
The Evolution of System-call Monitoring

Stephanie Forrest
Dept. of Computer Science
University of New Mexico

Albuquerque, NM USA
forrest@cs.unm.edu

Steven Hofmeyr
Lawrence Berkeley Laboratory

Berkeley, CA USA
shofmeyr@lbl.gov

Anil Somayaji
School of Computer Science

Carleton University
Ottawa, ON Canada

soma@scs.carleton.ca

Abstract

Computer security systems protect computers and net-
works from unauthorized use by external agents and insid-
ers. The similarities between computer security and the
problem of protecting a body against damage from exter-
nally and internally generated threats are compelling and
were recognized as early as 1972 when the term computer
virus was coined. The connection to immunology was made
explicit in the mid 1990s, leading to a variety of prototypes,
commercial products, attacks, and analyses. The paper re-
views one thread of this active research area, focusing on
system-call monitoring and its application to anomaly in-
trusion detection and response.

The paper discusses the biological principles illustrated
by the method, followed by a brief review of how system call
monitoring was used in anomaly intrusion detection and
the results that were obtained. Proposed attacks against
the method are discussed, along with several important
branches of research that have arisen since the original pa-
pers were published. These include other data modeling
methods, extensions to the original system call method, and
rate limiting responses. Finally, the significance of this body
of work and areas of possible future investigation are out-
lined in the conclusion.

1 Introduction

During the 1990’s the Internet as we know it today grew

from a small network of trusted insiders to a worldwide con-

glomerate of private citizens, governmental agencies, com-

mercial enterprises, and academic institutions. As society

at large embraced the Internet, opportunities and incentives

for malicious activities exploded, creating demand for new

computer security methods that could succeed in this open

and uncontrolled environment. Open applications, mobile

code and other developments helped erode the notion of

a clear perimeter, which formerly separated a trusted sys-

tem from its external environment. Previous approaches to

computer security had emphasized top-down policy spec-

ification, provably correct implementations of policy, and

deployment in correctly configured systems. Each of these

assumptions became increasingly untenable, as the Internet

grew and was integrated into human society.

The similarities between computer security in the age of

the Internet and the problem of protecting a body against

damage from internally and externally generated threats are

compelling. They were recognized as early as 1972 when

the term computer virus was introduced [67]. Later, Spaf-

ford argued that computer viruses are a form of artificial life

[66], and several authors investigated the analogy between

epidemiology and the spread of computer viruses across

networks [38, 51, 59, 55]. The connection to immunol-

ogy was made explicit in [15, 37], and since that time the

ideas have been extended to incorporate significant amounts

of immunology and to tackle ambitious computer security

problems, including computer virus detection [15, 37], net-

work security [24, 79, 33], spam filtering [57], and com-

puter forensics [46].

As the primary defense system of the body, immune sys-

tems are a natural place to look for ideas about architec-

tures and mechanisms for coping with dynamic threat en-

vironments. Immune systems detect foreign pathogens and

misbehaving internal components (cells), and they choose

and manage an effective response autonomously. Thus, the

immune system can be thought of as a highly sophisticated

intrusion detection and response system (IDS).

Despite debate in the immunological literature about

how the immune system recognizes threats, in most of the

work on computer immune systems it is assumed that nat-

ural immune systems work by distinguishing between pro-

tein fragments (peptides) that belong to the properly func-

tioning body (self) and ones that come from invading and

malfunctioning cells (nonself). To explore IDS designs that

mimic those of the immune system, we must first decide

what data or activity patterns will be used to distinguish be-

tween computational self and nonself. That is, we must de-

2008 Annual Computer Security Applications Conference

1063-9527/08 $25.00 © 2008 IEEE

DOI 10.1109/ACSAC.2008.54

418

2008 Annual Computer Security Applications Conference

1063-9527/08 $25.00 © 2008 IEEE

DOI 10.1109/ACSAC.2008.54

418

cide what data streams the IDS will monitor and identify a

threat model. To build a computer immune system, then, a

computational analog to peptides must be found, one that

will allow security violations to be detected without gener-

ating too many false alarms in response to routine changes

in system behavior.

In this paper we focus our attention on the definition

of self introduced in [14, 25, 65] to protect executing pro-

grams. In this work, discrimination between normal and

abnormal behavior was based on what system calls (oper-

ating system services) are normally invoked by a running

program. As a program executes, it might make several mil-

lion system calls in a short period of time, and this signature

of normal behavior is sufficient to distinguish between nor-

mal behavior and many attacks. Many attacks cause a vul-

nerable program to execute infrequently used code paths,

which in turn leads to anomalous patterns of system calls.

Anomaly detection based on system calls is able to detect

intrusions that target a single computer, such as buffer over-

flow attacks, SYN floods, configuration errors, race con-

ditions, and Trojan horses under the assumption that such

attacks produce code execution paths that are not executed

in normal circumstances.

A large number of researchers adopted the system-call

approach, some seeking to improve on the original methods

[49, 54, 45, 62, 29], some applying its method to other prob-

lems [68, 30, 50], and some attempting to defeat the system

[74, 70]. Sana Security developed a product known as Pri-
mary Response based on the technology, which it actively

marketed to protect servers. At this writing, the system-call

method is the most mature application of biological princi-

ples to computer security. In this paper, we first review the

general principles that guided our design decisions (Section

2); we next describe briefly the original system-call method

and summarize the results it achieved (Section 3). Next,

we summarize several important lines of research that have

arisen since the original paper was published (Sections 4,

5, 6, 7). Finally Section 8 speculates on the significance of

this body of work.

2 General Principles

The biological analogy led to a set of general design prin-

ciples, which remain relevant to computer security more

than a decade later. These include:

• A generic mechanism that provides coverage of a

broad range of attacks, even if it is not 100% provably

secure for any particular threat model. This approach

is similar in spirit to “universal weak methods” in arti-

ficial intelligence that are applicable to many problems

and do not require specialized domain knowledge. Al-

though some of the pattern recognition mechanisms of

the adaptive and innate immune systems are biased to-

wards detecting important classes of infection, many

are generic “danger detectors.” The existence of au-

toimmune disease provides evidence that they are im-

perfect; yet they are highly effective at eliminating in-

fections, and natural selection has conserved and en-

hanced immune systems in all higher animals. Choos-

ing a ubiquitous and fundamental data stream, such as

system calls, allowed us to design a system that could

protect a wide variety of programs against a wide vari-

ety of threats without specialized knowledge.

• Adaptable to changes in the protected system. Com-

puter systems, environments, and users are highly dy-

namic, and normal legitimate uses of systems are con-

tinually evolving. Just as biological defense systems

need to cope with natural adaptive processes, so must

computer security systems if they are to be robust. In

our system, adaptability was achieved through the use

of simple learning mechanisms, which were used to

construct models of normal behavior and to update

them over time.

• Autonomy: Computer systems have traditionally been

thought of as tools that depend upon humans for

guidance. However, as computer systems have be-

come powerful, numerous, and interconnected, it is no

longer feasible for humans to manage them directly.

Biological systems necessarily operate independently,

on-line, and in real-time because they live and inter-

act with physical environments. In our system, we

addressed this requirement with the most lightweight

simple design we could think of—ignoring system call

arguments, modeling data with simple data structures

and without calculating probabilities or frequencies,

and a generic response mechanism that slows down

suspicous processes.

• Graduated Response: In computer security, responses

tend to be binary, as in the case of access controls (ei-

ther a user is allowed access or not), firewalls (either

a connection is blocked or it is not), or cryptography

(where either a file is encrypted or it is not). Biolog-

ical systems have graduated responses, where small

perturbations result in small responses, and large de-

viations cause more aggressive responses. We adopted

this principle in process Homeostasis (pH), where sys-

tem calls were delayed according to how many anoma-

lous system calls had preceded them. Graduated re-

sponses allowed us to move away from the concept of

security as a binary property and to tolerate imperfect

detection.

• Diversity of the protection system. Natural immune

systems are diverse. Individual differences arise

419419

both through genetic variations (e.g., MHC genes) or

through life histories (e.g., which immune memories

an individual has). Individual diversity promotes ro-

bustness, because an attack that escapes detection in

one host is likely to be detected in another. Assum-

ing that hosts have finite resources to devote to de-

fense, this allows a higher level of population-level

robustness than could be achieved by simply replicat-

ing the same defense system across systems. Beyond

that, diversity of the protection system makes it much

more difficult for an attacker to design a generic attack

that will succeed everywhere. In our system, different

environments and usage patterns confer diversity on

each program invocation, which leads to diverse pat-

terns of system calls observed during “normal” behav-

ior. The extent of this diversity varies with the program

[64, 25].

3 A Sense of Self for Unix Processes

Computer systems are vulnerable to external attack via

many different routes. One of the most important of these

is server programs that run with enhanced privilege, such

as remote login servers (e.g., ssh), mail servers (e.g. send-

mail), web-servers, etc. Software or configuration flaws in

these running programs are exploited by attackers to gain

illegitimate entry into systems, where they can take advan-

tage of the privilege of the compromised process to seize

control of the computer system. Privileged server processes

form the main gateways for remote entry into a system, and

hence it is vital to protect them from attack. These gateway

server programs are frequently patched, but new vulnera-

bilities continue to be discovered, leading to widespread

abuses such as the code-red worm [8], and many others [56].

One common approach is to scan the inputs to the server,

usually at the network level. Such network intrusion de-

tection systems typically scan for signatures of attacks in

network packets. However, such systems are vulnerable to

denial-of-service attacks, spoofing and other attacks [61],

and they can only detect attacks for which they have signa-

tures ahead of time. We believed that instead of focusing on

inputs to servers, it would be better to monitor the runtime

behavior of programs, because only code that is running can

actually cause damage. And, it is harder to forge behavior

than to forge data.

3.1 Behavioral characteristics

The central hypothesis of the original research [14] was

that anomaly intrusion detection can provide an effective

additional layer of protection for vulnerable privileged pro-

cesses. An anomaly detection system develops a profile of

normal behavior and monitors for deviations that indicate

attacks. Traditionally, anomaly detection systems focused

on characterizing user-behavior [3, 9, 44] and were often

criticized for having high false positive rates because user

behavior is erratic. The key to effective anomaly detection

is to monitor a characteristic that is stable under normal,

legitimate behavior, and perturbed by attacks.

Many characteristics could potentially be used in an

anomaly detection system. Our choice was based on the

observation that server programs tend to execute a limited

set of tasks repeatedly, often with little variation. Those

tasks correspond to regular paths through the program code.

We chose a proxy in the form of short sequences of system

calls executed by running programs. Our focus on system

calls followed earlier work by Fink, Levitt and Ko [13, 39]

that used system calls in a specification-based intrusion de-

tection system. System call sequences can be monitored

from the operating system, without necessitating recompi-

lation or instrumentation of binary or source code, making

the system extremely portable and potentially applicable to

any program that exhibits regular code paths.

We wanted a system that was sufficiently lightweight that

it could monitor all running programs in real-time, and even

respond to prevent attacks before they caused harm (as was

demonstrated in pH; see section 7). For this reason, we

chose to define the normal profile using short sequences of

system calls. There are many possible ways to represent

short sequences of system calls, for example, lookahead

pairs, n-grams, trees, etc. Figure 1 shows some of these

representations, and they are described in Section 5. Most

of our early work used lookahead pairs, although we ex-

perimented with exact sequences and Markov models. We

disregarded system call parameters (the flow of data), to fur-

ther simplify the problem. Our goal was to start as simply as

possible, and later expand the system if required: the need

for speed and real-time monitoring/response dictated that

we discover the simplest possible mechanisms that would

actually work.

3.2 Developing a normal profile

The first step in anomaly detection is gathering the data

that will constitute the profile of normal behavior. We used

two different methods for this: generating a synthetic nor-

mal profile by exercising a program in all of its anticipated

normal modes of usage; and collecting real normal profiles

by recording system call traces during normal, online usage

of a production system1. The learning algorithm was used

to determine the minimum set of short sequences of sys-

tem calls that adequately defined normal: it’s goal was to

include all normally used code paths, but exclude those that

are never used, even if those paths exist within the program

1An alternative approach is to determine normal through static analysis

of the program code. See section 6.3

420420

�������	
�
���	
���	���
��

�����������	�
�����
�����
���������
��	�����������������

�������

	

���
��������

�����
�	
�����
�
�

��
�����
���������
��	�����
��
���������
��	������������

����	���������

������
��	�����
��
������
��	�����

��
���������
��	�����

��	������������

��������������
��
��������������

����������

��
� ����

��	����������

Figure 1. Representing system call streams

source code. An important class of attacks involves inject-

ing foreign code (e.g. buffer overflows), but many other

attacks force a program to exercise existing but rarely used

code paths, and hence do not require foreign code injection.

Developing a normal profile is a typical machine learning

problem: Undergeneralization leads to false positives, and

overgeneralization leads to false negatives.

Experimentation with a wide range of programs (e.g.

sendmail, lpr, inetd, ftp, named, xlock, login,

ssh) demonstrated that these programs exhibit regular be-

havior and can be characterized by compact normal profiles

[40, 25, 14]. Figure 2 shows how normal behavior con-

verges to a fixed set of system call sequences of length 6

for lpr in a production environment—the Artificial Intelli-

gence Laboratory at the Massachusetts Institute of Technol-

ogy (MIT). The figure shows how initially there are many

new sequences, but after a while few novel sequences are

observed and the profile converges to a fixed size.

Not only can normal behavior be defined by limited sets

of sequences of system calls, but what constitutes normal

differs widely from one program to the next. For exam-

ple, a typical run of ftp differed by between 28 and 35%

(depending on the sequence length) from sendmail [14].

More importantly, different environments and usage pat-

terns resulted in dramatically different normal, even for the

identical program and operating system. For instance, the

normal profile for lpr gathered at MIT differed markedly

from the normal profile gathered at the University of New

Mexico’s Computer Science Department (UNM): only 29%

of the unique sequences in the MIT profile were also present

in the UNM profile. Later work on pH corroborated these

results in lookahead pairs, showing 1) that two program pro-

files were 20-25% similar on average (over hundreds of pro-

grams) and 2) the same programs running on three different

0� 500000 1000000� 1500000�

Total number of sequences�

0

200

400

600

800

1000

N
u

m
b

er
 o

f
u

n
iq

u
e

se
q

u
en

ce
s

�

Figure 2. Growth of normal database for lpr
from MIT’s Artificial Intelligence Laboratory
(reprinted from [76]).

hosts with the same OS version differed, on average, in 22-

25% of their lookahead pairs [64].

These results offered clear support for what we have

termed the “Diversity Hypothesis”: Normal code paths exe-

cuted by a running program are highly dependent on typical

usage patterns, configuration and environment, and hence

can differ widely from one installation to the next, even for

the same program and operating system. Diversity in biol-

ogy confers robustness on a population, and can do the same

for computer systems: an attack that succeeds against one

implementation could fail against another because normal is

different. Further, the attacker will not necessarily know a

priori what constitutes normal for a given implementation—

knowledge of the source code is not sufficient; also required

is knowledge of the environment and usage patterns.

3.3 Detecting attacks

The normal profile must not only be stable and com-

pact, but it must differ from behavior generated by at-

tacks. Extensive experimentation demonstrated that nor-

mal sequences of system calls differ from a wide variety

of attacks, including buffer overflows, SYN floods, config-

uration errors, race conditions, etc [14, 25, 40, 64]. This

variety shows that the method is capable not only of detect-

ing foreign code injection attacks (such as buffer overflows)

but attacks that exercise unused code paths that exist in the

program source. In contrast with methods based on static

analysis, this last point illustrates the importance of a pre-

cise definition of normal that excludes unused source code

paths.

One question of interest was determining the minimum

necessary system call length required to detect all attacks.

421421

0 200 400 600 800 1000

Number of System Calls

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
no

m
al

y
S

ig
na

l

Figure 3. Anomaly signal of the syslogd in-
trusion. (Reprinted from [25].)

Shorter sequences are good because they result in more

compact normal profiles, faster learning times, and less

overhead during sequence matching. However, short se-

quences can potentially be more easily evaded (see section

4) and give less clear signals of an attack. A good mini-

mal length was found to be 6 system calls [25], although

for implementation reasons our later work used 8. Even at

such short sequence lengths, attacks were usually obvious

because they consisted of temporally clumped anomalies,

as shown in Figure 3. In this figure, the x-axis represents

time (in units of system calls) and the y-axis is the normal-

ized number of recently seen anomalous system calls.

Many of the detected anomalies were not malicious. For

example, the method detected errors such as forwarding

loops, failed print jobs, and system misconfigurations. This

illustrated one additional benefit of anomaly detection: It

can be used to detect faults caused by non-malicious errors.

This contrasts with a signature detection system, which usu-

ally has only the ability to detect known malicious events.

4 Subverting system call monitoring

Because most security properties of current software sys-

tems and algorithms cannot be proven, advances in secu-

rity have long relied upon researchers studying systems and

finding security vulnerabilities in them. Mimicry attacks

were the earliest attempt to defeat the system call modeling

approach. Wagner and Dean proposed that it was possible

to craft sequences of system calls that exploited an attack,

but appeared normal [74]. The trick to achieving this in-

volves inserting “nullified” system calls, i.e. calls that have

no effect, either because the return values are ignored or

the parameters are manipulated. This enables an attacker to

construct an attack sequence within a legitimate sequence

using the “nullified” calls as padding. The mimicry has to

persist as long as the attacker is exploiting the process that is

being monitored, even once the initial penetration has suc-

ceeded. See Figure 4.

read() write() close() munmap() sigprocmask() wait4()

sigprocmask() sigaction() alarm() time() stat() read()

alarm() sigprocmask() setreuid() fstat() getpid()

time() write() time() getpid() sigaction() socketcall()

sigaction() close() flock() getpid() lseek() read()

kill() lseek() flock() sigaction() alarm() time()

stat() write() open() fstat() mmap() read() open()

fstat() mmap() read() close() munmap() brk() fcntl()

setregid() open() fcntl() chroot() chdir() setreuid()

lstat() lstat() lstat() lstat() open() fcntl() fstat()

lseek() getdents() fcntl() fstat() lseek() getdents()

close() write() time() open() fstat() mmap() read()

close() munmap() brk() fcntl() setregid() open() fcntl()

chroot() chdir() setreuid() lstat() lstat() lstat()

lstat() open() fcntl() brk() fstat() lseek() getdents()

lseek() getdents() time() stat() write() time() open()

getpid() sigaction() socketcall() sigaction() umask()

sigaction() alarm() time() stat() read() alarm()

getrlimit() pipe() fork() fcntl() fstat() mmap() lseek()

close() brk() time() getpid() sigaction() socketcall()

sigaction() chdir() sigaction() sigaction() write()

munmap() munmap() munmap() exit()

Figure 4. Sequence of system calls in a
mimicry attack against wuftpd. The under-
lined calls are part of the attack, all the rest
are nullified calls. [75]

However, there are limitations to such “nullified”

mimicry attacks. First, the attacker needs to be able to inject
the code containing the specially crafted sequence, which

limits these mimicry attacks to only those that can exploit

code-injection attacks, such as buffer overflows. Second,

the diversity of normal profiles on different systems is a bar-

rier because the attacker requires precise knowledge of the

normal profile [75]. To what degree this defeats mimicry in

practice has not been thoroughly investigated, but it is worth

recalling that the identical program in two different produc-

tion environments produced normal profiles with only 29%

of sequences in common (see section 3.2). This reduces the

probability that a mimicry sequence crafted for one instal-

lation would work in others. Third, the mimicry attack re-

quires injecting a potentially long sequence of code, which

may not be possible in all vulnerabilities. The example

given in [74] (shown in Figure 4) requires an additional 128

nullified calls to hide an attack sequence of only 8 system

calls. Finally, mimicry attacks may be difficult to imple-

ment in practice because of the anomalies generated by the

“preamble” of such attacks [35].

However, mimicry attack strategies have become in-

creasingly sophisticated, using automated attack methods

including model checking [21], genetic algorithms [34], and

symbolic code execution [41]. Although these approaches

may not always be reliable in practice, work on persistent

interposition attacks shows that the application itself can be

422422

used to facilitate mimicry attacks [58]. These results sug-

gest that if an attacker can corrupt program memory, then

it is possible to evade virtually any system call-based mon-

itoring system—assuming it is the only defense. It remains

unclear how feasible mimicry attacks are on systems with

memory corruption defenses such as address-space random-

ization [60].

Another attack involves crafting sequences that are short

enough to avoid producing anomalies, hence exploiting

“blind spots” in detection coverage [71, 70]. Any intrusion

detection system is a trade-off between false positives and

false negatives. In order to reduce potential false positives,

the original system used a temporal threshold: Anomalous

sequences signaled attacks only if the number of anomalies

within a recent time window exceeded a given threshold.

This opens the possibility of designing attacks that can stay

below the threshold, either by generating very few anoma-

lies or by spreading them out over a long time period. Once

again, such attacks require that the attacker inject code con-

taining particular sequences of system calls.

Non-control-flow attacks are yet another way of poten-

tially subverting the system call modeling method. The

goal is to manipulate the parameters to system calls without

changing the call sequence. Chen et al. demonstrated that

there are viable vulnerabilities that can be exploited with

this method, for example, by using normal system calls in

the sequence to elevate privileges and then overwriting the

password file [7]. In a sense, this approach is an extension

of the original mimicry attack: instead of nullifying system

calls for the purpose of crafting an attack sequence, the ma-

nipulated calls become the means of attack directly, without

any need to create an attack sequence.

The advent of mimicry and other attacks against the sys-

tem call modeling approach led to a wealth of research

aimed at improving the original method to make it more

attack resistant. Many of the extensions discussed below

were inspired by a need to address these attacks.

5 Data modeling methods

The methods described in Section 3 and [14, 25] de-

pend only on an enumeration of the empirically observed

sequences, or n-grams2, in traces of normal behavior. Two

different methods of enumeration were studied, each of

which defines a different model, or generalization, of the

data. There was no statistical analysis of these patterns in

the original work. As shown in Figure 1, the lookahead pair

method constructs a list for each system call of the system

calls that follow it at a separation of 0, 1, 2, up to n po-

sitions later in the trace. The * character is a wildcard, so

2An n-gram is a sub-sequence of length n taken from a given sequence.

Here, the n-gram representation is obtained by sliding a window of length

n across the entire sequence.

the pattern ¡mmap, *, getrlimit¿ specifies that any 3-symbol

sequence that begins with mmap and ends with getrlimit

will be treated as normal. This method can be implemented

efficiently and produced good results on the original data

sets. On some data sets, representing the n-grams exactly

gave better discrimination than lookahead pairs, although

it is more inefficient to implement. Researchers also ex-

perimented with variable-length window sizes [49, 78, 11],

random schema masks [28]. The correspondence between

n-gram representations and finite state automata (FSA) was

studied in several papers, including [49, 31]. This work has

been extended to more structured representations, but these

require additional information such as the execution con-

text, and are discussed in Section 6.

Several methods used statistical machine learning to de-

velop accurate models of normal system call patterns. In

an early example, DFA induction was used to learn a FSA

that recognized the language of the program traces [40]. In

this work, the learning algorithm determined the frequen-

cies with which individual symbols (system calls) occurred,

conditioned on some number of previous symbols. Individ-

ual states in the automaton represented the recent history of

observed symbols, while transitions out of the states spec-

ified both which symbols were likely to be produced next

and what the resulting state of the automaton would be.

Other machine learning approaches include Hidden

Markov Models (HMM) [76, 17], neural networks [18, 10],

k-nearest neighbors [47], and Bayes models [42]. Each

of these projects was designed to produce a more accu-

rate model, with the goal of reducing false positives. This

comes at the cost of more computationally expensive al-

gorithms. In some cases, the algorithms require multiple

passes over the entire data set, thus violating the real-time

component of the autonomy principle. Another limitation

of most statistical methods is the assumption of stationar-

ity. This means that the concept of normal behavior is as-

sumed not to change while the system is being trained and

tested. This assumption violates the adaptable principle, a

problem addressed in [48] for network traffic, where prob-

abilities were based on the time since the last event rather

than on average rate.

Data mining seeks to discover what features are most im-

portant out of a large collection of data. This idea was ap-

plied to system calls with the goal of discovering a more

compact definition of normal than that obtained by simply

recording all observed patterns in the training set [45]. Also,

by identifying the most important features of such patterns,

it was hypothesized that the method would be more likely

to generalize effectively.

To summarize, many approaches to modeling system call

data have been developed. These range from simple compu-

tationally efficient models to more sophisticated approaches

that require additional computation. Most innovations have

423423

been aimed either at reducing false-positive rates or at cop-

ing with mimicry attacks. It is surprisingly difficult to com-

pare the performance of the different methods in a system-

atic way. However, one early study [76] concluded that dif-

ferences among data sets had significantly more impact on

results than differences among data modeling methods.

6 Extensions

The idea of using short sequences of system calls for

anomaly detection has been extended in several ways.

These can be grouped into several broad categories. Here

we discuss some of the key advances, without an attempt to

exhaustively review all of the research that has been done in

these areas.

6.1 Data flow

The original work deliberately discarded any informa-

tion related to system call parameters. This resulted in a

simple, lightweight method. However, a logical extension

is to consider the effects of parameters to system calls. An-

other way of viewing this is that sequences of system calls

model code path flow, and system call parameters model

data flow.

Tandon and Chan used a rule-learning system to augment

a code-flow anomaly detection system with a data-flow sys-

tem [72]. They combined rules for sequences of system

calls with those for system call arguments. They reported

improved attack detection, but at the cost of increased com-

plexity: Their system ran 4-10 times more slowly when ar-

guments were included. Sufatrio and Yap incorporated data

flow in the form of a supplied specification for system call

arguments [69], and Bhatkar et al. reported that modeling

the temporal aspects of data flow in conjunction with con-

trol flow further improved detection [6].

Kruegel et al. went one step further, looking only at

the arguments and disregarding code flow altogether [43].

They explored several different models for anomaly detec-

tion based on system call arguments, including the distribu-

tion of string lengths and characters in arguments, Markov

models of argument grammar, and explicit enumeration of

limited argument options. They demonstrated that their ap-

proach is effective against attacks (primarily buffer over-

flows) and that it has low overhead. Mutz et al. extended

this approach by using a Bayesian network to combine the

output of the different system call argument models [53].

6.2 Execution context

Apart from system call arguments, there are many ad-

ditional sources of information associated with system calls

that can be used to improve anomaly detection. One of these

is the location within the program code from where a sys-

tem call is issued, which can be determined by the program

counter. Sekar et al. first proposed using program counter

information to build a FSA of system call sequences [62].

A FSA is a natural model for program code paths; how-

ever, inferring a FSA from sequence information alone is

difficult. The Hidden Markov Model presented in Warren-

der et al. is similar to a FSA, and has large learning over-

heads [76]. Further, in the absence of program counter in-

formation, the FSA does not improve detection or reduce

false positives dramatically. The key insight in Sekar et

al. was that using program counter information in the FSA

can overcome these limitations. The states in the FSA are

program locations derived from program counters, and the

transitions are system calls. Hence the model defines al-

lowable system call transitions from one program location

to the next.

A FSA using program counters is a close representation

of the true structure of the code, and as such it is able to

model loops and both long and short range correlations ef-

fectively, unlike the n-gram approach. This results in both

increased accuracy of attack detection and reduced false

positives [62]. A further benefit is that a FSA model us-

ing program counters converges to a stable normal model

an order of magnitude faster than an n-gram model.

In addition to the program counter, the call stack is a rich

source of information. The VtPath model [12] augments the

FSA approach with stack return addresses—each transition

of the FSA includes a list of all the return addresses. This is

used to generate a virtual path between system calls which

can then be additionally checked for anomalies. This ad-

ditional information improves attack detection and reduces

false positives, without incurring additional overhead.

In a similar approach, execution graphs were used to ex-

tend simple system call enumeration to a more structured

representation [16]. In this approach, the return address

pointer is stored with the system call, and this informa-

tion is used to reconstruct a graph similar to a control flow

graph by simply observing the patterns of system calls in

a running program. The paper proves that given a set of

observed program behavior, the algorithm constructs an ex-

ecution graph that is consistent with a control flow graph

that is obtained through static analysis.

6.3 Static analysis

In the original research, the normal profile was deter-

mined by observing running code and recording the se-

quences of system calls that were executed during normal

behavior. However, learning normal at runtime has limita-

tions. First, incompletely learning normal can result in false

positives. Second, if learning takes place online, in a vul-

nerable system, then attacks could potentially be injected

424424

into the normal definition. Finally, normal can change, for

example, when a system is reconfigured, and hence require

relearning.

To address these issues, researchers used static analysis

of the program source [73, 22] or binary [20, 5] to develop

models of legitimate code paths. This guarantees zero false

positives, and no attack injection during learning. The de-

fense mechanism is ready to deploy immediately, without

any vulnerable learning period. Such an approach can be ef-

fective at defining a normal profile that detects foreign code

injection, such as buffer overflow attacks, Trojans, and for-

eign library calls [74].

However, this approach is limited because attacks often

exploit code paths that exist in the program source but are

never or rarely used in normal behavior, e.g., a configuration

error such as not disabling debugging access. This problem

can be mitigated by incorporating more information about

the program environment (e.g., configuration, command-

line parameters, environment variables) into the static anal-

ysis [19]. In general, static and dynamic analysis can com-

plement each other, e.g., by using static analysis to generate

a base normal profile, and then incorporating refinements

suggested by dynamic analysis [83].

6.4 Other observables

The general idea of profiling program behavior using se-

quences of operations that indicate code flow is a powerful

one that can be applied to many observables other than sys-

tem calls. For example, Jones and Lin used sequences of

library calls, rather than system calls [30]. Similar to the

original system call sequence research, Jones and Lin ig-

nored parameters to library calls and only monitored the se-

quences of calls. They demonstrated that library calls are a

feasible observable for anomaly detection, and can be used

to detect a variety of attacks, including buffer overflows,

denial-of-service attacks and Trojans. In another example,

Xu et al. modeled control flow at the level of function calls

by inserting waypoints into the code at the entry and exit of

functions [82], and Gaurev and Keromytis augmented sys-

tem call monitoring with libc function monitoring [36]. An

even more fine-grained approach to control flow is moni-

tor at the level of machine code instructions [1, 63]. This

approach can give better attack detection, but at the cost of

increased overhead (up to 50% in some cases).

In some domains, other observables may in fact be more

suitable. For example, distributed applications may be diffi-

cult to monitor comprehensively using sequences of system

calls alone. Stillerman et al. showed that in distributed ap-

plications a good observable is the messages that are passed

across the network [68]. To demonstrate this, they im-

plemented an anomaly detection system for a distributed

CORBA application, which consists of many distributed ob-

jects that communicate via messages passed over the net-

work. The sequence of messages is a good proxy for object

behavior, and can be used to differentiate between normal

application behavior and rogue clients.

Further, there may be other sources of information avail-

able in other domains that are not available when moni-

toring running server programs. One example is dynamic

execution environments, such as Java, where the inter-

preter can easily collect a wealth of information about pro-

gram execution during runtime. Inoue and Forrest showed

that Java method invocations are effective observables for

anomaly detection [27]. Their approach went beyond at-

tack detection—they used Java’s sandboxing security mech-

anism to implement dynamic sandboxing, where minimal

security policies are inferred using run-time monitoring.

7 Automated Response

Although there has been extensive research into methods

for intrusion detection using system calls, there has been

much less work on how to respond to detected anomalies.

Most anomaly detection systems produce more alerts than

can be handled easily by users or administrators. The prob-

lem is compounded when many copies of a system are de-

ployed in a single organization. What is needed, then, are

automated responses to detected anomalies. One impedi-

ment, however, is the problem of false positives. A binary

response, such as shutting down a machine or unauthenti-

cating a user, is unacceptable if there is even a small proba-

bility that the response was made in error. If the principle of

graduated response is adopted, however, small adjustments

can be made continually, and there is less risk of damaging

the system needlessly or enabling a denial of service.

The first effort to couple an automated response to sys-

tem call anomalies was a Linux kernel extension called pH

[64, 65]. pH detects anomalies using lookahead pairs. In-

stead of killing or outright blocking the behavior of anoma-

lously behaving processes, it delays anomalous system

calls: Isolated anomalies are delayed imperceptibly, and

clustered anomalies are delayed exponentially longer. Real

attacks tend to generate large delays (on the order of hours

or days)]. Because most network connections have built-

in time outs, this response automatically blocks many at-

tacks; further, it gives administrators time to intervene man-

ually. Many false alarms produce a small number of isolated

anomalies, and pH responds with a proportionally small de-

lay that is usually imperceptible to the user. In the rare case

of a false positive causing a long delay, a simple override

was provided for the user or administrator.

Although pH was the first system to use delays as a re-

sponse to detected anomalies, delay-based strategies have

been used in other defenses, especially in networking and

for remote login interfaces (e.g., to prevent online dictio-

425425

nary attacks). For example, Williamson observed that un-

usually frequent outgoing network requests could signal

an anomaly, and that the damage caused by such behav-

ior could be mitigated simply by reducing the rate at which

new network connections could be initiated [80]. This tech-

nology became part of HP’s ProCurve Network Immunity

Manager [26], and it was extended to include incoming con-

nections and more types of network connections in [4]. This

idea of slowing down a computation or communication is

often referred to as throttling or rate limiting. It has been

studied extensively in the networking community, for ex-

ample in active networks [23], Domain Name Service [81],

Border Gateway Protocol [33, 32], and peer-to-peer net-

works [2].

A commercial implementation of system-call anomaly

detection, however, implemented another response strategy.

Sana Security’s Primary Response used a layered approach.

The first layer was a mechanism to explicitly prevent code-

injection, in all forms, covering a large class of common

attacks and preventing subversion through mimicry attacks.

The second layer blocked anomalous system calls that ma-

nipulated the file system. This can prevent many non-code-

injection attacks and most applications are more robust to

failures of file system calls than other system calls. Further,

Primary Response also profiled parameters to file-related

system calls, and hence could use that additional infor-

mation to further reduce false positives and prevent non-

control-flow attacks.

8 Summary and Conclusions

Over the past decade, we have witnessed continual evo-

lution of new platforms and new forms of attack, including

the advent of email viruses, spyware, botnets, and mutat-

ing malware, just to name a few. Research on system-call

monitoring matured over this time period as well, and many

variations of the original method have been explored. In the

previous sections we highlighted representative examples

of this work, examples that we feel illustrate the breadth

and depth of the method. Despite dramatic changes in to-

day’s computing environments and applications, system-

call monitoring remains a fundamental technique underly-

ing many current projects, e.g., [77, 52]. This is remarkable,

although it is optimistic to expect system-call monitoring

per se to remain an active and exciting research frontier in-

definitely. Both the threats and the defenses against them

will continue to evolve, likely migrating to higher applica-

tion layers and to lower levels, such as on-chip attacks in

multi-core architectures.

The design principles articulated in Section 2, those prin-

ciples inspired by living systems, are potentially of more

lasting significance. These include: generic mechanisms,

adaptability, autonomy, graduated response, and diversity.

Some of these principles have been adopted widely (diver-

sity), some remain controversial (graduated response and

adaptability), and some have been largely ignored (generic

mechanisms and autonomy). Taken together, these princi-

ples constitute a hypothesis about what properties are re-

quired to protect computers and their users.

The design principles guided nearly all of our implemen-

tation decisions. This is one example of how the study of

computer security can be more scientific than an ad hoc

collection of specific instances. By articulating a hypoth-

esis, and then designing the simplest possible experiment

to test that hypothesis, i.e. that anomaly detection could

protect privileged processes against important classes of at-

tack, we were able to demonstrate that short sequences of

system calls are a good discriminator between normal and

malicious behavior. Rather than focusing only on produc-

ing an artifact that worked, we set out to understand what

approaches could be used for effective defenses. Indeed,

in the beginning we tested system call sequences only as a

base case, expecting that enhancements would be required

for the method to work. Instead of studying the enhance-

ments, however, we found ourselves analyzing why the ex-

periment succeeded.

A key component of our approach was designing repeat-

able experiments. This allowed others to confirm our results

and test variations against the original system. Although

this point seems obvious in retrospect, it was unique at the

time. Our experiments were repeatable because our system

design was comprehensible, and we published both our data

sets and the software prototypes in the public domain. This

enabled other groups to replicate our results, use the data

sets for their own experiments, use our code to devise at-

tacks against the method, and so forth.

Repeatable experiments are crucial to putting computer

security on sounder footing. However, they are not suffi-

cient. Careful comparisons between competing methods are

also important, and this has been much more difficult for the

field to achieve. Although public data sets and prototypes

help this effort, it is still extraordinarily difficult to conduct

comparisons carefully. There are several reasons for this:

(1) Environments are complex; (2) Results depend heavily

on data inputs; and (3) Metrics emphasize breadth of cover-

age. The complexity of modern computing environments

poses a serious challenge to replicating results and com-

paring results from multiple experiments. Is is surprisingly

difficult to document precisely the conditions under which

an experiment is run, and seemingly trivial differences in

system configuration can affect the outcome of an experi-

ment dramatically. This problem is even more challenging

in networking experiments than it is for single hosts. Fur-

ther, we discovered that for system calls the outcome of our

comparisons depended heavily on which program traces we

selected for the comparison [76]. It was easy to skew the

426426

results of our comparative studies by appropriate (or inap-

propriate) choice of data sets.

Most systems are judged by their ability to defend

against as many attacks as possible. This leads to system

designs that are optimized for broad coverage and corner

cases, which typically lead to complex algorithms and im-

plementations. As Sections 5 and 6 show, there is a nearly

limitless variety of ways that the original idea of short se-

quences of system calls can be made more complex. To our

knowledge, not a single paper has been published that pro-

poses a simpler approach to monitoring system calls. Tun-

ing up other people’s methods so they behave optimally re-

quires considerable skill, effort, and discipline; in contrast,

a system that highlights one key idea can easily be evaluated

because there are fewer “knobs” to adjust—evaluations in

different contexts are thus inherently easier to compare.

What began as a simple insight inspired by biology has

grown into a robust and diverse field of research. We are

excited at the progress and directions that this research has

taken. Attacks on the ideas have led to creative new meth-

ods that make the original approach much more robust to

subversion, and various other improvements and develop-

ments have resulted in a far better protection system than

we could have hoped to see over a decade ago. This has

validated some of the principles elucidated in section 2, but

we see much scope for extending the research to investigate

those principles in greater depth. We hope that this paper

illustrates how inspirational the biological analogy can be,

and encourages others to explore those principles so that

this continues to be a vibrant ever-growing area of research.

9 Acknowledgments

The authors gratefully acknowledge the many people

who encouraged and assisted us during the development

of the original system call project. In particular, we thank

Dave Ackley, Tom Longstaff, and Eugene Spafford. Jed

Crandall, Dave Evans, ThanhVu Nguyen, and Eugene Spaf-

ford made many helpful suggestions on this manuscript.

The original project was partially funded by the Na-

tional Science Foundation (NSF) IRI-9157644, Office of

Naval Research N00014-95-1-0364, and the Defense Ad-

vanced Research Projects Agency N00014-96-1-0680. SF

acknowledges NSF (CCF 0621900, CCR-0331580), Air

Force Office of Scientific Research MURI grant FA9550-

07-1-0532, and the Santa Fe Institute. AS acknowledges

NSERC’s Discovery program and MITACS.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

flow integrity: Principles, implementations and applications.

In Proceedings of ACM Computer and Communications Se-
curity, November 2005.

[2] M. K. Aguilera, M. Lillibridge, and X. Li. Transaction rate

limiters for peer-to-peer systems. IEEE International Con-
ference on Peer-to-Peer Computing, 0:3–11, 2008.

[3] D. Anderson, T. Frivold, and A. Valdes. Next-generation in-

trusion detection expert system (nides): A summary. Techni-

cal Report SRI-CSL-95-07, Computer Science Laboratory,

SRI International, May 1995.
[4] J. Balthrop. Riot: A responsive system for mitigating com-

puter network epidemics and attacks. Master’s thesis, The

University of New Mexico, Albuquerque, NM, 2005.
[5] S. Basu and P. Uppuluri. Proxi-Annotated Control Flow

Graphs: Deterministic Context-Sensitive Monitoring for In-
trusion Detection, pages 353–362. Springer, 2004.

[6] S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly

detection. In In Proc. IEEE Symposium on Security and Pri-
vacy, pages 48–62, 2006.

[7] S. Chen, J. Xu, and E. C. Sezer. Non-control-data attacks are

realistic threats. In 14th Annual Usenix Security Symposium,

Aug 2005.
[8] R. Danyliw and A. Householder. Cert advisory

ca-2001-19: Code red worm exploiting buffer over-

flow in iis indexing service dll. Website, 2001.

http://www.cert.org/advisories/CA-2001-19.html.
[9] D. E. Denning. An intrusion-detection model. IEEE Trans-

actions on Software Engineering, 13:222–232, 1987.
[10] D. Endler. Intrusion detection: applying machine learning to

solaris audit data. In In Proc. of the IEEE Annual Computer
Security Applications Conference, pages 268–279. Society

Press, 1998.
[11] E. Eskin, W. Lee, and S. J. Stolfo. Modeling system calls for

intrusion detection with dynamic window sizes,. In Proceed-
ings of DARPA Information Survivability Conference and
Exposition II (DISCEX II), Anaheim, CA, 2001.

[12] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong.

Anomaly detection using call stack information. In Proceed-
ings of the 2003 IEEE Symposium on Security and Privacy,

May 2003.
[13] G. Fink and K. Levitt. Property-based testing of privileged

programs. In Proceedings of the 10th Annual Computer Se-
curity Applications Conference, page 154163, Dec. 1994.

[14] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff.

A sense of self for Unix processes. In SP ’96: Proceedings
of the 1996 IEEE Symposium on Security and Privacy, page

120, Washington, DC, USA, 1996. IEEE Computer Society.
[15] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. Self-

nonself discrimination in a computer. In Proceedings of the
1994 IEEE Symposium on Research in Security and Privacy,

Los Alamitos, CA, 1994. IEEE Computer Society Press.
[16] D. Gao, M. Reiter, and D. Song. Gray-box extraction of ex-

ecution graphs for anomaly detection. In Proceedings of the
11th ACM Conference on Computer and Communications
Security, pages 318–329, October 2004.

[17] D. Gao, M. K. Reiter, and D. Song. Behavioral distance

measurement using hidden markov models. In D. Zamboni

and C. Kruegel, editors, Research Advances in Intrusion De-
tection, LNCS 4219, pages 19–40, Berlin Heidelberg, 2006.

Springer-Verlag.

427427

[18] A. Ghosh and A. Schwartzbard. A study in using neural

networks for anomaly and misuse detection. In Proceedings
of the 8th USENIX Security Symposium, 1999.

[19] J. T. Giffin, D. Dagon, S. Jha, W. Lee, and B. P. Miller.

Environment-sensitive intrusion detection. In Proceedings
of the 8th International Symposium on Recent Advances in
Intrusion Detection (RAID ’05). Springer, Sep 2005.

[20] J. T. Giffin, S. Jha, and B. Miller. Detecting manipulated

remote call streams. In 11th Usenix Secutirty Symposium,

August 2002.
[21] J. T. Giffin, S. Jha, and B. Miller. Automated discovery

of mimicry attacks. In Proceedings of the 9th Interna-
tional Symposium on Recent Advances in Intrusion Detec-
tion (RAID ’06), Sep 2006.

[22] R. Gopalakkrishna, E. H. Spafford, and J. Vitek. Efficient

intrusion detection using automaton inlining. In Proceedings
of the 2005 IEEE Symposium on Security and Privacy, pages

18–31, 2005.
[23] A. Hess, M. Jung, and G. Schfer. Fidran: A flexible intrusion

detection and response framework for active networks. In In
Symposium on Computers and Communications (ISCC2003,

2003.
[24] S. A. Hofmeyr and S. Forrest. Architecture for an artifi-

cial immune system. Evolutionary Computation Journal,
8(4):443–473, 2000.

[25] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detec-

tion using sequences of system calls. Journal of Computer
Security, 6(3), 1998.

[26] HP. Immunity manager. Website. http://www.hp.com/rnd/

pdfs/ProCurve Network Immunity Manager1 0.pdf.
[27] H. Inoue and S. Forrest. Inferring java security policies

through dynamic sandboxing. In Proceedings of the 2005
International Conference on Programming Langauges and
Compilers (PLC ’05), June 2005.

[28] H. Inoue and A. Somayaji. Lookahead pairs and full se-

quences: a tale of two anomaly detection methods. In Pro-
ceedings of the 2nd Annual Symposium on Information As-
surance, June 2007.

[29] A. Jones and S. Li. Temporal signatures for intrusion detec-

tion. In Seventeenth Annual Computer Security Applications
Conference, 10-14 Dec. 2001, New Orleans, LA, USA, pages

252–61. Los Alamitos, CA, USA : IEEE Computer Society,

2001, 2001.
[30] A. Jones and Y. Lin. Application intrusion detection using

language library calls. In Proceedings of the 17th Annual
Computer Security Applications Conference, New Orleans,

Louisiana, December 10–14, 2001.
[31] B. M. K Wee. Automatic generation of finite state automata

for detecting intrusions using system call sequences. In V. G.

et al., editor, Mathematical Methods, Models, and Archi-
tectures for Network Security Systems (MMM-ACNS), pages

206–216. Springer-Verlag Berlin Heidelberg, 2003.
[32] J. Karlin, J. Rexford, and S. Forrest. Pretty good bgp: Im-

proving bgp by cautiously adopting routes. In Proc. of
the 2006 International Conference on Netowrk Protocols
(CNP), 2006.

[33] J. Karlin, J. Rexford, and S. Forrest. Autonomous se-

curity for autonomous systems. Computer Networks,

52:29082923, 2008.

[34] H. G. Kayacik, M. Heywood, and N. Zincir-Heywood. On

evolving buffer overflow attacks using genetic program-

ming. In GECCO ’06: Proceedings of the 8th annual confer-
ence on Genetic and evolutionary computation, pages 1667–

1674, New York, NY, USA, 2006. ACM.
[35] H. G. Kayacik and A. N. Zincer-Heywood. On the contribu-

tion of preamble to information hiding in mimicry attacks.

In Proceedings of the IEEE Symposium on Security in Net-
works and Distributed Systems - SSNDS’2007, 2007.

[36] G. S. Kc and A. D. Keromytis. e-nexsh: Achieving an effec-

tively non-executable stack and heap via system-call polic-

ing. In In Proceedings of the Annual Computer Security
Applications Conference(ACSAC, 2005.

[37] J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M. Chess, G. J.

Tesauro, and S. R. White. Biologically inspired defenses

against computer viruses. In IJCAI ’95. International Joint

Conference on Artificial Intelligence, 1995.
[38] J. O. Kephart, S. R. White, and D. M. Chess. Computers and

epidemiology. IEEE Spectrum, 30(5):20–26, 1993.
[39] C. Ko, G. Fink, and K. Levitt. Automated detection of vul-

nerabilities in priviledged programs by execution monitor-

ing. In Proceedings of the 10th Annual Computer Security
Applications Conference, page 134144, Dec. 1994.

[40] A. P. Kosoresow and S. A. Hofmeyr. Intrusion detection via

system call traces. IEEE Software, 14(5):35–42, Septem-

ber/October 1997.
[41] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.

Automating mimicry attacks using static binary analysis. In

14th Annual Usenix Security Symposium, Aug 2006.
[42] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur. Bayesian

event classification for intrusion detection. In In 19th An-
nual Computer Security Applications Conference, LasVegas,

page 14. IEEE Computer Society, 2003.
[43] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the de-

tection of anomalous system call arguments. In Proceeding
of ESORICS 2003, pages 326–343. Springer-Verlag Berlin

Heidelberg, oct 2003.
[44] T. Lane and C. E. Brodley. Temporal sequence learning and

data reduction for anomaly detection. ACM Transactions on
Information and System Security, 2(3):295–331, 1999.

[45] W. Lee and S. Stolfo. Data mining approaches for intrusion

detection. In Proceedings of the 7th USENIX Security Sym-
posium, 1998.

[46] T. Li, J. Ding, X. Liu, and P. Yang. A new model of immune-

based network surveillance and dynamic computer foren-

sics. In K. C. L. Wang and Y. Ong, editors, Proceedings
of the The First International Conference on Natural Com-
putation, page 804813. IEEE, Springer-Verlag Berlin Hei-

delberg, 2005.
[47] Y. Liao and V. R. Vemuri. Use of k-nearest neighbor

classifier for intrusion detection. Computers & Security,

21(5):439–448, 2002.
[48] M. Mahoney and P. Chan. Learning nonstationary models of

normal network traffic for detecting novel attacks. In Pro-
ceeding of the Eighth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2000.

[49] C. Marceau. Characterizing the behavior of a program using

multiple-length n-grams. In Proceedings of the New Secu-
rity Paradigms Workshop 2000, Cork, Ireland, Sept. 19–21,

2000. Association for Computing Machinery.

428428

[50] C. Michael and A. Ghosh. Two state-based approaches to

program-based anomaly detection. In Proceedings of the
16th Annual Computer Security Applications Conference
(ACSAC’00), New Orleans, LA, December 11–15 2000.

[51] W. H. Murray. The application of epidemiology to computer

viruses. Computers & Security, 7:139–150, 1988.

[52] D. Mutz, W. Robertson, G. Vigna, and R. Kemmerer. Ex-

ploiting Execution Context for the Detection of Anomalous

System Calls. In Proceedings of the International Sympo-
sium on Recent Advances in Intrusion Detection (RAID),
pages 1–20, Gold Coast, Australia, September 2007.

[53] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel. Anomalous

system call detection. ACM Trans. Inf. Syst. Secur., 9(1):61–

93, 2006.

[54] D. Q. Naiman. Statistical anomaly detection via httpd

data analysis. Computational Statistics and Data Analysis,

45:51–67, 2004.

[55] M. Newman, S. Forrest, and J. Balthrop. Email networks

and the spread of computer viruses. Physical Review E,

66(035101), 2002.

[56] NIST. National vulnerability database. Website, 2008.

[57] T. Oda and T. White. Immunity from spam: An analysis

of an artificial immune system for junk email detection. In

C. Jacob, M. Pilat, P. Bentley, and J. Timmis, editors, Arti-
ficial Immune Systems, Lecture Notes in Computer Science,

pages 276–289, Germany, 2005. Springer-Verlag.

[58] C. Parampalli, R. Sekar, and R. Johnson. A practical

mimicry attack against powerful system-call monitors. In

ASIACCS ’08: Proceedings of the 2008 ACM symposium on
Information, computer and communications security, pages

156–167, New York, NY, USA, 2008. ACM.

[59] R. Pastor-Satorras and A. Vespignani. Epidemic spread-

ing in scale-free networks. Physical Review Letters,

86(14):3200–3203, Apr. 2001.

[60] PaX Team. PaX address space layout randomization

(ASLR). http://pax.grsecurity.net/docs/aslr.txt.

[61] T. H. Ptacek and T. N. Newsham. Insertion, evasion, and de-

nial of service: Eluding network intrusion detection. Tech-

nical report, Secure Networks, Jan 1998.

[62] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. A fast

automaton-based method for detecting anomalous program

behaviors. In Proceedings of the 2001 IEEE Symposium on
Security and Privacy, 2001.

[63] M. S. Sharif, K. Singh, J. Giffin, and W. Lee. Understanding

precision in host based intrusion detection. In Proceedings
of the International Symposium on Recent Advances in In-
trusion Detection (RAID), pages 21–41, 2007.

[64] A. Somayaji. Operating System Stability and Security
through Process Homeostasis. PhD thesis, University of

New Mexico, 2002.

[65] A. Somayaji and S. Forrest. Automated response using

system-call delays. In Proceedings of the 9th USENIX Se-
curity Symposium, Denver, CO, August 14–17, 2000.

[66] E. H. Spafford. Computer viruses—a form of artificial life?

In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen,

editors, Artificial Life II, pages 727–745. Addison-Wesley,

Redwood City, CA, 1992.

[67] E. H. Spafford. Virus. In J. Marciniak, editor, Encyclopedia
of Software Engineering. John Wiley & Sons, 1994.

[68] M. Stillerman, C. Marceau, and M. Stillman. Intrusion de-

tection for distributed applications. Communications of the
ACM, 42(7):62–69, July 1999.

[69] Sufatrio and R. H. C. Yap. Improving host-based ids with

argument abstration to prevent mimicry attacks. In Proceed-
ings of the International Sypmosium on Recent Advances in
Intrusion Detectino (RAID), pages 146–164, 2006.

[70] K. M. C. Tan, K. S. Killourhy, and R. A. Maxion. Undermin-

ing an anomaly-based intrusion detection system using com-

mon exploits. In Proceedings of the Fifth International Sym-
posium on Recent Advances in Intrusion Detection (RAID
’02), 2002.

[71] K. M. C. Tan and R. A. Maxion. “Why 6?” defining the

operational limits of stide, an anomaly-based intrusion de-

tector. In SP ’02: Proceedings of the 2002 IEEE Symposium
on Security and Privacy, page 188, Washington, DC, USA,

2002. IEEE Computer Society.

[72] G. Tandon and P. Chan. On the learning of system call

attributes for host-based anomaly detection. International
Journal on Artificial Intelligence Tools, 15(6):875–892,

2006.

[73] D. Wagner. Static Analysis and Computer Security: New
Techniques for Software Assurance. PhD thesis, University

of California at Berkeley, 2000.

[74] D. Wagner and D. Dean. Intrusion detection via static analy-

sis. In Proceedings of the 2001 IEEE Symposium on Security
and Privacy, pages 156–169, 2001.

[75] D. Wagner and P. Soto. Mimicry attacks on host-based in-

trusion detection systems. In CCS ’02: Proceedings of the
9th ACM conference on Computer and communications se-
curity, pages 255–264, New York, NY, USA, 2002. ACM

Press.

[76] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting in-

trusions using system calls: Alternative data models. In Pro-
ceedings of the 1999 IEEE Symposium on Security and Pri-
vacy, pages 133–145, Los Alamitos, CA, 1999. IEEE Com-

puter Society.

[77] W. Weimer and G. C. Necula. Mining temporal specifica-

tions for error detection. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages 461–

476, 2005.

[78] A. Wespi, M. Dacier, and H. Debar. Intrusion detection us-

ing variable-length audit trail patterns. In Proceedings of the
2000 Recent Advances in Intrusion Detection, page 110129,

October 2000.

[79] P. D. Williams, K. P. Anchor, J. L. Bebo, G. H. Gunsch, and

G. D. Lamont. Cdis: Towards a computer immune system

for detecting network intrusions. In W. Lee, L. Me, and

A. Wespi, editors, Fourth International Symposium, Recent
Advances in Intrusion Detection, pages 117–133, Berlin,

2001. Springer.

[80] M. M. Williamson. Throttling viruses: Restricting propaga-

tion to defeat malicous mobile code. In Proceedings of AC-
SAC Security Conference, Las Vegas, Nevada, Dec. 2002.

[81] C. Wong, S. Bielski, A. Studer, and C. Wang. On the effec-

tiveness of rate limiting mechanisms. In Proc. 8th Interna-
tional Symposium on Recent Advances in Intrusion Detec-
tion (RAID 2005), 2005.

429429

[82] H. Xu, W. Du, and S. J. Chapin. Context sensitive anomaly

monitoring of process control flow to detect mimicry attacks

and impossible paths. In In Proceedings of the Interna-
tional Symposium on Recent Advances in Intrusion Detec-
tion (RAID, pages 21–38. Springer, 2004.

[83] L. Zhen, S. M. Bridges, and R. B. Vaughn. Combining static

analysis and dynamic learning to build accurate intrusion

detection models. In Proceedings of the 3rd IEEE Inter-
national Workshop on Information Assurance, March 2005.

430430

