Lu

et al., 2008). As for all other hyperparameters in our model, a ¼ 2, b ¼ 0.3, g ¼ 1, and

s ¼ 10 were not tuned to fit our experimental results but were assigned to values that

seemed plausible a priori. We expect that the qualitative predictions of our model are rela-

tively insensitive to the precise values of these hyperparameters provided that they capture

the expectation that b should be small and s should be large.

Learning multiple object-level causal models

Consider now the problem of simultaneously learning multiple object-level models.

The example in Fig. 1A includes two sets of objects (people and drugs), but we

initially consider the case where there is just one person and we are interested in

problems like
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ingestsðAlice; DoxazosinÞ!? headacheðAliceÞ

ingestsðAlice; PrazosinÞ!?
..
.
headacheðAliceÞ

which concern the effects of different drugs on Alice.

As described in the main text, our model organizes the drugs into categories and assumes

that the object-level model for each drug is generated from a corresponding causal model at

the category level. Our prior P(z) on category assignments is induced by the Chinese Res-

taurant Process (CRP, Aldous, 1985). Imagine building a partition by starting with a single

category including a single object, and adding objects one by one until every object is

assigned to a category. Under the CRP, each category attracts new members in proportion to

its size, and there is some probability that a new object will be assigned to a new category.

The distribution over categories for object i, conditioned on the category assignments for

objects 1 through i ) 1 is

Pðzi ¼ a j z1; . . . ; zi�1Þ ¼
na

i�1þc ; na > 0
c

i�1þc ; a is a new category

�
ð12Þ

where zi is the category assignment for object i, na is the number of objects previously

assigned to category a, and c is a hyperparameter (we set c ¼ 0.5). Because the CRP prefers

to assign objects to categories which already have many members, the resulting prior P(z)

favors partitions that use a small number of categories.

When learning causal models for multiple objects, the parameters for each model

can be organized into three vectors a, g, and s. Let W be the tuple (a, g, s, b) which

includes all of these parameters along with the background strength b. Similarly, let �W
be the tuple (�a, �g, �s, �bÞ that specifies the parameters of the causal-models at the cate-

gory level.

Our prior Pð �WÞ assumes that the entries in �a and �g are independently drawn from a

Beta(cc,cc) distribution. Unless mentioned otherwise, we set cc ¼ 0.1 in all cases. Each

entry in �s is a pair that specifies a mean l and a variance r2. We assume that these means

and variances are independently drawn from the conjugate prior in Eq. 11 where g ¼ 1. The

remaining parameter �b is a pair that specifies the mean and variance of the distribution that

generates the background strength b. We assume that �b is drawn from the conjugate prior

specified by Eq. 11 where g ¼ )1.

Suppose now that we are working in a setting (Fig. 1A) that includes two sets of

objects—people and drugs. We introduce partitions zpeople and zdrugs for both sets, and we

place independent CRP priors on both partitions. We introduce a category-level causal

model for each combination of a person category and a drug category, and we assume that

each object-level causal model is generated from the corresponding category-level

model. As before, we assume that the category-level parameters �a, �g, and �s are generated

independently for each category-level model. The same general strategy holds when work-

ing with problems that involve three or more sets of objects. We assume that each set is

organized into a partition drawn from a CRP prior, introduce category level models for each
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combination of categories, and assume that the parameters for these category-level models

are independently generated from the distributions already described.

Features

To apply Eq. 8 we need to specify a prior distribution Pð �FÞ on the feature matrix �F. We

assume that all entries in the matrix are independent draws from a Beta(cf,cf) distribution.

Unless mentioned otherwise, we set cf ¼ 0.5 in all cases. Our feature model is closely

related to the Beta-Bernoulli model used by statisticians (Gelman et al., 2003) and is appro-

priate for problems where the features are binary. Some features, however, are categorical

(i.e., they can take many discrete values), and others are continuous. Our approach can han-

dle both cases by replacing the Beta-Bernoulli component with a Dirichlet-multinomial

model, or a Gaussian model with conjugate prior.

Inference

Our model can be used to learn a schema (top level of Fig. 1), to learn a set of object-

level causal models (middle level of Fig. 1), or to make predictions about future events

involving a set of objects (bottom level of Fig. 1). All three kinds of inferences can be

carried out using a Markov chain Monte Carlo (MCMC) sampler. Because we use conjugate

priors on the model parameters at the category level ( �W and �F), it is straightforward to inte-

grate out these parameters and sample directly from P(z,WjV). To sample the schema assign-

ments in z, we combined Gibbs updates with the split-merge scheme described by Jain and

Neal (2004). We used Metropolis-Hasting updates on the parameters W of the object-level

models and found that mixing improved when the three parameters for a given object i (ai,

gi and si) were updated simultaneously. To further facilitate mixing, we used Metropolis-

coupled MCMC: We ran several Markov chains at different temperatures and regularly

considered swaps between the chains (Geyer, 1991).

We evaluated our model by comparing two kinds of distributions against human

responses. Figs. 8, 10, 16, and 20 show posterior distributions over the activation strength

of a given block, and Fig. 17 shows a posterior distribution over category assignments. In

all cases except Fig. 20ii,iii we computed model predictions by drawing a bag of MCMC

samples from P(z,W j V,F). We found that our sampler did not mix well when directly

applied to the setting in Experiment 4 and therefore used importance sampling to generate

the predictions in Fig. 20ii,iii. Let a partition z be plausible if it assigns objects o1

through o9 to the same category and o10 through o18 to the same category. There are 15

plausible partitions, and we define a distribution P1(Æ) that is uniform over these parti-

tions:

P1ðzÞ ¼
1
15 ; if z is plausible
0; otherwise

�
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For each plausible partition z we used a separate MCMC run to draw 20,000 samples

from P(W j V,z). When aggregated, these results can be treated as a single large sample

from a distribution q(z,W) where

qðz;WÞ / PðW jV; zÞP1ðzÞ:

We generated model predictions for Fig. 20ii,iii using q(Æ,Æ) as an importance sampling

distribution. The importance weights required take the form P(z)P(V j z), where P(z) is

induced by Eq. 12 and P(V j z) ¼ �P(VjW,z)P(W j z)dW can be computed using a simple

Monte Carlo approximation for each plausible z.
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Abstract

People are remarkably smart: They use language, possess complex motor skills, make nontrivial

inferences, develop and use scientific theories, make laws, and adapt to complex dynamic environ-

ments. Much of this knowledge requires concepts and this study focuses on how people acquire con-

cepts. It is argued that conceptual development progresses from simple perceptual grouping to highly

abstract scientific concepts. This proposal of conceptual development has four parts. First, it is

argued that categories in the world have different structure. Second, there might be different learning

systems (subserved by different brain mechanisms) that evolved to learn categories of differing struc-

tures. Third, these systems exhibit differential maturational course, which affects how categories of

different structures are learned in the course of development. And finally, an interaction of these

components may result in the developmental transition from perceptual groupings to more abstract

concepts. This study reviews a large body of empirical evidence supporting this proposal.

Keywords: Cognitive development; Category learning; Concepts; Conceptual development;

Cognitive neuroscience

1. Knowledge acquisition: Categories and concepts

People are remarkably smart: They use language, possess complex motor skills, make

nontrivial inferences, develop and use scientific theories, make laws, and adapt to complex

dynamic environments. At the same time, they do not exhibit evidence of this knowledge at

birth. Therefore, one of the most interesting and exciting challenges in the study of human

cognition is to gain an understanding of how people acquire this knowledge in the course of

development and learning.

A critical component of knowledge acquisition is the ability to use acquired knowledge

across a variety of situations, which requires some form of abstraction or generalization.

Correspondence should be sent to Vladimir M. Sloutsky, Cognitive Development Laboratory, Center for

Cognitive Science, The Ohio State University, 208C Ohio Stadium East, 1961 Tuttle Park Place, Columbus, OH

43210. E-mail: sloutsky.1@osu.edu

Cognitive Science 34 (2010) 1244–1286
Copyright � 2010 Cognitive Science Society, Inc. All rights reserved.
ISSN: 0364-0213 print / 1551-6709 online
DOI: 10.1111/j.1551-6709.2010.01129.x



Examples of abstraction are ample. People can recognize the same object under different

viewing conditions. They treat different dogs as members of the same class and expect them

to behave in fundamentally similar ways. They learn words uttered by different speakers.

Upon learning a hidden property of an item, they extend this property to other similar items.

And they apply ways of solving familiar problems to novel problems. In short, people can

generalize or form equivalence classes by focusing only on some aspects of information

while ignoring others.

This ability to form equivalence classes or categories is present in many nonhuman spe-

cies (see Zentall, Wasserman, Lazareva, Thompson, & Rattermann, 2008 for a review);

however, only humans have the ability to acquire concepts—lexicalized groupings

that allow ever-increasing levels of abstraction (e.g., Cat fi Animal fi Living

thing fi Object). These lexicalized groupings may include both observable and unobserv-

able properties. For example, although prelinguistic infants can acquire a category ‘‘cat’’ by

strictly perceptual means (Quinn, Eimas, & Rosenkrantz, 1993), the concept ‘‘cat’’ may

include many properties that have to be inferred rather than observed directly (e.g., ‘‘mating

only with cats, but not with dogs,’’ ‘‘being able to move in a self-propelled manner,’’ ‘‘hav-

ing insides of a cat,’’ etc.). Often such properties are akin to latent variables—they are

inferred from patterns of correlations among observable properties (Rakison & Poulin-

Dubois, 2001). These properties can also be lexicalized, and when lexicalized, they allow

nontrivial generalizations (e.g., ‘‘plants and animals are alive’’ or ‘‘plants and animals

reproduce themselves’’). Although the existence of prelinguistic concepts is a matter of con-

siderable debate, it seems rather noncontroversial to define those lexicalized properties that

have to be inferred (rather than observed) as conceptual and lexicalized categories that

include such properties as concepts.

Concepts are central to human intelligence as they allow uniquely human forms of

expression, such as many forms of reasoning. For example, counterfactuals (e.g., ‘‘if the

defendant were at home at the time of the crime, she could not have been at the crime scene

at the same time’’) would be impossible without concepts. According to the present pro-

posal, most concepts develop from perceptual categories and most conceptual properties are

inferred from perceptual properties.1 Therefore, although categories comprise a broader

class than concepts (i.e., there are many categories that are not lexicalized and are not based

on conceptual properties), there is no fundamental divide between category learning and

concept acquisition.

Most of the examples presented in this study deal with ‘‘thing’’ concepts (these are

lexicalized by ‘‘nominals’’), whereas many other concepts, such as actions, properties,

quantities, and conceptual combinations are left out. This is because nominals are often

most prevalent in the early vocabulary (Gentner, 1982; Nelson, 1973) and entities corre-

sponding to nominals are likely to populate the early experience. Therefore, these concepts

appear to be a good starting point in thinking about conceptual development.

The remainder of the study consists of four parts. First, I consider what may develop in

the course of conceptual development. Second, I consider some of the critical components

of category learning: the structure of input, the multiple competing learning systems, and

the asynchronous developmental time course of these systems. Third, I consider evidence
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for interactions among these components in category learning and category representation.

And, finally, I consider how conceptual development may proceed from perceptual group-

ings to abstract concepts.

2. The origins of conceptual knowledge

In an attempt to explain developmental origins of conceptual knowledge, a number of

theoretical accounts have been proposed. Some argue that input is dramatically undercon-

strained to enable the acquisition of complex knowledge and some knowledge has to come a

priori from the organism, thus constraining future knowledge acquisition. Others suggest

that there is much regularity (and thus many constraints) in the environment, with additional

constrains stemming from biological specifications of the organism (e.g., limited processing

capacity, especially early in development). In the remainder of this section, I review these

theoretical approaches.

2.1. Skeletal principles, core knowledge, constraints, and biases

According to this proposal, structured knowledge cannot be recovered from perceptual

input because the input is too indeterminate to enable such recovery (Gelman, 1990). This

approach is based on an influential idea that was originally proposed for the case of lan-

guage acquisition but was later generalized to some other aspects of cognitive development,

including conceptual development. The original idea is that linguistic input does not have

enough information to enable the learner to recover a particular grammar, while ruling out

alternatives (Chomsky, 1980). Therefore, some knowledge has to be innate to enable fast,

efficient, and invariable learning under the conditions of impoverished input. This argument

(known as the Poverty of the Stimulus argument) has been subsequently generalized to per-

ceptual, lexical, and conceptual development. If input is too impoverished to constrain pos-

sible inductions and to license the concepts that we have, the constraints have to come from

somewhere. It has been proposed that these constraints are internal—they come from the

organism, and they are a priori and top-down (i.e., they do not come from data). A variety

of such constraints have been proposed, including, but not limited to, innate knowledge

within ‘‘core’’ domains (Carey, 2009; Carey & Spelke, 1994, 1996; Spelke, 2000; Spelke &

Kinzler, 2007), skeletal principles (e.g., Gelman, 1990), ontological knowledge (Keil,

1979; Mandler, Bauer, & McDonough, 1991; Pinker, 1984; Soja, Carey, & Spelke, 1991),

conceptual assumptions (Gelman, 1988; Gelman & Coley, 1991; Markman, 1989), and

word-learning biases (Markman, 1989; see also Golinkoff, Mervis, & Hirsh-Pasek, 1994).

However, there are several lines of evidence challenging (a) the explanatory machinery

of this account with respect to language (Chater & Christiansen, this issue) and (b) the exis-

tence of particular core abilities (e.g., Twyman & Newcome, this issue). Furthermore,

although the Poverty of the Stimulus argument is formally valid, its premises and therefore

its conclusions are questionable. Most importantly, very little is known about the informa-

tion value of input with respect to knowledge in question. Therefore, it is not clear whether
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input is in fact as impoverished as it has been claimed. In addition, there are several lines of

evidence suggesting that input might be richer than it is expected under the Poverty of the

Stimulus assumption.

First, the fact that infants, great primates, monkeys, rats, and birds all can learn a variety

of basic-level perceptual categories (Cook & Smith, 2006; Quinn et al., 1993; Smith,

Redford, & Haas, 2008; Zentall et al., 2008) strongly indicates that perceptual input (at least

for basic-level categories) is not impoverished. Otherwise, one would need to assume that

all these species have the same constraints as humans, which seems implausible given vastly

different environments in which these species live.

In addition, there is evidence that perceptual input (Rakison & Poulin-Dubois, 2001) or a

combination of perceptual and linguistic input (Jones & Smith, 2002; Samuelson & Smith,

1999; Yoshida & Smith, 2003) can jointly guide the acquisition of broad ontological classes.

Furthermore, cross-linguistic evidence suggests that ontological boundaries exhibit greater

cross-linguistic variability than could be expected if they were fixed (Imai & Gentner, 1997;

Yoshida & Smith, 2003). Therefore, there might be enough information in the input for the

learner to form both basic-level categories and broader ontological classes. There is also

modeling work (e.g., Gureckis & Love, 2004; Rogers & McClelland, 2004) offering a mech-

anistic account of how coherent covariation in the input could guide the acquisition of broad

ontological classes as well as more specific categories.

In short, there are reasons to doubt that input is in fact impoverished, and if it is not

impoverished, then a priori assumptions are not necessary. Therefore, to understand concep-

tual development, it seems reasonable to shift the focus away from a priori constraints and

biases and toward the input and the way it is processed.

2.2. Similarity, correlations, and attentional weights

According to an alternative approach, conceptual knowledge as well as some of the

biases and assumptions are a product rather than a precondition of learning (see Rogers &

McClelland, 2004, for a connectionist implementation of these ideas). Early in development,

cognitive processes are grounded in powerful learning mechanisms, such as statistical

and attentional learning (French, Mareschal, Mermillod, & Quinn, 2004; Mareschal,

Quinn, & French, 2002; Rogers & McClelland, 2004; Saffran, Johnson, Aslin, &

Newport, 1999; Sloutsky, 2003; Sloutsky & Fisher, 2004a; Smith, 1989; Smith, Jones, &

Landau, 1996).

According to this view, input is highly regular and the goal of learning is to extract these

regularities. For example, category learning could be achieved by detecting multiple com-

monalities, or similarities, among presented entities. In addition, not all commonalities are

the same—features may differ in salience and usefulness for generalization, with both

salience and usefulness of a feature reflected in its attentional weight. However, unlike the a

priori assumptions, attentional weights are not fixed and they can change as a result of learn-

ing: Attentional weights of more useful features increase, whereas these weights decrease

for less useful features (Kruschke, 1992; Nosofsky, 1986; Opfer & Siegler, 2004; Sloutsky

& Spino, 2004; see also Hammer & Diesendruck, 2005).
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There are several lines of research presenting evidence that both basic-level categories

(e.g., dogs) and broader ontological classes (e.g., animates vs. inanimates) have multiple

perceptual within-category commonalities and between-category differences (French et al.,

2004; Rakison & Poulin-Dubois, 2001; Samuelson & Smith, 1999). Some researchers argue

that additional statistical constraints come from language in the form of syntactic cues, such

as count noun and mass noun syntax (Samuelson & Smith, 1999). Furthermore, cross-

linguistic differences in the syntactic cues (e.g., between English and Japanese) can push

ontological boundaries in speakers of respective languages (Imai & Gentner, 1997; Yoshida

& Smith, 2003). Finally, different categories could be organized differently (e.g., living

things could be organized by multiple similarities, whereas artifacts could be organized by

shape), and there might be multiple correlations between category structure, perceptual

cues, and linguistic cues. All this information could be used to distinguish between different

kinds. As children acquire language, they may become sensitive to these correlations, which

may affect their attention to shape in the context of artifacts versus living things (Jones &

Smith, 2002).

This general approach may offer an account of conceptual development that does not

posit a priori knowledge structures. It assumes that input is sufficiently rich to enable the

young learner to form perceptual groupings. Language provides learners with an additional

set of cues that allow them to form more abstract distinctions. Finally, lexicalization of such

groupings as well as of some unobservable conceptual features could result in the acquisi-

tion of concepts at progressively increasing levels of abstraction. In the next section, I will

outline how conceptual development could proceed from perceptual groupings to abstract

concepts.

2.3. From percepts to concepts: What develops?

If people start out with perceptual groupings, how do they end up with sophisticated con-

ceptual knowledge? According to the proposal presented here, conceptual development

hinges on several critical steps. These include the ability to learn similarity-based unimodal

categories, the ability to integrate cross-modal information, the lexicalization of learned per-

ceptual groupings, the lexicalization of conceptual features, and the development of execu-

tive function. The latter development is of critical importance for acquiring abstract

concepts that are not grounded in similarity. Examples of such concepts are unobservables

(e.g., love, doubt, thought), relational concepts (e.g., enemy or barrier), as well as a variety

of rule-based categories (e.g., island, uncle, or acceleration). Because these concepts require

focusing on unobservable abstract features, their acquisition may depend on the maturity of

executive function.

This developmental time course is determined in part by an interaction of several critical

components. These components include the following: (a) the structure of the to-be-learned

category, (b) the competing learning systems that might subserve learning categories of dif-

ferent structures, and (c) developmental course of these learning systems. First, categories

differ in their structure. For example, some categories (e.g., most of natural kinds, such as

cat or dog) have multiple intercorrelated features relevant for category membership. These
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features are jointly predictive, thus yielding a highly redundant (or statistically dense) cate-

gory. These categories often have graded membership (i.e., a typical dog is a better member

of the category than an atypical dog) and fuzzy boundaries (i.e., it is not clear whether a

cross between a dog and a cat is a dog). At the same time, other categories are defined by a

single dimension or a relation between or among dimensions. Members of these categories

have very few common features, with the rest of the features varying independently and thus

contributing to irrelevant or ‘‘surface’’ variance. Good examples of such sparse categories

are mathematical and scientific concepts. Consider the two situations: (a) increase in a popu-

lation of fish in a pond and (b) interest accumulation in a bank account. Only a single

commonality—exponential growth—makes both events instances of the same mathematical

function. All other features are irrelevant for membership in this category and can vary

greatly.

Second, there might be multiple systems of category learning (e.g., Ashby, Alfonso-

Reese, Turken, & Waldron, 1998) evolved to learn categories of different structures. In

particular, a compression-based system may subserve category learning by reducing percep-

tually rich input to a more basic format. As a result of this compression, features that are

common to category members (but not to nonmembers) become a part of representation,

whereas idiosyncratic features get washed out. In contrast, the selection-based system may

subserve category learning by shifting attention to category-relevant dimension(s) and away

from irrelevant dimension(s). Such selectivity may require the involvement of brain struc-

tures associated with executive function. The compression-based system could have an

advantage for learning dense categories, which could be acquired by mostly perceptual

means. At the same time, the selection-based system could have an advantage for learning

sparse categories, which require focusing on few category-relevant features (Kloos &

Sloutsky, 2008; see also Blair, Watson, & Meier, 2009, for a discussion).

The involvement of each system may also affect what information is encoded in the

course of category learning, and, subsequently, how a learned category is represented. In

particular, the involvement of the compression-based system may result in a reduced yet

fundamentally perceptual representation of a category, whereas the involvement of the

selection-based system may result in a more abstract (e.g., lexicalized) representation. Given

that many real-life categories (e.g., dogs, cats, or cups) are acquired by perceptual means

and later undergo lexicalization, there are reasons to believe that these categories combine

perceptual representation with a more abstract lexicalized representation. These abstract

lexicalized representations are critically important for the ability to reason and form argu-

ments that could be all but impossible to form by strictly perceptual means. For example, it

is not clear how purely perceptual representation of constituent entities would support a

counterfactual of the form ‘‘If my grandmother were my grandfather…’’

And third, the category-learning systems and associated brain structures may come online

at different points in development, with the system subserving learning of dense categories

coming online earlier than the system subserving learning of sparse categories. In particular,

there is evidence that many components of executive function critical for learning sparse

categories exhibit late developmental onset (e.g., Davidson, Amso, Anderson, & Diamond,

2006). If this is the case, then able learning and representation of dense categories should
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precede that of sparse categories. Under this view, ‘‘conceptual’’ assumptions do not have

to underlie category learning, as most categories that children acquire are spontaneously

dense and can be acquired implicitly, without a teaching signal or supervision. At the same

time, some of these ‘‘conceptual’’ assumptions could be a product of later development.

The current proposal of conceptual development has three parts (see Sections 3–5). In

Section 3, I consider in detail components of category learning: category structure, the multi-

ple competing learning systems, and the potentially different maturational course of these

systems. I suggest that categories in the world differ in their structure and consider ways of

quantifying this structure. I then present another argument that there might be different

learning systems (subserved by different brain mechanisms) that evolved to learn categories

of differing structures. Finally, I argue that these systems exhibit differential maturational

course, which affects how categories of different structures are learned in the course of

development. Then, in Section 4, I consider an interaction of these components. This interac-

tion is important because it may result in the developmental transition from perceptual group-

ings to abstract concepts. These arguments point to a more nuanced developmental picture

(presented in Section 5), in which learning of perceptual categories, cross-modal integration,

lexicalization, learning of conceptual properties, the ability to focus and shift attention, and

the development of lexicalized concepts are logical steps in conceptual development.

3. Components of category learning: Input, learning system, and the learner

3.1. Characteristics of input: Category structure

It appears almost self-evident that categories differ in their structure. Some categories are

coherent: Their members have multiple overlapping features and are often similar (e.g., cats

or dogs are good examples of such categories). Other categories seem to be less coherent:

Their members have few overlapping features (e.g., square things). These differences have

been noted by a number of researchers who pointed to different category structures between

different levels of ontology (e.g., Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976)

and between animal and artifact categories (Jones & Smith, 2002; Jones, Smith, & Landau,

1991; Markman, 1989). Category structure can be captured formally and one such treatment

of category structure has been offered recently (Kloos & Sloutsky, 2008). The focal idea of

this proposal is that category structure can be measured by statistical density of a category.

Statistical density is a function of within-category compactness and between-category dis-

tinctiveness, and it may have profound effects on category learning. In what follows, I will

elaborate this idea.

3.1.1. Statistical density as a measure of category structure
Any set of items can have a number of possible dimensions (e.g., color, shape, size),

some of which might vary and some of which might not. Categories that are statistically

dense have multiple intercorrelated (or covarying) features relevant for category member-

ship, with only a few features being irrelevant. Good examples of statistically dense
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categories are basic-level animal categories such as cat or dog. Category members have par-

ticular distributions of values on a number of dimensions (e.g., shape, size, color, texture,

number of parts, type of locomotion, type of sounds they produce, etc.). These distributions

are jointly predictive, thus yielding a dense (albeit probabilistic) category. Categories that

are statistically sparse have very few relevant features, with the rest of the features varying

independently. Good examples of sparse categories are dimensional groupings (e.g., ‘‘round

things’’), relational concepts (e.g., ‘‘more’’), scientific concepts (e.g., ‘‘accelerated

motion’’), or role-governed concepts (e.g., cardinal number; see Markman & Stilwell, 2001,

for a discussion of role-governed categories).

Conceptually, statistical density is a ratio of variance relevant for category membership

to the total variance across members and nonmembers of the category. Therefore, density is

a measure of statistical redundancy (Shannon & Weaver, 1948), which is an inverse function

of relative entropy.

Density can be expressed as

D ¼ 1� Hwithin

Hbetween
; ð1Þ

where Hwithin is the entropy observed within the target category, and Hbetween is the entropy

observed between target and contrasting categories.

A detailed treatment of statistical density and ways of calculating it is presented else-

where (Kloos & Sloutsky, 2008); thus, only a brief overview of statistical density is pre-

sented below. Three aspects of stimuli are important for calculating statistical density:

variation in stimulus dimensions, variation in relations among dimensions, and attentional

weights of stimulus dimensions.

First, a stimulus dimension may vary either within a category (e.g., members of a target

category are either black or white) or between categories (e.g., all members of a target

category are black, whereas all members of a contrasting category are white). Within-

category variance decreases the density, whereas between-category variance increases the

density.

Second, dimensions of variation may be related (e.g., all items are black circles),

or they may vary independently of each other (e.g., items can be black circles, black

squares, white circles, or white squares). Covarying dimensions result in smaller

entropy than dimensions that vary independently. It is not unreasonable to assume that

only dyadic relations (i.e., relations between two dimensions) are detected spontane-

ously, whereas relations of higher arity (e.g., a relation among color, shape, and size)

are not (Whitman & Garner, 1962). Therefore, only dyadic relations are included in

the calculation of entropy.

The total entropy is the sum of the entropy due to varying dimensions (Hdim), and the

entropy due to varying relations among the dimensions (Hrel). More specifically,

Hwithin ¼ H dim
within þHrel

within; and ð2aÞ

Hbetween ¼ H dim
between þH rel

between: ð2bÞ

V. M. Sloutsky ⁄ Cognitive Science 34 (2010) 1251



The concept of entropy was formalized by the information theory (Shannon &

Weaver, 1948), and we use these formalisms here. First consider the entropy due to

dimensions. This within- and between-category entropy is presented in Eqs. 3a and 3b,

respectively.

Hdim
within ¼ �

XM
i¼1

wi

X
j¼0;1

withinðpj log2 pjÞ
" #

ð3aÞ

Hdim
between ¼ �

XM
i¼1

wi

X
j¼0;1

betweenðpj log2 pjÞ
" #

ð3bÞ

where M is the total number of varying dimensions, wi is the attentional weight of a particu-

lar dimension (the sum of attentional weights equals to a constant), and pj is the probability

of value j on dimension i (e.g., the probability of a color being white). The probabilities

could be calculated within a category or between categories.

The attentional-weight parameter is of critical importance—without this parameter, it

would be impossible to account for learning of sparse categories. In particular, when a cate-

gory is dense, even relatively small attentional weights of individual dimensions add up

across many dimensions. This makes it possible to learn the category without supervision.

Conversely, when a category is sparse, only few dimensions are relevant. If attentional

weights of each dimension are too small, supervision could be needed to direct attention to

these relevant dimensions.

Next, consider entropy that is due to a relation between dimensions. To express this entropy,

we need to consider the co-occurrences of dimensional values. If dimensions are binary, with

each value coded as 0 or 1 (e.g., white = 0, black = 1, circle = 0, and square = 1), then the

following four co-occurrence outcomes are possible: 00 (i.e., white circle), 01 (i.e., white

square), 10 (i.e., black circle), and 11 (i.e., black square). The within- and between-category

entropy that is due to relations is presented in Eqs. 4a and 4b, respectively.

H rel
within ¼ �

Xo
k¼1

wk

X
m¼0;1
n¼0;1

withinðpmn log2 pmnÞ

2
664

3
775; ð4aÞ

H rel
between ¼ �

Xo
k¼1

wk

X
m¼0;1
n¼0;1

betweenðpmn log2 pmnÞ

2
664

3
775; ð4bÞ

where o is the total number of possible dyadic relations among the varying dimensions, wk

is the attentional weight of a particular relation (again, the sum of attentional weights equals

to a constant), and pmn is the probability of a co-occurrence of values m and n on a binary

relation k (which conjoins two dimensions of variation).
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3.1.2. Density, salience, and similarity
The concept of density is closely related to the ideas of salience and similarity, and it is

necessary to clarify these relations. First, density is a function of weighted entropy, with

attentional weight corresponding closely to the salience of a feature. Therefore, feature

salience can affect density by affecting the attentional weight of the feature in question. Of

course, as mentioned earlier, attentional weights are not fixed and they can change as a

result of learning. Second, perceptual similarity is a sufficient, but not necessary condition

of density—all categories bound by similarity are dense, but not all dense categories are

bound by similarity. For example, some categories could have multiple overlapping rela-

tions rather than overlapping features (e.g., members of a category have short legs and short

neck or long legs and long neck). It is conceivable that such nonlinearly separable (NLS)

categories could be relatively dense, yet not bound by similarity.

3.1.3. Category structure and early learning
Although it is difficult to precisely calculate the density of categories surrounding young

infants, some estimates can be made. It seems that many of these categories, while exhibit-

ing within-category variability in color (and sometime in size), have similar within-category

shape, material, and texture (ball, cup, bottle, shoe, book, or apple are good examples of

such categories); these categories should be relatively dense. As I show next, dense catego-

ries can be learned implicitly, without supervision. Therefore, it is possible that prelinguistic

infants implicitly learn many of the categories surrounding them. Incidentally, the very first

noun words that infants learn denote these dense categories (see Dale & Fenson, 1996;

Nelson, 1973). Therefore, it is possible that some of early word learning consists of learning

lexical entries for already known dense categories. This possibility, however, is yet to be

tested empirically.

3.1.3.1. Characteristics of the learning system: Multiple competing systems of category
learning: The role of category structure in category learning has been a focus of the neuro-

science of category learning. Recent advances in that field suggest that there might be multi-

ple systems of category learning (e.g., Ashby et al., 1998; Cincotta & Seger, 2007; Nomura

& Reber, 2008; Seger, 2008; Seger & Cincotta, 2002) and an analysis of these systems may

elucidate how category structure interacts with category learning. I consider these systems

in this section.

There is an emerging body of research on brain mechanisms underlying category learning

(see Ashby & Maddox, 2005; Seger, 2008, for reviews). Although the anatomical localiza-

tion and the involvement of specific circuits remain a matter of considerable debate, there is

substantial agreement that ‘‘wholistic’’ or ‘‘similarity-based’’ categories (which are typi-

cally dense) and ‘‘dimensional’’ or ‘‘rule-based’’ categories (which are typically sparse)

could be learned by different systems in the brain.

There are several specific proposals identifying brain structures that comprise each sys-

tem of category learning (Ashby et al., 1998; Cincotta & Seger, 2007; Nomura & Reber,

2008; Seger, 2008; Seger & Cincotta, 2002). Most of the proposals involve three major

hierarchical structures: cortex, basal ganglia, and thalamus. There is also evidence for the
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involvement of the medial temporal lobe (MTL) in category learning (e.g., Nomura et al.,

2007; see also Love & Gureckis, 2007). However, because the maturational time course of

the MTL is not well understood (Alvarado & Bachevalier, 2000), I will not focus here on

this area of the brain.

One influential proposal (e.g., Ashby et al., 1998) posited two cortical–striatal–pallidal–

thalamic–cortical loops, which define two acting in parallel circuits. The circuit responsible

for learning of similarity-based categories originates in extrastriate visual areas of the cortex

(such as inferotemporal [IT] cortex) and includes the posterior body and tail of the caudate

nucleus. In contrast, the circuit responsible for the learning of rule-based categories origi-

nates in the prefrontal and anterior-cingulated cortices (ACCs) and includes the head of the

caudate (Lombardi et al., 1999; Rao et al., 1997; Rogers, Andrews, Grasby, Brooks, &

Robbins, 2000).

In a similar vein, Seger and Cincotta (2002) proposed the visual loop, which originates in

the inferior temporal areas and passes through the tail of the caudate nucleus in the striatum,

and the cognitive loop, which passes through the prefrontal cortex (PFC) and the head of the

caudate nucleus. The visual loop has been shown to be involved in visual pattern discrimina-

tion in nonhuman animals (Buffalo et al., 1999; Fernandez-Ruiz, Wang, Aigner, & Mishkin,

2001; Teng, Stefanacci, Squire, & Zola, 2000), and Seger and Cincotta (2002) have pro-

posed that this loop may subserve learning of similarity-based visual categories. The cogni-

tive loop has been shown to be involved in learning of rule-based categories (e.g., Rao

et al., 1997; Seger & Cincotta, 2002; see also Seger, 2008).

There is also evidence that category learning is achieved differently in the two systems.

The critical feature of the visual system is the reduction of information or compression, with

only some but not all stimulus features being encoded. Therefore, I will refer to this system

as the compression-based system of category learning. A schematic representation of pro-

cessing in this system is depicted in Fig. 1A. The feature map in the top layer gets com-

pressed in the bottom layer, with only some features of the top layer represented in the

bottom layer.

This compression is achieved by many-to-one projections of the visual cortical neurons

in the IT cortex onto the neurons of the tail of the caudate (Bar-Gad, Morris, & Bergman,

2003; Wilson, 1995). In other words, many cortical neurons converge on an individual cau-

date neuron. As a result of this convergence, information is compressed to a more basic

form, with redundant and highly probable features likely to be encoded (and thus learned)

and idiosyncratic and rare features likely to be filtered out.

Category learning in this system results in a reduced (or compressed) yet fundamentally

perceptual representation of stimuli. If every stimulus is compressed, then those features

and feature relations that are frequent in category members should survive the compression,

whereas rare or unique features ⁄ relations should not. Because compression does not require

selectivity, compression-based learning could be achieved implicitly, without supervision

(such as feedback or even more explicit forms of training), and it should be particularly suc-

cessful in the learning of dense categories.

In short, there is a critical feature of the compression-based system—it can learn dense

categories without supervision. Under some conditions, the compression-based system may
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also learn structures defined by a single dimension of variation (e.g., color or shape). For

example, when there is a small number of dimensions of variation (e.g., color and shape,

with shape distinguishing among categories), compression may be sufficient for learning a

category-relevant dimension. However, if categories are sparse, with only few relevant

dimensions and multiple irrelevant dimensions, learning of the relevant dimensions by com-

pression could be exceedingly long or not possible at all.

The critical aspect of the second system of category learning is the cognitive loop, which

involves (in addition to the striatum) the dorsolateral PFC and the ACC—the cortical

areas that subserve attentional selectivity, working memory, and other aspects of executive

function (Posner & Petersen, 1990). I will therefore refer to this system as selection-based.

The selection-based system enables attentional learning—allocation of attention to some

stimulus dimensions and ignoring others (e.g., Kruschke, 1992, 2001; Mackintosh, 1975;

Nosofsky, 1986). Unlike the compression-based system where learning is driven by reduc-

tion and filtering of idiosyncratic features (while retaining features and feature correlations

that recur across instances), learning in the selection-based system could be driven by error

reduction. As schematically depicted in Fig. 1B, attention is shifted to those dimensions that

predict error reduction and away from those that do not (e.g., Kruschke, 2001; but see Blair

et al., 2009).

Given that attention has to be shifted to a relevant dimension, the task of category learn-

ing within the selection-based system should be easier when there are fewer relevant dimen-

sions (see Kruschke, 1993, 2001, for related arguments). This is because it is easier to shift

attention to a single dimension than to allocate it to multiple dimensions. Therefore, the

selection-based system is better suited to learn sparse categories (recall that the compres-

sion-based system is better suited to learn dense categories). For example, Kruschke (1993)

describes an experiment where participants learned a category in a supervised manner, with

feedback presented on every trial. For some categories, a single dimension was relevant,

whereas for other categories, two related dimensions were relevant for categorization.

(A) (B)

Fig. 1. (A) Schematic depiction of the compression-based system. The top layer represents stimulus encoding in

inferotemporal cortex. This rich encoding gets compressed to a more basic form in the striatum represented by

the bottom layer. Although some of the features are left out, much perceptual information present in the top layer

is retained in the bottom layer. (B) Schematic depiction of the selection-based system. The top layer represents

selective encoding in the prefrontal cortex. The selected dimension is then projected to the striatum represented

by the bottom layer. Only the selected information is retained in the bottom layer.
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Participants were shown to learn better in the former than in the latter condition. Given that

learning was supervised (i.e., category learning and stimulus dimensions that might be rele-

vant for categorization were mentioned explicitly, and feedback was given on every trial), it

is likely that the selection-based system was engaged.

The selection-based system depends critically on prefrontal circuits because these circuits

enable the selection of a relevant stimulus dimension (or rule), while inhibiting irrelevant

dimensions. The selected (and perhaps amplified) dimension is likely to survive the com-

pression in the striatum, whereas the nonselected (and perhaps weakened) dimensions may

not. Therefore, there is little surprise that young children (whose selection-based system is

still immature) tend to exhibit successful categorization performance when categories are

based on multiple dimensions than when they are based on a single dimension (e.g., Smith,

1989).

How are the systems deployed? Although the precise mechanism remains unknown, sev-

eral ideas have been proposed. For example, Ashby et al. (1998) posited competition

between the systems, with the selection-based system being deployed by default. This idea

stems from evidence that participants exhibited more able learning when categories were

based on a single dimension than when categories are based on multiple dimensions (e.g.,

Ashby et al., 1998; Kruschke, 1993). However, it is possible that the selection-based system

was triggered by feedback and explicit learning regime, whereas in the absence of supervi-

sion the compression-based system is a default (Kloos & Sloutsky, 2008). Furthermore, it

seems unlikely that the idea of the default deployment of the selection-based system

describes accurately what happens early in development. As I argue in the next section,

because some critical cortical components of the selection-based system mature relatively

late, it is likely that early in development the competition is weakened (or even absent), thus

making the compression-based system default.

If the compression-based system is deployed by default early in development (and, when

supervision is absent, it is deployed by default in adults as well), this default deployment

may have consequences for category learning. In particular, if a category is sparse, the com-

pression-based system may fail to learn it due to a low signal-to-noise ratio in the sparse

category. In contrast, the selection-based system may have the ability to increase the signal-

to-noise ratio by shifting attention to the signal, thus either amplifying the signal or by

inhibiting noise.

The idea of multiple systems of category learning has been supported by both fMRI and

neuropsychological evidence. In one neuroimaging study reported by Nomura et al. (2007),

participants were scanned while learning two categories of sine wave gratings. The gratings

varied on two dimensions: spatial frequency and orientation of the lines. In the rule-based

condition, category membership was defined only by the spatial frequency of the lines (see

Fig. 2A), whereas in the ‘‘wholistic’’ condition, both frequency and orientation determined

category membership (see Fig. 2B). Note that each point in Fig. 2 represents an item and

the colors represent distinct categories. Rule-based categorization showed greater differen-

tial activation in the hippocampus, the ACC, and medial frontal gyrus. At the same time, the

wholistic categorization exhibited greater differential activation in the head and tail of the

caudate.
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Some evidence for the possibility of the two systems of category learning stem from

neuropsychological research. One of the most frequently studied populations are patients

with Parkinson’s disease (PD), because the disease often affects frontal cortical areas in

addition to striatal areas (e.g., van Domburg & ten Donkelaar, 1991). As a result, these

patients often exhibit impairments in both the compression-based and the selection-

based systems of category learning. Therefore, this group provides only indirect rather

than clear-cut evidence for the dissociation between the systems. For example, impair-

ments of the compression-based system in PD were demonstrated in a study by

Knowlton, Mangels, and Squire (1996), in which patients with PD (which affects the

release of dopamine in the striatum) had difficulty in learning probabilistic categories

that were determined by co-occurrence of multiple perceptual cues. Impairments of the

selection-based learning system have been demonstrated in patients with damage to the

PFC (which also often include PD patients). Specifically, in the multiple studies using

the Wisconsin Card Sorting Test (WCST: Berg, 1948; Brown & Marsden, 1988; Cools,

van den Bercken, Horstink, van Spaendonck, & Berger, 1984), it was found that the

patients often exhibit impaired learning of categories based on verbal rules, as well as

impairments in shifting attention from successfully learned rules to new rules (see

Ashby et al., 1998, for a review).

In the WCST, participants have to discover an experimenter-defined matching rule (e.g.,

‘‘objects with the same shape go together’’) and respond according to the rule. In the middle

of the task, the rule may change and participants must sort according to the new rule. Two

aspects of the task are of interest, rule learning and response shifting, with both being likely

to be subserved by the selection-based system (see Ashby et al., 1998, for a discussion).

There are several types of shifts, with two being of particular interest for understanding of

the selection-based system—the reversal shift and the extradimensional shift.

The reversal shift consists of a reassignment of a dimension to a response. For example, a

participant could initially learn that ‘‘if Category A (say the color is green), then press

Fig. 2. RB (A) and II stimuli (B) (after Nomura & Reber, 2008). Each point represents a distinct Gabor patch

(sine-wave) stimulus defined by orientation (tilt) and frequency (thickness of lines). In both stimulus sets, there

are two categories (red and blue points). RB categories are defined by a vertical boundary (only frequency is

relevant for categorization), whereas II categories are defined by a diagonal boundary (both orientation and

frequency are relevant). In both RB and II stimuli, there are examples of a stimulus from each category. II,

information integration; RB, rule based.
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button 1, and if Category B (say the color is red), then press button 2.’’ The reversal shift

requires a participant to change the pattern of responding, such that ‘‘if Category A, then

press button 2, and if Category B, then press button 1.’’ In contrast, the extradimensional

shift consists of change in which dimension is relevant. For example, if a participant initially

learned that ‘‘if Category A (say the color is green), then press button 1, and if Category B

(say the color is red), then press button 2,’’ the extradimensional shift would require a dif-

ferent pattern of responding: ‘‘if Category K (say the size is small), then press button 1, and

if Category M (say the size is large), then press button 2.’’ Findings indicate that patients

with lesions to PFCs had substantial difficulties with extradimensional, but not with the

reversal shifts on the WCST (e.g., Rogers et al., 2000). Therefore, these patients did not

have a difficulty in inhibiting the previously learned pattern of responding but rather had

difficulty in shifting attention to a formerly irrelevant dimension, which is indicative of a

selection-based system impairment.

In sum, there is evidence that the compression-based and the selection-based system

may be dissociated in the brain. Furthermore, although both systems involve parts of the

striatum, they differ with respect to other areas of the brain. Whereas the selection-based

system relies critically on the PFC and the ACC, the compression-based system relies on

IT cortex. As I argue in the next section, the IT and the PFCs may exhibit differential mat-

urational time course. The relative immaturity of PFCs early in development coupled with

a relative maturity of the IT cortex and the striatum should result in young children

having a more mature compression-based than selection-based system and thus being

more efficient in learning dense than sparse categories (Smith, 1989; Smith &

Kemier-Nelson, 1984).

3.2. Characteristics of the learner: Differential maturational course of brain systems
underlying category learning

Many vertebrates have a brain structure analogous to the IT cortex and the striatum,

whereas only mammals have a developed PFC (Striedter, 2005). Studies of normal brain

maturation (Jernigan, Trauner, Hesselink, & Tallal, 1991; Pfefferbaum et al., 1994;

Caviness, Kennedy, Richelme, Rademacher, & Filipek, 1996; Giedd et al., 1996a, 1996b;

Sowell & Jernigan, 1999; Sowell, Thompson, Holmes, Batth, Jernigan, and Toga, 1999,

Sowell, Thompson, Holmes, Jernigan, and Toga, 1999) have indicated that brain morphol-

ogy continues to change well into adulthood. As noted by Sowell, Thompson, Holmes,

Batth, et al. (1999), maturation progresses in a programmed way, with phylogenetically

more primitive regions of the brain (e.g., brain stem and cerebellum) maturing earlier, and

more advanced regions of the brain (e.g., the association circuits of the frontal lobes) matur-

ing later. In addition to the study of brain development focused on the anatomy, physiology,

and chemistry of the changing brain, researchers have studied the development of function

that is subserved by particular brain areas.

Given that the two learning systems differ primarily with respect to the cortical structures

involved (the basal ganglia structures are involved in both systems), I will focus primarily

on the maturational course of these cortical systems. I will first review data pertaining to the
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maturational course of IT and associated visual recognition functions and then pertaining to

the PFC and associated executive function.

3.2.1. Maturation of the IT cortex
Maturation of the IT cortex has been extensively studied in monkeys using single-cell

recording techniques. As demonstrated by several researchers (e.g., Rodman, 1994;

Rodman, Skelly, & Gross, 1991), many fundamental properties of IT emerge quite early.

Most importantly, as early as 6 weeks, neurons in this cortical area exhibit adult-like

patterns of responsiveness. In particular, researchers presented subjects with different

images (e.g., monkey faces and objects varying in spatial frequency), while recording elec-

trical activity of IT neurons. They found that, in both infant and adult monkeys, IT neurons

exhibited a pronounced form of tuning, with different neurons responding selectively to

different types of stimuli. These and similar findings led researchers to conclude that the IT

cortex is predisposed to rapidly develop major neural circuitry necessary for basic visual

processing. Therefore, although some aspects of the IT circuitry may exhibit a more

prolonged development, the basic components develop relatively early. These findings

contrast sharply with findings indicating a lengthy developmental time course of PFCs (e.g.,

Bunge & Zelazo, 2006).

3.2.2. Maturation of the PFC
There is a wide range of anatomical, neuroimaging, neurophysiological, and neurochemi-

cal evidence indicating that the development of the PFC continues well into adolescence

(e.g., Sowell, Thompson, Holmes, Jernigan, et al., 1999; see also Luciana & Nelson, 1998;

Rueda et al., 2004; Davidson et al., 2006, for extensive reviews).

The maturational course of the PFC has been studied in conjunction with research on

executive function—the cognitive function that depends critically on the maturity of the

PFC (Davidson et al., 2006; Diamond & Goldman-Rakic, 1989; Fan, McCandliss, Sommer,

Raz, & Posner, 2002; Goldman-Rakic, 1987; Posner & Petersen, 1990). Executive function

comprises a cluster of abilities such as holding information in mind while performing a task,

switching between tasks or between different demands of a task, inhibiting a dominant

response, deliberate selection of some information and ignoring other information, selection

among different responses, and resolving conflicts between competing stimulus properties

and competing responses.

There is a large body of behavioral evidence that, early in development, children exhibit

difficulties in deliberately focusing on relevant stimuli, inhibiting irrelevant stimuli, and

switching attention between stimuli and stimulus dimensions (Diamond, 2002; Kirkham,

Cruess, & Diamond, 2003; Napolitano & Sloutsky, 2004; Shepp & Swartz, 1976; Zelazo,

Frye, & Rapus, 1996; Zelazo, Muller, Frye, & Marcovitch, 2003; see also Fisher, 2007, for

a more recent review).

Maturation of the prefrontal structures in the course of individual development results in

progressively greater efficiency of executive function, including the ability to deliberately

focus on what is relevant while ignoring what is irrelevant. This is a critical step in acquiring

the ability to form abstract, similarity-free representations of categories and use these
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representations in both category and property induction. Therefore, the development of rela-

tively abstract category-based generalization may hinge on the development of executive

function. As suggested above, while the selection-based system could be deployed by

default in adults when learning is supervised (e.g., Ashby et al., 1998), it could be that, early

in development, it is the compression-based system that is deployed by default.

Therefore, there are reasons to believe that the cortical circuits that subserve the compres-

sion-based learning system (i.e., IT) come online earlier than the cortical circuits that sub-

serve the selection-based learning system (i.e., PFC). Thus, it seems likely that, early in

development, children would be more efficient in learning dense, similarity-bound catego-

ries (as these could be efficiently learned by the compression-based system) than sparse,

similarity-free ones (as these require the involvement of the selection-based system).

In sum, understanding category learning requires understanding an interaction of at least

three components: (a) the structure of the input, (b) the learning system that evolved to pro-

cess this input, and (c) the characteristics of the learner in terms of the availability and matu-

rity of each of the system. Understanding the interaction among these components leads to

several important predictions. First, dense categories should be learned more efficiently by

the nondeliberate, compression-based system, whereas sparse categories should be learned

more efficiently by the more deliberate selection-based system. Second, because the critical

components of the selection-based system develop late (both phylo- and ontogenetically)

relative to the compression-based system, learning of dense categories should be more uni-

versal, whereas learning of sparse categories should be limited to those organisms that have

a developed PFC. Third, because the selection-based system of category learning undergoes

a more radical developmental transformation, learning of sparse categories should exhibit

greater developmental change than learning of dense categories. Fourth, young children can

spontaneously learn dense categories that are based on multiple overlapping features,

whereas they should have difficulty in spontaneously learning sparse categories that have

few relevant features or dimensions and multiple irrelevant features. Note that the critical

aspect here is not whether a category is defined by a single dimension or by multiple dimen-

sions, but whether the category is dense or sparse. For example, it should be less difficult to

learn a color-based categorization if color is the only dimension that varies across the cate-

gories, whereas it should be very difficult to learn a color-based categorization if items vary

on multiple irrelevant dimensions. And finally, given the immaturity of the selection-based

system of category learning and of executive function, it seems implausible that, early in

development, children can spontaneously use a single predictor as a category marker over-

riding all other predictors. In particular, this immaturity casts doubt on the ability of babies

or even young children to spontaneously use linguistic labels as category markers in cate-

gory representation. Because the issue of the role of category labels in category representa-

tion is of critical importance for understanding of conceptual development, I will focus on it

in one of the sections below.

In what follows, I review empirical evidence that has been accumulated over the years,

with particular focus on research generated in my lab. Although many issues remain

unknown, I will present two lines of evidence supporting these predictions. First, I present

evidence that category structure, learning system, and developmental characteristics of the
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learner interact in category learning and category representation. In particular, early in

development, the compression-based system exhibits greater efficiency than the selection-

based system. In addition, early in development, categories are represented perceptually,

and only later do participants form more abstract, dimensional, rule-based, or lexicalized

representations of categories. And second, the role of words in category learning is not

fixed; rather, it undergoes developmental change: Words initially affect processing of visual

input, and only gradually they become category markers.

4. Interaction among category structure, learning system, and characteristics of the
learner: Evidence from category learning and category representation

Recall that I hypothesized an interaction among (a) the structure of the category (in par-

ticular, its density), (b) the learning system that evolved to process this input, and (3) the

characteristics of the learner in terms of the availability and maturity of each system. In

what follows, I consider components of this interaction with respect to category learning

and category representation.

4.1. Category learning

As discussed earlier, there are reasons to believe that, in the course of individual develop-

ment, the compression-based system comes online earlier than the selection-based system

(i.e., due to the protracted immaturity of the executive function that subserves the selection-

based system). Therefore, it seems plausible that, at least early in development, the

compression-based system is deployed by default, whereas the selection-based system has

to be triggered explicitly (see Ashby et al., 1998 for arguments that this may not be the case

in adults). It is also possible that there are experimental manipulations that could trigger the

nondefault system. In particular, the selection-based system could be triggered by explicit

supervision or an error signal.

If the systems are dissociated, then sparse categories that depend critically on selec-

tive attention (as they require focusing on a few relevant dimensions, while ignoring

irrelevant dimensions) may be learned better under the conditions triggering the selec-

tion-based system. At the same time, dense categories that have much redundancy may

be learned better under the conditions of implicit learning. Finally, because dense

categories could be efficiently learned by the compression-based system, which is more

primary, both phylo- and ontogenetically, learning of dense categories should be more

universal than learning of sparse categories. In what follows, I review evidence exem-

plifying these points.

4.1.1. Interactions between category structure and the learning system
In a recent study (Kloos & Sloutsky, 2008), we demonstrated that category structure

interacts with the learning system as well as with characteristics of the learner. In this study,

5-year-olds and adults were presented with a category learning task where they learned
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either dense or sparse categories. These categories consisted of artificial bug-like creatures

that had a number of varying features: sizes of tail, wings, and fingers; the shadings of body,

antenna, and buttons; and the numbers of fingers and buttons (see Fig. 3, for examples of

categories). Category learning was administered under either an unsupervised, spontaneous

learning condition (i.e., participants were merely shown the items) or under a supervised,

deliberate learning condition (i.e., participants were told the category inclusion rule). Recall

that the former learning condition was expected to trigger the compression-based system of

category learning, whereas the latter was expected to trigger the selection-based system. If

category structure interacts with the learning system, then implicit, unsupervised learning

should be more optimal for learning dense categories, whereas explicit, supervised learning

should be more optimal for learning sparse categories. This is exactly what was found: For

both children and adults, dense categories were learned better under the unsupervised, spon-

taneous learning regime, whereas sparse categories were learned more efficiently under the

supervised learning regime. Critical data from this study are presented in Fig. 4. The figure

presents categorization accuracy (i.e., the proportion of hits, or correct identification of

category members minus the proportion of false alarms, or confusion of nonmembers for

members) after the category learning phase.

These findings dovetail with results reported by Yamauchi, Love, and Markman (2002)

and Yamauchi and Markman (1998) in adults. In these studies, participants completed a cat-

egory learning task that had two learning conditions: classification and inference. In the

classification condition, participants learned categories by predicting category membership

of each study item. In the inference condition, participants learned categories by predicting

a feature shared by category members. Across the conditions, results revealed a category

structure by learning condition interaction. In particular, NLS categories (which are

Dense Category

Target Items 

Contrasting Items 

Sparse Category

Target Items 

Contrasting Items 

Fig. 3. Examples of items used from Kloos and Sloutsky (2008), Experiment 1. In the dense category, items

are bound by similarity, whereas in the sparse category, the length of the tale is the predictor of the category

membership.
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typically sparser) were learned better in the classification condition, whereas prototype-

based categories (which are typically denser) were learned better in the inference condition.

The interaction between the category structure and the learning system has been recently

demonstrated by Hoffman and Rehder (2010), with respect to the cost of selectivity in cate-

gory learning. Similar to Yamauchi and Markman (1998), participants learned categories

either by classification or by feature inference. In the classification condition, participants

were presented with two categories (e.g., A and B). On each trial, they saw an item and their

task was to predict whether the item in question is a member of A or B. In the inference con-

dition, participants were also presented with categories A and B. On each trial, they saw an

item that had one missing feature and their task was to predict whether it was a feature

common to A or common to B. In both conditions, upon responding, participants received

feedback.

Each category had three binary dimensions whose values were designated as 0 or 1.

There were two learning phases. In Phase 1, participants learned two categories A and B,

with Dimensions 1 and 2 distinguishing between the categories and Dimension 3 being fixed

across the categories (e.g., all items had a value of 0 on the fixed Dimension 3). In Phase 2,

participants learned two other Categories C and D, with Dimensions 1 and 2 again distin-

guishing between the categories and Dimension 3 being fixed again (e.g., now items had a

value of 1 on the fixed Dimension 3). After the two training phases, participants were given

categorization trials involving contrasts between categories that were not paired during

training (e.g., A vs. C). Note that correct responding on these novel contrasts required

attending to Dimension 3, which had been previously irrelevant during training. If partici-

pants attend selectively to dimensions, their attention should have been allocated to Dimen-

sions 1 and 2 during learning, which should have attenuated attention to Dimension 3. This

attenuated attention represents the cost of selectivity. Alternatively, if no selectivity is

involved, there should be little or no attenuation, and therefore, little or no cost. It was found

that the cost was higher for classification learners than for inference learners, thus
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suggesting that classification learning, but not inference learning, engages the selection-

based system.

4.1.2. Developmental primacy of the compression-based system
Zentall et al. (2008) present an extensive literature review indicating that although birds,

monkeys, apes, and humans are capable of learning categories consisting of highly similar

yet discriminable items (i.e., dense categories), only some apes and humans could learn

sparse relational categories, such as ‘‘sameness’’ when an equivalence class consisted of

dissimilar items (e.g., a pair of red squares and a pair of blue circles are members of the

same sparse category). However, even here it is not clear that subjects were learning a

sparse category. As shown by Wasserman, Young, and Cook (2004), nonhuman animals

readily distinguish situations with no variability in the input (i.e., zero entropy) from

situations where input has stimulus variability (i.e., nonzero entropy). Therefore, it is possi-

ble that learning was based on the distinction between zero entropy in each of the ‘‘same’’

displays and nonzero entropy in each of the ‘‘different’’ displays.

The idea of the developmental primacy of the compression-based system is supported by

data from Kloos and Sloutsky (2008) reviewed earlier. In particular, data presented in Fig. 4

clearly indicate that, for both children and adults, sparse categories were learned better

under the explicit, supervised condition, whereas dense categories were learned better under

the implicit, unsupervised condition. Also note that adults learned the sparse category even

in the unsupervised condition, whereas young children exhibited no evidence of learning.

These data support the contention that the compression-based system is the default in young

children.

In addition, data from Kloos and Sloutsky (2008) indicate that although both children and

adults exhibited able spontaneous learning of a dense category, there were marked develop-

mental differences in spontaneous learning of sparse categories. Categorization accuracy in

the spontaneous condition by category density and age is presented in Fig. 5. Two aspects

of these data are worth noting. First, there was no developmental difference in spontaneous
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Fig. 5. Unsupervised category learning by density and age group from Kloos and Sloutsky (2008).
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learning of the very dense category, which suggests that the compression-based system of

category learning exhibits the adult level of functioning in 4- to 5-year-olds. And second,

there were substantial developmental differences in spontaneous learning of sparser catego-

ries, which suggests that adults, but not young children, may spontaneously deploy the

selection-based system of category learning. Therefore, the marked developmental differ-

ences pertain mainly to the deployment and functioning of the selection-based system,

but not of the compression-based system (see also Hammer, Diesendruck, Weinshall, &

Hochstein, 2009, for related findings).

Additional evidence for the developmental primacy of the compression-based learning

system stems from research demonstrating that young children can learn complex contin-

gencies implicitly, but not explicitly (Sloutsky & Fisher, 2008). The main idea behind the

Sloutsky and Fisher (2008) experiments was that implicit (and perhaps compression-based)

learning of complex contingencies might underlie seemingly selective generalization behav-

iors of young children. There is much evidence suggesting that, even early in development,

people’s generalization could be selective—depending on the situation, people may rely on

different kinds of information. This selectivity has been found in a variety of generalization

tasks, including lexical extension, categorization, and property induction. For example, in a

lexical extension task (Jones et al., 1991), 2- and 3-year-olds were presented with a named

target (i.e., ‘‘this is a dax’’), and then were asked to find another dax among test items.

Children extended the label by shape alone when the target and test objects were presented

without eyes. However, they extended the label by shape and texture when the objects were

presented with eyes.

Similarly, in a categorization task, 3- and 4-year-olds were more likely to group items on

the basis of color if the items were introduced as food, but group on the basis of shape if the

items were introduced as toys (Macario, 1991). More recently, Opfer and Bulloch (2007)

examined flexibility in lexical extension, categorization, and property induction tasks. It

was found that across these tasks, 4- to 5-year-olds relied on one set of perceptual predictors

when the items were introduced as ‘‘parents and offspring,’’ whereas they relied on

another set of perceptual predictors when items were introduced as ‘‘predators and prey.’’

These findings pose an interesting problem—is this putative selectivity subserved by the

selection-based system or by the compression-based system? Given critical immaturities of

the selection-based system early in development, the latter possibility seems more plausible.

Sloutsky and Fisher’s (2008) study supported this possibility.

A key idea is that many stimulus properties intercorrelate, such that some clusters of

properties co-occur with particular outcomes, and other clusters co-occur with different out-

comes, thus resulting in a dense ‘‘context–outcome’’ structures (cf., with the idea of

‘‘coherent covariation’’ presented in Rogers & McClelland, 2004). Learning these correla-

tions may result in differential allocation of attention to different stimulus properties in dif-

ferent situations or contexts, with flexible generalizations being a result of this learning. In

particular, participants could learn the following set of contingencies: In Context 1, Dimen-

sion 1 (say, color) was predictive, but Dimension 2 (say, shape) was not, whereas the reverse

is true in Context 2. If, as argued earlier, the system of implicit compression-based learning

is fully functioning even early in development, then the greater the number of contextual
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variables correlating with the relevant dimension (i.e., the greater the density), the greater

the likelihood of learning. However, if learning is selection-based the reverse may be the

case. This is because the larger the number of relevant dimensions, the more difficult it

could be to formulate a contingency as a simple rule.

These possibilities have been tested in multiple experiments reported in Sloutsky and

Fisher (2008). In these experiments, 5-year-olds were presented with triads of geometric

objects differing in color and shape. Each triad consisted of a Target and two Test items.

Participants were told that a prize was hidden behind the Target and their task was to deter-

mine the Test item that had a prize behind it. Children were trained that, in Context 1, shape

of an item was predictive of an outcome, whereas in Context 2 color was predictive. Context

was defined as the color of the background on which stimuli appeared and the location of

the stimuli on the screen. Therefore, in Context 1, training stimuli appeared on a yellow

background in the upper-right corner of the computer screen, and on a green background in

the bottom-left corner of the computer screen in Context 2. Training stimuli were triads each

consisting of a target and two test items. Participants were given information about a target

item and they had to generalize this information to one of the test items. Each participant

was given three training blocks. In one training block, only color was predictive, in another

training block, only shape was predictive, whereas the third block was a mixture of the for-

mer two blocks. Participants were then presented with testing triads that had an important

difference from training triads. Whereas training triads were ‘‘unambiguous’’ in that only

one dimension of variation (either color or shape) was predictive and only one test item

matched the target on the predictive dimension, this was not the case for testing triads. In

particular, testing triads were ‘‘ambiguous’’ in that one test item matched the target on one

dimension and the other test item matched the target on the other dimension. The only

disambiguating factor was the context.

It was found that participants had no difficulty in learning the contingency between the

context and the predictive dimension when there were multiple contextual variables corre-

lating with the predictive dimension. In particular, children tested in Context 1 primarily

relied on shape and those in Context 2 primarily relied on color. Learning, however, attenu-

ated markedly when the number of contextual variables was reduced, which should not have

happened if learning was selection based. And finally, when presented with testing triads

and explicitly given a simple rule (e.g., children were asked to make choices by focusing

either on color or on shape), they were unable to focus on the required dimension. These

findings present further evidence for the developmental asynchrony of the two learning sys-

tems: Although 5-year-old children could readily perform the task when relying on the com-

pression-based learning system, they were unable to perform the task when they had to rely

on the selection-based system.

In sum, there is emerging body of evidence from category learning suggesting an interac-

tion between the category structure and the learning system, pointing to developmental

asynchronies in the two systems. Future research should reexamine category structure and

category learning in infancy. In particular, given the critical immaturity of the selection-

based system, most (if not all) of category learning in infancy should be accomplished by

the compression-based system.
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4.2. Category representation

In the previous section, I reviewed evidence indicating that category learning is affected

by an interaction among category structure, the learning systems processing this structure,

and the characteristics of the learner. In this section, I will review evidence demonstrating

components of this interaction for category representation. Most of the evidence reviewed

in this section pertains to developmental asynchronies between the learning systems.

Two interrelated lines of evidence will be presented: (a) the development of selection-

based category representation and (b) the changing role of linguistic label in category

representation.

4.2.1. The development of selection-based category representation
If the compression-based and the selection-based learning systems mature asynchro-

nously, such that early in development the former system exhibits greater maturity than the

latter, then it is likely that most of the spontaneously acquired categories are learned implic-

itly by the compression-based learning system. If this is the case, it is unlikely that young

children form abstract rule-based representations of spontaneously acquired categories,

whereas they are likely to form perceptually rich representations. A representation of a cate-

gory is abstract if category items are represented by either a category inclusion rule or by a

lexical entry. A representation of a category is perceptually rich if category representation

retains (more or less fully) perceptual detail of individual exemplars.

One way of examining category representation is focusing on what people remember

about category members. For example, Kloos and Sloutsky (2008, Experiment 4B) pre-

sented 5-year-olds and adults with a category learning task. Similar to the above-

described experiment by Kloos and Sloutsky (2008), there were two between-subjects

conditions, with some participants learning a dense category and some learning a sparse

category. Both categories consisted of the described above artificial bug-like creatures

that had a number of varying features: sizes of tail, wings, and fingers; the shadings of

body, antenna, and buttons; and the numbers of fingers and buttons. The relation between

the two latter features defined the arbitrary rule: Members of the target category had

either many buttons and many fingers or few buttons and few fingers. All the other fea-

tures constituted the appearance features. Members of the target category had a long tail,

long wings, short fingers, dark antennas, a dark body, and light buttons (target appearance

AT), whereas members of the contrasting category had a short tail, short wings, long fin-

gers, light antennas, a light body, and dark buttons (contrasting appearance AC). All par-

ticipants were presented with the same set of items; however, in the sparse condition

participants’ attention was focused on the inclusion rule, whereas in the dense condition

it was focused on appearance information. This was achieved by varying the description

of items across the conditions. In the sparse-category condition, the description was as

follows: ‘‘Ziblets with many aqua fingers on each yellow wing have many buttons, and

Ziblets with few aqua fingers on each yellow wing have few buttons.’’ In the dense-

category condition, in addition to the above-described rule, the appearance of exemplars

was described. In both conditions, appearance features were probabilistically related to
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category membership, whereas the rule was fully predictive. After training, participants

were tested on their category learning and then presented with a surprise recognition task.

During the recognition phase, they were presented with four types of recognition items:

ATRT (the items that had both the appearance and the rule of the Target category), ACRC

(the items that had both the appearance and the rule of the Contrast category), ATRC (the

items that had the appearance of Target category and the rule of the Contrast category),

and ACRT (the items that had the appearance of the Contrast category and the rule of the

Target category). If participants learned the category, they should accept ATRT items and

reject ACRC items. In addition, if participants’ representation of the category is based on

the rule, they may false alarm on ACRT, but not on ATRC items. However, if partici-

pants’ representation of the category is based on the appearance, they should false alarm

on ATRC, but not on ACRT items.

False alarm rates by age and test item type are presented in Fig. 6. As can be seen in the

figure, adults were more likely to false alarm on same appearance items (i.e., ATRC) in the

dense condition and on same rule items (i.e., ACRT) in the sparse condition. In contrast,

young children were likely to false alarm on same appearance items (i.e., ATRC) in both

conditions. These results suggest that, in adults, dense and sparse categories could be repre-

sented differently: The former are represented perceptually, whereas the latter are repre-

sented more abstractly. At the same time, 5-year-old children are likely to represent

perceptually both dense and sparse categories. These data suggest that the representation of

sparse (but not dense) categories changes in the course of development.

These findings, however, were limited to newly learned categories that were not lexical-

ized. What about the representation of lexicalized dense categories? One possibility is that

lexicalized dense categories are also represented perceptually, similar to newly learned

dense categories. In this case, there should be no developmental differences in the represen-

tation of lexicalized dense categories. However, representations of lexicalized dense catego-

ries may include the linguistic label (which could be the most reliable guide to category

membership). In particular, it is possible that lexicalization of a perceptual grouping eventu-

ally results in an abstract label-based representation (in the limit, a member of a category
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could be represented just by its label). If this is the case, then there should be substantial

developmental differences in the representation of lexicalized dense categories. Further-

more, in this case, adults should differently represent highly familiar lexicalized dense cate-

gories (e.g., cat) and newly learned nonlexicalized dense categories (e.g., categories

consisting of bug-like creatures). In particular, they should form an abstract representation

of the former, but not the later.

These possibilities have been examined in a set of recognition memory experiments (e.g.,

Fisher & Sloutsky, 2005; Sloutsky & Fisher, 2004a, 2004b). If participants form abstract

representation of category items, then a task that prompts categorization of items may result

in attenuated memory for appearance information. This reasoning is based on a long tradi-

tion of false memory research demonstrating that deep semantic processing of studied items

(including grouping of items into categories) often increases memory intrusions—false rec-

ognition and recall of nonpresented ‘‘critical lures’’ or items semantically associated with

studied items (e.g., Koutstaal & Schacter, 1997; Thapar & McDermott, 2001). Thus, ‘‘dee-

per’’ processing can lead to lower recognition accuracy when critical lures are semantically

similar to studied items. In contrast to deep processing, focusing on perceptual details of

pictorially presented information results in accurate recognition (Marks, 1991).

Therefore, if a recognition memory task is presented after a task that encourages access

to the abstract representation of familiar categories, patterns of recognition errors may

reveal information about how categories are represented. If participants processed items

relatively abstractly as members of a category, then they would be more likely to have diffi-

culty in discriminating studied targets from conceptually similar critical lures. If, on the

other hand, they processed items more concretely, focusing on perceptual details, then they

should discriminate relatively well.

In a set of experiments, Fisher and Sloutsky (2005) presented adults with one of two

tasks. In the Baseline condition, the task was to remember items as accurately as possible,

whereas in the Induction condition, the task was to generalize a property from a target item

to each presented item. In both conditions, study phase items consisted of several categories,

with multiple items per category. Following this study phase, participants in both conditions

were presented with a surprise recognition task. Recognition items included Old Items

(those presented during the Study phase), Critical Lures (novel items from studied catego-

ries), and Unrelated Items (novel items from new categories). If participants accept Old

Items and Critical Lures, but reject Unrelated Items, then it is likely that they represented

only abstract category information, not appearance information. However, if they accept

only Old Items, but reject Critical Lures and Unrelated Items, then it is likely that they rep-

resented appearance information.

In one experiment reported by Fisher and Sloutsky (2005), adults were presented with

familiar lexicalized dense categories (e.g., cats, bears, etc.), whereas in another condition,

dense categories included artificial bug-like creatures, similar to those used by Kloos and

Sloutsky (2008). Memory accuracy (which is a function of hits and false alarms on Critical

Lures) by condition and category type in adults is presented in Fig. 7. Note that the depen-

dent variable is A-prime (A-prime is a nonparametric analog of the signal-detection d-prime

statistic), and the value of 0.5 represents no discrimination between Old Items and Critical

V. M. Sloutsky ⁄ Cognitive Science 34 (2010) 1269



Lures. When categories were familiar, adults were accurate in the Baseline condition,

whereas they did not distinguish between Old Items and Critical Lures in the Induction con-

dition. This category processing effect indicates that adults form a relatively abstract repre-

sentation of familiar (and lexicalized) dense categories. It is also possible that category label

plays an important role in such a representation (cf., findings reported by Tipper & Driver,

2000 on priming between pictures of objects and their labels in adults). At the same time,

when categories were novel, adults were accurate in both the Baseline and Induction condi-

tion. Therefore, perceptual information plays an important role in the representation of

novel dense categories in adults.

In contrast to adults, young children do not exhibit evidence of abstract representation of

even familiar dense categories. As shown in Fig. 8, after performing induction with pictures
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of members of familiar categories (e.g., cats), young children exhibited greater recognition

accuracy than did adults, with recognition gradually decreasing with increasing age (Fisher

& Sloutsky, 2005; Sloutsky & Fisher, 2004a, 2004b). The figure depicts A-prime scores

across the conditions and the difference in A-prime score between the Baseline and Induc-

tion conditions reflects the ‘‘category processing effect’’—a decreased recognition of cate-

gorized items compared with the baseline. As shown in the figure, there is no evidence of

the category processing effect early in development, and even in preadolescence the magni-

tude of the effect is smaller than that in adults. Recall that when adults were given the same

task with novel items for which they did not have compressed category representation, their

recognition accuracy increased to the level of young children (see Fig. 7).

These findings in conjunction with the relative immaturity of the executive function in

4- and 5-year-olds suggest that these participants, even if they learn a sparse rule-based cate-

gory, would be unable to use this learned category in other tasks. It has been often argued

that one of the most important roles of categories is to support inductive generalization. If

one learns that an individual has a particular property (e.g., a particular dog likes bones),

one could generalize this property to other members of this category. Although most

transient properties (e.g., is awake) cannot be generalized, many stable properties can.

Therefore, examining the pattern of inductive generalization could elucidate how categories

are represented. If participants do not form an abstract representation of a sparse category,

they would be unable to use the category in induction.

One way of addressing this issue is to teach participants a novel sparse rule-based cat-

egory. Once participants learn the category, they could be presented with a property

induction task, in which they could rely either on the rule or on appearance information,

which is irrelevant for category membership. If young children represent the category by

an abstract rule, they should use this representation when performing inductive general-

ization. Conversely, if they represent appearance of the items, then young children (even

when they successfully learn the category) should rely on appearance information, while

disregarding category membership information. These possibilities were tested in a set of

experiments reported by Sloutsky, Kloos, and Fisher (2007). In these experiments, partic-

ipants were first presented with a category learning task during which they learned two

categories of artificial animals. Category membership was determined by a rule, whereas

perceptual similarity was not predictive of category membership. Children were then

given a categorization task with items that differed from those used during training. Par-

ticipants readily acquired these categories and accurately sorted the items according to

their category information. Then participants were presented with a triad induction task.

Each triad consisted of a target and two test items, with one test item sharing the target’s

category membership, and the other test item being similar to the target (without sharing

category membership). Participants were familiarized with a quasi-biological property of

the target and asked to generalize this property to one of the test items. Finally, partici-

pants were given a final (i.e., postinduction) categorization task using the same items as

the induction task. The results indicate that, although participants learned the category-

inclusion rule, they did not use it in the course of induction, rather basing their induction

on perceptual information.
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In sum, early in development, similarity plays an important role in the representation of

even sparse categories, whereas later in development categories may be represented in a

more abstract manner. One possibility is that, later in development, labels begin to play a

more central role in category representation.

4.2.1.1 The developing role of linguistic labels in category representation: In the previous

section, I reviewed evidence that in young children (in contrast to adults) a category label

does not figure prominently in category representation. This developmental change in the

role of category labels represents another source of evidence for the developmental asyn-

chronies between the two systems of category learning. In this section, I focus on the chang-

ing role of category labels in greater detail.

To examine the role of linguistic labels in category representation of adults, Yamauchi

and colleagues conducted a series of studies supporting the idea that for adults a label is a

symbol that represents a category (Yamauchi & Markman, 2000; Yamauchi & Yu, 2008).

The overall reasoning behind this work is that if labels are category markers, they should be

treated differently from the rest of features (such shape, color, size, etc.). However, this may

not be the case if labels are features. Therefore, inferring a label when features are given

(i.e., a classification task) should elicit different performance from a task of inferring a

feature when the label is given (i.e., a feature induction task).

To test these ideas, Yamauchi and Markman (2000) used the above-described category

learning task that was presented under either classification or feature induction learning

condition. There were two categories, C1 and C2 denoted by two labels, L1 and L2. Stimuli

were bug-like artificial creatures that varied on several dimensions, with one range of values

determining C1 and another range of values determining C2. In the feature induction task, par-

ticipants were shown a creature with one missing feature and were given a category label.

Their task was to predict the missing feature. In the classification task, they were presented

with a creature that was not labeled, and the task was to predict the category label. The critical

condition was the case when an item was a member of C1, but was similar to C2, with the

dependent variable being the proportion of C1 responses. The results indicated that there were

significantly more category-based responses in the induction condition (where participants

could rely on the category label) than in the categorization condition (where participants had

to infer the category label). It was concluded therefore that category labels differed from

other features in that participants treated labels as category markers. These findings have been

replicated in a series of follow-up studies (Yamauchi, Kohn, & Yu, 2007; Yamauchi & Yu,

2008; see also Markman & Ross, 2003, for a review). For example, Yamauchi et al. (2007)

examined patterns of mouse-tracking (a procedure that is similar to eye tracking) to examine

attention allocated to labels when labels were introduced as category markers (e.g., ‘‘This is a

dax’’) or as denoting category features (e.g., ‘‘This one has a dax’’). Results indicated that

participants viewed these visually presented labels more often in the former condition than in

the latter condition. In sum, there is a body of evidence indicating that adults tend to treat the

category label as a category marker rather than as a category feature.

However, the reliance on category labels in category representation requires the involve-

ment of the selection-based system. At the same time, if the selection-based system exhibits
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a slow developmental course, the ability to use category labels as category markers should

be limited early in development. Furthermore, simultaneous processing of auditory and

visual input (e.g., an object and corresponding sound) requires the ability to integrate infor-

mation coming from different modalities. This ability also exhibits a relatively slow matura-

tional course (see Robinson & Sloutsky, 2010, for a review) and is unlikely to be fully

functional in infancy. In part, this slow maturational course in the ability to integrate cross-

modal information could be related to a slow maturational course of neurons processing

multisensory information. For example, there is evidence from animal models indicating

that multisensory neurons located in the superior colliculus and at various cortical locations

do not mature until the sufficient visual experience is accumulated (see Wallace, 2004, for a

review).

If the contribution of labels to categorization and category learning hinges on (a) the abil-

ity to process cross-modal information and (b) the ability to attend selectively, with both

abilities undergoing substantial developmental change, then the role linguistic labels play in

categorization and category learning may change across development. In what follows, I

review evidence indicating the changing role of category labels and consider possible mech-

anisms underlying these developmental changes.

As my colleagues and I have argued elsewhere, auditory input may affect attention allo-

cated to corresponding visual input (Napolitano & Sloutsky, 2004; Robinson & Sloutsky,

2004; Sloutsky & Napolitano, 2003; Sloutsky & Robinson, 2008), and these effects may

change in the course of learning and development. In particular, linguistic labels may

strongly interfere with visual processing in prelinguisitic children, but these interference

effects may weaken when children start acquiring language (Sloutsky & Robinson, 2008;

see also Robinson & Sloutsky, 2007a, 2007b).

In one experiment, Sloutsky and Robinson (2008) familiarized 10- and 16-month-olds

with auditory–visual compounds. The familiarization compound consisted of a three-shape

pattern and a word presented at the same time (both the word and the three-shape pattern

were ably processed by infants of these age groups when presented unimodally). The famil-

iarization phase was followed by the test phase, in which participants were presented with

four different auditory–visual test items. One test item was the familiarization compound

(AUDTargetVISTarget), one had a changed visual component (AUDTargetVISNew), one had a

changed auditory component (AUDNewVISTarget), and one had both components changed

(AUDNewVISNew).

The dependent variable was looking time at each test item. If participants considered a

test item to be different from the familiarization item, looking time to this item should

increase compared with the end of familiarization. Because the AUDTargetVISTarget is the

familiarization item, it should elicit looking that is comparable with looking at the end of

familiarization phase. Because the AUDNewVISNew is a novel item, it should elicit longer

looking. At the same time, looking at AUDTargetVISNew and AUDNewVISTarget items should

depend on whether participants processed auditory and visual components of the familiar-

ization compound. If infants did, they should increase looking to both test items. If infants

processed only the auditory component, they should increase looking only to

AUDNewVISTarget item, whereas if they processed only the visual component, they should
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increase looking only to AUDTargetVISNew item. Looking times to AUDTargetVISNew,

AUDNewVISTarget, and AUDNewVISNew items compared with the AUDNewVISTarget item are

presented in Fig. 9. These results clearly indicate that although 10-month-old infants failed

to process the visual component, 16-month-old infants processed both components. It was

concluded therefore that linguistic input interfered with processing of visual input at

10 months of age, but these interference effects weakened by 16 months of age.

In another experiment, Robinson and Sloutsky (2007a) presented 8- and 12-month-olds

with a categorization task. Participants were familiarized with category exemplars under

one of the three conditions: (a) all items were accompanied by the same label, (b) all items

were accompanied by the same sound, or (c) all items were presented in silence. At test, par-

ticipants were presented with two types of test trials: (a) recognition trials (i.e., a studied

item was paired with a new item) and (b) categorization trials (i.e., a novel in-category

exemplar was paired with a novel out-of-category exemplar). If participants recognize the

studied item, they should prefer looking to the novel item, and if they learned the category,

they should prefer looking to an out-of-category item. Results indicated that performance

was significantly better in the silent condition, thus suggesting that both sounds and labels

interfered with the categorization task. Similar results were reported for individuation tasks

(Robinson & Sloutsky, 2008).

By the onset of word learning, children should start acquiring the ability to integrate

linguistic and visual input (Robinson & Sloutsky, 2007b; Sloutsky & Robinson, 2008).

However, even then cross-modal processing may not reach the full level of maturity and

therefore linguistic labels may attenuate the processing of corresponding visual input. As
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discussed below, this attenuated processing may result in an increased similarity of entities

that have the same label and thus in an increased tendency to group them together (e.g.,

Sloutsky & Fisher, 2004a; Sloutsky & Lo, 1999; Sloutsky, Lo, & Fisher, 2001).

Although interference effects attenuate with development, they do not disappear com-

pletely. This issue has been examined in depth in a series of recognition experiments (e.g.,

Napolitano & Sloutsky, 2004; Robinson & Sloutsky, 2004; Sloutsky & Napolitano, 2003).

In these recognition experiments, 4-year-olds and adults were presented with a compound

Target stimulus, consisting of simultaneously presented auditory and visual components

(AUDTargetVISTarget). These experiments were similar to the above-described experiment,

except that no learning was involved. Participants were presented with a Target, which was

followed immediately by a Test item and the task was to determine whether the Target and

Test items were exactly the same.

There were four types of test items: (a) AUDTargetVISTarget, which was the Old Target

item; (b) AUDTargetVISNew, which had the target auditory component and a new visual com-

ponent; (c) AUDNewVISTarget, which had the target visual component and a new auditory

component; or (d) AUDNewVISNew, which had a new visual component and a new auditory

component. The task was to determine whether each presented test item was exactly the

same as the Target (i.e., both the same auditory and visual components) or a new item (i.e.,

differed on one or both components).

Similar to the experiment with infants (Robinson & Sloutsky, 2004), it was reasoned that

if participants process both auditory and visual stimuli, they should correctly respond to all

items by accepting Old Target items and rejecting all other test items. Alternatively, if they

fail to process the visual component, they should falsely accept AUDTargetVISNew items,

while correctly responding to other items. Finally, if they fail to process the auditory compo-

nent, they should falsely accept AUDNewVISTarget items, while correctly responding to other

items. In one experiment (Napolitano & Sloutsky, 2004), speech sounds were paired with

either geometric shapes or pictures of unfamiliar animals. Results indicated that although

children ably processed either stimulus in the unimodal condition, they failed to process

visual input in the cross-modal condition. Furthermore, a yet unpublished study by Napolit-

ano and Sloutsky indicates that interference effects attenuate gradually in the course of

development, with very little evidence of interference in adults.

There is also evidence that this dominance of auditory input is not under strategic control:

Even when instructed to focus on visual input young children had difficulties doing so

(Napolitano & Sloutsky, 2004; Robinson & Sloutsky, 2004). In one of the experiments

described in Napolitano and Sloutsky (2004), 4-year-olds were explicitly instructed to attend

to visual stimuli, with instructions repeated before each trial. However, despite the repeated

explicit instruction to attend to visual stimuli, 4-year-olds continued to exhibit auditory

dominance. These results suggest that auditory dominance is unlikely to stem from deliber-

ate selective attention to a particular modality, but it is more likely to stem from automatic

pulls on attention.

If linguistic labels attenuate visual processing, such that children ably process a label, but

they do so to a lesser extent the corresponding visual input, then these findings can explain

the role of labels in categorization tasks. In particular, items that share a label may appear
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more similar than the same items presented without a label. In other words, early in develop-

ment, labels may function as features contributing to similarity, and their role may change

in the course of development. In fact, there is evidence supporting this possibility (e.g.,

Sloutsky & Fisher, 2004a; Sloutsky & Lo, 1999).

The key idea behind these experiments is if two items have a particular degree of visual

similarity, then adding a common label would increase this similarity due to the above-

described attenuated visual processing. These effects have been demonstrated with a fre-

quently used forced choice task, where participants are expected to make either a similarity

judgment (i.e., which one of the several test items looks more like the target) or a categori-

zation judgment (i.e., which one of the several test items belongs to the same kind as the

target).

In this case, the probability of selecting a particular test item is a function of a ratio of

the similarity of a given test item to the Target to the summed similarity of other test items

to the Target. In this case, the common label affects the similarity ratio. These ideas have

been implemented in model SINC (for Similarity, Induction, Naming, and Categorization;

Sloutsky & Lo, 1999; Sloutsky & Fisher, 2004a) that accurately predicted similarity and cat-

egorization judgment in young children when labels were and were not introduced.

In these experiments, young children were presented with triads of items (a Target and

two Test items) and were asked which of the Test items looked more similar to the Target.

One of the test items (e.g., Test A) was very similar to the Target, whereas similarity of the

other test item (say Test B) varied across trials from very similar to very different. In the

Baseline condition, labels were not provided, whereas in the Label condition, one of the Test

items shared the label with the Target, whereas the other Test item did not. The labels were

artificial bisyllabic count nouns. Proportions of selecting Test B as more similar to the

Target by condition and similarity ratio (Test B–Target ⁄ Test A–Target) are presented in

Fig. 10A. As can be seen in the figure, the presence of labels increased similarity for all

levels of similarity. However, when the same task was given to adults (Fig. 10B), labels had

no effect on similarity judgment.

Therefore, it seems that labels function differently across development: Whereas labels

are likely to contribute to similarity of compared items in children (e.g., Sloutsky & Fisher,
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2004a; Sloutsky & Lo, 1999), they are not likely to do so in adults (Yamauchi & Markman,

2000).

There is also evidence that labels have similar effects on categorization—these effects

are also graded rather than rule-like, with labels affecting, but not overriding perceptual sim-

ilarity (e.g., Sloutsky & Fisher, 2004a). In several experiments conducted by Sloutsky and

Fisher, 4- and 5-year-olds performed a match-to-sample categorization task. On each trial,

they were presented with a triad of pictures, a target, and two test items. All items were

labeled and only one of the test items shared the label with the target. Participants were

asked to decide which of the test items belongs to the same kind as the Target. Strikingly

similar patterns were observed for categorization and feature induction tasks in young chil-

dren: Again, participants’ categorization and induction responses were affected by the simi-

larity ratio, with labels contributing to these effects of similarity rather than overriding

them.

In yet another experiment, Sloutsky and Fisher (2004a, 2004b) used items that had been

previously used by Gelman and Markman (1986), which turned out to vary widely in terms

of appearance similarity. Again, there was little evidence that, in their induction responses,

4- and 5-year-olds relied exclusively on linguistic labels.

In short, the reviewed evidence supports the idea that young children treat labels as per-

ceptual features that contribute to similarity of compared entities. It seems that these effects

of labels stem from critical immaturities of cross-modal processing coupled with immaturit-

ies of selective attention. Further development of cross-modal processing and the selection-

based system, coupled with acquired knowledge that a category label is highly predictive of

category membership, may result in category labels becoming category markers in adults

(e.g., Yamauchi & Markman, 2000; Yamauchi & Yu, 2008; see also Markman & Ross,

2003). However, additional research is needed to establish a detailed understanding of the

changing role of linguistic labels in category representation.

4.3. Summary

In this section, I considered interactions among category structure, the learning system,

and characteristics of the learner in category learning and category representation. First, I

reviewed evidence demonstrating that dense categories could be learned efficiently by the

compression-based system, whereas sparse categories require the involvement of the selec-

tion-based system. Second, although the compression-based system exhibits able function-

ing even early in development, the selection-based system undergoes developmental

transformations. As a result, early in development learning subserved by the compression-

based system exhibits greater efficiency than learning subserved by the selection-based sys-

tem. Third, representation of sparse categories changes in the course of development:

Although adults form an abstract representation of sparse categories, young children form

similarity-based representations of sparse categories. Fourth, there are developmental differ-

ences in the representation of dense lexicalized categories: Adults, but not young children,

can represent these categories abstractly. And finally, there is evidence that the role of cate-

gory labels in category representation changes in the course of development; not until late
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in development do labels become category markers (although see Waxman & Markow,

1995; Welder & Graham, 2001; Xu, 2002).

5. Conceptual development: From perceptual categories to abstract concepts

On the basis of the formulated characteristics of the input, of the learning systems, and of

the learner, we can propose a rough sketch of how conceptual development proceeds. The

early functioning of the compression-based system suggests that even young infants should

ably learn dense perceptual categories. The ability to learn perceptual categories from

relatively dense input has been demonstrated in nonhuman animals as well as in 3- and

4-month-old human infants (Cook & Smith, 2006; Quinn et al., 1993; Smith et al., 2008;

Zentall et al., 2008). Although some of these perceptual categories (e.g., cats, dogs, or food)

will undergo lexicalization, others (e.g., some categories of speech sounds) will not.

The next critical step is the development of the ability to integrate cross-modal informa-

tion that may subserve word learning and learning of dense cross-modal categories. There

is evidence that very young infants have difficulty in integrating input coming from

different modalities, unless both modalities express the same amodal relation (e.g., when

the same amodal relation [such as rhythm or rate] is presented cross-modally, cross-modal

presentation is likely to facilitate processing of the amodal relation [see Lewkowicz, 2000;

Lickliter & Bahrick, 2000, for reviews]). Initially the sensory systems are separated from

one another, with multisensory integration being a product of development and learning.

There is much recent neuroscience evidence pointing to slow postnatal maturation of multi-

sensory neurons, coupled with slow maturation of functional corticotectal connections (see

Wallace, 2004, for a review). Cross-modal integration is at the heart of the ability to learn

cross-modal perceptual categories, which permeate early experience (e.g., dogs bark, cats

meow, and humans speak).

Once the ability to integrate cross-modal information is somewhat functional, infants can

start learning words, which requires binding auditory and visual input. However, given the

immaturity of cross-modal processing, it is easier to learn words that denote perceptual cate-

gories that the child already knows. Furthermore, infants may spontaneously learn catego-

ries of items that are frequent in their environment and these categories would be the first to

be labeled by parents. There is evidence (e.g., Nelson, 1973) that the most frequent type of

words among the first 100 words produced by babies is a count noun, with most of these

count nouns denoting perceptual categories of entities in the child’s environment. Therefore,

learning the first words could be a way of lexicalizing those perceptual categories that the

child already learned. Lexicalization also opens the possibility of acquiring knowledge of

unobservable properties about category members, as well as generalizing this knowledge.

Unobservable information includes properties that one does not typically observe (e.g., that

one’s pet dog has a heart) as well as properties that cannot be observed in principle, but have

to be inferred from the observed properties (e.g. ‘‘that another person has thoughts and

feelings’’). Once acquired, these unobservable properties can be entered into the computa-

tion of similarity, thus enabling the development of more abstract superordinate categories.
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Therefore, lexicalization is a critical step in the transition from perceptual groupings to con-

cepts. The ability to process cross-modal input also enables children to use a combination of

perceptual and linguistic cues in acquiring broad ontological distinctions (Jones & Smith,

2002; Samuelson & Smith, 1999; Yoshida & Smith, 2003).

The next important step is learning of dimensional words, denoting dimensional values

(e.g., ‘‘green’’ or ‘‘square’’). Learning of these words coupled with further maturation of

the PFC and the development of executive function may result in lexicalization of some

stimulus dimensions (such as color, shape, or size). As argued by many researchers

(Carey, 1982; Gasser & Smith, 1998), learning of dimensional words follows learning of

count nouns. One explanation is that perceptual groupings, such as ‘‘dog’’ or ‘‘cup,’’

denoted by count nouns are dense—they are based on an intercorrelated set of features

and feature dimensions. In contrast, dimensional groupings (e.g., ‘‘red things’’) are sparse.

Therefore, the later, but not the former, requires selective attention, which appears later in

development than the ability to learn perceptual groupings and to integrate cross-modal

information.

Further development of the PFC coupled with learning of abstract words lays the founda-

tion for the development of abstract concepts. However, unlike their concrete counterparts

(such as ‘‘dog’’ or cup’’) where category learning may precede word learning, there are rea-

sons to believe that words denoting abstract concepts are learned prior to the concept itself

(e.g., Vygotsky, 1964). For example, according to the MacArthur Lexical Development

Norms (Dale & Fenson, 1996) a 30-month-old toddler may produce words, such as love,

time, and same; however, it is unlikely that these children have concepts of LOVE, TIME,

or EQUIVALENCE. Furthermore, because these abstract concepts refer to exceedingly

sparse categories, it is likely that the acquisition of these categories requires supervision.

The relative maturity of the PFC is of critical importance because learners need to focus on

a small set of category-relevant features, while ignoring irrelevant features. The ability to

lexicalize categories and the ability to acquire abstract concepts paves the way to acquisition

of abstract mathematical and scientific concepts. However, some of these concepts are so

sparse and put so much demand on selectivity that supervision alone may not be suffi-

cient—and sophisticated explicit instruction is needed—for successful learning of these

concepts (e.g., Kaminski, Sloutsky, & Heckler, 2008).

In sum, the proposal presented here attempts to connect conceptual development with the

structure of input and the availability of the learning system necessary for processing of this

input. This rough sketch, however, is just a first step in uncovering the great mystery of con-

ceptual development—a progression from a newborn who has difficulty in perceiving the

world to an adult who has the ability of changing the world.

6. Concluding comments

In this study, I considered the possibility of conceptual development progressing from

simple perceptual grouping to highly abstract scientific concepts. I reviewed evidence sug-

gesting that conceptual development is a product of an interaction of the structure of input,
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the category learning system that processes this input, and maturational characteristics of

the learner.

I also considered three steps that are critical for conceptual development. First, the devel-

opment of the selection-based system of category learning that depends critically on the

maturation of cortical regions subserving executive function. The second critical step is the

ability to integrate cross-modal information. This ability is critical for word learning and

lexicalization of spontaneously acquired perceptual groupings, as well as for forming broad

ontological classes. And the third critical step, depending on the former two, is the ability to

learn and use abstract categories. Unlike their concrete counterparts that can be acquired by

perceptual means and lexicalized later, for learning of some abstract categories lexicaliza-

tion might be a prerequisite.

The proposal presented here considers a complex developmental picture that depends on

a combination of maturational and experience factors in conceptual development. Under this

view, learning of perceptual categories, cross-modal integration, lexicalization, learning of

conceptual properties, the ability to focus and shift attention, and the development of lexi-

calized concepts are logical steps in conceptual development. This proposal offers a theoret-

ical alternative to the idea of innate knowledge structures specific to various knowledge

domains. However, much research is needed to move from a rough sketch to detailed under-

standing of conceptual development.

Note

1. For the moment, I will ignore a relatively small class of abstract concepts—‘‘elec-

tron’’ would be a good example—that start out as a lexical entry. However, I will

return to this issue later in the study.
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Abstract

Learning depends on attention. The processes that cue attention in the moment dynamically inte-

grate learned regularities and immediate contextual cues. This paper reviews the extensive literature

on cued attention and attentional learning in the adult literature and proposes that these fundamental

processes are likely significant mechanisms of change in cognitive development. The value of this

idea is illustrated using phenomena in children’s novel word learning.

Keywords: Cued attention; Development; Noun learning

1. Introduction

In her introduction to the 1990 special issue of Cognitive Science, Rochel Gelman asked,

‘‘How is it that our young attend to inputs that will support the development of concepts

they share with their elders?’’ Gelman posed the question in terms of attention, but the

answers offered in that volume were not about attention. Instead, they were about innate

knowledge structures, so-called first or core principles that guide learning in specific know-

ledge domains. In the years since 1990, inspired in part by the highly influential papers in

that special issue, there have been many demonstrations of the remarkable knowledge that

quite young children bring to bear on learning. But there have been very modest advances in

understanding the processes and mechanisms through which that knowledge is realized and

applied to aid learning. Accordingly, in this paper we return to Gelman’s original question:

How do children select the right information for learning?
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We consider this question in the context of how children learn words, one of the topics

also of central interest in the original special issue. We begin by reviewing well-documented

and general mechanisms of attentional learning from the adult literature from the perspec-

tive of their relevance as mechanisms of cognitive development. We then ask—mostly with-

out direct empirical evidence on the answer—what role these known mechanisms might

play in early word learning. Our main goal is to encourage researchers to pursue these

mechanisms as significant contributors to word learning and to cognitive development more

generally. This—taking well-documented mechanisms from one area of research and asking

whether they might apply in another, moving the field toward a more unified understanding

of what might seem at first unrelated domains—should not be contentious. However, the

literature on early word learning is highly contentious (Booth & Waxman, 2002; Cimpian &

Markman, 2005; Smith & Samuelson, 2006) and not in a productive way, as the explana-

tions pitted against each other are not empirically resolvable in a straightforward way.

One word-learning principle, mutual exclusivity, discussed in the original special issue

may help illuminate the problem. The phenomenon, which is not at issue, is this: Given a

known thing with a known name (e.g., a cup) and a novel thing and told a novel name

(‘‘Where is the rif?’’) children take the novel word to refer to the novel object and not the

known one. Markman (1990, p. 66) explained this behavior as follows: ‘‘children constrain

word meaning by assuming at first that words are mutually exclusive—that each object can

have one and only one label.’’ This description summarizes the phenomenon in terms of the

macro-level construct of ‘‘assumptions.’’ This construct, of course, may be unpacked into a

number of micro-level processes, including, as we will propose here, cue competitions. An

account in terms of cue competitions and attention is not in opposition to an account in

terms of assumptions because the two kinds of explanations are at fundamentally different

levels of analysis that answer different questions. The mutual exclusivity assumption as pro-

posed by Markman is a statement about an operating characteristic of the child’s cognitive

system that facilitates word learning. A proposal about cue competitions is a proposal about

the more micro-level mechanisms that may give rise to that operating characteristic. An

analogy helps: One possible account of why someone just ate a cookie is that they are hun-

gry; another possible account is that they ate the cookie because of low levels of leptin and

the release of ghrelin. The second account might be wrong, and the first might well be right;

but the second is not in opposition to the first in any sensible way. Moreover, a choice

between the two cannot be made according to which one better accounts for the macro-level

behavior of eating the cookie. Instead, the relevance of leptin and ghrelin to cookie eating

must be decided in terms of micro-level processes about which the macro-level construct of

hunger makes no predictions.

In what follows, we consider Gelman’s original question of how children might know to

attend to the right properties for learning by considering contemporary evidence on atten-

tional mechanisms and then asking whether these mechanisms might play a role in enabling

children to attend to the right information for learning words. The evidence suggestive of a

role for cued attention in word learning is primarily at a macro level. Accordingly, we next

discuss the kind of micro-level studies needed to pursue these proposed mechanisms. We do

not consider macro-level explanations of children’s early word learning as competing
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hypotheses to the proposals about cued attention. However, we conclude with a reconsidera-

tion of the contention in the early word learning and what is (and is not) at stake.

2. Cued attention

Attention is a construct that is so widely used in psychological theory that William James

(1890) lamented ‘‘everyone knows what attention is’’ with the subtext that everyone may

know but no one agrees. Within developmental psychology, ‘‘attention’’ is currently studied

with respect to several different (but potentially deeply related, see Posner & Rothbart,

2007) phenomena, including sustained attention (e.g., Miller, Ables, King, & West, 2009;

Richards, 2005, 2008), attentional switching and disengagement (e.g., Blaga & Colombo,

2006; Posner, Rothbart, Thomas-Thrapp, & Gerardi, 1998; Richards, 2008), executive con-

trol (e.g., Chatham, Frank, & Munakata, 2009; Diamond, 2006; Hanania & Smith, in press),

and joint attention among social partners (e.g., Grossmann & Farroni, 2009; Hirotani, Stets,

Striano, & Friederici, 2009). There are very few developmental studies specifically con-

cerned with contextually cued attention (e.g., Goldberg, Maurer, & Lewis, 2001; Smith &

Chatterjee, 2008; Wu & Kirkham, in press). Although we will briefly consider how cued-

attention might be related to other forms of attention in children at conclusion, we focus on

contextually cued attention in this paper precisely because so little is known about its devel-

opment despite its apparent ubiquity in sensory, perceptual, and cognitive processing in

adults. Briefly, the well-documented fact is this: Cues that have been probabilistically asso-

ciated with some stimulus in the past enhance detection, processing, and learning about that

stimulus (e.g., Brady & Chun, 2007; Chun & Jiang, 1998). In this section, we briefly sum-

marize the very broad literature that supports these conclusions, noting how these processes

capture regularities in the input, protect past learning, and guide future learning.

2.1. Predictive cues

The attentional consequences of learned associations between cues and the stimuli they

predict has been well known since the work of Mackintosh (1975) and Rescorla and Wagner

(1972). Originally in the context of classical conditioning but more recently also in the

broader domain of associative learning (see Chapman & Robbins, 1990; Kruschke & Blair,

2000; see also, Ramscar, Yarlett, Dye, Denny, & Thorpe, in press), these studies present

learners with cues that predict specific outcomes. The results show that what is learned

about the relation between those cues and outcomes depends on the cues present in the task,

their relative salience, and the learner’s history of experiences with those cues in predicting
outcomes. Critically, these cued-attention effects are not about single cues associated with

single attentional outcomes but rather are about the consortium of cues present in the

moment and all of their predictive histories.

Three illustrative phenomena are overshadowing, blocking, and latent inhibition (Kamin,

1968; Lubow & Moore, 1959; Mackintosh, 1975; Rescorla & Wagner, 1972). The relevant

task structures are shown in Table 1. Overshadowing refers to the situation in which two
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cues are presented together and jointly predict some outcome (e.g., in a category learning

study, two symptoms might predict some disease, or in classical conditioning, a tone and a

light might predict shock). The strength of association of each cue to the outcome depends

on its relative salience. However, it is not simply that the most salient cue is learned better;

rather, salience differences are exaggerated in that the more salient cue may ‘‘overshadow’’

the less salient cue with little or no learning at all about the less salient cue (Grossberg,

1982; Kamin, 1969; Kruschke, 2001; Mackintosh, 1976; Rescorla & Wagner, 1972). Block-

ing refers to the case in which the greater salience of one cue is not due to intrinsic salience

but is due, instead, to past learning. If some cue regularly predicts some outcome and then,

subsequently, a second cue is made redundant with the first and so also predicts that out-

come, there is little or no learning about the second cue: Learning is blocked by the first pre-

dictive cue (Bott, Hoffman & Murphy, 2007; Kamin, 1968; Kruschke & Blair, 2000;

Shanks, 1985), as if the first cue were more ‘‘salient’’ and thus overshadowing in this

predictive context. Latent inhibition, like blocking, also makes the point that salience is a

product of learning and predictive strength. But here the phenomenon is learned irrelevance:

If a cue is first varied independently of the outcome so that it is not predictive at all but then

it is made perfectly predictive, it will be hard to learn and ‘‘overshadowed’’ by other cues

(e.g., Lubow, 1997; Lubow & Kaplan, 1997; Mackintosh & Turner, 1971).

These phenomena make three key points about the cues in cued attention: (a) cue strength

is determined by predictive power, not mere co-occurrence; (b) cue strength depends on the

ordered history of predictability, not batch statistics; and (c) individual cues interact, such

that one cannot simply predict whether some cue will be learned by considering it alone,

one must instead know its history and the history of the other cues in the learning environ-

ment. These phenomena are evident in many adult statistical learning tasks (e.g., Cheng &

Holyoak, 1995; Kruschke, 2001; Kruschke & Blair, 2000; Kruschke & Johansen, 1999;

Ramscar et al., in press) and as Ellis (2006) concluded, their ubiquity implies that human

learning about predictive relations is bounded by basic mechansisms of cued attention (see

Yu & Smith, in press; Yoshida, unpublished data).

Highlighting is a higher level phenomenon that may be understood as a product of block-

ing and overshadowing and it is a particularly robust phenomenon in adult associative learn-

ing (Kruschke, 1996, 2005; Ramscar et al., in press). It also demonstrates how cued

Table 1

Cue interactions in associative learning

Cue Interaction First Learning Phase Second Learning Phase Learning Outcome

Overshadowing AB fi X A fi X

Blocking A fi X AB fi X A fi X

Latent inhibition B fi AB fi X A fi X

Highlighting AB fi X AC fi Y C fi Y

Mutual exclusivity A fi X AB fi Y B fi Y

Note. The letters A, B, C indicate cues and the letters X and Y indicate predicted outcome for the first phase

of learning, and the subsequent second phase of learning. What is learned after the second phase is indicated in

the third column. Bold letters indicate more salient cues (either through learning or intrinsic salience).
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attention both protects past learning and guides new learning. Highlighting emerges when

adults first learn one set of predictive cues to task-relevant information and then later are

exposed to an overlapping set of new and old predictive cues that predict the relevance of

different information. The task structure that leads to highlighting is also provided in

Table 1. Learners are first exposed to a conjunctive cue (A + B) that predicts an outcome

(X), and then are presented with a new conjunctive cue that contains one old component (A)

plus a new one (C) that predicts a new outcome (Y). The key result concerns learning during

the second phase: Learners associate the new cue with the new outcome more than they

associate the old cue with the new outcome. For example, if the learner is first taught that

red and square predict category X and then is taught that red and circle predict category Y,

the learner does not learn about the relation of red and category Y, but rather appears to

selectively attend only to the novel cue, circle, and to learn that circle predicts category Y.

In brief, novel cues are associated with novel outcomes. By one explanation, this derives

from the rapid (and automatically driven) shift of attention away from the previously

learned cue (red and square) in the context of the new outcome, so that the new cue (circle)

becomes attentionally highlighted and strongly associated with the new outcome (e.g.,

Kruschke, 1996, 2005). This attention-shifting account has also been supported by

eye-tracking results (Kruschke, Kappenman, & Hetrick, 2005).

Highlighting, as well as blocking and overshadowing may be understood in terms of com-

petitions among predictive cues, as if cues fight for associations with outcomes, so that once

an association is established it protects itself by inhibiting the formation of new associations

to the same predicted outcome. There are many reasons to think that these kinds of cue com-

petitions should play a role in cognitive development, including the robustness of the phe-

nomena in adults across a variety of task contexts. There is also one phenomenon in

children’s learning that shares an at least surface similarity to cue competition effects

in associative learning: mutual exclusivity (Markman, 1989; see also Halberda, 2006);

Hollich et al., 2000).

As illustrated in Table 1, the task structure that yields mutual exclusivity looks very

much like that of blocking or highlighting: A first-learned association (the word ‘‘cup’’ to

the referent cup) is followed by a subsequent learning task with a new cue (the novel word)

and outcome (the novel object). Consistent with this proposal, several models (e.g., Mayor

& Plunkett, 2010; Regier, 2005) have shown how mutual exclusivity might emerge in cue

interactions in associative learning. Also consistent with this proposal are studies tracking

moment-to-moment eye gaze direction in infants (Halberda, 2009); the attention shifting by

infants in these studies resembles those of adults in highlighting experiments (Kruschke

et al., 2005).

2.2. Lots of cues

Blocking and highlighting emerge in experimental studies in which researchers manipu-

late at most two to three cues and outcomes. The world, however, presents many probabilisti-

cally associated cues and outcomes yielding potentially complex patterns of predictability,

with cues predicting other cues as well as potentially multiple outcomes. Importantly, such a
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large ‘‘data set’’ of associations are also likely to have considerable latent structure, higher

order regularities that might support deep and meaningful generalizations that go beyond

specific cues and outcomes. Several connectionist models have sought to understand the

structure of these higher order regularities (see, e.g., Colunga & Smith, 2005; Colunga,

Smith, & Gasser, 2009; Kruschke, 1992, 2001; McClelland & Rogers, 2003). In one study,

Colunga and Smith (2005) examined how the statistical regularities among perceptual

properties of instances of basic level noun categories might create higher order partitions

(object, substance) and also direct attention to relevant properties for categorizing artifacts

(shape) and substances (material). To this end, they fed a connectionist net perceptual

features (e.g., solidity, material, color, shape) that adults said characterized 300 noun catego-

ries commonly known by 2-year-olds. From this input, the network acquired generalized

cued-attention effects that worked even when presented with novel entities; specifically, in

making decisions about novel categories, the network weighted shape more in the context of

solidity and weighted material in the context of nonsolidity. This result tells us that the

corpus of early learned nouns and the correlated properties of the objects to which those

nouns refer contain useable cue-outcome regularities of the kind that could train attention.

Several theoretical and empirical analyses suggest that systems of associations often pres-

ent a form of coherent covariation (Rogers & McClelland, 2004) across cues and outcomes.

The importance of coherent covariation to human learning has been demonstrated in experi-

mental tasks showing that adults (and infants, Younger & Cohen, 1983) are more likely to

attend to and learn about features that co-vary than those that merely co-occur (e.g.,

Kruschke & Blair, 2000; Medin & Schaffer, 1978; Medin, Altom, Edelson, & Freko, 1982).

Other theorists have also pointed to what they call the systematicity (Billman & Heit, 1989)

of associations; cues that probabilistically predict an outcome also often predict each other,

and the systematicity across associations among cues, among outcomes, and among cues

and outcomes matters in learning (e.g., Billman & Knutson, 1996; Goldstone, 1998).

Yoshida and Smith (2003b, 2005) (see also, Sloutsky & Fisher, 2008) proposed a cued-

attention framework for thinking about the interactive effects of redundant cues that builds

on the idea of interactive activation (see Billman & Knutson, 1996; Goldstone, 1998; Medin

et al., 1982; O’Reilly, 2001). The proposal is illustrated in Fig. 1 using the simple case of

a       b 

c 

Training                                                Learned ab connection 

a       b 

a       b 

a       b 

Fig. 1. Redundant correlations in the learning environment lead to stronger associations.
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just three correlated cues: The correlation between cues a and b are learned either in the

context of a third redundant cue, c, or without that third correlated cue. Experimental studies

show that the learned connection between a and b is stronger if acquired in the context of c,

which correlates with both a and b, than without that redundant correlation (Billman &

Knutson, 1996; Yoshida & Smith, 2005). Moreover, the stronger associative link between a
and b remains even when the redundant cue, c, is removed. Of course, in real-world learn-

ing, there may be many more than three correlated cues and much more complex patterns of

correlation. Through mutually reinforcing correlations such as these, a system of many cor-

related cues may lead to what have sometimes been called ‘‘gang effects’’: Highly intercon-

nected and dense patterns of associative links that give rise to patterns of internal activation

that, as a result, are not tightly dependent on any one cue (e.g., Billman & Knutson, 1996;

Goldstone, 1998; O’Reilly, 2001; Yoshida & Smith, 2003a,b). Instead, the interactive acti-

vation among co-varying cues can lead to snowball effects in which the joint activation of

cues is stronger than the sum of the individually contributing associations.

One developmental result raised by Gelman (1990) in the original special issue, ‘‘illusory

projections,’’ may be understood in terms of such gang effects (see Rogers & McClelland,

2004 for a more detailed account). Gelman reported that preschool children project proper-

ties onto an instance of a category that are not perceptually there; children say that they saw
feet on an eyed yet ball-like and footless thing if they were told that the thing could move

on its own. Fig. 2 provides an example of how this might work within the cued-attention

framework. On the left is a hypothetical description of overlapping correlations among a set

of perceptual properties: Things with eyes tend also to have feet, to move on their own, and

so forth. Because of the overlapping correlations among all these properties, each will serve

as a context cue that predicts and ‘‘primes’’ attention to the others (see Yoshida & Smith,

2003b) thereby potentially causing an individual to more readily detect or ‘‘see’’ a property

in an ambiguous stimulus. Thus, on the right of Fig. 2 is a hypothetical description of the

cluster of cues input to the system—eyed, furry, moving on its own, but footless. By hypoth-

esis, fur, eyes, and movement will all increase attention to each other and, given the ambigu-

ous stimulus, lead to the perception of feet.

eyes 

feet 
fur 

face 

moves on own 

eyes 

feet 
fur 

face 

moves on own 

learned regularities                               pattern completion  

Fig. 2. An illustration of how redundant and overlapping correlations can lead to pattern completion and

illusory projections.
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2.3. Enhanced processing of predicted outcomes

Cues predict outcomes, and in the present use of the term, an outcome is any stimulus

event that is predicted (it could be another cue or the specifically task-relevant target infor-

mation). Considerable and growing evidence suggests that cues that predict outcomes also

enhance detection and processing of the predicted event. The relevant experiments often

involve search or detection tasks in which participants are asked to detect some target—a

shape or color—typically in a crowded field of competing distractors (Chun & Jiang, 1998;

Jiang, Olson, & Chun, 2000). These studies have revealed strong effects of repeating arrays.

Arrays that have been seen before show enhanced detection of the target, often with just one

pre-exposure but increasing with repetition. This phenomenon is usually explained as a form

of cued attention in which the array as a whole cues attention to a specific target at a specific

location (Biederman, 1972; Boyce, Pollatsek, & Rayner, 1989; Lewicki, Hill, & Czyzewska,

1992; Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977).

The experimental evidence also shows that in these tasks, contextual cues and their atten-

tional effects emerge without awareness (Chun & Jiang, 1998; Jiang & Chun, 2001, 2003;

Jiang & Leung, 2005; Lewicki, Hill, & Czyzewska, 1997; Lewicki et al., 1992; Olson &

Chun, 2002; Shanks, Channon, Wilkinson, & Curran, 2006) and result both in rapid shifting

of attention to a location (e.g., Chun and Turke-Browne, 2007; Clohessy, Posner, &

Rothbart, 2001; Jiang & Chun, 2001; Summerfield et al., 2006) and also to the enhanced

processing of particular stimulus features (Bichot & Rossi, 2005; Kruschke, 1996; Maunsell

& Treue, 2006; Rossi & Paradiso, 1995). The growing neuroscience evidence on cued atten-

tion also indicates that contextually cued enhancements of stimulus processing are pervasive

across early sensory processing and higher level perceptual and cognitive systems (Beck &

Kastner, 2009; Gilbert, Ito, Kapadia, & Westheimer, 2000; Pessoa, Kastner, & Ungerleider,

2003). For example, neurophysiological studies have shown that cue-target associations

enhance baseline firing rates (Chelazzi et al., 1993, 1998; Kastner et al., 1999) at early and

middle levels in the visual system and alter neuronal tuning of target properties (Spitzer

et al., 1988; Treue & Martinez Trujillo, 1999; Williford & Maunsell, 2006; Yeshurun &

Carrasco, 1998). Context cued enhancements of processing have also been shown to play a

role in decision making and in integrating sensory information across systems (Bichot et al.,

1996; Boynton, 2009; Gold & Shadlen, 2007; Reynolds & Heeger, 2009).

Contemporary theories of these effects, often based on analyses of neural patterns of

excitation, share a great deal with more classical explanations of cued attention (e.g.,

Mackintosh, 1975; Rescorla & Wagner, 1972) that emphasize prediction (or preactivation,

e.g., Summerfield et al., 2006) and competition (e.g., Desimone & Duncan, 1995; Duncan,

1996). For example, the biased-competition theory of selective attention (see Beck &

Kastner, 2009; Desimone & Duncan, 1995; Duncan, 1996) begins with the starting assump-

tion that competition characterizes representational processes at the sensory, motor, cortical,

and subcortical levels. In general, activation of a representation of some property, event, or

object is at the expense of other complementary representations. Selection, or attention,

then, occurs by biasing (e.g., priming) some representations in favor of others or by inhibi-

ting competing repetitions. The presence of contextual cues previously associated with some
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representation (at any of these levels) is thus thought to bias the competition. Multiple

activated cues compete, and thus also interfere with each other, with stronger cues inhibiting

weaker ones in a manner common to lateral inhibition models (Ludwig, Gilchrist, &

McSorley, 2005; Walley & Weiden, 1973; de Zubicaray & McMahon, 2009). On these

grounds, some have suggested that attention and selection are fundamentally a form of

lateral inhibition in which the degree of activation of one representation inhibits that of

nearby competitors (see Beck & Kastner, 2009; Duncan, 1996).

Here, then, is what we know about cued attention: Adults readily and unconsciously learn

cues that predict other sensory events (outcomes) that are relevant in tasks. These predictive

cues interact—both by supporting activation of the predicted event when they are correlated

and also through competition that depends in fine-grained ways on the relative strengths of

these cues and their history of prediction. These interactions are such that (a) early learned

predictive relations tend to be preserved; (b) attention is systematically shifted to novel cues

in the context of novel outcomes; and (c) the coherent covariation in large systems of cues

and outcomes can capture latent structure that organizes attention in meaningful ways.

Finally, predicted sensory events are processed faster and tuned more sharply than unpre-

dicted events. All this suggests that cued attention is a basic mechanism that is likely to play

a contributing role in many knowledge domains.

3. Cued attention as developmental process

Cued attention is also a mechanism of change and one that seems capable of driving con-

siderable change in the cognitive systems. This is because cued attention is a single mecha-

nism that aggregates knowledge, that is a repository of knowledge, and that guides learning,

thereby driving the acquisition of new knowledge. In brief, attentional learning is a self-

organizing process that builds on itself, becoming more directed, more knowledge driven,

and potentially more domain specific as a consequence of its own activity. Fig. 3 builds on

a prior proposal by Colunga and Smith (2008) about how cued attention gathers, integrates,

and applies information over nested time scales. The three separate boxes on the left illus-

trate attentional processes at three time scales. The large box represents long-term associa-

tions among the many cues and outcomes in the learning environment. The middle box

indicates the task context and the in-task dynamics of prediction and preactivation of cues

and outcomes (see Samuelson & Smith, 2000a, 2000b; Samuelson, Schutte, & Horst, in

press). Finally, there are the processes of interaction and competition driven by the current

task and stimuli. As illustrated on the right side of the figure, these are nested processes:

In-the-moment attention depends on task context as modulated by long-term associations;

in-the-moment attention also adds to those long-term associations.

These nested interactions mean that attention can be biased in different ways in different

contexts. Context cues that co-occur with (and define) specific tasks will come with repeated

experience to shift attention to the task-relevant information. Fig. 4 represents this idea in

terms of a series of context-sensitive salience maps, with the relative salience of regions in

the perceptual field indicated by the relative darkness of the locations. The idea is this:
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Because the history of associated cues increases and decreases the relative activation of fea-

tures and task targets in the perceptual field, the salience map will change with changes in

contextual cues. This means potentially dramatic shifts in the detection, selection, and pro-

cessing of stimulus events in different domains of expertise—word learning, quantity judg-

ments, or spatial reasoning. These domains have associated contextual cues that—given

sufficient experience—may structure the salience maps in consequentially different ways.

Being smart in a domain may reflect (in part) predicting what information is relevant in that

domain. For learners who have sufficient experiences in different domains, attention will

nimbly dance about from context to context, enabling those learners to attend to just the

right sort of information for that domain. In sum, what we know about cued attention and

attentional learning suggests that these mechanisms will play a role across all domains of

cognition and their self-changing nature will create domain-specific competencies. We con-

sider next one domain in which these mechanisms may be at work.

4. Children’s novel word generalizations

Many well-controlled studies show that young children need to hear only a single object

name to systematically generalize that name to new instances in ways that seem right to

Fig. 3. The nested time scales of attentional learning. The three separate boxes on the left illustrate attentional

processes at three time scales. The large box represents long-term associations among the many cues and out-

comes in the learning environment. The middle box indicates the task context and the in-task dynamics of pre-

diction and preactivation of cues and outcomes. The small box indicates processes of interaction and

competition to a momentary stimulus. As illustrated on the right side of the figure, these are nested processes:

In-the-moment attention depends on task context as modulated by long-term associations; in-the-moment atten-

tion also adds to those long-term associations.

1296 L. B. Smith, E. Colunga, H. Yoshida ⁄ Cognitive Science 34 (2010)



adults (e.g., Golinkoff, Mervis, & Hirsh-Pasek, 1994; Markman, 1989; Smith, 1995;

Waxman & Markow, 1995). Moreover, children generalize names for different kinds of

things by different kinds of similarities, shifting attention to the right properties for each

kind of category. Thus, for the task of learning common nouns, young children have solved

Gelman’s problem: They know what properties to attend to so as to form categories ‘‘shared

with their elders.’’

In the most common form of the novel word generalization task, the child is shown a

single novel entity, told its name (e.g., This is the toma) and then asked what other

things have the same name (e.g., Where is the toma here?) Many experiments have exa-

mined three kinds of entities (examples are shown in Fig. 5) and found three different

patterns of generalization. Given objects with features typical of animates (e.g., eyes or

legs), children extend the name narrowly to things that are similar in multiple properties.

Given a solid inanimate artifact-like thing, children extend the name broadly to all things

that match in shape. Given a nonsolid substance, children extend the name by material.

These are highly reliable and replicable results—obtained by many researchers—and in

their broad outline characteristic of children learning a variety of languages (e.g., Booth &

Waxman, 2002; Gathercole & Min, 1997; Imai & Gentner, 1997; Jones & Smith, 2002;

Jones, Smith, & Landau, 1991; Kobayashi, 1998; Landau, Smith, & Jones, 1988, 1998;

Markman, 1989; Soja, Carey, & Spelke, 1991; Yoshida & Smith, 2001; see also Gelman &

Coley, 1991; Keil, 1994).

Cued attention may a play a role in these generalizations in the following way: Artifacts,

animals, and substances present different features (angularity, eyes, nonsolidity) and these

Context 1

Context 2

Context 3

Fig. 4. Contextually changing salience maps. Relative salience is indicated by the relative darkness of the loca-

tions. By hypothesis, these change with changes in context cues that predict sensory events in the field.

L. B. Smith, E. Colunga, H. Yoshida ⁄ Cognitive Science 34 (2010) 1297



features co-occur with different words (quantifiers, verbs, adjectives, etc.). The features and

co-occurring words are thus potential context cues that could shift attention in systematic

ways to the relevant properties for the particular kind of category—to multiple properties

for animals to shape for artifacts, and to material for substances. And, indeed, the literature

is filled with experimental demonstrations of these effects (Booth & Waxman, 2002;

Colunga, 2006; Colunga & Smith, 2004; Gathercole, Cramer, Somerville, & Jansen op de

Haar, 1995; Jones & Smith, 1998; McPherson, 1991; Samuelson, Horst, Schutte, &

Dobbertin, 2008; Soja, 1994; Ward, Becker, Hass, & Vela, 1991; Yoshida & Smith, 2005;

Yoshida, Swanson, Drake, & Gudel, 2001).

These perceptual- and linguistic-context effects on children’s novel noun generalizations

also increase with age and language learning, just as they should if children are learning

relevant contextual cues (Jones et al., 1991; Landau et al., 1988; Samuelson, 2002; Samuel-

son & Smith, 1999, 2000a; Smith, 1995; Soja et al., 1991). Fig. 5 presents a summary of the

developmental pattern. The figure shows scatterplots of individual children’s novel noun

generalizations for solid artifactual things, things with eyes, and nonsolid things from a

variety of different experiments (with many different unique stimuli and task structures)

conducted in our laboratories over the years. Each individual child’s generalizations by the

category-relevant property (shape for solid things, multiple similarities for eyed things,

material for nonsolid things) is shown as a function of the number of artifact, animal, and

Proportions of Name Generalizations

solids by shape nonsolids by material eyed things by multiple similarities

1.
.9

.8

.7

.6

.5

.4

.3

.2

.1

20 40 60 80 100 5 10 15 20 25 30 5 10 15 20 25 30

nouns in productive vocabulary (by parent report)

artifacts substances animals

r = .60 r = .59 r = .70

Fig. 5. Scatterplots of individual children’s performances in the Novel Noun Generalization task as a function

of the number of different kinds of nouns in their productive vocabularies. Individual data are from: Smith et al.,

1992; Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002; Yoshida & Smith, 2003b; Jones & Smith,

1998, 2002; and Jones & Smith, unpublished data.
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substance names in the individual child’s vocabulary. The figures show that the systematici-

ty of these novel noun generalizations increases with early noun learning. Thus, in the broad

view, the developmental pattern of children’s novel noun generalizations fits what might be

expected if the underlying mechanism was cued attention: Children learn cues for task-

relevant properties and after sufficient experience, those cues come to shift attention in

task-appropriate ways.

5. Cross-linguistic differences

By hypothesis, the learning environment presents clusters of perceptual cues (e.g., eyes,

legs, mouths, body shapes in the case of animates) and clusters of linguistic cues (e.g., the

words ‘‘wants,’’ ‘‘is happy,’’ ‘‘mad,’’ and ‘‘hungry’’) that are associated with each other

and that predict the relevant similarities for categorizing different kinds. If perceptual and

linguistic cues are both part of the same attentional cuing system they should interact, and

given coherent covariation, should reinforce each other. The ‘‘natural’’ experiment that pro-

vides evidence is the comparison of children learning different languages.

5.1. Systematicity

The novel word generalizations of children learning English and Japanese have been

examined in a number of studies (Imai & Gentner, 1997; Yoshida & Smith, 2001, 2003a,

2005). Both languages provide many linguistic cues that correlate with artifacts (and atten-

tion to shape), animals (and attention to multiple similarities), and substances (and attention

to material). However, English arguably provides more systematic and coherently co-

varying cues distinguishing objects and substances, whereas Japanese arguably provides

more coherently co-varying cues distinguishing animates and inanimates (see Yoshida &

Smith, 2003b, for a discussion).

In particular, the count-mass distinction in English partitions all nouns into discrete

countable entities (objects and animals) or masses (substances) and the various linguistic

markers of this distinction (determiners, plural) are strongly correlated with the perceptual

cues (and particularly solidity) that predict categorization by shape. Moreover, the predic-

tive relations between linguistic cues and perceptual cues are particularly strong in the 300

English nouns that children normatively learn by 2½ years (see Colunga & Smith, 2005;

Samuelson & Smith, 1999; Smith, Colunga, & Yoshida, 2003). By hypothesis, these linguis-

tic cues should augment attention to shape for solid artifactual things and to material for

nonsolid substances. Because these linguistic cues lump object and animal categories

together, they might also weaken the predictability of the distinction between artifact cate-

gories as shape-based categories and animal categories as organized by multiple properties.

Japanese, unlike English, makes no systematic distinction between count and mass nouns

(and has no English-like plural). Therefore, there is less redundancy in the cue-category cor-

relations with respect to object and substance categories. However, Japanese offers more

systematic cues with respect to animates and inanimates than does English. As just one
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example, every time a Japanese speaker refers to the location of an entity, in frames as

ubiquitous as There is a____, they must mark the entity as animate or inanimate (ga koko ni
iru vs. __ga koko ni aru, respectively). In this, as well as other ways, Japanese, relative to

English, adds extra and systematic cues that correlate with perceptual cues predictive of

animal versus nonanimal category organizations.

Under the cued-attention framework, the coherent variation of linguistic and perceptual

cues within the two languages should create measurable cross-linguistic differences in the

noun generalizations of children in the artificial word-learning task. For children learning

both languages, solidity predicts attention to shape, nonsolidity predicts attention to mate-

rial, and features such as eyes and feet predict attention to multiple similarities. But for chil-

dren learning English, the solidity–nonsolidity cues co-vary and are supported by linguistic

cues. For children learning Japanese, eyed–noneyed cues correlate with pervasive linguistic

contrasts. Thus, there should be stronger, earlier, and sharper distinctions in novel noun gen-

eralizations for solid versus nonsolids for English-speaking children than for Japanese-

speaking children and stronger, earlier, and sharper distinctions between eyed and noneyed

stimuli for children learning Japanese. Experimental studies have documented these differ-

ences (Imai & Gentner, 1997; Yoshida & Smith, 2003b).

5.2. Gang effects

Yoshida and Smith (2005) provided an experimental test of the cued-attention account of

these cross-linguistic differences in a 4-week training experiment that taught monolingual

Japanese children redundant linguistic cues analogous to count-mass cues in English. The

experiment used a 2 · 2 design: Linguistic cues versus no linguistic cues correlated with cat-

egory organization and solidity during training, and the presence or absence of those linguis-

tic cues at test. The key results are these: Children who were trained with correlated

linguistic and perceptual cues outperformed those who were not so trained, attending to the

shape of solid things and the material of nonsolid thing and did so even when they were tested

with totally novel entities and even when the trained linguistic cue was not present at test.
That is, learning the links between solidity and nonsolidity and shape and material in the
context of redundant linguistic cues made the perceptual cue-outcome associations stronger.

5.3. Illusory projections

In a related study, Yoshida and Smith (2003a) presented English and Japanese children

with novel entities like that in Fig. 6. The protrusions are ambiguous; depending on context,

both Japanese- and English-speaking children could see them as legs or as wires. However,

when presented in a neutral context, Japanese-speaking children were more likely to see

them as leg-like and to generalize a novel name for the exemplar by multiple similarities;

English-speaking children were more likely to see them as wires and to generalize a novel

name for the exemplar by shape. In brief, Japanese-speaking children showed an enhanced

sensitivity to subtle cues vaguely suggestive of animacy, a sensitivity that may be created in
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a history of redundant linguistic-perceptual cues that reinforce attention to each other and in

so doing prime the relevant representations for animal-like features.

These cross-linguistic differences indicate that perceptual and linguistic cues interact in a

single system that organizes attention in novel word generalization tasks. The findings also

suggest that cued attention might be one mechanism behind Whorfian effects in which

speakers of different languages are found to be particularly sensitive to and attentive to rela-

tions and properties that are lexicalized in their language (see Boroditsky, 2001; Bowerman,

1996; Choi & Bowerman, 1991; Gathercole & Min, 1997; Gentner & Boroditsky, 2001;

Levinson, 2003).

6. Competition and prediction

6.1. One attentional pathway

One early study by Smith, Jones, and Landau (1992) using the novel-noun generalization

task directly examined cue-competitions by pitting cues against each other. The study exam-

ined sentence frames associated with naming objects (This is a riff) and frames associated

with labeling properties (This is a riff one) asking under what contexts the count noun frame

would result in increased attention to shape and in what contexts the adjective frame would

result in increased attention to color. Children know more nouns and know them earlier than

they do adjectives, so the noun frame might be expected to be a stronger attentional cue than

the adjective frame. Particularly relevant to possible underlying mechanisms of cued-atten-

tion, Smith et al. examined the effects of noun and adjective frames when the colors of the

labeled things were dull (olive green), intrinsically salient (glittery silver-gold), or very sali-

ent (glittery silver-gold under a spotlight).

The results provide strong support for a competition among cues that interacts with other

stimulus-driven (exogenous) pulls on attention. Given dull colors, children generalized

novel words presented in both the noun and the adjective frames by shape. Given glittery

colors without a spotlight, children generalized novel words in a noun frame by shape but in

Fig. 6. An ambiguous object: The protrusions may be seen as wires or as limbs.
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an adjective frame by color. Apparently the association between the noun frame and shape

is strong enough to overcome competition from glitter, but the pull from glitter helps the

weaker adjective frame in guiding attention to the property. Finally, when given glittery

colors under a spotlight, children often generalized the word—even in the count noun

frame—by color. Children’s performance strongly suggests a winner-take-all competition

for attention in which learned cues and other pulls on attention directly interact.

These results also illustrate an important point about attention: It forces a decision and

there is but one pathway and one decision. The single pathway means that attention must

integrate information—from past learning, from task contexts, from immediate input—into

a single attentional response. Because attention integrates multiple sources of information in

the moment, it will also be flexible and adaptive to the idioscyncracies of specific tasks. The

results also underscore the idea that words, whatever else they are, are also cues for attention

and play a role in guiding in-the-moment attention.

6.2. Cue strength

Colunga et al. (2009) offered an analysis of how the structure of the Spanish and English

count-mass system may yield different cue strengths and as a consequence different patterns

of cue interactions. The relevant difference between the two languages can be illustrated by

thinking about how speakers can talk about a block of wood. An English speaker talking

about a wooden block might say ‘‘a block’’ if he or she is talking about its shape or ‘‘some

wood’’ if he or she is talking about its substance. Further, an English speaker cannot say

‘‘some block’’ or ‘‘a wood’’ because ‘‘block’’ is a count noun and ‘‘wood’’ is a mass noun.

In contrast, a Spanish speaker, talking about the wooden block, could say ‘‘un bloque’’ (a

block) or ‘‘una madera’’ (a wood) when talking about the coherent bounded and shaped

thing but would say ‘‘algo de madera’’ (some wood) when talking about the substance irre-

spective of its shape. That is, count-mass quantifiers are used more flexibly across nouns in

Spanish than English to signal different task-relevant construals of the entity (Iannucci,

1952). Note that English has some nouns that work like ‘‘madera’’ in Spanish: ‘‘a muffin’’

predicts the context relevancy of muffin shape, but ‘‘some muffin’’ predicts the context rele-

vancy of muffin substance. But such nouns are not common in English, whereas in Spanish,

in principle, all nouns work this way, and in everyday speech many more nouns are used in

both count and mass frames than in English (Gathercole & Min, 1997; Gathercole, Thomas,

& Evans, 2000; Iannucci 1952). In brief, in Spanish, count-noun syntax is more predictive of

attention to shape or material than the noun (madera) itself or the solidity of the object. In

English, syntax, the noun, and solidity are (not perfectly but) more strongly correlated with

each other, and equally predictive of whether the relevant dimension is shape or material.

In light of these differences, Colunga et al. hypothesized that Spanish count-mass syntax

should overshadow other cues—solidity, the noun—in children’s novel noun generaliza-

tions. In the experiment, monolingual Spanish-speaking children and monolingual English-

speaking children were presented with a novel solid entity named with either mass or count

nouns, e.g., ‘‘a dugo’’ or ‘‘some dugo’’ and then tested with the two syntactic frames.

The syntactic frame had a stronger effect on the Spanish-speaking children’s noun
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generalizations than on the English-speaking children’s noun generalizations. In other

words, Spanish-speaking children learn to attend to mass-count syntax as a way to disambig-

uate nouns that sometimes refer to shape and sometimes refer to material, and in the context

of mass syntax they attend to material even when the items are solid. These results fit the

idea that children learn predictive cues and that stronger cues inhibit weaker ones. They also

emphasize how individual cues reside in a system of cues and that it is the system of inter-

acting cues that determine attention.

6.3. Protecting past learning

Cue competition privileges old learning as stronger cues inhibit new ones and force atten-

tion elsewhere. Yoshida and Hanania (2007) provided an analysis of adjective learning that

illustrates how this aspect of cued attention could play a positive role in word learning. The

motivating question for their analysis was how, in the context of both a novel adjective and

a known noun (e.g., in the context of ‘‘a stoof elephant’’), attention could be properly

shifted to a property (such as texture) rather than the shape of the thing. If the word ‘‘ele-

phant’’ is a strong cue for attention to elephant shape, how does the child manage to learn

novel adjectives? The answer offered by Yoshida and Hanania is much like the mutual-

exclusivity account (Markman, 1989) but is in terms of a cued-attention mechanism rather

than children’s knowledge about how different kinds of words link to different kinds of

meanings.

Their experiments were based on a prior study by Mintz and Gleitman (2002) that

showed that the explicit mention of the noun (e.g., the stoof elephant) helps children learn

the novel adjective relative to conditions in which the noun is not explicitly spoken (e.g., a

stoof one). Yoshida and Hanania proposed that the role of the noun could be understood as a

kind of attentional highlighting via competition. In brief, their cued-attention explanation of

the explicit mention of the noun is this: Children usually experience the word elephant in

the context of elephant-shaped things with typical elephant textures (e.g., rough). In these

novel adjective-learning experiments, the named object is an elephant-shaped elephant with

a totally novel texture (e.g., with tiny holes punched throughout). Thus, in the context of

stoof elephant, the known cue-outcome (elephant-elephant shape) shifts attention to the

novel cue—novel outcome (stoof-holey texture). In the context of stoof one, there is no con-

junctive cue containing both a known and a novel cue and thus less competition, which in

this case means less directed attention to the novel property. Yoshida and Hanania provided

indirect support for this account by showing that the mere conjunction of words (in an unor-

dered list format, e.g., elephant, stoof, red) rather than in a sentence format in which stoof
modifies the known noun elephant) was sufficient for the novel-word to novel-property

mapping and by showing that the attentional shift away from shape to the right property,

depends on the number of competitive cues (stoof in the context red and elephant leads to

stronger effects than stoof in the context of elephant alone).

Competitive processes are ubiquitous in the sensory and cognitive system (see Beck &

Kastner, 2009). They are at the core of current theories of lexical access and on-line

sentence processing (e.g., Bowers, Davis, & Hanley, 2005; Davis & Lupker, 2006). It seems
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likely that they play an important role in lexical development as well (Halberda, 2009;

Hollich, Hirsh-Pasek, Tucker, & Golinkoff, 2000; Horst, Scott, & Pollard, in press) and, as

suggested by Yoshida & Hanania, 2007; Yoshida and Hanania, unpublished data), competi-

tive attentional processes may be particularly important in early development because by

protecting already learned associations, they guide learning about novel cues and outcomes,

and in this way may leverage little bits of learning into strong forces that effectively speed

up learning.

The evidence on children’s novel noun generalizations show that context—both linguistic

and perceptual—cues children to form categories on the basis of different properties and to

select one object over another as the referent of some word. The contextual cueing effects

that characterize these early word generalizations share a number of (at least surface) simi-

larities to cued attention—the role of coherent covariation, competition with other pulls on

attention, attention shifting to protect past learning. However, none of these early word-

learning experiments unambiguously show that these are attentional effects. They cannot

because the measures of performance are at a macro level—generalizing names to things.

To show that mechanisms of attentional learning play a role in these phenomena, we need

measures at finer levels of resolution.

7. Going micro

Our main thesis is that cued attention is a potentially powerful developmental mechanism

and that early word learning—and particularly the phenomena associated with children’s

smart novel noun generalizations—would be a fertile domain in which to investigate this

idea. However, the granularity of the phenomena studied under cued attention—rapid atten-

tional shifts, rapid detection, enhanced processing, and discrimination—and those studied in

most novel word-learning experiments—generalization of an object name to a new instan-

ce—are not comparable. What is needed are finer-grained measures of component behav-

iors—orienting, disengagement, detection, and discrimination—in the context of words and

correlated object properties. One might ask, for example, whether a count noun sentence

frame primes detection of an odd shape but not an odd texture in a visual search task or

whether a count noun sentence frame enhances shape discriminations over texture

discriminations.

Recent studies of early word learning using moment-to-moment tracking of eye gaze sug-

gest the new insights to emerge from analyzing attention and word learning at a finer tempo-

ral scale. For example, recent studies using this methodology suggest that older (24 month

old) and younger (18 month old) word learners may both map words to referents, but that

older learners more rapidly process the word and object and more rapidly shift attention to

the right object (Fernald, Zangl, Portillo, & Marchman, 2008). Other studies manipulating

the sound properties of the words have shown in the time course of looking at two potential

referents, that the time course of competition and its resolution depend on the similarity of

cues (Swingley & Aslin, 2007). Other recent studies showed that time course of looking to

the named referent closely tracked the co-occurrence probabilities of words, referents, and
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distracters (Fernald, Thorpe, & Marchman, 2010; Vouloumanos & Werker, 2009; Yu &

Smith, in press). These finer-grained methods might also be used to directly test the idea that

learned clusters of coherently varying cues organize orienting to, detecting, and processing

of predicted properties in ways that nimbly guide attention to the right components of a

scene for word learning.

We also need studies on cued attention outside of the domain of early word learning,

studies that investigate the processes and mechanisms in adult literature. At present there

are very few studies (Kirkham, Slemmer, & Johnson, 2002; Reid, Striano, Kaufman, &

Johnson, 2004; Richards, 2005; Sloutsky & Robinson, 2008; Wu & Kirkham, in press) and

no active area of concentrated research effort. The studies that do exist suggest that cued

attention will not work exactly the same way in children as in adults. At present, we know

very little about attentional learning and cued attention in young children. One distinction in

the study of attentional processes that may be particularly relevant is that between

exogenous and endogenous cueing (see Colombo, 2001; Goldberg et al., 2001; Smith &

Chatterjee, 2008; Snyder & Munakata, 2008, 2010). Exogenous attention refers to the quick

capture of attention by salient stimuli, such as the flashing of lights. Endogenous attention is

attention directed by associated cues. Many studies of endogenous versus exogenous cuing

use the covert-orienting paradigm (Jonides, 1980; Posner & Raichle, 1994): A cue directs

attention to the target information either exogenously (a flashing light) or endogenously (by

a previous association) and either correctly or incorrectly. There is considerable develop-

ment in the dynamics of both exogenous and endogenous cueing and in disengaging atten-

tion when miscued (see Colombo, 2001; Goldberg et al., 2001. However, advances in

endogenous cuing appear to lag behind exogenous cuing particularly in the overriding of

misleading cues and in switching attention given a new cue (Cepeda, Kramer, & de Sather,

2001; Snyder & Munakata, 2010). By one proposal the major developmental changes lie in

the processes that resolve cue competition (Snyder & Munakata, 2008, 2010). Two recent

studies of preschoolers in attention-switching tasks suggest that experimentally training

clusters of different cues for targets (Sloutsky & Fisher, 2008) or training more abstract cues

(Snyder & Munakata, 2010) enhances switching, a result that may link cued attention, word

learning, and executive control of attention.

In brief, internally directed attention that smartly moves to the right information for learn-

ing is likely to have its own compelling developmental story, with successful attention

dependent on one’s history with a particular set of cues and overlapping mechanisms of

activation, preactivation, cue interactions, and competition. We need systematic and

fine-grained studies of the development of cued attention from infancy through the early

word-learning period and into childhood.

8. Knowledge as process

The systematicity with which young children learn the concepts they share with their

elders, and they systematicity with which they generalize a newly learned name in different

ways for different kinds, clearly demonstrates that they have knowledge. That is not in
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doubt; the contentious question is the nature of the knowledge. Macro-level accounts of this

knowledge have been in terms of propositions and core principles about kinds of categories

and kinds of word meanings, knowledge of the sort proposed in the 1990 special issue (see

also Booth & Waxman, 2002; Dewar & Xu, 2009; Diesendruck & Bloom, 2003; Hall, 1996;

Soja, 1992). These explanations are based on the traditional view of cognition as sharply

divided into knowledge and process and competence and performance. Thus, in terms of this

traditional framework, the two levels of knowledge and process illustrated on the left of

Fig. 7 were separable and one could sensibly ask of children’s performance in any word-

learning task whether their performance reflected knowledge about how words map to

meaning (competence) or whether it reflected some performance variable. One example of

this are the various debates as to whether the shape bias emerges because of conceptual

knowledge about how nouns map to categories (e.g., Booth & Waxman, 2002; Cimpian &

Markman, 2005) or whether it emerges because of attentional learning (Smith & Samuelson,

2006). This traditional explanation would seem to suggest that one could pit conceptual

explanations against explanations in terms of (only) real-time processing. This framing of

the question—concepts versus attention—is problematic on its own terms. In any real-time

Fig. 7. An illustration of two views of cognition: On the left, knowledge representations are connected to real-

time task performance as separable aspects of cognition. On the right, processes (which through their operating

characteristics and history instantiate knowledge) generate performance in real-time tasks. Within this frame-

work, beliefs, concepts, and propositional knowledge are higher level theoretical descriptions of the knowledge

embedded in these processes.
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task, conceptual knowledge requires supporting processes as well—the perceptual, atten-

tion, memory, and decision processes. Whatever can be explained by the account on the

right (the process-only account) can necessarily be explained by the account on the left:

Whatever can be explained by A (process) can always also be explained by A+B (process

plus propositions).

The framing of the contending explanations in terms of concepts versus processes such as

attention is also more profoundly misguided. Modern-day understanding of neural processes

makes clear that knowledge has no existence outside of process and that the relevant pro-

cesses often encompass many different systems and time-scales (see Barsalou, 2009). What

we call knowledge is an abstraction over many underlying processes. Although these higher

level abstractions may summarize meaningful regularities in the operating characteristics of

the system as a whole, we also need to go underneath them—and understand the finer-

grained processes from which they are made. ‘‘Word learning rules’’ and ‘‘concepts’’ may

be to attentional processes as ‘‘hunger’’ is to hormones: Not a separate mechanism but a

portmanteau abstraction that includes attentional learning (as well as other processes).

Clearly, one goal of science is to unpack these carry-all abstractions. Cued attention is a

particularly intriguing potential mechanism from this perspective because it is one that

melds competence and performance, knowledge and process, perception and conception. It

does so because cued attention is a process, operating in real time, strongly influenced by

the momentary input, with effects at the sensory and perceptual level but also driven by the

rich data structure of predictive relations between cues and outcomes in a lifetime of experi-

ences. As such, attention is a process that aggregates, acquires, and applies knowledge.
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Abstract

It is frequently claimed that the human mind is organized in a modular fashion, a hypothesis

linked historically, though not inevitably, to the claim that many aspects of the human mind are

innately specified. A specific instance of this line of thought is the proposal of an innately specified

geometric module for human reorientation. From a massive modularity position, the reorientation

module would be one of a large number that organized the mind. From the core knowledge position,

the reorientation module is one of five innate and encapsulated modules that can later be supple-

mented by use of human language. In this paper, we marshall five lines of evidence that cast doubt

on the geometric module hypothesis, unfolded in a series of reasons: (1) Language does not play a

necessary role in the integration of feature and geometric cues, although it can be helpful. (2) A

model of reorientation requires flexibility to explain variable phenomena. (3) Experience matters

over short and long periods. (4) Features are used for true reorientation. (5) The nature of geometric

information is not as yet clearly specified. In the final section, we review recent theoretical

approaches to the known reorientation phenomena.

Keywords: Modularity; Adaptive combination; Spatial reorientation; Development; Geometric

module

1. Introduction

Love and marriage, horse and carriage, modularity and nativism—the last pair of words

lacks the ring of the first two pairs, but the relation in each case is the same. The concepts

are different, and each may exist separately and independently, yet they seem for the most

part to get along naturally and easily. One expects to see them together. There can be emer-

gent modularity (Karmiloff-Smith, 1992) but that is the marked case, just as a marriage of
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convenience is a marked version of marriage (to pursue the analogy). Modularity without

modification is generally thought to be inborn (Fodor, 1983; but see Fodor, 2000 for a

different view). Similarly, although there can be versions of nativism that are not domain

specific (Elman et al., 1996), domain-general learning ability is not what is usually meant by

nativism. As generally discussed, nativism is what Elman et al. (1996) call representational
nativism, and hence is domain specific. And then, once native endowments have domain-

specific content, they must have neural instantiations, and those instantiations often seem to

involve specialized areas. Voilà—something we would call a module. In fact, it has even

been argued that one cannot have an evolutionarily informed cognitive psychology that does

not involve modules, because natural selection must have a target on which to act (Cosmides

& Tooby, 1992). Against this intellectual backdrop, modules have proliferated—the theory of

mind module, the cheater detection module, the face processing module, and so forth.

Indeed, we have seen claims that the human mind is ‘‘massively modular’’ (e.g., Carruthers,

2006). This notion has permeated the popular press. For example, consider the following

passage from Newsweek, ‘‘Behaviors that conferred a fitness advantage during the era when

modern humans were evolving are the result of hundreds of genetically based cognitive

‘modules’ programmed in the brain,’’ or ‘‘evolutionary psychologists claim that human

behavior is constrained by mental modules that calcified in the Stone Age’’ (Begley, 2009).

The massive modularity position is not the only modularity proposal. Other theorists

argue that there are a small number of modules that are the foundation of cognition. One

such position is the core knowledge position advocated by Spelke and Kinzler (2007).

According to this view, there are five modules that comprise core knowledge: object, action,

number, geometry, and social partner representation. In a similar fashion to the Fodorian

view of modularity, these modules are domain specific, innately endowed, and shared across

species. However, these modules do not persist across the life span from this perspective.

According to this point of view, language is the mechanism that moves infants from an

innate modular representation to integrated cognition as adults. This core knowledge posi-

tion is gaining popularity both in the academic and public domains. For example, Vallortig-

ara, Sovrano, and Chiandetti (2009) advocate the core knowledge position, including innate

endowment, as a result of their rearing experiments with chicks, writing that ‘‘the similari-

ties in cognitive capacities seen near the start of life gives reason to take seriously the

hypotheses that core systems have a long evolutionary history and are largely preserved

across the many evolutionary events that distinguish chicks from humans’’ (p. 24). The

notion of a limited number of core modules is gaining popularity with the general public as

well, although perhaps in the personality not the cognitive domain: ‘‘Each of us is born with

our own individual level of six big traits: intelligence, openness to new things, contentious-

ness, agreeableness, emotional stability and extraversion. These modules are built into

humans and other animals (apparently squid can be shy)’’ (Brooks, 2009).

However, many of the proposed modules, especially those proposed by massive modular-

ity theorists, do not conform to the strict definition proposed by Fodor (1983). Few seem to

be encapsulated (i.e., unable to accept relevant information that is not the kind the module is

built to process). Most are central to cognition, whereas Fodor thought that modules would

involve primarily perceptual phenomena, and that higher-order cognition would prove not
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to be modular (and hence, difficult or impossible to study). The word module has come to

be used in a way that has many connotations but few agreed-upon core characteristics.

Indeed, a recent discussion of the meaning of modularity proposed to strip the concept of

most of its interesting attributes, including encapsulation, automaticity, neural specializa-

tion, and innateness, and yet ended up arguing that such stripping merely clarified the

concept, leaving it still valuable because it leads to a focus on function (Barrett & Kurzban,

2006). Given this lack of agreed-upon definition, the modularity position becomes analo-

gous to the Hydra, the many-headed monster that Heracles found difficult to combat because

there were too many heads to take on simultaneously, and, worse, because other heads grew

while he addressed a specific one.

In this article, we address only one head of the Hydra of modularity: the proposal of a

geometric module (Cheng, 1986; Gallistel, 1990; Hermer & Spelke, 1994, 1996). The

geometric module has welcome properties from the point of view of engaging in clear

debate about modularity. It is well specified, it concerns an interesting aspect of human cog-

nition, and it is increasingly well studied in a variety of species and over development using

a variety of techniques. In addition, it has been augmented with an interesting account of

how the innately specified module is penetrated in development by the acquisition of

specific linguistic terms (Shusterman & Spelke, 2005). Developmental change is always

hard for nativists to explain when it is clearly evident yet cannot be dismissed as parameter

triggering. In this version of modularity nativism, change occurs because of the supplemen-

tary role of another module, the language module. This position is a hybrid of nativism and

Vygotskyan or Whorfian thinking. Strongly antinativist theorists sometimes cite the hypoth-

esis approvingly, seemingly without realizing its nativist roots (Levinson, 2003).

Versions of the modularity-plus-language account vary in the strength. Some can be char-

acterized as a strong view of modular cognition (Spelke & Kinzler, 2007). Other versions of

the modularity-plus-language positions are gaining momentum. One example is the Momen-

tary Interaction hypothesis, advocated by Landau and Lakusta (2009). In this version, reori-

entation is still accomplished primarily by a geometric module; the properties of

reorientation ‘‘fall within the criterion that Fodor proposed for modular systems, in particu-

lar, domain-specificity, localization, ontogenetic invariance, and characteristic breakdown

patterns’’ (p. 3). The Momentary Interaction hypothesis differs from modularity-plus-lan-

guage, however, in its view of language. From the modularity-plus-language view, language

radically alters the cognitive representation of the human mind. While language still plays a

role in the Momentary Interaction hypotheses, it is viewed as a less powerful tool. Within

this account, language serves as an attention tool that is a ‘‘flexible and powerful enhance-

ment of spatial representations through language, but not through radical restructuring’’

(p. 3).

Core knowledge and modularity-plus-language provide an interesting and tantalizing per-

spective on the ontogeny of knowledge. Nevertheless, there is good reason to doubt the

validity of this approach. This article reviews reasons for doubt. We begin by briefly defin-

ing the geometric module and the core research that initially defined it. We proceed to dis-

cuss five reasons to question its existence (or perhaps more precisely, four reasons and a

counterargument to a recent claim made by modularity proponents). These five reasons, and
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their related subpoints, are summarized in Table 1. This review builds on the literature

review by Cheng and Newcombe (2005), but it includes recent papers written since that

review and is also more critical and selective in nature. It should be read in conjunction with

Cheng (2008), an article in which the original proposer of the geometric module also ques-

tions the status of the hypothesis. In the last section, we discuss alternatives to modularity

theory, as there are now several proposed theories of the relevant phenomena.

2. The geometric module proposal

Mobile creatures need to be able to navigate efficiently through their environment. Occa-

sionally, we lose track of our position in the world, for example, after tumbling down a hill or

emerging from a subway system. Before we are able to continue with the task at hand, for

example, finding our way home or to work, we need to re-establish knowledge of our position

in the spatial world, in a process known as reorientation. The scientific study of this domain

started with the seminal work of Ken Cheng (1986). The experiments in his paper showed a

rather odd pattern of behavior in disoriented rats. The search space was a rectangular arena

full of multimodal features (including distinct odors, lights, patterned panels, or colored

walls). In a working memory task, the rat found a food reward and then was removed after eat-

ing only a portion of the treat and immediately transferred to an identical enclosure. The cru-

cial observation was where the rat searched for the remaining food. Surprisingly, the rat only

returned to the correct location about half of the time. The other half of the time, the rat went

to the diagonally opposite position, which might, for example, smell of peppermint when the

rewarded place had smelled of licorice. Apparently, the only information being used from the

Table 1

Five reasons to doubt the existence of a geometric module

Five Reasons

1. Language does not play an essential role in the integration of feature and geometric cues

(a) Nonhuman animals are able to use geometric and feature cues

(b) Adults’ feature use is not uniquely dependent on language

(c) 18-month-old children can integrate geometric and feature cues in large spaces

2. A model of reorientation requires flexibility to explain variable phenomena

(a) The relative use of geometric and feature information depends on room size

(b) Flexibility to predict when overshadowing and blocking will or will not occur

3. Experience matters over short and long periods

(a) Short-term training experiments demonstrate plasticity

(b) Rearing experiments demonstrate plasticity

4. Features are used for reorientation: Evidence against a recent two-step model

(a) Reorientation in an octagon

(b) Features are used as landmarks for indirect orientation

5. Redefining the analysis of geometric information

(a) Not all kinds of geometry are used early in development

(b) Use of scalar and nonscalar cues by toddlers

(c) Use of scalar and nonscalar cues by mice
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search arena was geometric information about its shape. As shown in Fig. 1, by combining

geometric and sense information, the rat can narrow search for food to the corners with the

long wall to the right and a short wall to the left (or vice versa). Although feature information

would double the frequency of reward, in working memory tasks (when the correct corner

changes from trial to trial) rats reoriented using geometric information to the exclusion of fea-

ture cues. However, when the reinforced corner stayed the same across training sessions, in a

reference memory task, the rats learned to use feature information.

Cheng (1986) proposed the idea of a geometric module to explain this phenomenon.

Reorientation is accomplished first on the basis of metric information and then nongeomet-

ric information can be pasted onto this metric frame. This conclusion was subsequently

extended to a different task, a different stimulus array and a reference memory situation. In

a water maze task, Benhamou and Poucet (1998) demonstrated that rats are able to extract

geometric information from an array of discrete and unique landmarks. The landmarks were

placed in a circular pool and arranged as the vertices of either an equilateral or isosceles tri-

angle. Even when the geometric information of the isosceles triangle had to be extracted

from the separated points in the array, it was still much easier for the rats to learn the loca-

tion of the hidden platform from geometric than from featural information. Thus, it seems

that rats rely primarily on geometric information for reorientation and use feature informa-

tion only secondarily, if at all.

Gallistel (1990) proposed an evolutionary account for the primacy of geometric informa-

tion. He noted that many features change from season to season, such as the color of the

foliage, or even day to day, such as the clarity of a river, but that geometric information

remains much more constant, stable, and reliable, so that it may be evolutionarily adaptive

to reorient based on the invariant properties of the environment. Another point to consider is

that geometric ambiguities may not arise often in the complex natural world. Thus, even

though in experiments animals may be rewarded only half the time when they reorient using

only geometric information, in a naturalistic setting the payoff for using geometric informa-

tion is probably much higher.

Subsequent to this work with rats, researchers asked what human capabilities are and

how they appear in ontogeny. Evidence appeared that there seemed to be a developmental

Fig. 1. A schematic of a typical rectangular enclosure for the reorientation studies. The organism finds a food

reward at the correct corner, C. On the basis of geometric information, the diagonally opposite corner, R, is

equivalent to the correct corner. As an example, the short wall is to the creature’s left and the long wall to the

right at both the correct and rotationally equivalent corner.
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progression for reorientation, from exclusive use of geometric cues early in life, to a more

flexible system later in development. At 18–24 months of age, children do not sponta-

neously use feature information for reorientation in small rectangular spaces, but readily use

geometric information (Hermer & Spelke, 1994, 1996). Similarly, disoriented 12- to

18-month-old infants cannot use distinctive landmarks to localize a peekaboo event (Lew,

Foster, & Bremner, 2006). For children at or above the age of 6 years as well as adults,

feature and geometric information are flexibly combined (Hermer-Vazquez, Moffet, &

Munkholm, 2001).

The modularity-plus-language hypothesis proposed that people are able to penetrate the

geometric module for reorientation that we share with other animals with the production of

spatial language (Shusterman & Spelke, 2005). The hypothesis was supported by relations

between the age at using features and the productive capacity to use the terms ‘‘left’’ and

‘‘right’’ (Hermer-Vazquez et al., 2001), by findings that adults prevented from using

language to encode the space by a concurrent linguistic task failed to use features

(Hermer-Vazquez, Spelke, & Katsnelson, 1999), and by demonstrations that linguistic

reminders and training elicited earlier use of features (Shusterman & Spelke, 2005).

Additionally, spatial linguistic cues of ‘‘left’’ or ‘‘right’’ aid 4-year-old children’s perfor-

mance on a left-right color location memory task (Dessalegn & Landau, 2008) Taken

together, the findings from rats, children, and adults seem to present a formidable case for

the existence of an encapsulated module that runs automatically, appears early, and is shared

across mobile species, with developmental change in humans due only to the intervention of

a specifically human capability, namely language.

Fueled by the interest that the geometric module generated, many investigators have

examined reorientation over the past 20 years. Although we call the geometric module into

question, we would like to point out that the hypothesis has provided a solid starting place for

studies of reorientation and still pushes the field to refine its empirical paradigms and theoret-

ical positions. Over the last decade, considerable amounts of counter-evidence have

appeared, collectively casting a substantial shadow on this modular picture of development

and of the architecture of spatial adaptation. Nevertheless, the data serve to constrain the

search for alternative conceptualizations of spatial functioning and its development, and

recently, several models have been proposed that contend to explain the relevant phenomena.

In overview, we discuss five reasons to doubt the existence of a geometric module. First,

we address the language part of the modularity-plus-language position, discussing reasons

to doubt that language plays a unique role in the integration of feature and geometric infor-

mation. There is evidence that nonhuman animals flexibly use geometric and feature cues

for reorientation, that human adults’ reorientation ability is not dependent solely on lan-

guage, and that toddlers are also able to flexibly use geometric and feature information in

larger spaces before they possess the relevant language. Second, we review variability in the

geometric module phenomena, including the fact that geometric and feature cue use depend

on environment size, and that overshadowing, blocking, and facilitation effects have all

been observed. These examples show that any successful theory of reorientation must be

flexible enough to explain these fluctuations, a difficult challenge for a modularity or core

knowledge position. Third, the core knowledge approach postulates that the reorientation

1320 A. D. Twyman, N. S. Newcombe ⁄ Cognitive Science 34 (2010)



system is innate, and thus downplays the effects of experience on the behavior of reorienting

organisms. In contrast to this hypothesis, we demonstrate that experience, both in short-term

training experiments and over the long term in rearing experiments, has an important influ-

ence on the orientation performance of participants. Fourth, we turn to a recent two-step

model of reorientation. Here, advocates of the core knowledge position argue that geometric

information is used alone for true reorientation, although subsequently, features can be used

associatively to pinpoint a goal location. In contrast, we review evidence that features can

be used for true reorientation, both in the presence and absence of geometric information.

Finally, we discuss what types of geometric information can be used across development

and across species for reorientation. It has become apparent that not all types of geometry

are used for reorientation, and that a more specific definition of geometric information is

needed. A summary of these five reasons can be found in Table 1.

3. Reason 1: Language does not play an essential role in the integration of feature and
geometric cues

Initially, there seemed to be quite a bit of evidence to support the hypothesis that

language plays a fundamental role in the integration of geometric and feature information.

When Hermer and Spelke (1994, 1996) first adapted the reorientation paradigm for use with

people, children below the age of 6 years did not use feature information in small spaces. In

contrast, older children and adults are able to flexibly combine geometric and feature infor-

mation. Human language (and in particular the productive use of the spatial relational terms

‘‘left’’ and ‘‘right’’) was proposed to puncture the geometric module that we share with

other species (Shusterman & Spelke, 2005). Additionally, language training interventions

facilitated children’s use of features. However, there are three kinds of evidence that cast

doubt on the hypothesis that language plays an essential role in the integration of geometric

and feature cues.

3.1. Nonhuman animals use features for reorientation

On the modularity-plus-language view, nonlinguistic species should clearly have

difficulty using feature cues for reorientation. Since the initial work with rats and young

children, a wide range of vertebrate species have been studied, including chickens, pigeons,

monkeys, and fish, in both appetitive and escape reorientation paradigms, and there are

many demonstrations of use of feature cues (see Cheng & Newcombe, 2005 for a review).

Recently, an invertebrate representative, the ant, has also been demonstrated to use feature

as well as geometric cues (Wystrach & Beugnon, 2009).

There are important distinctions among feature cues, however, that need to be examined

to put these data in context. Features may be direct markers of the target location (some-

times called beacons), or they may be indirect markers of a goal location (sometimes called

landmarks). In many of the experiments cited above, the experimental paradigm or data

analyses did not distinguish between using the feature cue as a beacon or as a landmark. For
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example, in a rectangle with discrete feature panels, the feature cue could be used either as a

beacon or as a landmark (Fig. 2A). Participants learn that a reward is hidden in a particular

corner, near the black panel in this example. After participants are trained to perform well

on the task, follow-up tests can be conducted. One of these types of tests, the distal test in

Fig. 2C, is particularly useful for distinguishing between features used as landmarks versus

beacons. After training, the target feature panel and the rotationally equivalent panel are

removed. Therefore, for the participant to be able to return to the correct corner, the distal

feature cues must be used, and thus successful search indicates that features can been used

as landmarks for reorientation. However, if the black panel is retained, successful search

can be based on a beacon strategy. This distinction may seem to be a minor point; however,

it is quite important. When there are markers of a specific location (i.e., a beacon), the par-

ticipant may or may not be using an associative process to guide search, that is unrelated to

the reorientation process. In contrast, indirect feature use is strong evidence that features are

used to guide the reorientation process, rather than just search strategies.

There has been mixed evidence of use of features as landmarks as well as beacons in

geometric module research with nonhuman animals. Pigeons are successfully able to return

to the target corner on distal panel tests (Kelly, Spetch, & Heth, 1998). Thus, features can

be used as landmarks (rather than just beacons), and this process does not critically depend

on language. In contrast, rats, mice and chicks divide search between the two geometrically

equivalent corners (Cheng, 1986; Twyman, Newcombe, & Gould, 2009; Vallortigara,

Zanforlin, & Pasti, 1990). Therefore, for rats, mice, and chicks, it is only clear that features

can be used as beacons. It is also possible that features could be used as landmarks with

these species, with altered experimental parameters. As the other feature panels were not

explicitly required for the task, it is possible that subjects ignored the other feature panels

and did not encode them into their spatial representation. Thus, manipulations that draw

(A) (B) (C)

Fig. 2. Typical tests for reorientation paradigms. After training with a feature (A), various follow-up tests are

conducted to examine how features and geometry are used. In the conflict test (B), an affine transformation is

achieved by rotating each panel one position, clockwise in this example. Now, the correct feature corner (FC) is

no longer in a geometrically correct position. The animal may choose to visit either a featurally correct corner or

one of the two geometrically correct corners (GC). The animals usually avoid the incorrect corner (I) as it is nei-

ther featurally nor geometrically correct. Finally, it is possible that participants could have used either the local

features (the panel at the target location—as a beacon) or the distal features (the panels at the other corners—as

indirect landmarks) to reorient. This is tested by removing the feature panels at the two geometrically equivalent

corners and then observing whether the animals are able to focus their search at the previously trained corner by

using the remaining feature information indirectly, as we can see in panel (C).
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attention to the nonreinforced feature panels (perhaps by expanding the search size, and

therefore making the features more distal) may demonstrate that even for rats, mice, and

chicks, features can be used for reorientation as both beacons and landmarks. In sum, while

the use of features as landmarks (rather than just beacons) remains an open question for

some species, it has been clearly demonstrated that pigeons can use features as landmarks,

and this process does not critically depend on language.

An additional argument for the geometric module-plus-language position argues that geo-

metric cues should be more readily used for reorientation than feature cues (either beacons or

landmarks). Evidence from the animal literature demonstrates that there are instances where

feature information can rival the strength and utility of geometric information, as revealed

through conflict tests (Fig. 2B). In conflict experiments, feature and geometric cues are put in

opposition by rotating the feature cue, so that the correct feature corner is in a geometrically

incorrect position (Fig. 2B). Some animals divide search between the two geometrically

equivalent corners and the one featurally correct corner. This is true for mountain chickadees,

pigeons, and redtail splitfin fish (Gray, Bloomfield, Ferrey, Spetch, & Sturdy, 2005; Kelly

et al., 1998; Sovrano, Bisazza, & Vallortigara, 2007). Moreover, some animals choose the

featural corner over a geometrically correct one. For chicks, this was true only when the fea-

tures directly marked the correct location (as a beacon, as discussed above) (Vallortigara

et al., 1990). Rats follow the feature to a geometrically incorrect corner, which is perhaps

surprising as the strongest evidence for a geometric module has been found for this particular

species (Wall, Botly, Black, & Shettleworth, 2004). Thus, there appear to be many instances

where feature information can rival the strength and utility of geometric information.1

Why is there a contrast with the original Cheng findings—that rats seemed to exclude

nongeometric information—while many other nonhuman animals (and perhaps even rats)

can use feature information for reorientation? It was originally proposed that the geometric

module operates only in working memory tasks (as the defining pattern of rotational errors

was only found when the target corner changed from trial to trial) in Cheng’s (1986) work.

All other tests of reorientation in nonrat species have been done with a reference memory

paradigm. There are several problems with this argument, however. First, Benhamou and

Poucet (1998) found the encapsulation effect in a reference memory task with rats. Second,

the work with human children has used a reference memory paradigm too, so the contact

between the animal and the developmental literatures is tenuous if the importance of work-

ing memory is stressed. Third, it is hard to see how reorientation in the natural world is less

important when stable (reference memory) rather than variable locations (working memory)

must be retained. That is, a module that operates in working memory but not reference

memory would seem to be comparatively insignificant from an adaptive point of view.

Nevertheless, the existing findings can be largely (if not completely) reconciled if one

accepts that encapsulation is only evident in working memory paradigms.

Advocates of the modularity position also argue that the extensive training required to

test reorientation in animals supports learning of a different nature than possible with a

linguistic toolkit. For instance, Hermer-Vasquez et al. (2001) wrote that ‘‘no result has

yet conclusively shown that nonhuman [animals] show the spontaneous, flexible

indirect landmark use found with human adults’ reorientation’’ (p. 267). Pigeons have been
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demonstrated to use landmarks indirectly as reorientation cues (Kelly et al., 1998). How-

ever, training is still required for pigeons to perform that task, and thus the reorientation

ability of extensively trained animals may be different from the spontaneous reorientation

ability of people. Thus, we turn to work with humans.

3.2. Adults’ feature use is not uniquely dependent on language

One of the most striking findings supporting the modularity-plus-language position is

Hermer-Vazquez et al.’s (1999) finding that human adults required to do a verbal shadowing

task (but not a control task that seemed equally attention-demanding) fail to use a feature as

large as a colored wall to guide search. Without access to language, they seem to revert to

the core knowledge mode of functioning, similar to that of children and nonhuman animals.

However, it is possible that the verbal shadowing task used by Hermer-Vazquez et al.

(1999) might disrupt the ability to use featural landmarks not (or not only) by interfering

with a linguistic encoding process within a geometric module. The nonverbal rhythm-

clapping task used by Hermer-Vazquez et al. (1999) is ill-suited to control for this possibi-

lity because it involves primarily cerebellar regions of the brain (Woodruff-Pak, Papka, &

Ivry, 1996) and would not be expected to engage spatial coding systems. A nonverbal

spatial task might interfere with the integration of geometric and featural information in the

reorientation task.

In confirmation of this idea, Ratliff and Newcombe (2008a) found that participants

required to verbally shadow while doing the reorientation task were less likely to use fea-

tures to reorient, just as Hermer-Vazquez et al. (1999) had reported, although not reduced to

chance levels. A nonverbal spatial task also produced a similar dampening effect on the use

of features. Hupbach, Hardt, Nadel, and Bohbot (2007) also report that a spatial as well as a

verbal task impairs spatial reorientation, and they found that verbal shadowing did not dis-

rupt use of features in a square environment. Taken together, these studies strongly suggest

that language is not crucial in combining information from geometric and nongeometric

sources in order to reorient, although it may sometimes be helpful. Instead, the combination

of featural and geometric information may depend on cognitive and neural mechanisms that

are involved in both spatial and verbal attention and memory (Newcombe, 2005).

3.3. Young children can flexibly integrate feature and geometric cues in larger spaces

Although more complete discussion of the effect of room size will follow in reason 2, a

preview of this reason is essential to reviewing the role of language in feature use. The ini-

tial studies of human toddlers were conducted in very small environments. When the scale

of the space is increased, even by as little as to double the dimensions of each wall, children

as young as 18 months are able to flexibly integrate geometric and feature cues. Children of

this age are not yet able to produce the spatial terms ‘‘left’’ and ‘‘right,’’ which has been

claimed to predict success at using the feature wall for reorientation (Shusterman & Spelke,

2005). Thus, there is reason to doubt that language penetrates the geometric module for

children.
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3.4. Summary

In summary, there is substantial evidence to doubt that language is crucially important

for the integration of geometric and feature information in humans. First, nonhuman animals

have been demonstrated to flexibly combine geometric and feature information, sometimes

preferring feature information, and pigeons (at least) can use landmarks as indirect reorien-

tation cues. Second, for human adults, although language can be a tool for reorientation, it is

not a necessary mechanism for successful reorientation. Finally, children as young as

18 months old, before they are able to produce relevant spatial language, are able to flexibly

integrate geometric and feature cues under certain conditions. Thus, there is reason to doubt

that language is required to penetrate the proposed geometric module for reorientation.

4. Reason 2: Models of reorientation require flexibility to explain variable phenomena

Since the early experiments of Cheng (1986) and Hermer and Spelke (1994, 1996), many

studies have shown that some of the crucial phenomena depend on the parameters of the

experiment. These facts are difficult to explain from a core knowledge or modularity posi-

tion. In the text that follows, we will review the two central phenomena: room size effects,

and the presence and absence of overshadowing, blocking, and potentiation effects.

4.1. The relative use of geometric and feature information depends on room size

Features are more likely, and geometric cues are less likely, to be used for reorientation

as the size of the enclosure increases. Importantly, the room size effect is common across

children, adults, and nonhuman species. Thus, the room size effect may depend more on the

salience of the cues, rather than development or cross-species difference per se.

4.1.1. The room size effect for children
Hermer and Spelke’s (1994, 1996) original experiments made an odd choice of experi-

mental environment, given that the overall aim of research in spatial orientation is to under-

stand how we manage to navigate in natural environments, which are generally fairly large.

Specifically, they used a rectangular enclosure that was only 4 feet by 6 feet in size. In a

space with walls of length in the same proportional relationship (8 by 12 feet), but with four

times the square footage, Learmonth, Newcombe, and Huttenlocher (2001) found that chil-

dren of 18–24 months succeeded in using a variety of features to reorient, including features

that only indirectly mark the correct corner. Learmonth, Nadel, and Newcombe (2002) con-

firmed the central role of scale, manipulating room size in an experiment with preschool

children. More recently, Smith et al. (2008) also showed the importance of scale, manipulat-

ing array size in a naturalistic environment. Children between the ages of 3 to 7 years were

able to successfully reorient with feature cues, although performance increased with age.

Additionally, the size effect was replicated in this natural environment, as children were

more accurate using feature information in the larger arrays than the smaller arrays.
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However, it should be noted that the Smith et al. experiment was conducted outside, and

hence the study was not able to control for potential confounding cues such as the position

of the sun. Nevertheless, the study represents an important extension to studying how orien-

tation might be guided in a naturalistic setting. Even the ‘‘larger’’ room used in the Lear-

month research is not very large, in terms of the real world. Thus, for children, feature cues

appear to only be neglected in small spaces.

4.1.2. The room size effect for adults
Does the room size effect that was demonstrated for children hold for adults? Ratliff and

Newcombe (2008b) provide evidence that room size influences human adults’ use of geo-

metric and feature cues. Adults participated in four trials in either a small or a larger rectan-

gular room with a feature panel. After the training trials, the adults were administered two

conflict trials in the same sized rectangle. Thus, adults who were trained in the small room

were administered the conflict trials in the small room and adults who were trained in the

large room participated in the conflict trials in the large room. Adults who were in the small

room group selected a geometrically correct corner, while adults in the larger room group

decided to go with the featurally correct corner. Thus, it appears that for humans, children

and adults alike, the size of the room is a vital determinant of when geometric and feature

cues are used for reorientation.

4.1.3. The room size effect for nonhuman animals
The role of enclosure size has also been confirmed in experiments with nonhuman ani-

mals, specifically chicks, fish, and rats. Chicks trained to find food at a distinctive panel in

either a small or a large rectangle showed higher use of feature information when trained in

the larger one (Chiandetti, Regolin, Sovrano, & Vallortigara, 2007). Room size also influ-

enced decisions in conflict situations. In the large room, the chicks followed the feature,

while in the small room, the chicks divided their search between the two geometrically

equivalent corners (Sovrano & Vallortigara, 2006). Redtail splitfin fish showed similar pat-

terns (Sovrano et al., 2007). Similarly for rats, increasing the size of the enclosure resulted

in increased attention to the feature wall, and decreasing the enclosure size increased attrac-

tion to the geometric cue (Maes, Fontanari, & Regolin, 2009). Thus, there seems to be

something about the experimental parameters that increases geometry use in smaller spaces

and augments feature use in larger spaces.

4.1.4. Possible reasons for the effect of room size
Why does the enclosure size matter? There are several possible explanations for the room

size effect. First, it is possible that the two sources of information are not combined in a

small space because the small space restricts movement. Restrained rats do not seem to

learn the same information about a maze that freely moving rats do (Foster, Castro, &

McNaughton, 1989), and children perform more accurately when they are actively moving,

rather than passively moved (Acredolo, 1978; Acredolo & Evans, 1980; McComas &

Dulberg, 1997). Additionally, geometric information may be more dominant in small enclo-

sures because the lengths of the walls, and aspect ratios, are more easily observed (Sovrano
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& Vallortigara, 2006). Second, distal rather than proximal features provide more precise

information about location as movement occurs (Gallistel, 1990; Nadel & Hupbach, 2006;

Vlasak, 2006). In the large room, the blue wall is (often) farther away and could be a

sufficiently distal cue to be weighted more heavily by the reorientation system. It is possible

that this effect may reflect the underlying properties of hippocampal place cells. Place cells

are particularly attuned to distal features, rather than proximal cues (Cressant, Muller, &

Poucet, 1997), and this may be why feature use increases with increasing apparatus size.

Additionally, as the size of the testing space has now been shown to affect the location of

hippocampal firing in exploring rats (Kjelstrup et al., 2008), greater attention to spatial scale

in studies of spatial functioning is clearly warranted across a wide range of species.

Learmonth, Newcombe, Sheridan, and Jones (2008) report a series of experiments

designed to examine what processes might support the room size effect. Specifically, the

role of restricted movement and landmark distance was examined for young children

between the ages of 3 and 6 years. The basic principle of these experiments was to restrict

children’s activity to an area the size of the small space used in the Hermer and Spelke

(1994, 1996) experiments, within an area the size of the larger space used in the experiments

by Learmonth et al. (2001, 2002). Although the children’s motion was restricted to the small

space, they had visual access to a larger space, containing a distal feature, and with its char-

acteristic aspect ratio. Table 2 summarizes the findings regarding ages at which features are

first used to reorient as a function of whether children could move freely in the space,

whether the colored wall was distally located in a larger enclosure, and a third factor that

turns out to be important—whether the target for which children searched after disorienta-

tion was adjacent to the feature. Comparing across studies in which two of these factors

were constant allows us to draw inferences regarding whether the third factor affects the age

at which successful use of features is first observed. From the contrast between rows 2 and 4

in Table 2, we can infer that restriction of movement has a powerful effect on children’s

ability to use the landmark to reorient, as children that are able to move freely are able to

use the feature at 18 months of age, where children with restricted motion cannot use the

feature until 4 years of age. Similarly, the contrast between the Hermer and Spelke (1994,

1996) studies and Experiments 2 and 3 in Learmonth et al. (2008) (rows 1 and 4 in Table 2)

shows that whether the colored wall was distal from the child in a larger room has an impor-

tant effect on children’s ability to use the landmark to reorient, namely children can use

Table 2

Age of success in rectangular spaces as a product of variations in the task demands

Experiment

Colored Wall

Distal?

Action

Possible?

Target Proximal to

Colored Wall?

Age of

Success

Hermer & Spelke No No Yes 6 years

Learmonth et al. Yes Yes Yes 18 months

Experiment 1 Yes No No 6 years

Experiments 2 and 3 Yes No Yes 4 years

Experiment 5 Yes Yes then No Yes 3 years

Note. From Learmonth et al. (2008, p. 423). Reprinted with permission.
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distal features earlier (4 years) than proximal features (6 years). Finally, the comparison

between Experiment 1 and Experiments 2 and 3 in Learmonth et al. (2008) (rows 3 and 4 in

Table 2) shows that whether the target was located adjacent to that wall or one of the white

walls in the larger enclosure is important, in that correct searches with a distal feature

appeared earlier in development when the target was directly adjacent to the feature wall

(4 years) than at an all-white corner (6 years). Thus, the ability to move around and the

presence of distal (rather than proximal) features are two properties of larger spaces that

enable children to use features at younger ages in development.

4.1.5. Summary of room size effects
Across a wide range of species, the size of the search space matters for reorientation. For

all ages of people, and across species, geometry is used more predominantly in small spaces,

and feature information in larger spaces. This room size has empirically been demonstrated

to hinge on at least two important principles: Movement enhances spatial navigation, and

distal landmarks are more likely to be used for reorientation. For the modularity position to

be able to explain the room size effects, it would have to propose that reorientation is only

modular in small spaces. It would then be a challenge to imagine why it would be advanta-

geous to have a modular system in small spaces, when navigation through the environment

occurs on a much larger scale.

4.2. Fluctuating findings on overshadowing, blocking, and facilitation

In addition to the fluctuating integration of feature and geometric cues based on room

size, research has found a variable presence versus absence of overshadowing, blocking,

and facilitation effects that is difficult to explain on a modularity view.

4.2.1. Principles of associative learning
First, let us review a few of the principles of associative learning. In overshadowing,

when predictive cues are presented together, less may be learned about each cue than if they

had been presented independently. For example, if a bright light and a faint tone predict a

food reward, the more salient bright light overshadows the faint tone. As a result, the light

controls behavior while the tone does not control behavior, although the faint tone would

have been learned if presented on its own. In spatial tasks, beacons (landmarks at the goal

location) can overshadow more distal landmarks, as has been demonstrated for rats (Diez-

Chamizo, Sterio, & Mackintosh, 1985) as well as pigeons and humans (Spetch, 1995). In

blocking, if a particular cue is learned first, and then is subsequently paired with a second

cue, the second cue is not associated with the reward. For example, the participant first

learns that one cue, such as a light, is predictive of a reward. Then the light is presented with

a second cue, such as a tone. Even though both the light and the tone are equally predictive

of reinforcement, the past learning history of the organism blocks the learning of the new

cue. The principle of blocking also seems to apply to the spatial domain since blocking has

been demonstrated in landmark learning with oriented rats (Biegler & Morris, 1999; Roberts

& Pearce, 1999; Rodrigo, Chamizo, McLaren, & Mackintosh, 1997).
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4.2.2. Associative learning and the reorientation paradigm
Do the principles of overshadowing and blocking hold for reorientation? Initially

there were reports of a failure to find the traditional associative learning effects for

geometric cues. Feature cues did not seem to block the learning of geometry. Wall

et al. (2004) trained rats to find food in a square arena where one black feature panel

indicated the food location. Once the rat learned to find the food, the black panel

was presented within a rectangular search arena. Blocking would predict that the rats

would not encode the geometry of the space because they already know that the black

panel predicts food location. In contrast, geometry-only test trials revealed that the

rats were able to use the geometric information for reorientation.2 Additionally, feature

cues did not seem to overshadow the learning of geometry (Cheng, 1986). These find-

ings were taken as strong evidence for the modularity position. As the cues were not

interacting with each other, it would seem that geometric information is processed at

least separately, if not exclusively, from feature information.

However, an absence of overshadowing or blocking effects is not always observed in

studies using feature and geometric cues. For rats, both overshadowing and blocking have

been demonstrated. Rats were required to find a submerged platform in the corner of a rect-

angular arena with a feature wall. If the feature wall had previously been trained, then the

feature blocked the learning of the geometry. When the feature wall was presented together

with the geometric information, then the feature information overshadowed the geometric

information (Pearce, Graham, Good, Jones, & McGregor, 2006). Additionally, in a recent

set of experiments, a failure to find blocking of geometry by a beacon that was suspended

over the platform was found when 12 blocking sessions were administered, although if the

blocking sessions were doubled to 24 sessions, then the beacon cue blocked the geometry of

the enclosure (Horne & Pearce, 2009). For mountain chickadees, when the blue feature wall

was adjacent to the food reward, the geometry-only probe trials revealed that the chickadees

had not encoded the overall shape of the arena. Thus, feature information overshadowed

geometric information for this species in some training situations (Gray et al., 2005, but see

Batty, Bloomfield, Spetch, and Sturdy, 2009, for black-capped chickadees).

It has recently been found that features can even augment (rather than block or over-

shadow or have no effect on) the acquisition of geometry cues, in a phenomenon called

potentiation or facilitation. Rats searching for a hidden platform in an enclosure shaped like

a kite did better on a geometry-only test if trained with both feature and geometric informa-

tion than if trained only with geometry (Graham, Good, McGregor, & Pearce, 2006). Hence,

there is evidence that the two types of orientation cues interact with each other, and this is

difficult to explain from a modular position.

4.2.3. How should traditional association effects, or a lack thereof, be interpreted?
How should association effects be used? Are they gold standards that can support or

refute a modular system? If so, then clearly the results are quite mixed. Or are they variable

phenomena that should be explainable and predicted by a theoretical position? We discuss

this point further in the last section, as at least one current model of the findings was developed

specifically to account for variable effects.
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However, let’s now move up in our level of analysis. There has been a long debate in the

broader field of spatial cognition concerning whether mobile organisms navigate with

response learning or place learning (Hull, 1943; Tolman, 1948). A large part of this debate

has centered on the success or failure to find associative learning. On one side, the response

learning tradition has found instances of associative effects (Hamilton & Sutherland, 1999).

On the other side, place learning theorists, or cognitive map theorists, have failed to find

blocking and overshadowing, as predicted by their theoretical position (Hardt, Hupbach, &

Nadel, 2009). The cognitive map approach proposes an explanation for the existence of

blocking and overshadowing effects, centered on the role of exploration. When participants

are allowed opportunities to explore, then cognitive map theorists maintain that the organ-

ism is spontaneously, independent of reward, creating and updating a cognitive map. Thus,

when blocking and overshadowing effects are found, this theory proposes that participants

have not been given an opportunity to explore, and thus a cognitive map was never formed

during the experiment and the participant manages as best he ⁄ she can through associative

learning.

The important point here is that, in this debate, a failure to find blocking and overshadow-

ing is taken as support of a cognitive map—a unified representation. In contrast, in the reori-

entation debate, a failure to find blocking and overshadowing is taken as support of a

modular system. Thus—should blocking and overshadowing be used as a gold standard?

We would like to argue, in light of what we have just reviewed, that it would be a more

fruitful approach to acknowledge that the most productive line is to determine the conditions

that lead to the variety of findings. This variation is one of the facts in this literature that a

successful theory should be able to explain, and modularity theory clearly does not have the

required flexibility. At the same time, as we explain later in the article, some of the theories

that do not assume modularity (e.g., Miller & Shettleworth, 2007; Newcombe & Ratliff,

2007) can successfully handle this flexibility.

4.3. Summary

Since the early experiments of Cheng (1986) and Hermer and Spelke (1994, 1996),

many studies have been conducted. In the first section, it was demonstrated that the size of

the reorientation enclosure drove the relative use of geometric (in small spaces) and

feature (in larger spaces) cues. This phenomenon was found across development and

across species. Larger spaces allow for movement that makes it easier to form an inte-

grated representation of the space, and distal features are more likely to be integrated than

proximal features. The second section reviewed the presence or absence of blocking, over-

shadowing, and potentiation effects. A failure to find these associative effects initially

supported modularity, as it demonstrated that feature and geometric cues were not interac-

ting with each other. However, future research demonstrated that under certain conditions,

blocking, overshadowing, and even potentiation effects have all been found for spatial

reorientation. The core knowledge or modularity positions do not have the flexibility to

explain either kind of fluctuating phenomena. Next, we turn to the role of experience in

reorientation behavior.
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5. Reason 3: Experience matters over short and long durations

The modularity position predicts that reliance on geometry alone should be difficult or

impossible to modify (except by the intervention of language) and in fact, language training

does work to help children use features (Shusterman & Spelke, 2005). However, training

effects not dependent on language have been found for adults, young children, and pigeons.

In addition, rearing conditions seem to be important. Here we review data that indicate that

experience matters both in short-term training studies and for long-term rearing studies.

5.1. Training experiments

Training experiments have been conducted with quite a range of participants, including

adults, children, and pigeons. In all of these studies, short-term experience influenced reori-

entation. Ratliff and Newcombe (2008b) provide evidence that training affects human

adults’ use of geometric and feature cues. Adults participated in four training trials in either

a small or a larger rectangular room with a feature panel. After the training trials, the adults

were administered two conflict trials in the opposite sized room (for example, adults who

had been trained in the small room were tested in the large room). For adults trained in the

larger room and then tested in the small room, the first choice was often to the featurally

correct corner. In addition, for adults who practiced the task in the small room, where geom-

etry is more salient than features, and then were tested in the larger room, the conflict choice

was also to the featurally correct corner. Thus, there is an asymmetric relationship between

the trainability of feature and geometric information for adults. If training were to have an

equal effect on the conflict trials, then one would have predicted that practice using geome-

try in the small space would have transferred to the larger space, but this did not occur. It is

possible that the participants did not trust the enclosure information after a change in scale.

On these conflict tests, the feature remains unchanged from training to testing. Even though

the ratio of the long to short walls was held constant across expansion or contraction,

participants did report noticing the change in enclosure size and thus may have relied more

heavily on the feature information. Regardless, adults’ responses were influenced by the

short-term experience.

Training effects have also been found with young children (Twyman, Friedman, &

Spetch, 2007). Four and five-year-old children are not normally able to integrate feature and

geometric information in small, 4 · 6 foot enclosed spaces. However, after a small number

of training trials, between 4 and 12 trials, these young children are able to flexibly integrate

feature and geometric information in small enclosures. This training is equally successful

when practice with the feature cue is administered in presence (rectangle) or absence (equi-

lateral triangle) of unique geometric cues. Similar findings are reported by Learmonth et al.

(2008, Experiment 5) who used four trials of training in the larger room, and then found

feature use in the small room. Thus, children’s prior experience influences the relative use

of feature and geometric information. For the core knowledge position (Kinzler & Spelke,

2007; Spelke & Kinzler, 2007), each of the five systems is characterized by signature limita-

tions or cognitive errors. It is difficult to imagine that the limited number of training trials,
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as few as four, would be sufficient to overcome the characteristic limitation as outlined from

the core knowledge position, which are claimed to persist into adulthood, albeit in attenu-

ated and more flexible forms.

Pigeons’ choices are also affected by their training regimen, and these effects are clearly

not dependent on language. When pigeons are trained with rectangular geometry alone, and

then given subsequent trials in which features are added and features and geometry are put

into conflict, they divide their search between the geometric and feature corners. When both

geometry and feature cues were present from the start of training, the pigeons followed the

feature panel in conflict trials (Kelly et al., 1998). These findings suggest that geometry is

used in conflict situations only when it has had the advantage of initial training alone,

whereas features are used even without that advantage. Therefore, short-term reweighting of

the relative use of feature and geometric information for reorientation has been demon-

strated for adults, children, and pigeons.

5.2. Rearing conditions count

If short-term exposures in the laboratory influence use of geometry versus features, it

seems reasonable to suppose that an organism’s natural environment will also influence its

behavior, perhaps especially the characteristics of the environment to which an immature

organism is exposed. Many of the species that have been tested for their use of geometry

have been raised in the geometrically regular environments of laboratories or houses. Would

use of geometry be as prevalent when organisms have been exposed to environments with

few regular geometric enclosures? This question was raised by Cheng and Newcombe

(2005), and there are now several studies that attempt to answer it, with birds, fish, and

mammals.

Gray et al. (2005) examined the use of feature information in wild-caught chickadees

from forested mountain areas rich in feature information, but with little salient geometric

information. When the rewarded corner was directly adjacent to the feature corner, the

chickadees did not encode the overall shape of the enclosure. When the rewarded corner

was at an all-white corner, chickadees were able to use the geometric information. On con-

flict tests, chickadees that had been trained to go to the feature adjacent to the food focused

their search on almost every trial at the featurally correct but geometrically incorrect corner.

In contrast, the chickadees who were trained to find food across from the feature wall

divided their searches evenly between the featurally and geometrically correct corners.

Therefore, the use of geometric information was not a dominant strategy for mountain

chickadees. Recently, the same research group has addressed part of this question by com-

paring laboratory reared black-capped chickadees, wild-caught black-capped chickadees,

and wild-caught mountain chickadees (Batty et al., 2009). For the black-capped chickadees,

there were no differences between the two groups. The wild-caught mountain chickadees

relied less on geometric information than either rearing groups (hand-reared or wild-caught)

of black-capped chickadees.

While these results are tantalizing, it remains uncertain if the differences were because of

the species or the rearing environment, as wild-caught and laboratory reared mountain
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chickadees were not compared. In a controlled laboratory environment, using a different

species, Brown, Spetch, and Hurd (2007) altered the rearing environment of fish (Convict
cichlids). Half of the fry were raised in uniform white circular tanks lacking unique geomet-

ric information. The others were raised in white rectangular tanks where geometric informa-

tion was salient. After 4 months in these environments, half of the fish in each rearing group

were trained in either an all-white geometry condition or a rectangle with a blue feature wall

adjacent to the correct corner. The circular-reared fish learned the feature training task faster

than the geometrically reared fish. When feature and geometric information was placed in

conflict, the circular-reared fish selected the featurally correct corner, while the rectangle-

reared fish selected a geometrically correct corner. This supports the idea that early experi-

ences can augment feature use for reorientation, contrary to modularity theory, and appears

to reweight the hierarchy of orientation cues, in support of adaptive combination theory.

Vallortigara et al. (2009) have critiqued one aspect of the fish rearing study. They pro-

pose that as the fish were reared for the long period of time in groups of fish, that the experi-

menters may have ‘‘directly exposed the experimental fish to geometrical and featural

information as visible on conspecifics’ bodies, and in particular favored using the individual

conspecifics’ location as cues for spatial orientation and navigation’’ (p. 22). However, there

are a few reasons why this is an unlikely concern. Fish in both conditions were reared in the

same types of groups, and therefore the differences in behavior are unlikely to arise out of

the rearing dynamics. Second, although there are markings on the fish, which can contribute

to normal visual system development, it is not clear how markings on the body of the con-

specifics might contribute to reorientation performance, because the fish are moving in the

enclosures, and thus are not stable reference points either for orientation or navigation.

The critics of the fish study have conducted their own rearing studies with chicks.

Chiandetti and Vallortigara (2008) raised all male chicks for 3 days in either circular or rect-

angular enclosures. Over the next 3 days, chicks were trained to find food in a rectangular

apparatus that was either uniformly white or had a unique feature panel at each corner. Dur-

ing training, both groups of chicks made geometric errors and they required the same num-

ber of trials to learn the task. Additionally, when the feature panels were removed, chicks

spontaneously encoded the geometry of the enclosure irrespective of rearing condition.

Thus, for chicks, the early rearing environment does not seem to influence reorientation, in

contrast to the more flexible system of fish. However, the rearing studies with fish and

chicks differ in several ways. The fish were raised in distinctive environments for a much

longer period of time than the chicks. Additionally, fish have an extended juvenile period,

which may support cognitive flexibility.

Recently, Twyman et al. (2009) conducted a rearing study with a mammalian species—the

mouse. Mice were housed in either circular environments (which were featurally enriched) or

rectangular environments (which were geometrically enriched). Young mice that were

housed in the circular environment were faster to learn to use features during training. In

contrast, young mice that were housed in the rectangular environment were more accurate

using geometric information when it was not explicitly required for the task (i.e., when the

feature panels were removed from the training rectangle). Thus, for young mice, the rearing

environment alters the use of feature and geometric cues for spatial reorientation. As an extra
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component of this study, the plasticity of adult and juvenile mice was compared. Interestingly,

adult mice retained some plasticity. The rectangular housed adult mice retained the advantage

using geometric cues. In contrast, the circular housed adult mice did not outperform their

rectangular adult mice counterparts on tests of feature cue use. Thus, for mice, experience

plays an important factor, particularly during the juvenile period, but also for mature partici-

pants. Thus, initial studies indicate that mice, convict cichlids, and mountain chickadees seem

to display larger rearing effects than domestic chicks or black-capped chickadees.

5.3. Summary

Experience matters. In the first section, we reviewed evidence that short-term training

experience alters the relative use of feature and geometric information for human adults,

children, and pigeons. Each of the experiments is important for different reasons, from the

modularity or core knowledge positions. First, since pigeons were studied, it is unlikely that

language training is the catalyst for feature use. However, the rebuttal of the modularity posi-

tion is that the extensive training required for nonhuman animals is not on par with the fluid

reorientation system of humans. Thus, the short-term training experiments demonstrate that

with quite limited exposure, adults and children’s reorientation strategies are altered by expe-

rience. In the second half of this point, it was demonstrated that experience also matter over

long-term rearing studies, for mountain chickadees, fish, and mice. These experiments are

problematic for the innate endowment positions of modularity and core knowledge theory.

Next, we turn to a recent reformulation of the geometric module hypothesis.

6. Reason 4: Features are used for true reorientation

We have offered three reasons so far to doubt the existence of a geometric module, by

refuting the unique role of language, by demonstrating that modularity theory is too rigid to

be able to explain variable phenomena, and by refuting the innate endowment claim through

demonstration that experience alters reorientation. There is a recent rebuttal, however, that

attempts to rescue the geometric modularity proposal by advocating a two-step account in

which feature use is merely associative. We review evidence that contradicts this claim and

that demonstrates that features can be used for true reorientation.

6.1. The two-step model

Lee, Shusterman, and Spelke (2006) suggest that there are two separable systems of spa-

tial processing and that only the geometric system is used for reorientation per se. Features

can be used, but not for reorientation. They can only be used as beacons (as direct markers

of a goal location). To support this argument, they disoriented 4-year-old children in an all-

white circular space containing three hiding containers arranged as an equilateral triangle.

One of the containers had a distinctive color and shape. Although children could find objects

hidden in the distinctive container, they failed to use it to choose between the two other
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identical containers. Based on this finding, Lee et al. argue that ‘‘search behavior following

disorientation depends on two distinct processes: a modular reorientation process…and an

associative process that directly links landmarks to locations’’ (p. 581).

It might be argued that prior data already contradict the two-stage associative account.

Specifically, recall that Learmonth et al. (2001) showed that children’s search for an object

hidden in an all-white corner of a rectangle with one blue wall was as good as their search

for an object hidden in the blue-and-white corner; it may seem initially that the all-white

corner provides no associative cue for such performance. However, that characterization is

not correct in the two-step account. In a rectangular room, there is only one all-white corner

that is geometrically correct, so ‘‘all whiteness’’ marks the corner as distinct from the

geometrically correct alternative as much as the ‘‘blue and whiteness’’ marks the other geo-

metrically congruent corner as correct. In fact, ‘‘all white’’ is used as one of the pieces

of encoded information in a recent associative model of the reorientation task (Miller &

Shettleworth, 2007). Lee et al. would clearly argue that reorientation of the kind at stake in

the geometric module debate implies that people can use a feature to choose correctly

among more than one all-white corners with the same geometric characteristics. Testing this

hypothesis would require the use of an enclosure with more than four sides.

6.2. Evidence against the two-step model

One reason that Lee et al. may have failed to find that 4-year-olds use features to reorient

may be the fact that the feature they used was extremely proximal to the layout (in fact, was

part of it) and that the feature was obviously moveable. As we have seen, distal landmarks

are known to be more useful than proximal ones for spatial functioning in general and

reorientation in particular (Learmonth et al., 2008; Nadel & Hupbach, 2006). In addition,

moveable landmarks are less likely to be used to guide spatial search than landmarks that

are larger and apparently unlikely to move (Gouteux, Thinus-Blanc, & Vauclair, 2001;

Presson & Montello, 1988). Thus, the two-step model of reorientation—with geometry

guiding true reorientation, and then features as direct markers of a goal location (i.e., a

beacon)—seemed possible.

Newcombe, Ratliff, Shallcross, and Twyman (2009) addressed the issue of whether larger

and more distal features can be used for true reorientation, using two approaches. The first

step was to use an enclosed octagonal search space with alternating short and long all-white

walls. The use of the octagon is interesting for a few reasons. Not only is the geometry more

complex than that generally used (obtuse angles, and more potential hiding locations), but it

is radial symmetric and therefore lacks a single principle axis of space. Recently, Cheng and

Gallistel (2005) have proposed that geometry is used for reorientation by encoding the prin-

ciple axis of space, and then maintaining the correct left-right position along this line.

In Newcombe et al.’s first experiment, 2- and 3-year-old children were able to select a

geometrically correct corner in an octagon 70% of the time, significantly greater than

chance of 50% (as there are four geometrically correct, and four geometrically incorrect cor-

ners). Thus, young children were able to use geometry for reorientation in spaces lacking a

single principle axis of space, and therefore reorientation does not seem to solely depend on
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the encoding of the principal axis of the shape of the search area. In a second experiment, a

feature wall was added to the octagon search space. For this experiment, 3- and 5-year-old

children were studied, spanning the age of the children (4 years) in the Lee et al. (2006)

study. By adding a feature wall, there is now one geometrically correct corner directly adja-

cent to the feature wall—and this location can be solved with a beacon strategy. However,

there are three other geometrically correct corners that are all white. At these corners, if

children are able to use the feature wall, then they must process the feature wall as a land-

mark, an indirect use of the feature, to successfully reorient. The Lee et al. two-step account

predicts that children would first reorient based on the overall geometry of the space,

narrowing the search down to the four geometrically equivalent corners. Next, the two-step

account predicts that children will successfully search at the beacon target corner, but cru-

cially not at the landmark search corners. With the feature wall present, children were still

able to successfully reorient with the geometry of the space, which is explainable by both

the two-step and a unified account of reorientation. The crucial comparison is for search at

the beacon (adjacent to red) and the landmark (three all-white, geometrically equivalent

corners). In the beacon condition, all children performed above chance, which is predicted

by the two-step account. In the landmark conditions, all children performed above chance,

which is unexplainable with the two-step account to reorientation. Additionally, the 5-year-

old children were better (68%) than the 3-year-old children (35%) using the feature as a bea-

con. This finding is quite difficult for the two-step account. Not only are young children

using features as landmarks, but it seems that the beacon system is emerging later in devel-

opment than the landmark system.

Now that indirect feature use has been demonstrated in the presence of geometric infor-

mation, the reorientation ability of children was also examined in the absence of geometry

(Newcombe et al., 2009; Experiment 3). This experiment was interesting for two reasons.

The first is to ask whether the presence of useful geometric information is required for chil-

dren to be able to use features to reorient. In other words, is geometry required as a catalyst,

or can the reorientation system be activated exclusively with feature cues? Second, the trian-

gle array is the closest comparison to the experimental design of Lee et al. (2006). To main-

tain as tight of a comparison as possible with Lee et al.’s study, 4-year-old children

participated in this experiment. In the first portion of the experiment, children were asked to

search within an equilateral triangle search array. In the Lee et al. study, the landmark was a

uniquely shaped and colored hiding location. In the Newcombe et al. study, all of the hiding

locations were identical, and the landmark was displayed on the perimeter of the search

space (a circular space made out of a uniformly white curtain). Lee et al. found that children

were able to use the feature cue as a beacon, but not as a landmark. In contrast, when the

feature was positioned on the wall, the feature was used as a landmark in Newcombe et al.’s

study. However, it is possible that the 4-year-old children were able to infer geometry

between the three hiding locations and the feature curtain hanging on the circular wall. To

rule out this possibility, the feature served as one point of the equilateral triangle, and then

children we asked to search between two containers (composing the rest of the triangle)

equidistant from the feature wall. The two-step associative account predicts that children

should search equally often at each of the hiding locations. However, 4-year-old children
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were able to focus search on the correct hiding location. Thus, indirect feature use is suc-

cessful in both the presence and absence of geometric information, refuting the two-step

modular account.

6.3. Summary

A recent revised modular, two-step account has been proposed for reorientation (Lee

et al., 2006). In the first step, disoriented participants reorient with the geometry of the

space. In the next step, participants can use features only as beacons to home in on a goal

location, but crucially, features cannot be used as landmarks for orientation. In contrast to

this hypothesis, we presented data that with stable features, children are able to use features

as landmarks. Additionally, the presence of geometric information is not required to activate

the reorientation system. Hence, early reorientation is not modular, at least not in the sense

of Fodor (1983), in contradiction to the arguments of Lee et al. (2006) and the core knowl-

edge position (Spelke, 2008).

7. Reason 5: What exactly is the nature of geometric information?

In reason 5, we question what is meant by geometric information. It is implied in the term

geometric module that any type of geometric cue should be able to support reorientation.

However, we will first demonstrate that not all geometric cues are created equal. Next, we

will turn to the specificity of the geometric module. Modularity and core knowledge theo-

rists have claimed that the geometric module is dedicated to the reorientation task, and

geometry has certainly been demonstrated to be important for reorientation. However, the

modularity position must also demonstrate that the geometry findings cannot be explained

by a more general cognitive skill, as this would imply that the system is not specifically

dedicated for reorientation.

7.1. Not all kinds of geometry are used early in development

Traditionally, the first type of geometric information to be studied was relative

length—alternating short and long walls. However, there are conditions under which rela-

tive length can be difficult to use. In a recent study, 4-year-old children were asked to reori-

ent with variations of the height and continuity of geometric information (Lee & Spelke,

2008). In one condition, children were asked to reorient with a rectangular array of four

large, stable columns. Children did not use the geometric information that was suggested by

the rectangular shape. The experimenters next outlined a rectangle on the floor with tape.

Thus, the shape was clear and uniform, but did not have elevation. Again, for this condition,

the children did not use the geometric information. Finally, when elevation was added, with

either 12-inch or 35-inch-tall walls, children were able to use geometric information for

reorientation, with no difference in accuracy depending on wall height. It may be surprising

that the taller walls did not increase geometric responding, as the taller walls ought to be
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more salient than the low walls. However, what might be important is the presence of any

elevation at all. Elevation is required to activate boundary vector cell firing (Solstad,

Boccara, Kropff, Moser, & Moser, 2008), and this may have a role to play in the reorien-

tation task. The role of elevation is still ambiguous, however, as is whether geometry can be

imputed from separated landmarks (an ambiguity noted by Cheng & Newcombe, 2005).

Lew, Gibbons, Murphy, and Bremmer (2009) found that 2-year-old children could reorient

using the geometry of the search space for both enclosed spaces and using the imputed

geometry from an array of landmarks. In this experiment, the reorientation performance of

toddlers was not better for the enclosed spaces compared to geometric conditions that were

defined by uniform landmark arrays.

The Lew et al. (2009) experiment further provides evidence against the geometric mod-

ule hypothesis, by showing how the phenomena may be limited to situations unlikely to

occur in natural ecology. Toddlers were asked to reorient in regular rectangular or isosceles

triangle conditions and, as would be expected, performed above chance in these conditions.

Importantly, however, toddlers were next examined in irregular quadrilateral and irregular
triangular environments. The irregular environments are interesting because they contain

unique geometric information, including unique corner angles and relative wall length dif-

ferences, but disrupt the symmetry of the space. Toddlers’ choices fell to chance levels in

the irregular conditions. Thus, even when corner angle and unique lengths are present, there

are some conditions when toddlers fail to reorient using geometric information. This finding

is problematic for the geometric module hypothesis, because the geometry that is found in

the natural environment is much more likely to resemble the irregular configuration (where

toddlers fail to use geometry) than the symmetric search spaces that have been traditionally

used to study this process (Lew et al., 2009). There are clearly variations in the likelihood

of use of various kinds of relative length cues for reorientation. Because the natural environ-

ment does not contain unambiguous enclosures whose geometry is defined by continuous

elevations, the generality of the geometric module approach seems uncertain.

Geometry also includes more than simply the length and relative positions of lines and

extended surfaces—angles are geometric. The original studies of the geometric module

mainly used rectangles in which all walls met at 90 degree angles. Hupbach and Nadel

(2005) asked whether children could use the angular information in a rhombus to recover

from disorientation. As shown in Fig. 3, a rhombus has four sides of equal length, with two

Fig. 3. The rhombus enclosure. Each of the sides of the enclosure is equal in length. Therefore, the only unique

geometric information available in these enclosures is that of corner angle. There are two acute (A) and two

obtuse (O) angles in each corner. When there is no additional information, the best that the disoriented child can

do is to divide search between the two corners with identical angles, as in the first rhombus. However, when a

feature wall is added, as in the second rhombus, then it is possible for participants to use the feature wall to dis-

ambiguate the two equal angle corners (OF from O or AF from A). From Hupbach and Nadel’s (2005) study,

children start using the angle information as well as the feature information at 4 years of age.
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equal obtuse angles and two equal acute angles. Reorientation analogous to that achieved in

rectangular rooms would involve children concentrating search on the two angles that corre-

spond to the corner in which they saw something hidden. However, although children as

young as 18 months use wall-length information successfully (Hermer & Spelke, 1996),

children did not succeed in using angular information until the age of 4 years. And, by the

time they were using this kind of geometric information, they were also using a feature to

choose successfully between the two corners. It is hard to see how an ability can be charac-

terized as ‘‘geometric’’ if it does not include information about angle. Next we turn to the

claim of specificity.

7.2. Use of scalar and nonscalar cues by toddlers

Recently, Huttenlocher and Lourenco (2007) have questioned the geometric module on

the grounds of specificity. It has been demonstrated that geometry can be used for reorienta-

tion when it is available. However, if there is a dedicated geometry system that is dedicated

only for reorientation, then it must also be demonstrated that reorientation fails in the

absence of geometric information. As we review below, toddlers can succeed in square

environments that lack unique geometric information. As an alternative, Huttenlocher and

Lourenco (2007) proposed that the reorientation behavior can be explained by a more

general ability to discriminate and compare scalar (or relative) cues. The lengths of walls

define a continuum of size, a scalar comparison. By contrast, colored versus white walls

define contrasting categories and are nonscalar. It might be that scalar cues are easier to use

for reorientation than nonscalar ones. This contrast would be more general than (and

different from) the contrast between geometric information and features. To test this idea,

Huttenlocher and Lourenco (2007) tested 18- to 24-month-old children in square enclosures.

The toddlers were shown the hiding location of a toy and then were disoriented before being

allowed to search for the toy. Since the square provides no unique geometric information,

the modularity position predicts a failure of reorientation. However, with small and large

polka dot patterns, as shown in Fig. 4, the toddlers were able to successfully pick the target

(A) (B) (C)

Fig. 4. Enclosures to test the use of scalar (A) and nonscalar cues (B,C) in the absence of geometric information.

As we can see in this figure, the diagonal corners are identical to each other. For example, in panel (A), the small

dots are to the left and the large dots to the right in both the top left and the bottom right corners. Thus, choices

to either of these corners are scored as correct, and hence performance is compared to 50% chance. In panel (B),

the walls appear to be black and white. In the actual experiment, the walls were either blue and red for children,

or blue and yellow for mice (as mice cannot perceive the color red).
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corner about 70% of the time, significantly above chance levels of 50%. When the adjacent

walls were defined by nonscalar cues, either alternating blue and red walls or walls with dots

alternating with gray walls, the toddlers were unable to reorient at above 50% chance levels.

As there are four potential hiding locations, one might expect chance to be 25%. However,

there are two equivalent corners that preserve the relationship between dot size and left-right

position (e.g., large dots on the left). Thus, the two equivalent corners are scored as correct

and search performance is compared to 50% chance.

There are two possible explanations for why toddlers were able to reorient in the scalar

cue condition and were unsuccessful in the nonscalar cue conditions. Ordinal relationships

may be more readily mapped onto spatial position than the other two cues. Alternatively,

the small-large comparison has multiple co-occurring cues such as size, spatial density, and

the number of dots per wall while the other conditions have only one cue. Lourenco, Addy,

and Huttenlocher (2009) explored the latter possibility by comparing reorientation with a

single dimension to that with a compounded dimension. When adjacent walls differed in

luminance, reorientation was slightly but reliably above chance (59%). When adjacent walls

differed in a single way, namely solely orientation of lines, reorientation was somewhat

lower and not significantly above chance (55%). When the two were combined, reorienta-

tion was more successful than with either cue alone, and toddlers were able to find the toy

on the first search about 70% of the time. However, although the luminance effect is small,

the importance of scalar cues is underlined by findings from an additional composite-cue

condition. While composite cues help, at least one of the cues must be relative in order to

get a boost in performance. When two categorical cues were combined (red Xs and blue

Os), reorientation was still at chance.

Categorical cues may not be absolutely impossible to use, but just more difficult. Work-

ing with 18- to 24-month-old children in square enclosures, Nardini, Atkinson, and Burgess

(2008) found that children were able to reorient using a nonrelative cue, alternating blue

and white walls. However, performance was far from perfect, at 61% accuracy. Toddlers

may have performed slightly better in this experiment than in Huttenlocher and Lourenco’s

for several reasons. First, the size of the enclosure was nearly three times larger. From

Learmonth et al.’s (2001, 2002) work, we know that features are easier for children,

and adults and nonhuman species for that matter, to use in larger spaces. Additionally,

toddlers participated in up to eight trials (compared to four) and we know that practice aug-

ments feature use (Learmonth et al., 2008; Twyman et al., 2007). In fact, if only the first

four trials are analyzed for Nardini et al.’s experiment, then reorientation is only marginally

significant with a two-tailed test. Interestingly, the distinction between right and left sense

appears to already be developing in the 18–24-month age range. In one of the conditions of

Nardini et al.’s experiment, the opposing walls were covered with animals. In the symmetric

condition, the animals were arranged in a mirror image fashion so that the toddler would

have to combine the feature information with the left-right distinction in order to focus

search on the correct corner. For example, the target corner may have been adjacent to a

lion. However, there would be a lion in each of the four corners, so the toddler was required

to remember that it was the lion on the left that marked the goal location. In the asymmetric

condition, the animals were identical at the two diagonal corners, but different on the
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opposite diagonal. So the target corner may be adjacent to the lion on the left, but now there

is a flamingo on the right so the toddler no longer needs to make the left-right distinction for

reorientation. It is interesting to note that the toddlers searched above chance when the left-

right distinction was required for successful performance, but removing the sense require-

ment boosted the toddlers’ performance to 73%, close to the performance seen with small

and large dots, when the left-right judgment was not required of children in the reorientation

task.

7.3. Use of scalar and nonscalar cues by mice

Mice as well as human children show a greater ability to use scalar (as opposed to

nonscalar) information to reorient, showing that the advantage of scalar information is not

due to symbolic or linguistic ability. In addition, the data from mice make clear that nonsca-

lar information can be used to reorient, albeit with somewhat greater difficulty than scalar

information, as was hinted at in the data from human children. These conclusions come

from a study based on Huttenlocher and Lourenco’s (2007) study, in which C57 ⁄ BL ⁄ 6 mice

were trained to find a food reward in the same conditions (Twyman, Newcombe, & Gould,

2009). Additionally, the extra trials that can be collected from mice compared to toddlers

allowed a closer look at the ability to use nonscalar information for reorientation. The mice

were able to reorient using scalar information (12 trials) much faster than when offered

either the nonscalar color (38 trials) or dots-gray (33 trials) comparisons. This difference in

acquisition time for the different types of feature is difficult for the modularity position to

explain as there is no difference in the geometric information available across groups.3

Furthermore, this experiment reconciles the seeming discrepancy between Huttenlocher and

Lourenco (2007) and Nardini et al. (2008) by demonstrating that nonscalar cues can in fact

be used for reorientation, provided there is sufficient time for learning.

The common thread across all of these experiments with toddlers in square enclosures is

that in some cases they are able to successfully reorient in the absence of geometric infor-

mation, contrary to the predictions of a geometric module. Scalar information is preferred.

The finding that nonscalar information can be used in a square enclosure, but is harder to

use than scalar information, is confirmed in studies with mice. Local view theory, which

entails matching a snapshot of the to-be-remembered location with the current view, would

be able to explain Nardini et al.’s (2008) results. However, proponents of modularity theory

are not likely to subscribe to local view theory, in the manner it is being discussed in the

literature, as this position is explicitly nonmodular (Cheung, Sturzl, Zeil, & Cheng, 2008;

Sturzl, Cheung, Cheng, & Zeil, 2008).

7.4. How does the vertical axis fit in?

In just about all of the experiments reviewed, reorientation has been examined on a hori-

zontal surface. For people, the majority of our navigation occurs on the horizontal plane,

although there are notable exceptions when traveling up or downhill. However, other spe-

cies, such as marine species or animals that can fly, may spend much more time navigating
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in both the horizontal and vertical plane. This vertical aspect of navigation has recently been

examined with the reorientation paradigm (Nardi & Bingman, 2009). In this task, pigeons

were asked to reorient in an isosceles trapezoid arena. When the ground was flat, pigeons

were able to learn the task. When the ground was sloped, pigeons were faster to learn the

task and more accurate. How should slope be classified in terms of a reorientation cue? The

two main classes of cues that have been studied with the reorientation task are geometric

and feature cues. However, slope does not appear to fit easily into the classification of a geo-

metric or a feature cue. Thus, information along the vertical axis, namely slope, appears to

be a salient reorientation cue that may warrant its own category of cue type.

7.5. Summary

The data reviewed in this section make the point that the dichotomy between use of

geometry to reorient (obligatory and early) versus use of features (variable, late, and depen-

dent on language) is overly stark. First, relative length is only used with continuous enclo-

sures defined by raised barriers, which poses problems for how useful the geometric module

would be in natural ecology. Second, one kind of geometry, angular information, is not used

until fairly late in development. Once it is used, features are used as well. Third, features

can be used to reorient in square rooms, especially with scalar information but likely with

nonscalar information as well. Fourth, a salient cue in the natural world—slope—is impor-

tant in reorientation and seems to constitute an additional class of information that does not

fit neatly into the geometry versus feature dichotomy. Overall, in reason 5, we question what

is meant by geometric information.

8. Summary of the five reasons to doubt the geometric module

Here, we have outlined five reasons and evidence to doubt the existence of a dedicated

geometric module for reorientation. There were many reasons to doubt that language played

a unique role in the integration of feature and geometric information, based on evidence that

nonhuman animals flexibly used geometric and feature cues for reorientation, and that

human’s reorientation ability was not dependent solely on language. Next, variable phenom-

ena were reviewed and it was demonstrated that modularity theory and core knowledge posi-

tions do not have enough flexibility in their theoretical accounts of reorientation to be able

to explain these variable phenomena. For example, geometric and feature cue use depended

on environment size, and the presence or absence of overshadowing, blocking, and potentia-

tion effects were not explained by modularity theory. Additionally, both modularity and core

knowledge postulate that the reorientation system is innate, and thus experience should not

influence the behavior of reorienting organisms. We demonstrated that experience, through

short-term training experiments and over the long-term with rearing experiments, had an

influence on the orientation performance of participants. Next, a recent two-step modular

model of reorientation was outlined. Advocates of the core knowledge position argue that

geometric information is first used, and solely used, for reorientation. Subsequently, features
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are used associatively to pinpoint a goal location, but crucially features cannot be used for

reorientation. In contrast, we reviewed evidence that features can be used for true reorienta-

tion, both in the presence and absence of geometric information. Finally, we discussed what

types of geometric information can be used across development, and across species for reori-

entation. It has become apparent, that not all types of geometry are used for reorientation,

and a more specific definition of geometric information may be required. For all of these rea-

soned, discussed more thoroughly above, there are many limitations to modularity and core

knowledge theory. In the next section, we will review more recent theories that attempt to

explain the reorientation phenomena, as summarized in Table 3.

9. Alternatives to modularity

The first part of this paper offered five reasons to doubt the existence of a geometric mod-

ule. In the next section, we change our focus to review recent alternative theoretical models.

We evaluate each of them using the score card of whether it could account for the phenom-

ena shown in Table 3, which are quite well established and in Table 4, phenomena that are

less clear and need further exploration. We emphasize the criterion of whether the model

Table 3

Phenomena to be explained by any model of reorientation

Phenomena

1. Reorientation using relative length is easier than reorientation using angle size.

2. Reorientation relies more on features and less on geometry as enclosure sizes become larger.

3. Features are more likely to be used as children get older, but the improvement is continuous in larger rooms

whereas, in smaller rooms, features are not used spontaneously until 6 years of age.

4. Feature use is enhanced by language training.

5. Feature use is enhanced by prior experience with features in a variety of situations.

6. Feature use is attenuated by both language interference and spatial interference.

7. Scalar information is easier to use for reorientation than nonscalar information.

8. Overshadowing and blocking are sometimes but not always observed with featural and geometric

information—and potentiation is even possible.

9. Distal feature cues are used at a younger age than proximal feature cues.

10. Movement enhances the integration of feature and geometric cues.

Table 4

Phenomena that require clarification and further experimentation

Unclear Phenomena

1. Is geometry more likely to predominate over features in a working memory task as opposed to a reference

memory task?

2. Is geometry harder to use when it must be imputed from separated points rather than being instantiated by

continuous surfaces?

3. Why are direct features sometimes (but not always) easier to use than indirect features in search after

disorientation?

A. D. Twyman, N. S. Newcombe ⁄ Cognitive Science 34 (2010) 1343



could account for development in general, as well as for the specific developmental facts,

such as the use of length before the use of angle or the use of features in large but not small

spaces from an early age.

9.1. Adaptive combination

Adaptive combination was introduced by Newcombe and Huttenlocher (2006) as a theory

whereby multiple sources of spatial information are integrated into a nonmodular and uni-

fied representation. It is one version of a number of models of spatial functioning that postu-

late the weighted integration of a variety of relevant sources of information to support

spatial functioning (Cheng, Shettleworth, Huttenlocher, & Rieser, 2007). Information that is

high in salience, reliability, familiarity, and certainty, and low in variability, is given priority

over other sources of information. Unlike modularity, the adaptive combination model sug-

gests that this information is continually being modified by the creatures’ experience. Cues

that lead to adaptive behavior are elevated in the probability of their use, by increasing the

relative weights of that information source, and cues that led to maladaptive behavior are

decreased in weight. In terms of development, interaction with and feedback from the envi-

ronment allows the evolution of relative weights for the potential sources of information that

are increasingly well adapted.

Adaptive combination offers an explanation of many of the facts outlined in Table 3.

Points 2, 5, 6, and 7 were predicted by adaptive combination theory and then empirically

tested. Point 2 was predicted by adaptive combination theory since as the size of the enclo-

sure increases, there are several reasons to expect that the use of features would increase:

First, the size of the feature wall is larger in the larger spaces, and therefore is more salient;

second, movements around the feature wall create less variability in the large space than the

smaller enclosures. Points 5 and 6 are related to each other as both involve either enhancing

feature use through training and experience or decreasing feature use through interference

tasks. Adaptive combination predicts that practice either directly with the features (or

through language training—Point 4) will increase feature use as this experience increases

the cue weightings of features relative to geometry. Because there is no reason to think that

features are only encoded verbally, adaptive combination predicts that interference tasks

with either verbal or spatial encoding will be detrimental to performance, although not fatal

as there are back-up systems of encoding that will still enable partially successful perfor-

mance. Finally, in terms of point 7, scalar information is potentially easier to use than non-

scalar information for two reasons. The less interesting explanation is that scalar

information, as it was studied, contained more potentially useful cues (size, number, den-

sity) than the nonscalar comparison. The more interesting possibility is that scalar cues may

be more readily mapped onto spatial position than nonscalar cues.

Point 1 can also be explained by adaptive combination theory, although arguably in a post

hoc fashion. Relative length may be easier for children to use than corner angle because of

differences in memory demands between the two types of cues. When facing a corner, espe-

cially in small rooms, the small and large walls intersect at the corner right in front of the

child. This facilitates a comparison of relative length. For corner angle in contrast, the child
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who is facing the correct corner must rotate to compare the current corner angle to the other

corners where memory demands may increase the difficulty of using corner angle over wall

length as a reorientation cue.

Adaptive combination is an overarching theoretical perspective that argues for an active

and adaptive use of relevant information to support spatial reorientation. Recently, other

research teams have proposed more specific models. These models can be seen as compati-

ble with the general principles of adaptive combination theory, and they have tested some of

the specific reorientation phenomena listed in Table 3. We turn now to those models.

9.2. Operant model using Rescorla-Wagner principles

Miller and Shettleworth (2007) proposed a model of reorientation based on Rescorla and

Wagner’s (1972) principles of association. However, the Rescorla-Wagner model applies to

classical conditioning, so Miller and Shettleworth revised the model to apply to an operant

situation because, after disorientation, the animal chooses the corner to approach and there-

fore selects for itself the stimuli experienced during the experiment. Thus, the model

includes a measure of the probability of encountering each corner, based on the associative

strengths of all of the cues at each corner.

This model had as its central goal to provide a unified account of the blocking, overshad-

owing, and potentiation effects discussed earlier in the article. One of the key concepts of

the model is feature enhancement. If the organism learns the geometry of the environment,

then this cue leads to reward half of the time. However, a key assumption of the model is

that the creature quickly learns to select the correct corner on the basis of feature informa-

tion. Since the correct geometric information is paired with the reward quite frequently, the

feature is aiding the creature to learn about the geometry of the space. Then, because the

organism has overvalued the contingency of the geometric cue to greater than 50%, the

organism starts making rotational errors and eventually the organism learns the actual

contingency of reward for geometric information.

As for the more general adaptive combination theory, this approach is a nonmodular

model. The transitory nature of feature enhancement can explain the mixed results with

overshadowing and blocking effects depending on what point in training the test trials were

administered. This operant model is able to explain many of the reorientation findings,

including the original Cheng (1986) experiments and the blocking, overshadowing, and

facilitation effects of Pearce and colleagues. Additionally, a recent revision of Miller and

Shettleworth’s (2007) model is able to account for the room size effects for children, fish,

chicks, and pigeons.

Recently, there has been a critique of this model (Dawson, Kelly, Spetch, & Dupuis,

2008). Although the authors agree with the fundamental premise that reorientation is an

operant learning task, they point out that Miller and Shettleworth’s formula for probabilities

is based on associative strengths, which can be positive or negative. Thus, the mathematical

equation sometimes produces impossible probabilities of less than 0% or greater than 100%.

As a solution, the authors provide an alternative engine, a perceptron, to drive the mathe-

matical side of the model while keeping the operant vision for reorientation. A perceptron is
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an artificial neural network that has inputs that encode stimuli, outputs that respond to stim-

uli, and flexible weighted connections between the inputs and outputs. Thus, the perceptron

is still based upon associative weights, but the probabilities remain between 0% and 100%

and the operant nature of the task is preserved. The Dawson et al. article arguably represents

a friendly amendment to the Miller and Shettleworth approach. Miller and Shettleworth

(2008) took the opportunity to reply to Dawson et al. They agreed that there was a flaw in

one of the calculations and have modified the equation to eliminate aberrant probabilities.

This modification has again demonstrated ‘‘how what appeared to be exceptional kind of

cue interactions in geometry learning experiments can arise from an unexceptional competi-

tion for learning among geometric and other cues’’ (p. 422).

How then does the model fare in explaining the phenomena listed in Table 3? One issue

is that, although the Miller (2009) model tackled age effects, it does so simply by adjusting

parameters in the model to create age differences. There is no independent motivation for

why such parameters might be age graded. The model also has yet to address phenomenon 1

(angle size is harder to use than wall length), some aspects of phenomenon 5 (training and

malleability), phenomenon 6 (interference effects), or phenomenon 7 (scalar information is

easier to use than nonscalar). Phenomena 1 and 7 could be tackled by adjusting parameters,

but as with the treatment of age, it could be argued that such adjustments are ad hoc. Some

aspects of Phenomenon 5 are very naturally explained by the model, which after all is an

operant model, but it is not clear that the model could cover the more abstract generalization

of the training studies of Twyman et al. (2007). However, this model is an excellent start,

and it will be interesting to see the model refined to be able to explain more of the phenom-

ena listed in Tables 3 and 4.

9.3. Local view theory

Because of accumulating evidence against modularity, in particular the findings of

Pearce and colleagues, Cheng (2008) is now quite skeptical that there is a geometric

module. In its place, Cheng predicts that either a version of Miller and Shettleworth’s

(2007) operant model or local view theory will take its place. Local view theory has

grown out of the research on insect navigation, which is largely accomplished by

matching a stored retinal image to the current image. When applied to the reorientation

task, local view theory postulates that rotational errors arise out of the image-matching

process (Cheung et al., 2008; Sturzl et al., 2008). To explain the original Cheng (1986)

finding that rotational errors are made by rats in rectangular enclosures, this nonmodu-

lar account suggests that the organism stores an image of the target location. Once dis-

oriented and released, the organism looks around and then moves in the direction that

minimizes the discrepancy between the stored and the current image. The process is

repeated until the organism arrives at the end point. It is a nonmodular account because

geometric cues are not given a privileged status. Local view theory circumvents the

issue of what should be counted as a feature and what should be considered geometry

by assigning equal status to all possible cues. From this perspective, geometric and fea-

ture information are stored together in the target corner image.
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How do rotational errors arise if all of the pertinent information is available to home in

on the correct corner? The authors propose that the target image is segmented into informa-

tion at the edges of the enclosure and internal information of the walls. Furthermore, the sa-

liencies of the edges and internal information may be equal, or one may be stronger than the

other. The model predicts that when the edges are more salient, then the agent will make

more rotational errors. However, if the internal information is enhanced, then the agent will

go towards the correct corner.

To test this theory, the authors simulated the reorientation paradigm using virtual reality

simulations and a robot that stored the target image and then moved along the image differ-

ence function (minimizing the difference between the current and stored panoramic image)

to determine view whether based matching would result in rotational errors. When the rect-

angular arena was all black, either with or without feature panels, the robot ended up in

either the correct or the rotationally equivalent corner. A similar result was found with three

black walls and one white feature wall. Furthermore, the authors were able to demonstrate

that increasing the salience of the internal information reduced rotational errors and vice

versa. Thus, the authors demonstrated that the rotational errors from Cheng’s original exper-

iment do not require a modular account of reorientation.

After demonstrating that rotational errors can arise in view-based matching in rectangular

spaces, the authors tackle kite-shaped spaces (Graham et al., 2006; Pearce, Graham, Good,

Jones, & McGregor, 2004). They selected these experiments as they deemed them particu-

larly problematic for modularity theory. In one of these experiments, the rats were searching

for the platform in a kite-shaped enclosure. When the wall color changed from trial to trial,

it should have been very easy for the rats to depend on geometric information. In contrast,

this was a very hard task for the rats to learn; in fact, a facilitation effect was found since

making the feature wall stable enhanced learning of the geometric information. When the

robot was put to the test, local view modeling performed well, with a few minor exceptions.

The hypothesis of an image-matching mechanism that produces rotational errors is gain-

ing momentum. In a similar vein to the robot modeling just discussed, a different group of

authors has modeled some of the reorientation data with computational models of rats

(Sheynikhovich, Chavarriaga, Strösslin, Arleo, & Gerstner, 2009). A computational neural

model was developed that had both an egocentric stimulus-response strategy as well as an

allocentric place-based navigation strategy. One interesting point of this model was that the

allocentric strategy arose out of the combined input of visual snapshots, path integration,

place cells, and grid cells. When this simulated model was tested in different conditions, the

authors also found that rotationally equivalent errors arose in the allocentric conditions,

even though the underlying representation was nonmodular. Thus, for both the robotic as

well as the computational neural model, it is at least possible, in theory, for rotational

errors to arise out of a unified cognitive representation as an artifact of an image-matching

process.

A recent study with children is one of the first attempts to test an image-matching

approach with children (Nardini, Thomas, Knowland, Braddick, & Atkinson, 2009). In this

study, children were disoriented and then were asked to retrieve a hidden toy either from a

position that facilitated image matching (i.e., could be encoded in a viewpoint-dependent
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manner such as left of the feature wall) or from a novel position that was viewpoint

independent, and thus prohibited image matching. Four-year-old children were successful

only in the viewpoint-dependent condition. At 5 years of age, children appear to be transi-

tioning from search with a viewpoint-dependent strategy, to a viewpoint-independent strat-

egy. By 6 years of age, children are able to reorient using a viewpoint-independent strategy.

Thus, below the age of 6, there is some support that children may be using an image-match-

ing approach to reorientation. However, by 6 years of age, children are able to successfully

reorient from novel viewpoints, and thus, it appears that there is an alternative strategy that

older children and adults can use for reorientation that seems difficult for local view theory

to explain.

There are many attractions to local view theory, including its simplicity, specificity, and

testability. As the authors mention, it has yet to be determined how the reference image is

acquired in the real world, by specific animals or by people of different ages. In addition,

perhaps because the image acquisition problem has not been tackled, we do not know how

the model would account for age-related differences in feature use, as well as for the room

size effect, training and malleability effects, or differences between scalar and nonscalar

information (see points 2, 3, and 5 in Table 1). Perhaps most troubling is the fact that there

is evidence that directly challenges the central premise of this approach, that is, that organ-

isms reorient using local views without encoding the overall shape of enclosures. Huttenl-

ocher and Vasilyeva (2003) found that toddlers formed a representation of enclosures

shaped like an isosceles triangle that was abstract enough to permit recognition of a corner

as the ‘‘same’’ despite large variations in the triangle’s appearance that resulted because the

children might be either inside or outside the enclosure after disorientation. They also found

that children typically went straight to the correct corner from a variety of initial facing

points, without needing to survey the whole enclosure or large parts of it, as would seem to

be predicted by the local-view approach.

9.4. Different neural substrates?

Although not yet directly relevant to reorientation, a recent set of studies by Doeller, Bur-

gess, and colleagues provide an elegant approach to studying spatial cognition. They have

examined the behavioral and brain bases of landmark and boundary information in goal

location tasks when adult males are semioriented (Doeller & Burgess, 2008; Doeller, King,

& Burgess, 2008). In an object memory task, participants were introduced to a virtual reality

environment where distal cues (mountains, clouds, and a sun) could be used as an orienta-

tion cue, but not as a distance cue to the object’s location. Additionally, there was a circular

boundary defined by a uniform stone wall, and a local landmark for the object, such as a

traffic pylon. Participants were asked to navigate through a sequence of objects while

remembering where they found them. Some of the objects were stable relative to the land-

mark (the pylon) and others stable relative to the boundary (the stone wall). Then partici-

pants were serially shown the objects and asked to place each where it should go.

They received feedback during the training part of the experiment. To prevent egocentric

responding, after an item was found, the screen went blank and participants reappeared at a
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new location along the boundary, facing inwards. Thus, participants are prevented from

following the same set of body responses to replace the target. However, it is unclear

whether participants were fully disoriented in the same manner as the reorientation

paradigm.

Behaviorally, the data suggested that the landmark and boundary information were learned

in parallel. However, the principles of learning appeared to be fundamentally different for

each type of information. The landmark learning followed associative learning principles, as

demonstrated by blocking, overshadowing, and learned irrelevance learning. Boundary

learning did not show any of these effects and was proposed to be learned incidentally.

To follow up on the behavioral data, an fMRI study was conducted to determine whether

there were differences in how the brain processed boundary and landmark cues. The bound-

ary cues activated the right posterior hippocampus while landmark cues activated the right

dorsal striatum. The study also suggested how the brain combines these types of informa-

tion. After parallel processing in independent systems, if only one or the other region pre-

dicts behavior, there is no additional activation. However, if the sources of information are

in conflict or are both required for adaptive behavior, then the ventromedial prefrontal cor-

tex mediates the combination of information from each system. Thus, in a place-finding

task, there appears to be different neural instantiations of each cue type. This type of experi-

mental approach, when applied to the reorientation paradigm, could be a fruitful line of

inquiry.

In a complementary study, Bullens et al. (2009) adapted the object memory task for use

in a 3-D space to examine the developmental trajectory of landmark and boundary informa-

tion. In this version, the children entered an enclosed circular search space. The proximal

landmark cue was a large traffic cone. Beyond the wall of the enclosure, distal orientation

cues were displayed. Between trials, children were disoriented in a similar fashion to the

standard orientation paradigm. Perhaps not surprisingly, adults were more accurate locating

the target location (84%) than the 5- and 7-year-old children (26%). However, both groups

searched in the correct location significantly more often than chance. There were also quali-

tative differences between the types of searches of adults and children. Adults were more

dependent on boundary cues and were more accurate using angular estimates. In contrast,

children evenly used boundary and proximal feature cues (albeit more weakly than adults)

and were more accurate using distance estimates. No age-related differences in either accu-

racy or type of search were found. Thus, as the authors point out, it will be interesting to

compare both younger and older children on this task to be able to understand which brain

systems are developing when, and how cues are reweighted and integrated later in

development.

This approach combines behavioral, neural, and developmental data to create a poten-

tially elegant and fruitful model when applied to the traditional reorientation para-

digm—which the paradigm used in the research was not. Thus, it not only remains to be

seen whether it can explain all the phenomena of Table 3, including development but also

whether it can explain the basic phenomena discovered in the original Cheng (1986)

research. If it is successful, it may have the interesting implication that it will allow us to

have our module and discard it too. That is, the processing of featural and geometric infor-
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mation could, possibly, occur initially in two distinct brain areas, and yet, as needed, be

combined and weighted in yet another. The way that the reorientation paradigm is con-

ducted, it seems that there are two components to the task, first reorienting, and then navi-

gating to the goal location. There has been quite a bit of research on the second component,

navigating to a goal location, which may depend in part on place learning and response

learning, which may be supported by the place cells of the hippocampus and the striatum,

respectively. An additional layer is added to the reorientation paradigm, namely regaining a

sense of direction, which is less well studied. As a start, it seems that the head direction

cells, first proposed by Taube (1998) that are found in the Papez’s circuit, including the

postsubiculum, anterior thalamus, and retrosplenial cortex, would be important components

of such a system. It will be interesting to explore the relative contributions of place cells,

grid cells, head direction cells, and border cells to the reorientation task.

10. Conclusion

Massive modularity is a popular way to conceptualize human cognitive functioning, and it

is attractively simple to explain development by postulating that modules are innately speci-

fied. Core knowledge positions share some of the same properties of modularity the-

ory—namely innate endowment, areas of specialization, and characteristic limitations of

each system. In contrast to massive modularity, the core knowledge position advocates a

small number of modules, on the order of four or five areas of core knowledge. Many invoca-

tions of the term modularity are so vague as to be essentially untestable. A welcome excep-

tion has been the geometric module, which has been precisely defined and operationalized.

We believe that the idea, once tested, has been found to be wanting, and that the majority of

the empirical evidence is difficult to explain when one postulates modules, either from the

massive modularity perspective, or from the core knowledge theory. Recently, the first propo-

nent of the geometric module, Cheng (2008) has reviewed some of the evidence that makes

the geometric module hypothesis quite unlikely to be true. What alternative model will take

its place is not yet completely clear, but likely it will be an adaptive integrated model similar

in spirit to ways of thinking about development suggested by connectionism, dynamic sys-

tems theory, and Siegler’s (1996) model. Whether these doubts about one example of an inna-

tist-modular account of development will extend to other hypothesized modules, such as

theory of mind, cannot of course be stated from the present data. The example of the geomet-

ric module does, however, give us reason to be cautious about facile acceptance of the

hypotheses of massive modularity or core knowledge and innate specification.

Notes

1. Additionally, the early work with rats was conducted with all male subjects. Rats have

been shown to exhibit stable sex differences in spatial learning, unlike mice (Jonasson,

2005). For example, in an experiment using a radial arm maze, a change in the
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geometry of the room dropped the performance of control males and females who had

been treated with estradiol benzoate. In contrast, the geometry change did not affect

the performance of control females or males who had been neonatally castrated (Wil-

liams, Barnett, & Meck, 1990). Thus, findings of dominance of geometric information

may depend on the sex of the animals. If this is correct, note that there is no easy way

for the modularity position to explain how participant sex would affect reliance on

geometric information.

2. However, there are a few things to note about Wall et al.’s study. First, accuracy with

the feature panel in the first step of learning in the square was not impressively high.

The rats were only 67% accurate. Thus, when they were transferred to the rectangular

arena, additional learning was likely to be ongoing and could have included the geo-

metric information. Unfortunately, the study is lacking a geometry-only control group.

It would be helpful to compare the learning curve when geometry is presented on its

own to one group of rats to the learning rate of geometry in rats that had previously

learned that the black feature panel predicted the food location.

3. A reviewer pointed out that the small-large dot comparison may create an illusion

of depth. It may appear to participants that the square is really a rectangle, and that

perceived geometry that could be used for reorientation. If there is an illusion of size,

it is particularly unlikely because of the small size of the search space. Illusions based

on depth cues are particularly week in small spaces. Additionally, as multiple trials

are administered with the children moving through the space, they would have an

opportunity to interact with the space and identify the enclosure as a true square (S. F.

Lourenco, personal communication, June 29, 2009).
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Abstract

The contributions to this special issue on cognitive development collectively propose ways in

which learning involves developing constraints that shape subsequent learning. A learning system

must be constrained to learn efficiently, but some of these constraints are themselves learnable. To

know how something will behave, a learner must know what kind of thing it is. Although this has led

previous researchers to argue for domain-specific constraints that are tied to different kinds ⁄ domains,

an exciting possibility is that kinds ⁄ domains themselves can be learned. General cognitive con-

straints, when combined with rich inputs, can establish domains, rather than these domains necessar-

ily preexisting prior to learning. Knowledge is structured and richly differentiated, but its

‘‘skeleton’’ must not always be preestablished. Instead, the skeleton may be adapted to fit patterns of

co-occurrence, task requirements, and goals. Finally, we argue that for models of development to

demonstrate genuine cognitive novelty, it will be helpful for them to move beyond highly prepro-

cessed and symbolic encodings that limit flexibility. We consider two physical models that learn to

make tone discriminations. They are mechanistic models that preserve rich spatial, perceptual,

dynamic, and concrete information, allowing them to form surprising new classes of hypotheses and

encodings.

Keywords: Cognitive development; Constraints; Perception; Inference; Learning; Novelty; Embodi-

ment; Domain-specificity

1. Introduction

Learning requires constraints. Gold (1967) and Chomsky (1965) formally showed that

there are too many possible language grammars to learn a language in a finite amount of

time, let alone 2 years, if there are no constraints on what those grammars look like. In a

related analysis, Wolpert (1996) showed that there is no such thing as a truly general and
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efficient learning device. To be an efficient learner, one must make assumptions about the

kind of structure one is expecting to find. Allegorically, if you are trying to find your favor-

ite pair of socks and you only know that they are somewhere in your enormously large sock

drawer, it will take you an enormously long time to find them. Some constraints allow you

to limit your search to particular regions. Knowing that your socks are somewhere in the

drawer means that you need never look anywhere outside it. Other, softer constraints simply

determine an order in which the hypothesis space is searched. The physical structure of the

drawer and the opacity of your socks incline you to consider the top of the drawer before

the layers underneath. When the constraints coincide with reality—your favorite pair of

socks really is at the top—they can turn unsolvable problems into relatively simple ones.

Many problems in cognitive science, such as language learning and scene interpretation,

apparently involve the cognitive equivalent of an infinitely large sock drawer, and hence

require powerful constraints.

Psychologists have applied the formal results on the need for constraints to development

and learning, concluding that different domains (including language, but also physics, biol-

ogy, quantitative reasoning, social relations, and geometry) have their own special structures

which must be exploited if learning is to be efficient (Spelke & Kinzler, 2007). Efficiently

exploiting these kinds of structures entails having different kinds of constraints for different

domains. The specific nature of many of these domains, and the corresponding nature of

their internal constraints, was detailed in the contributed articles to the 1990 special issue of

Cognitive Science devoted to structural constraints on cognitive development. The current

special issue of Cognitive Science could be considered a 20th anniversary homage to this

previous special issue. The contributions to the 2010 issue are no less concerned with con-

straints than the 20th century issue.

A deeper inspection of the current issue’s contents does, however, show an evolution in

how cognitive developmentalists conceptualize constraints. The articles in the 1990 special

issue tended to posit internal constraints that paralleled structural characteristics of entities

in particular evolutionarily important domains. A couple of examples provide helpful

reminders as to their general modus operandi. Spelke (1990) argued that infants are con-

strained to assume that objects follow smooth trajectories through space and time. This is an

eminently reasonable assumption because objects do not typically pop into and out of exis-

tence spontaneously, but rather move smoothly and vary conservatively. Markman (1990)

argued that children need constraints on word meanings in order to learn them in a reason-

able amount of time. For example, children assume that a word refers to a whole object

rather than part of the object, ceteris paribus. They assume that words refer to taxonomic

kinds rather than thematically related objects. In addition, they assume that a word will refer

to an unlabeled entity, which allows them to overcome the first two constraints if necessary.

Keil (1990) argued that ontological knowledge is better described by a tree structure than by

a set of arbitrarily overlapping clusters. Predicates must apply to an entire subtree of a hier-

archy, thus preventing ‘‘M’’ structures. Children, internalizing this ‘‘M-constraint,’’ assume

that if some things (like mice) can fear but cannot be 2 hours long, and other things (like

baseball games) can be 2 hours long but cannot fear, then there should not be still other

objects that both fear and last 2 hours.
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These constraints all follow the same pattern of postulating an internal bias that fits well

with an external exigency. By this approach, we are capable of apt and efficient cognition

because our internal structures have evolved over millions of years to reflect external struc-

tures of importance for survival (Shepard, 1984). A common conclusion of this approach is

that humans, or any other cognitive learning system, cannot be general learning devices or

tabula rasas. We need to have constraints like these built into us. Furthermore, because dif-

ferent aspects of the world manifest different structures, we need to have different evolu-

tionarily bestowed constraints for different domains. Hence, Cosmides and Tooby (1992)

compare the human mind to a ‘‘swiss army knife’’ of different tools that have each been

adapted over evolutionary time to their task domain (see Twyman & Newcombe, 2010, for

an extended discussion of this, and other, conceptions of modularity).

The exciting possibility raised in various ways by the articles in the current special issue

is that experience with a richly and diversely structured world can allow people to devise

some of the constraints that they will then use to make learning more from the world more

efficient. Although some constraints are surely provided by evolution, others can be

acquired during an organism’s lifetime and are no less powerful for being learned. In fact,

acquired constraints have the advantage of being tailored to an individual’s idiosyncratic

circumstances. At a first pass, humans seem to live in the same, reasonably fixed world, sug-

gesting that adaptation across generations would be most effective. Indeed, many general

environmental factors, such as color characteristics of sunlight, the position of the horizon,

and the change in appearance that an approaching object undergoes, have all been mostly

stable over the time that the human visual system has developed.

However, if we look more closely, there is an important sense in which people face dif-

ferent environments. Namely, to a large extent, a person’s environment consists of animals,

people, and things made by people. Animals and people have been designed by evolution to

show variability, and artifacts vary widely across cultures. Evolutionary pressures may have

been able to build a perceptual system that is generally adept at processing faces (Bruce,

1998), but they could not have hardwired a neural system to be adept at processing an arbi-

trary face, say that of Barack Obama, for the simple reason that there is too much genera-

tional variability among faces. Individual faces show variability from generation to

generation, and variability is apparent over only slightly longer intervals for artifacts, words,

ecological environments, and animal appearances. Thus, we can be virtually positive that

hand tools show too much variability over time for there to be a hardwired detector for

hammers. Words and languages vary too much for there to be a hardwired detector for the

written letter ‘‘A.’’ Biological organisms are too geographically diverse for people to have

formed a hardwired ‘‘cow’’ detector. When environmental variability is high, the best evo-

lutionary strategy for an organism is to develop a general perceptual system that can adapt

to its local conditions.

These adaptations, once effected, act as constraints at different levels of specificity. When

adapting to a single person such as Barack Obama, our early expectations may constrain

how we interpret his future actions and appearances. Learned constraints have far wider

implications when they are distilled from experiences with many different objects. For

example, Smith, Colunga, and Yoshida (2010) report earlier experiments that children
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extended a label by shape and texture when the objects were presented with eyes (signaling

animacy), but extended the label by shape alone when the target and test objects were pre-

sented without eyes. Likewise, for toys, children learn that shape matters, whereas for foods,

material matters (Macario, 1991; see discussion by Sloutsky, 2010). Some evidence that

these biases are learned is indicated by results showing that laboratory training allows stu-

dents to acquire some of these biases at an age before they normally emerge (Smith, Jones,

Landau, Gershkoff-Stowe, & Samuelson, 2002). As a second example, Madole and Cohen

(1995) describe how 14- month-old children learn part-function correlations that violate

real-world events, whereas 18-month-old children do not learn these correlations, suggesting

that children acquire constraints on the types of correlations that they will learn. As a final

example, early language experience establishes general hypotheses about how stress pat-

terns inform word boundaries (Jusczyk, Houston, & Newsome, 1999). Children are flexible

enough to acquire either the constraints imposed by a stress-timed language like English or

a syllable-timed language like Italian, but once they imprint on the systematicities within a

language, they are biased to segment speech streams into words according to these acquired

biases. In all these cases, constraints are acquired that subsequently influence how children

will learn other materials from the same domain.

2. Learning overhypotheses

A learning system must have constraints on hypothesis formation in order to learn con-

cepts in a practical amount of time, but a considerable amount of flexibility is still needed

because different people face different worlds and tasks. Several of the articles in this spe-

cial issue explore ways in which this dilemma can be resolved by making constraints them-

selves learnable. One way to think about this possibility is in terms of Nelson Goodman’s

(1954) notion of an overhypothesis, a hypothesis of the form ‘‘All As are B’’ where A and

B are generalizations of terms used in any other hypothesis that we are interested in (Kemp,

Goodman, & Tenenbaum, 2010; Kemp, Perfors, & Tenenbaum, 2007). One might have

hypotheses that all dogs have four legs, all storks have two legs, and all worms have no legs.

Generalizing over both animals and leg number, one could construct an overhypothesis that

‘‘All animals of a particular type have a characteristic number of legs.’’ The power of such

a hypothesis is that upon seeing only a single six-legged beetle, one can infer that all beetles

have six legs. Research indicates that adults employ probabilistic versions of overhypothe-

ses such as these (Heit & Rubinstein, 1994).

Kemp et al. (2010) present a quantitative, formal approach to learning overhypotheses.

Their Hierarchical Bayesian Framework describes a method for learning hypotheses at mul-

tiple levels, as with the legged animals’ example provided earlier. Representations at higher

levels capture knowledge that supports learning at the next level down. Learning at multiple

levels proceeds simultaneously, with higher-level schemas acquired at the same time that

causal models for multiple specific objects are being learned. This mechanism allows Kemp

to accommodate, at least in spirit, the examples of constraint learning described in Section

1. Abstract knowledge supports causal learning involving specific objects, but critically, this
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abstract knowledge itself can be acquired by statistical learning. Accordingly, it provides a

way of learning, rather than simply declaring by fiat, the abstract domains that will govern

causal inferences. Their schema-learning approach discovers causal types instead of stipu-

lating them in advance. As an example, it learns that there are two types of blocks—ones

that activate a machine and ones that do not, modeling experiments reported by Gopnik

et al. (2004).

Kemp et al.’s models have multiple levels of abstraction, and so there might be a level

that learns, for example, that pens are reliably pen-shaped and buckets are bucket-shaped,

that these might both belong to a higher level that groups them together as artifacts, and at

this level the constraint can be expressed that all artifacts have a characteristic shape what-

ever that shape is, thereby acquiring a shape bias for artifacts (Smith, Colunga, & Yoshida,

2010). Results like these suggest that association-learning devices are crucially undervalued

if we only focus on token-to-token associations.1 A child seeing a penguin is not just learn-

ing that penguins are black and white but is also learning about relations between coloration,

shape, behavior, climate, diet, and so on, for birds, animals, and natural kinds.

These kinds of type-to-type associations do not release us from a dependency on con-

straints. In fact, given the unlimited number of abstract descriptions applicable to an

observed event, constraints become particularly important in directing us toward useful

levels of abstraction. For example, in the model presented by Kemp et al. (2010), the space

of higher-level causal models must be fully specified ahead of time, leading to strong con-

straints on what kinds of abstract models the system can learn. Still, because constraints at

this higher level will presumably apply to any novel particular domain, they are best seen as

constraints on how experience drives the construction of special domains. The possibility of

learning these type-to-type associations goes a long way toward severing the traditional con-

nection between domain-specific constraints and innateness. Learning is not only caused by

constraints, but it also causes constraints.

Ample empirical evidence for the flexibility of constraints is provided by Sloutsky

(2010). For example, he reports recent experiments showing that people are highly flexible

in attending to different features in different micro-contexts (Sloutsky & Fisher, 2008). In

one context, shape is relevant, and in another context color is relevant. When a context is

reinstated, people selectively weight the contextually relevant dimension. Impressively, this

is achieved even with as minimal a manipulation of context as screen location and back-

ground color. Other related demonstrations have shown that people will selectively attend to

different stimulus dimensions as a function of contextual cues that are provided by the

features of the stimuli themselves (Aha & Goldstone, 1992). These manipulations of context

fall short of genuine domains, but in some ways, the minimalism of the contextual mani-

pulations is the strength. If people can learn to attend to different properties with arbitrarily

created and minimally different contexts, then certainly domains as different as geometry

and social relations would have considerably more internal structure that could be leveraged

to self-organize a division between them.

Sloutsky suggests that contexts can be induced through a compression-based learning

system even before a selection-based learning system has come online in an organism’s

development. This is particularly so for ‘‘dense’’ categories in which different dimensions
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are highly correlated with each other. In practice, selection and compression will typically

work in tandem, by creating categories that ignore some features (via selection) while at the

same time creating compact representations (via compression) that represent an assembly of

co-occurring features by a centroid (Love, Medin, & Gureckis, 2004).

One of the reasons why compression often seems to precede selection for natural catego-

ries is that selection requires that a categorizer has first differentiated their world’s objects

into dimensions. In some cases, early developed perceptual systems serve to split an object

into separate dimensions. However, in other cases, much later experience provides the impe-

tus to differentiate otherwise fused dimensions (Goldstone & Steyvers, 2001). Experience

informs not only contexts and objects, as Sloutsky shows, but also the very descriptions

along with the objects are encoded. Statistics from the world can clump situations into con-

texts, objects into categories, and parts of an object into features. Each of these clumps, once

established, influences future learning.

Focusing on the development of infant visual perception, Johnson (2010) gives several

compelling examples of learning to see as a constraint-creating activity. He provides evi-

dence that infants originally see their world in disconnected fragments, and that exposure to

faces and objects is necessary for infants to eventually come to see entities like these as

coherent. In one reported paradigm, more 6- than 4-month-old infants show anticipatory

eye movements that are initiated before a ball emerges from behind an occluder. This sug-

gests that spatiotemporal completion strengthens during this 2-month period. Once the

infant learns to correctly anticipate where an object will be, he or she is better able to look

in the right place to extract more information about the object. In this fashion, learning

begets still more learning. A large part of this rich-get-richer effect stems from the role that

learning has in creating oculomotor patterns that appropriately constrain future information

acquisition, and consequently learning. Johnson describes another excellent example of this

dynamic in the work of Needham and Baillargeon (1998). Exposing infants to single or

paired objects tends to lead the infants to parse subsequent events in terms of these familiar-

ized configurations. Infants initially exposed to a cylinder abutting a rectangular box

showed relatively long looking times, suggesting surprise, if one of the objects subsequently

moved separately from the other. Consistent with many of the results described by Johnson,

infants are surprisingly adept at adapting their perceptual systems to statistical regularities

in their environment. As their visual systems become tailored to their world, they become

constrained to see their world in terms of the regularities they have extracted. However,

rather than viewing these acquired constraints as limiting perceptual abilities, it is more apt

to view these constraints as permitting the infant to see a coherent and well-behaved world

(Medin et al., 1990).

3. Active construction of entities and kinds

Thus far, the argument has been that any organism that would learn efficiently needs

to have constraints that apply to learning particular domains, but at least some of these

constraints are learnable. Different constraints can be simultaneously learned for different
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contexts, object classes, modules, and domains because entities in the world naturally form

recognizable clumps. Psychology is still important because the natural world can be carved

into domains in many different ways depending on needs and goals. These goals shape the

kinds of clumps that will be formed, but this is different from claiming that the clumps are

preformed. Well-understood mechanisms of self-organization allow modules to be con-

structed for classes of objects based upon their constraints (Elman et al., 1996). By carving

nature at its joints, clusters are formed such that the entities within a class are similarly con-

strained. Furthermore, once formed, the clusters reinforce and emphasize the distinctions

between the entities. Joints are carved into nature where they were already incipient, making

the joints sharper still (Lupyan, 2005). We do not need to start with domain-specific

constraints. The specific domains can emerge from more domain-general principles of

association, contingency detection, statistical learning, and clustering.

The current issue’s articles propose a second way in which constraints are actively con-

structed rather than fixed. In particular, another recurring theme is that people play an active

role in creating the entities to be learned. This theme is perhaps clearest in Chater and

Christiansen’s (2010) arguments that language speakers shape their language over genera-

tions in ways that make it more easily learned by others. Rather than language learning

consisting of the acquisition of fixed structures in a natural, linguistic world, the task con-

fronting language learners is typically one of ‘‘C-Learning’’—simply learning to coordinate

with other individuals. This is a much easier task as long as the learner exists in a milieu in

which the other individuals are generally configured similarly to the learner. On this view,

languages are evolving to be learnable, at the same time that people are evolving to learn

language. Language evolution assumes particular importance in this view, because lan-

guages change at a much faster rate than do genes. Certainly individuals still need to acquire

their indigenous language, but this will be a language that has been rapidly evolved so as to

be efficiently learnable by people with general perceptuo-motor, communicative, and cogni-

tive constraints. The premise that languages can evolve relatively quickly is supported by

documented reports that Nicaraguan sign language emerged in as little as three decades

within a community of deaf children with little exposure to established languages (Senghas,

Kita, & Özyürek, 2004).

Casting language as C-learning does not trivialize its difficulty. If language were purely a

problem of coordination, it could be solvable by creating a very simple language containing

only one word. But a language evolves under several distinct selection pressures, in addition

to learnability. A language should be easily comprehended once learned, so ambiguities and

confusions may make a language less successful, even if easily learned. Most important, a

language must have sufficient power to express rich and structured thoughts. Language evo-

lution is thus not completely untethered. Nonetheless, language does provide an excellent

case study of a domain that is configured by general human constraints rather than existing

as a preconfigured domain requiring language-specific constraints to acquire it.

Although focusing on language acquisition rather than language evolution, Smith,

Colunga, and Yoshida (2010) nonetheless echo several of the themes raised by Chater and

Christiansen. Smith et al. again point to ways in which language is shaped by general cogni-

tive constraints, including general attentional effects, the highlighting of novel cues that
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co-occur with novel outcomes, the illusory projection of cues that are associated with other

cues but are not themselves present, and the construction of clusters reflecting correlated

features (see also Sloutsky’s compression mechanism). They show that language, as it is

constructed by a child in a particular environment, reaches back to affect how that environ-

ment is coded. Unlike English, Japanese makes no distinction between count and mass

nouns. However, giving Japanese children training with the kind of correlated linguistic

cues that an English child might receive causes them to behave more as an English child

might. In particular, they generalize names for solid things by shape and nonsolid things by

material, rather than the less sharply delineated generalization pattern for an average

Japanese child. Critically, this effect of linguistic training has a lasting influence on children

even when the linguistic cues are no longer present. Language is instrumental in establishing

categories like count, mass, and animate nouns. Although scaffolded, in part, by language,

these categories remain in place when the scaffold is removed. It is this dynamic that leads

Smith et al. to argue that children are forming the domains via which they will organize

their world, and language both reflects and guides these acts of creative construction.

Applying this approach to domain-specificity, many of this issue’s articles pursue the

possibility that domain-general constraints are sufficient to produce what eventually

become, or simply appear to be, domain-specific constraints, including Chater and

Christiansen (2010), Twyman & Newcombe, Sloutsky (2010), and Smith, Colunga, and

Yoshida (2010). Recall that the basis for the traditional link between domain-specificity and

constraints lies in the idea that there are innate constraints associated with each kind of

stuff—each domain, or area of ‘‘core knowledge’’ (Spelke & Kinzler, 2007). Empirical evi-

dence indicates that we do not need to start with domain-specific constraints. The specific

domains can come from more domain-general principles. Chater and Christiansen (2010)

describe the existence of general cognitive routines for processing sequential information

used in natural language reading and statistical learning; language is not as special as might

have been believed. Some of the domain-general processes that they single out include

encoding, organization, and production of temporally unfolding events. These processes are

useful for finding structures in language and visual sequences alike, and positing domain-

general constraints helps to explain patterns of correlation between language and visual

temporal processing. Once it has been learned, language is highly constrained, but if we just

look at the eventual constrained forms, it is easy to forget where they came from.

Likewise, for the domain of spatial navigation, Twyman and Newcombe (2010) argue

that people, old and young alike, integrate across multiple cues, including featural cues,

not just a single geometric module. The apparently constrained nature of children’s navi-

gation gives way to broader domain-general processes. Even children can use curtain

color, a cue not considered to be part of the ‘‘geometric module,’’ when the room is large

and they have experience with the task. We need to think about how cues are combined

and integrated, which is both the bane and boon of domain-general processes. Information

has to be combined across multiple sources, a process that is sometimes complex.

However, the complexity is often more than justified by the benefits conferred by mixing

expert systems, and by having these expert systems simultaneously train each other (de Sa

& Ballard, 1998).
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4. Adding skeletons to flesh

An important plank of the new approach to developmental constraints espoused in this

issue’s pages is that developing children learn to organize their world into the categories that

they will use to guide their inferences. This New School of Constraints agrees with the Old

School on the basic principle that different properties are important for different domains.

For example, Gelman and Markman (1986) present evidence that children generalize from

biological properties to objects with the same superordinate name but with a different

appearance. For the biological property ‘‘cold blooded,’’ children extend more inferences

from triceratops to brontosauruses than to rhinoceroses. However, for physical properties

(like weighing 1 ton), they generalized more to the rhinoceros (which resembled a tricera-

tops) than brontosaurus. Heit and Rubinstein (1994) find that adults are as flexible as chil-

dren, for example generalizing an anatomical property more from chickens to hawks than

from tigers to hawks, but generalizing feeding and predation properties more from tigers to

hawks. Earlier, Nisbett et al. (1983) showed that reading about just one member of a tribe

with a certain skin color makes people think that all tribe members have that skin color, but

they are not as profligate with their inductions about the generality of obesity in the tribe

upon seeing only one obese member.

One possible conclusion from these kinds of studies is that both children and adults come

to their world already having broken it down into kinds of things, and this is critical because

in order to know how something will behave, one needs to know what kind of thing it is.

Domains provide the skeleton on which to hang knowledge. As Gelman (1990) writes,

‘‘I find it helpful to think of a skeleton as a metaphor for my notion of first principles. Were

there no skeletons to dictate the shape and contents of the bodies of the pertinent knowledge,

then the acquired representations would not cohere’’ (p. 82).

In referencing skeletons, Gelman clearly has in mind an a priori structure on which to

hang experiential knowledge. However, to the extent that we, the authors, find skeletons to

be an apt metaphor for knowledge, it is only when we reflect on the fact that skeletons them-

selves are not a priori structures, but rather unfold with a developmental process themselves,

and are molded by need. The tennis player John McEnroe’s right hand is significantly larger

than his left hand, because his skeleton and musculature are not a priori givens. In general,

bone mineral content is greater in the dominant arm of professional tennis players than in

their contralateral arm, but not so for a control group (Calbet, Moysi, Dorado, & Rodrı́guez,

1998). Tennis players’ literal skeletons have adapted to fit their tennis requirements. Neural

network models provide working examples of skeletons forming because of the inputs pro-

vided to them. Bernd Fritzke’s (1994) Growing Neural Gas model provides a compelling

example of this (see Fig. 1). When inputs are presented, edges are grown between nodes that

are close to the input, and new nodes are created if no node is sufficiently close to the input.

The result is a skeleton that can aptly accommodate new knowledge because it was formed

exactly in order to accommodate the knowledge. This skeleton-creating approach appears

also in ‘‘Rethinking innateness’’ (Elman et al., 1996), where one of the primary ideas is that

the existence of modularity does not implicate innateness. Modules can be learned because

systems can self-organize themselves to have increasingly rich and differentiated structure.
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Fig. 1. In Fritzke’s (1994) Growing Neural Gas model, the skeletal structure of the network is formed by the

inputs themselves. (Figure adapted with permission by the author).
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Computational modeling suggests that the eventual specialization of a neural module

often belies its rather general origins (Jacobs, Jordan, & Barto, 1991). Very general neural

differences, such as whether a set of neurons has a little or a lot of overlap in their receptive

fields, can cause the two populations of neurons to spontaneously specialize for handling

either categorical or continuous judgment tasks, or snowball small initial differences into

large-scale ‘‘what’’ versus ‘‘where’’ visual systems (Jacobs & Jordan, 1992). At a higher

level of abstraction, self-organizing neural network models have been proposed that account

for how originally undifferentiated concepts become differentiated and increasingly struc-

tured with development (Rogers & McClelland, 2008). Without belaboring the details of

these models, there are a sufficient number of examples of skeleton-creating working mod-

els to believe that to know how something will behave, one needs to know what kind of

thing it is, but that these kinds can emerge through the progressive differentiation of objects

into domains with experience.

5. Getting physical about constraint learning

To our mind, the articles in this special issue offer true advances in our understanding of

cognitive constraints as developing over a person’s lifetime. However, in the interest of urg-

ing the field to not rest on its laurels, we wish to point out that the models that have been

presented to make this point strike us as incorporating input representations that are highly

preprocessed and symbolic. This modeling decision hampers the models from producing as

novel constraints and representational capacities as they otherwise might.

First, let us give some examples of what we feel are modeling choices that constrain too

tightly the kinds of constraints that can be induced. Kemp et al.’s (2010) model succeeds in

simultaneously learning object-level causal models, category-level causal models, and the

categories that occupy the upper levels. However, to achieve these, the authors assume that

the learner already has divided the world into domains (e.g., people and drugs) and events

(e.g., ingestion and headache events). Furthermore, it is prebuilt to learn causal models that

relate the ingestion of drugs to headaches. Finally, actual events like ‘‘has headache’’ are

precoded as atomic, nondecomposable symbols. There is no perceptual apparatus that

grounds objects, events, or causal relations, and hence no way to adapt perceptual processes

to establish new kinds of entities. To be fair, the authors admit all these constraints, and they

gesture to some possible ways of adding flexibility to their model.

To take a second example from a different modeling tradition, Rogers and McClelland’s

(2004, 2008) neural network model is an attempt to understand how domain-specific knowl-

edge emerges solely from general learning principles. In this sense, it fits well within the

current articles’ leitmotif that preestablished constraints on preestablished domains is not

required to account for the eventually structured form of cognitive representations. The par-

ticular structures that their PDP model, trained by back-propagation, acquires are as follows:

progressively differentiated concepts, coherent categories characterized by clusters of co-

occurring features, conceptual reorganization over time, and domain-specific attribute

weighting. Their system takes statements such as ‘‘Canaries can fly’’ and ‘‘Canaries can
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grow’’ as input statements and creates emergent and shifting clusters for different kinds of

animals and attributes. From the perspective of learning constraints, though, we feel that the

input representations are limiting. Single nodes are dedicated to each element in a proposi-

tion, such as ‘‘Canaries,’’ ‘‘Can,’’ and ‘‘Fly.’’ These nodes are not connected to a physical

world via a perceptual system, so once again, there is no perceptual system to adapt.

A natural response to our objection is ‘‘One has to start somewhere. Progress can be made

on constraint learning without accounting for the organism’s relation to its world.’’ We do not

deny that some progress can be made, but at the same time we feel that the most compelling

examples of learning new objects and domains come exactly from situations where the organ-

ism’s embedding in the world is rich, high-bandwidth, and dynamic (Beer, 2008). In this

respect, we are in agreement with Johnson (2010) and Smith, Colunga, and Yoshida (2010).

5.1. Case studies of novel constraint generation in physical systems

To show the kinds of novel objects and constraints that can emerge in situated systems,

we will consider two working, physical devices, without asserting that they are formal mod-

els of learning. Fig. 2 shows the first physical model, developed by Gordon Pask (1958; see

also Cariani, 1993), which features electrodes immersed in a dish containing a ferrous sul-

fate solution. Passing current through the electrodes caused dendritic metallic filaments to

grow as precipitates from the fluid. Ferrous filaments could be adaptively grown to make

the system sensitive to sounds. Early on, the system could only detect the presence or

absence of sounds, but once filaments grew that joined electrodes and changed electrical

conductance, the device was able to discriminate two frequencies. The conducting filament

pathway is shaped by exactly the vibrational perturbations that it detects, and how it detects

the perturbations is changed by its growth. This device has the capacity to represent things,

like the difference between tones of 50 and 100 cycles ⁄ s, which it was not originally able to

represent. This kind of model provides a compelling existence proof for a system that cre-

ates its own constraints—constraints that were not originally there before a certain physical

connection was made. It is a device that, when (literally) immersed in the proper environ-

ment, develops its own concept of what is relevant.

Our second example is a physical device meta-designed to accomplish, perhaps coinci-

dentally, a similar tone discrimination task. For this task, Thompson, Layzell, and Zebulum

(1999) employed a field-programmable gate array (FPGA) containing a 10 · 10 array of

programmable logic components called ‘‘logic blocks.’’ The logic blocks consist of multi-

plexers that act like switches to determine input–output relations between blocks. A com-

puter is used to configure the multiplexers by sending them a stream of bits, thereby causing

the multiplexer to physically instantiate a particular electronic circuit on the chip. FPGAs

are thus integrated circuits with hardware that can be configured to specify how the logic

blocks are connected to each other. Thompson et al. used a genetic algorithm to randomly

alter the hardware of the FPGA, and then tested to see how well the resulting, automatically

configured FPGA could accomplish the task of discriminating between 1- and 10-kHz

square wave tones. After 5000 generations, the FPGA could solve the task well. The best

performing hardware design is shown in Fig. 3. In this figure, the upper-left panel shows the
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entire set of connections among the logic blocks. However, because a random genetic algo-

rithm was employed, there is no guarantee that this FPGA is actually a coherent electronic

circuit at all. In fact, it was not, and some of the logic blocks are not part of the logical cir-

cuit of the FPGA that classifies a tone as high or low. These pruned blocks are not part of

any connected pathway that connects to the output units. Pruning these blocks yields the

upper-right panel. The remaining blocks are part of the logical circuit and could influence

the FPGA’s output, but that is no guarantee that they do. The authors clamped the values of

each of the full 10 · 10 set of blocks—both those that were and were not included in the

pruned circuit—to determine if a block did ever influence outputs. Removing the largest set

of blocks that can be clamped without affecting performance from the electrical diagram

Fig. 2. Gordon Pask’s electromagnetic ear. Dendritic filaments of ferrous sulfate (marked as E) grow to connect

originally disconnected electrodes. The circular wires are a support frame. (Reprinted with permission).
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results in the lower panel of Fig. 3. Comparing the two methods of paring down the full

10 · 10 array of blocks reveals a surprising pattern. Some blocks (shown in gray) that were

not part of logical circuit of the evolved solution are nonetheless important for the FPGA’s

success at the task. When they are clamped to constant but random selected values, perfor-

mance suffers; hence, they influence the circuit’s behavior and quantifiable performance. Fur-

thermore, when only the logical circuit is implemented in a new, nominally identical FPGA,

it no longer solves the task as well as the original circuit did. Likewise, a digital simulation of

the evolved FPGA’s circuit did not produce the same behavior as the physical FPGA.

This apparent contradiction is reconciled by understanding that although the FPGA is a

digital chip, it also has analog properties as a physical device. Conventional digital circuit

design makes the assumption that a given block will output only one of two states at any

give time, when actually there are transition periods. The ‘‘digital assumption’’ has the

In
Out

Fig. 3. A schematic description of FPGA (field-programmable gate array) circuits evolved by Thompson et al.

(1999) to solve a tone discrimination task. The upper left circuit shows the electrical flow diagram of the FPGA

unit that has been evolved to successfully solve the tone discrimination task. The upper-right circuit shows the

pruned diagram that removes all blocks that have no connected pathway that could have affected the output. The

lower circuit shows the functional part of the circuit that remains after the largest possible set of cells has been

clamped without affecting performance. In the lower circuit, the gray cells are cells that influence the output but

are not part of the logical circuit.
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prominent advantage that it allows us to think in terms of a logic algebra. However, the mul-

tiplexer switches work according to laws of semiconductor physics. The circuit changes as a

real-time, continuous-valued electrical system. For some of the cells that are part of the

functional, but not logical, circuit, inputs are routed into them from the active circuit, but

their outputs are not used by the active network. These cells influence the timing of the sig-

nals routed through or near them. If the configuration of the gray cells is changed, this

affects the capacitance of these routes, and hence the time delays for signals to travel along

them. These signals include not only on ⁄ off states but also transitional values between these

two states, which are normally considered the only possible states in formal electronics.

Thus, the cells that are not part of the logical circuit can still change the timing of the rest of

the circuit by influencing their transient states, and the tone discrimination task is highly

dependent on timing, so these changes are functionally important.

5.2. Reliably traumatic learning in physical systems

With these two examples in mind, we can address a question core for the field of cogni-

tive development: How can systems develop genuinely new cognitive capacities? One

answer is simply that they cannot. Fodor (1980) argues that learning a new concept necessar-

ily involves first hypothesis formation and then testing the formed hypothesis. Therefore, a

person could not acquire a new concept unless he or she already had the ability to represent

its hypothesis. Learning can determine whether the hypothesis is true, but the fundamental

ability to represent the hypothesis cannot be learned. If a person can learn that a square is a

four-sided object with all angles equal and all sides equal, then it must be because the person

already had the wherewithal to represent concepts such as ‘‘four,’’ ‘‘angles,’’ and ‘‘equal.’’

A system can increase its representational power by ‘‘physical trauma’’ like a blow to the

head, but not through formal inductive learning processes. Inductive learning does not

increase a system’s representational ‘‘vocabulary’’ because mechanisms must already have

been in place to express the ‘‘new’’ vocabulary, and so it has not been genuinely created.

A related argument is presented by Kemp et al. (2010) in defending their approach from

the criticism that their model does not learn or discover causal schemata, but rather only

selects one schema from a prespecified space of hypotheses. Kemp et al.’s response is that

from a computational perspective, every learner begins with a prespecified hypothesis space

that represents the abstract potential of the learner.2 This hypothesis space includes all

reachable states of knowledge given all possible empirical inputs. Both Fodor’s and Kemp

et al.’s arguments take the form: True novelty is impossible because all hypotheses (or their

components, for Fodor) must exist to be (eventually) selectable.

Pask’s device tidily points out the simplistic nature of this argument. There may be a

sense in which all discriminations that the device can learn are present in the device when it

is first constructed. However, that is only the same trivial sense in which all organs of all life

forms that currently inhabit the planet were present in the earliest bacteria. This trivializes

the physical changes that allow Pask’s device to represent distinctions between sounds that

it was originally unable to make. These physical changes may be dismissed as ‘‘trauma,’’

but they are nonetheless highly systematic, much as are the actual physical changes in the
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brain that lead to long-term potentiation across the synapse between two neurons that are

co-stimulated. The physicality of the change in Pask’s device makes it instructively clear

that at one point in its development, prior to the existence of a conductive filament that has

grown to connect two electrodes, it is incapable of making a sound discrimination, but that

after the physical change has transpired, it is capable.

We agree with Kemp et al. (2010) that a formal model of learning must originally contain

all the hypotheses it will eventually be able to entertain. It is important to remember, though,

that formal models are not the same thing as working, rigorous, and replicable models.

Thompson’s FPGA and Pask’s device may well be models of the latter kind, and they offer

the kind of physical models that may well be needed to yield genuine novelty with develop-

ment. Thompson’s evolved FPGA clearly shows the disadvantage of honing too closely to a

formal algebra. The formal model systematically eliminates the possibility of discovering

solutions to the sound discrimination task that are outside of the digital circuit framework.

When the evolved circuit is reduced to its formal form, it no longer solves the task.

A physical device such as Thompson’s FPGA can have more than one appropriate formal

idealization. No doubt there is a more elaborate formal logic that captures via explicit repre-

sentation the temporal properties of the FPGA, just as a sufficiently complex formal model

could capture the chemical properties of Pask’s device. Such a richer model could well solve

the tasks these physical devices do, and all the capabilities of these devices would then be

implicitly contained in that formal description. But, crucially, in order to design that formal

model, one would have to know just which physical properties mattered to the behavior of

interest. From this perspective, to observe that all of the possible hypotheses that can be

entertained by a formal system are already implicit in the definition of the system is akin to

noting that by the time one can build a satisfying formal model, one must already know how

the real system works. On the other hand, a physical model or a model with rich, high-band-

width connections to an external physical environment can exhibit properties that are not

contained in any preexisting conceptualization. The moral, for us, is that we want our mod-

els, like our children, to be sufficiently flexible that they can surprise us with solutions that

we had not anticipated by our formal analyses.

5.3. Constraint generation by interacting with other physical systems

Physical interactions with an external environment may also play a role in constructing and

constraining a hypothesis space. Several recent models of high-level cognitive activities

depend on the routine application of deictic representations (Agre & Chapman, 1987;

Ballard, Hayhoe, Pook, & Rao, 1997). For instance, Patsenko and Altmann (2010) describe a

model of the process of solving the Towers of Hanoi. This is a quintessentially high-level task,

but Patseno and Altmann’s model performs remarkably little reasoning. Instead, a quite sim-

ple control system defines a method for manipulating visual pointers and physical objects.

Assuming a reliably stable external environment, this control system, which includes rules for

updating referential representations, suffices to perform the Towers of Hanoi task in a manner

that closely matches human behavior. Landy, Jones, and Goldstone (2008) suggested simi-

larly that deictic representations might drive human syntactic judgments in formal arithmetic.
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To the extent that reasoning depends on deictic representations of this kind, the ability of

an agent to maintain and coordinate multiple referential symbols provides a natural con-

straint on the kinds of hypotheses that can be maintained. There is little reason to think of

the maintenance of these referential pointers as a purely internal, representational process.

Rather, to the degree that hypotheses are represented via interactions with external represen-

tations, the maintenance of those hypotheses depends both on internal resources, and on var-

ious physical properties of the interacting systems, the external environment, and the ability

of the agent to manipulate that environment (Kirsh, 1995). In this case, the constraints that

limit the hypotheses that can be constructed are encoded in the physical structure of the

environment and agent–environment interactions.

In some cases, hypotheses themselves may be built out of environmental components,

with the result that constraints on one’s ability to construct physical analogs will limit and

constrain the hypothesis space that can be constructed. Seventeenth-century physicists gen-

erated their hypotheses about physical phenomena by mapping them onto known physical

mechanisms (Bertolini Meli, 2006). Nersessian (2009) suggested that the physical models

engineering scientists construct often serve a role in the generation and representation of

hypotheses: Reasoners construct a physical model, which serves both as an object of study,

and as a repository for theory. Given that the physical instantiation is not well understood,

making a prediction from the theory may require consulting—running—the model. When

hypotheses are partially external constructs, our ability to form hypotheses will be con-

strained not just by the limitations of a predefined hypothesis space intrinsic to an agent but

also by our practical ability to build particular physical models that instantiate theories. For

example, if a particular neural network is too complex to build, or would take to long to run

on an available computer, one may well simplify it. The physical, external constraints limit

the available hypothesis space in a manner neither fixed nor internal, but nevertheless quite

restrictive.

5.4. Conclusions and caveats to the novelty that physical systems permit

To the extent that concepts like squares and angles are rooted in one’s ability to produce

and perceive physical models of squares and angles, one’s hypothesis space is at least softly

constrained by the ability to coordinate fingers, limbs, and counting procedures. No less

than scientists, children are situated, physical systems, and their physical presence is critical

to their ability to develop their own constraints, and to increase their own representational

capacities. This does not mean that we eschew computational and mathematical models of

cognitive development because of their lack of physicality. However, we do recommend

efforts to move beyond models, be they connectionist or Bayesian, that severely constrain

the hypothesis space (Landy & Goldstone, 2005). We advocate models that preserve

enough rich spatial, perceptual, dynamic, and concrete information for surprising new clas-

ses of hypotheses and encodings to emerge. We believe the hard problem for cognitive

development will not be selecting from hypotheses or creating associations between already

delineated elements, but rather constructing hypothesis spaces and elements in the first

place.
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We have argued for interpenetrations between people and their environments, and between

the physical and functional descriptions within learning devices such as people. Furthermore,

we have argued that these interpenetrations are crucial in developing learning systems that

create genuinely new hypotheses, not just permutations of preestablished symbols. However,

a critic might point out that these interpenetrations make for fault-prone and noise-intolerant

devices. Thompson et al. (1999) not withstanding, most current electronics are designed to

behave digitally precisely to provide tolerance to superficial variation in voltage signals that

are irrelevant to the critical information. Even ‘‘squishy’’ organic life as we know it owes its

longevity to a genetic code that closely approximates a digital code consisting of nucleotides

and codons. Complex cellular machinery is dedicated to assuring that the code is relatively

inert and is protected from many contextual influences (Rocha & Hordijk, 2005). It is reason-

able to think that our cognitive system benefits from the same strategy of developing reusable,

quasi-context-independent codes (Dietrich & Markman, 2003). Much of the benefit of dis-

crete codes is exactly that they are not buffeted about by extraneous contextual influences.

We agree that systems that behave reliably often have evolved to have representations

that are mostly sealed off from lower or outside pressures. Simon (1969) called such sys-

tems with multiple, encapsulated levels ‘‘nearly decomposable,’’ and we agree with their

importance in cognitive systems but wish to equally emphasize the importance of the quali-

fier ‘‘nearly.’’ If Thompson et al. (1999) had designed electrically ‘‘cleaner’’ circuits with

proper electrical shielding around cells, then their system would not have been able to

evolve the same solutions to the sound detection problem based on influences of electric

flow on nearby capacitances. Analogous advantages are found for systems that coordinate

with their physical environment to solve problems that they could not otherwise solve. The

advantage of creating new representations by recombining existing codes is too powerful to

forego. However, systems are still more flexible when this combinatorial flexibility is

extended by interpenetrations across levels and systems.

6. Conclusion

A good deal of cognitive development circa 1990 involved delineating specific constraints

in domains such as language, motion, quantitative reasoning, social perception, and naviga-

tion. This focus on domain-specific constraints has now shifted to domain-creating con-

straints, and an interest in how general learning processes can give rise to learned domains,

dimensions, categories, and contexts. This new movement need not argue that all domains are

constructed. The major claim is simply that children need to learn to learn, and a key compo-

nent of this second-order learning is organizing their world into kinds of things that are simi-

larly constrained. If these caricatures3 of the past and present of cognitive development bear

any resemblance to actual history, then our speculative claim for the future of cognitive devel-

opment research is that it will push to describe how genuine cognitive novelty arises. We

expect that these efforts will not all be formal in the sense of involving only rules for manipu-

lating symbols. However, they can still be rigorous and mechanistic, providing working mod-

els for how things such as concepts, domains, and formalisms themselves arise.
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Notes

1. Kemp et al. do not consider their models to be association learning, but the advantage

of learning type-to-type relations can be exploited by non-Bayesian models.

2. The authors also argue that this computational-level response, though correct, could

also be supplemented by algorithmic-level accounts that provide a process model for

creating hypotheses. The authors do not provide such an account. We are arguing for

far greater attention to algorithmic-level, and even implementational-level, process

accounts of how new hypotheses are constructed in the first place. Attention to these

levels is what allows truly emergent novelty to arise in a system.

3. One respect in which we acknowledge the caricatured nature of our historical compari-

son is that, even in the 1990s, there was a considerable interest in domain-general

learning, and the notion that early constraints can serve to bootstrap the development of

more sophisticated properties and constraints subsequently (Keil, 1990; Spelke, 1990).
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