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Self-propagating mal-packets have become an emergent threat against information confi-
dentiality, integrity, and service availability in wireless sensor networks. While playing an
important role for people to interact with surrounding environment, wireless sensor net-
works suffer from growing security concerns posed by mal-packets because of sensor net-
works’ low physical security, lack of resilience and robustness of underlying operating
systems, and the ever-increasing complexity of deployed applications.

In this paper, we study the propagation of mal-packets in 802.15.4 based wireless sensor
networks. Based on our proposed mal-packet self-propagation models, we use TOSSIM, a
simulator for wireless sensor networks, to study their propagation dynamics. We also pres-
ent a study of the feasibility of mal-packet defense in sensor networks. Specifically, we
apply random graph theory and percolation theory to investigate the immunization of
highly-connected nodes, i.e., nodes with high degrees of connectivity. Our goal is to parti-
tion the network into as many separate pieces as possible, thus preventing or slowing
down the mal-packet propagation. We study the percolation thresholds of different net-
work densities and the effectiveness of immunization in terms of connection ratio, remain-
ing link ratio, and distribution of component sizes. We also present an analysis of the
distribution of component sizes.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Wireless sensor networks (WSNs) have become a prom-
ising technology which has the potential to change our
everyday life. However, because of their typically weak
physical security, lack of resilience and robustness of
underlying operating systems [1], inadequacy of basic
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building blocks for reliable WSN software systems [4],
and the ever-increasing complexity of deployed applica-
tions, new system vulnerabilities exploited by mal-packets
will continue to plague WSNs. Once the mal-packets start
spreading by exploiting the monoculture of WSN applica-
tions, manual human intervention is hardly effective based
on the past experience gained from defending against
Internet mal-packets such as worms [5]. Therefore, self-
propagating mal-packets have become an emergent threat
against information confidentiality, integrity, and service
availability for WSNs.

New security concerns about WSN mal-packet propaga-
tion are hard to exaggerate. The weak physical security
makes sensor nodes easily compromised, thus rendering
embedded secrets open to attackers and various keying
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mechanisms helpless. Recently, emerging viruses, like Ca-
bir [3], have demonstrated the ability to spread over the
air interfaces, making it possible to develop worms repli-
cating among sensor nodes. In [15], it has been demon-
strated that self-propagating mal-packets can exploit
memory-related vulnerabilities to propagate itself, thus
taking over the whole network. Therefore, it is anticipated
that WSNs will be plagued by mal-packets designed in the
future. This is especially true when WSNs are increasingly
deployed in critical infrastructures.

Motivated by these concerns, we aim at studying mal-
packet propagation dynamics and defense in the context
of 802.15.4 [20] WSNs. We illustrate how a compromised
node can obtain an unfair bandwidth share by not adhering
to the carrier sense multiple access-collision avoidance
(CSMA-CA) protocol of 802.15.4, thus facilitating the fast
spread of mal-packets. We then use TOSSIM [16], a simula-
tor for wireless sensor networks, to study the mal-packet
propagation dynamics. TOSSIM captures the behavior and
interactions of networks of thousands of TinyOS [18] motes
at network bit granularity. It can generate discrete-event
simulations directly from TinyOS component graphs. There-
fore, TOSSIM exploits the WSN domain and TinyOS design,
and is thus suitable for our research on mal-packet propaga-
tion in WSNs. We study the unicast and broadcast mal-
packet propagation models and present their dynamics.

Most existing work only focus on mal-packet propaga-
tion dynamics in sensor networks [11,12,15]. Few works
consider how to prevent such kind of propagation. There-
fore, based on percolation theory and random graph theory
[14], we further study the feasibility of defending against
mal-packet propagation in WSNs. Specifically, we model
the deployment of sensor nodes as a homogeneous spatial
Poisson process in a two-dimensional space and study the
effectiveness of immunizing some sensor nodes in order to
protect WSNs. Immunizing a node means that the node
cannot be infected by the self-propagating mal-packets.
Therefore, our purpose is to know how to choose an appro-
priate set of nodes in order to partition the WSN into as
many separate pieces as possible, therefore preventing or
slowing down the mal-packet propagation. Percolation
theory [14] tells us that with the increase of the number
of immunized nodes, there exists a ‘‘critical phenomenon”
at which the network suddenly becomes disintegrated.
Intuitively, we select the most connected nodes to immu-
nize. We study the impact of the selective immunization
on the network topology in terms of connection ratio,
remaining link ratio, and the distribution of component sizes.
Simulation results demonstrate that the selective immuni-
zation can effectively prevent or slow down the large-scale
outbreaks of mal-packets.

Our proposed partition based approach enables us to
decide the critical locations at which sensor nodes should
be immunized. After collecting these locations, some fur-
ther actions can be taken to improve WSNs’ immunity
against mal-packet propagation. For example, survivability
through heterogeneity philosophy [21] can be adopted
through software or hardware heterogeneity. Different
versions of software or hardware implementing the same
functionality will not suffer from the same vulnerability
exploited by attackers. Therefore, sensor nodes deployed
at these critical locations may be installed with an appro-
priate different version of software or hardware.

The rest of the paper is organized as follows. Section 2
briefly introduces 802.15.4, an IEEE standard for low-rate
wireless personal area networks. Section 3 discusses our
proposed mal-packet propagation model in WSNs. Section
4 presents our simulation results to evaluate mal-packet
propagation dynamics. In Section 5, we present the net-
work model and methodology which we use to immunize
WSNs in order to prevent or slow down mal-packet prop-
agation. Section 6 presents related work and Section 7 con-
cludes this paper.
2. 802.15.4 Primer

The 802.15.4 standard [20] was designed to support
wireless radios and protocols for low-power devices, such
as wireless sensor networks. In the physical layer, the stan-
dard encompasses one channel in the 868 MHz band with
a data rate of 20 kbps, 10 channels in the 915 MHz band
with a data rate of 40 kbps, and 16 channels in the
2.4 GHz band with a data rate of 250 kbps.

An 802.15.4 network can work either in a beacon-en-
abled or a nonbeacon-enabled mode. In a beacon-enabled
mode, a network coordinator transmits beacons periodically
for synchronization and a slotted CSMA-CA mechanism is
used to transmit data frames. Whenever a device wishes
to transmit data frames during a contention access period,
the device needs to locate the boundary of the next backoff
slot and then waits for a random number of backoff slots. If
the channel is busy after this random backoff, the device
needs to wait for another random number of backoff slots
before trying to access the channel again. If the channel is
idle, the device can begin transmitting on the next available
backoff slot boundary. In a nonbeacon-enabled mode, uns-
lotted CSMA-CA is used for the transmission of data frames.
In this case, if a device wants to transmit data frames, it
needs to wait for a random period. If the channel is found
idle after the random backoff, the device will transmit the
data. Otherwise, the device needs to wait for another ran-
dom period before trying to access the channel again.

The 802.15.4 specification also specifies default values
used in backoff mechanisms. For example, in unslotted
CSMA-CA, a node which has a packet ready to send first
backs off for a random number of time between 0 and
2BE � 1, where BE is set to 3 by default. If the channel is
found to be busy again after the random backoff, BE in-
creases by 1. This process is repeated until either BE equals
aMaxBE (which has a default value of 5), at which point BE
is frozen at aMaxBE, or until a certain maximum number of
permitted random backoff stages, denoted as mac-
MaxCSMABackoffs, is reached, at which point an access fail-
ure is declared to the upper layer. The standard sets
macMaxCSMABackoffs to 5 by default [20].

3. Mal-packet propagation model

In this section, we present the design of a baseline WSN
mal-packet propagation model. We assume that one sen-
sor node is compromised by a mal-packet and this infected
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sensor node attempts to replicate this mal-packet to those
sensor nodes within its transmission range. In this paper,
we only focus on medium access control (MAC) layer prop-
agation dynamics and thus ignore infecting sensor nodes
multiple hops away. The one-hop mal-packet propagation
in WSNs represents one of the key differences from Inter-
net worms.

In this paper, we focus on the mal-packet study in an
nonbeacon-enabled mode. We illustrate how a compro-
mised node can obtain an unfair bandwidth share by not
adhering to 802.15.4, thus facilitating the fast spread of
mal-packets. Our proposed mal-packet model can also be
applied to beacon-enabled mode after slight modifications.

After a mal-packet has established a presence, one of its
basic goals is to spread itself quickly to other vulnerable
nodes. Therefore, an infected node may use selfish strate-
gies to obtain an unfair share of the channel. Taking IEEE
802.15.4 unslotted CSMA-CA mechanisms as an example,
this may include:

1. Select a smaller average backoff value, as specified by
the parameter wormBE.

2. Use a different retransmission strategy that does not
increase BE after collision.

3. Increase the maximum possible value for NB,
worm_macMaxCSMABackoff, so a node may have more
chances to compete for channels.

After we consider these factors, the modified unslotted
CSMA-CA for the propagation of a WSN mal-packet is illus-
trated in Fig. 1.
Fig. 1. Unslotted CSMA-CA for WSN Mal-packets in 802.15.4 nonbeacon-
enabled mode.
Depending on the requirements of different applica-
tions, we propose two types of mal-packet models: unicast
WSN mal-packet model and broadcast WSN mal-packet
model. For both types of mal-packets, when a WSN mal-
packet is activated, the mal-packet starts spreading itself
in its vicinity. In the unicast mal-packet model, the in-
fected sensor node can only unicast the mal-packet to
one of its neighbors at a time. For example, a neighbor dis-
covery protocol enables the compromised node A to keep
the list of one-hop neighbors. When node A wants to
spread the mal-packet, A picks up one neighbor, constructs
the mal-packet, and sends it out. In the broadcast mal-
packet model, by contrast, the infected sensor node A con-
structs a broadcast packet and sends it out.

Extensive research work has been devoted to pairwise
key establishment mechanisms in WSNs, in which commu-
nication between nodes are secured by various pairwise
keying mechanisms. A unicast model is necessary for a
mal-packet to spread in environment where pairwise key-
ing mechanisms are adopted. Correspondingly, for applica-
tions which are protected by groupwise keying schemes, a
broadcast mal-packet model can be used.

When a node (say, A) propagating mal-packets sends a
mal-packet to its neighbor (say, B), there exist three possi-
ble states with respect to how the recipient may respond:

1. Invulnerable: An invulnerable sensor node B is not vul-
nerable to propagated mal-packets. When node B
receives a mal-packet, node B silently drops the data
packet that contains the malicious code.

2. Vulnerable and infected: A vulnerable and infected sensor
node B is vulnerable and has been infected with propa-
gated mal-packets. When node B receives a mal-packet
from node A, node B may send back an INFECTED packet
to node A, informing node A that node B has already
been infected. In this case, node A will update its neigh-
bor information correspondingly.

3. Vulnerable and uninfected: A vulnerable and uninfected
sensor node B is vulnerable to propagated mal-packets
but has not been infected. When node B receives a
mal-packet from node A, node B sends back a SUCCESS
packet to node A, informing node A that node B is now
infected with the mal-packet.

This is illustrated in Fig. 2.
3.1. Unicast Mal-packet model

In the unicast mal-packet model, we assume that a
neighbor discovery protocol is used for one node to dis-
cover its one-hop neighbors. This is a reasonable assump-
tion given that most applications and upper layer
protocols in WSNs require neighborhood information.
Therefore, each node can collect a list of neighbors within
its radio range.

Each node may start replicating mal-packets based on
the state of its neighbors. For situations illustrated in
Fig. 2b and c, on the arrival of an INFECTED or SUCCESS re-
sponse packet, node A removes the victim node B from the
neighbor list and attempts to infect the next one.
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The sending node A may also need to set up a timer TU ,
which expires after TU time units if no response is received.
In situations illustrated in Fig. 2.a, node A may not receive
any feedback from node B. The mal-packet and feedback
packet from node B may also be lost in Fig. 2b and c. When
TU expires, node A may update the information about node
B in its neighbor list based on the response packet from
node B. A proper TU should give node A sufficient time to
wait for the feedback from node B. If no response is re-
ceived, node A may mark that node B as invulnerable and
attempt to infect the next neighbor.

Because of the existence of links with asymmetric
transmission delays [23], the value of TU may be set to
Fig. 3. Mal-packet propaga
the summary of forward and reverse per-hop round trip
time of a link. The forward per-hop round trip time, df , is
the time that it takes for a packet to arrive at the recipient
of the link; the reverse per-hop round trip time, dr , is the
time that it takes for the feedback packet to arrive at the
sender. The value of TU may be set to df þ dr .

After we consider all these, the infection cycle of a uni-
cast mal-packet is illustrated in Fig. 3a.

3.2. Broadcast Mal-packet Model

A corresponding modification is the broadcast mal-
packet model, in which the mal-packet can broadcast in
tion model in WSNs.
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one-hop to its neighbors. Every neighbor may generate a
corresponding reply based on schemes illustrated in
Fig. 2. Based on Fig. 2, node A may modify the status of
its neighbors correspondingly.

The broadcast mal-packet model is illustrated in Fig. 3b.
In Fig. 3b, timer TB gives node A sufficient time to wait for
feedback from all neighbors. Following the notation used
in Section 3.1, the value of TB for one node may be set to
the largest per-hop round trip time of a link among all
neighbors.

The neighbor list is a common component in many
existing WSN protocols aiming at improving protocol per-
formance [24]. Therefore, the compromised node A may
utilize the existing neighbor list in the broadcast mal-pack-
et model to obtain which neighbors are compromised. Be-
cause the neighbor list is already existent in node A, this
maintenance of this list will not incur extra costs to mal-
packet propagation. Moreover, a neighbor list is also desir-
able for secure group broadcasting [27]. In protocols where
no neighbor list is kept, timer TB and the neighbor list may
be removed in order to reduce mal-packet propagation
costs.

The infection cycle of a broadcast mal-packet is illus-
trated in Fig. 3b.

4. Mal-packet propagation dynamics

Unfortunately, the 802.15.4 standard has not been fully
supported in TinyOS 2.x. Instead, a basic CSMA-CA algo-
rithm is adopted (See TossimPacketModelC.nc for the imple-
mentation under TOSSIM). Its backoff mechanism is
similar to those described in 802.15.4. Specifically, two
important parameters play the same role as NB and BE.
The max_iterations() value in TOSSIM denotes the parame-
ter macMaxCSMABackoff in 802.15.4, while the init_low()
value denotes the lower bound of the backoff range. There-
fore, based on TOSSIM, we observe the impacts of these
two parameters on mal-packet propagations.

We adopt the default signal-strength based radio model
used by TOSSIM [16]. This radio model is based on CC2420
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Fig. 4. Impact of ma
radio, which is used by popular wireless sensor modules
like MicaZ, TelosB, and IMote2 [19]. We adopt the noise
trace provided by TOSSIM from Meyer Library at Stanford
University as the noise trace.

We randomly pick one node as an infected node. All
other nodes are set to vulnerable and uninfected. Before
the mal-packet begins propagation, every node uses a Hello
protocol to discover its neighbors. To measure the propa-
gation dynamics of mal-packets, we set up three scenarios,
including the uniform distribution of 700 nodes, 800
nodes, and 900 nodes in a 400 m � 400 m area. We set
the transmission range of each node to 25 m. Based on
the locations of sensor nodes and the transmission range,
radio connectivity data which defines the propagation gain
when one sending node transmits to the receiving node are
created. These radio connectivity data are then provided to
TOSSIM running scripts. The propagation dynamics are
measured against various variables, including the impact
of max_iterations, the impact of init_low, the impact of net-
work density, the ratio of packet loss, and the average
number of devices infected per second during the attack.

4.1. Impacts of max_iterations()

In this set of simulation runs, we use the normal backoff
values, and present the propagation dynamics under dif-
ferent max_iterations() values for the 800 nodes in Fig. 4.

First, it is obvious that the broadcast propagation is
much faster than that of the unicast. Also, broadcast prop-
agation may infect many more nodes. The results are what
we expect. Unicast propagation needs to transmit more
mal-packets. However, the low transmission rates in WSNs
may introduce more packet collisions. This will greatly
lead to the situation where more mal-packets are dropped.

Second, even for broadcast propagation, it is still diffi-
cult to reach a 100% infection. WSNs suffer from very low
transmission speed and unreliable transmission links. This
may make packets prone to being dropped.

Third, given the broadcast propagation, the larger the
value of max_iterations(), the lower the infection rate. Note
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that in TOSSIM, an 0 value of max_iterations() means infi-
nite. This is because a larger value of max_iterations() could
give the nodes more chances to exploit the channel, thus
increasing the probability of successful transmissions of
mal-packets.

Fourth, as indicated in Fig. 4b, we also observe that the
value of max_iterations() does not have an obvious impact
on the infection speed and the fraction of infected nodes in
unicast mal-packet propagation. This is because in unicast
propagation, the transmitted number of mal-packets is
much larger than that in the broadcast propagation. There-
fore, mal-packets may have a much higher probability of
collisions in the unicast propagation. Furthermore, because
of the low transmission data rate of WSNs, if CCA detects a
busy channel, the next assessment by CCA is very likely to
detect a busy channel. Based on our proposed unicast mod-
el illustrated in Fig. 3a, the value of max_iterations() affects
the propagation speed to a lesser degree.

4.2. Impact of init_low()

In this set of simulation runs, we set the value of
max_iterations() to 0, and present the propagation dynam-
ics under different backoff values for the 800 nodes in
Fig. 5. In Fig. 5, when the value of init_low() is 1, it means
that the backoff value is set to 1 � init_low(). Similarly, an
init_low() of 3 means a backoff value of 3 � init_low() is
adopted.

Besides similar observations presented in Fig. 4, we can
also see that, for the broadcast propagation, a smaller value
of init_low() may make the propagation faster than that of
a larger value of init_low(). A smaller init_low() value de-
creases the random waiting time when sensor nodes per-
form the backoff, thus speeding up the mal-packet
propagation.

As indicated in Fig. 5b, we also observe that the value of
init_low() does not have an obvious impact on the infection
speed and the fraction of infected nodes in unicast mal-
packet propagation. The reason is similar to that of
Fig. 4b. Mal-packets may have a much higher probability
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Fig. 5. Impact of
of collisions in the unicast propagation. Furthermore, be-
cause of the low data rate of WSNs, if CCA detects a busy
channel, the next assessment by CCA is very likely to detect
a busy channel even if a different value of backoff is
adopted. Based on our proposed unicast model illustrated
in Fig. 3a, the value of init_low() affects the propagation
speed to a lesser degree.

4.3. Impact of network density

In this set of simulation runs, we set max_iterations()
and init_low() to default values and measure the impact
of network density on the propagation dynamics, as illus-
trated in Fig. 6.

From Fig. 6a, we observe in the broadcast propagation
that the denser the network, the higher the percentage of
nodes is infected. Denser networks make nodes have high-
er node degrees and higher connectivity. This can facilitate
the mal-packet propagation.

From Fig. 6b, we observe in the unicast propagation that
different network density does not have an obvious impact
on the infection speed and the fraction of infected nodes.
The reason is similar to that of Fig. 4b. Mal-packets may
have a much higher probability of collisions in the unicast
propagation. Furthermore, because of the low data rate of
WSNs, if CCA detects a busy channel, the next assessment
by CCA is very likely to detect a busy channel. A node with
higher degree of connectivity needs to transmit more mal-
packets to infect its neighbors. However, many of these
transmissions will likely to fail because of the busy chan-
nels detected by CCA and unpredictable channel conditions
in WSNs. Therefore, relatively different network density af-
fects the propagation speed to a lesser degree. We, how-
ever, do not expect such an observation from Fig. 6b
holds for all network densities. For example, mal-packets
in an extremely sparse network may not be able to spread
at all.

We also observe that in Figs. 4–6, the unicast model
may not reach 100% infection of all network nodes. In fact,
the infection ratio of unicast model is much smaller than
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that of the broadcast model. This is because in unicast
models, a much larger number of mal-packets are trans-
mitted compared to that of broadcast models. These many
more mal-packets may lead to severe packet collisions
considering the low transmission data rate in WSNs.
Therefore, as the infection progresses, too many collisions
will prevent the compromised nodes from transmitting
mal-packets.

4.4. Packet loss ratio

To further understand the impact of packet loss on
worm propagation, we perform another set of simulations.
In this set of simulation runs, 100 sensor nodes are ran-
domly deployed in a 70 � 70 m2 square area. We set
max_iterations() and init_low() to default values and mea-
sure MAC layers packet collisions. We disable the MAC
layer packet loss functions, and plot the curve in Fig. 7. This
can help us further understand the propagation dynamics
illustrated in previous sections.

As we expect, after we disable the packet collision func-
tionality at the MAC layer, more nodes are compromised.
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However, it is still difficult to achieve 100% inflection. This
is because we only disable packet collisions at the MAC
layer. The complexities of low-power wireless networking
may make WSNs suffer packet losses due to a variety of
other reasons. For example, multi-path signal delivery
may constitute grey region, in which node reception rates
vary dramatically. Furthermore, radio irregularity and
asymmetry may also have impact on higher layer protocols
and lead to packet loss [7]. As indicated in Fig. [22], radio
irregularity may result in asymmetric links and hence, it
may have an adverse impact on protocols that use path-
reversal techniques and neighbor discovery techniques.
4.5. Modeling considerations

There have been many research efforts devoted to the
modeling of Internet worms. An accurate model can pro-
vide insight for detection and defense. In this section, we
answer this question: whether existing Internet worm prop-
agation models can be directly applied to WSN worm
propagation?

In [8], a logistic model is proposed as a general model to
analyze the propagation of worms, such as Code Red I:

NðtÞ ¼ Ndev �
eKðt�TÞ

1þ eKðt�TÞ ; ð1Þ

where NðtÞ is the number of infected nodes at time t. Ndev

denotes the total number of devices in the network. K and
T are two parameters used in the model.

Because in our case, only neighbor list information is
available, an infected node can only infect its neighbors.
Therefore, we set the initial point Nð5Þ to 1 (recall that
the first worm instance starts spreading itself at simulation
time 5) and derive the inflection point from the simulation
results [9]. We assume that the model takes the same
amount of time to infect half of the vulnerable population
as in the simulation results. We derive K and T based on
these two points. The figure illustrating the comparison
between the derived logistic model and the simulated
curve is plotted in Fig. 8.
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Table 1
Notations.

Symbol Meaning

N Number of sensor nodes deployed
r Communication range of sensor nodes
k Node density
pk The probability that a randomly picked node has k neighbors
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It is clear that in the early phase of propagation, the lo-
gistic model underestimates the model. This is because at
the early phase, the infected node may pick up a neighbor,
and start replicating the mal-packet. While in the model
illustrated in Eq. (1), there is an infection phase. This may
slow down the mal-packet propagation.

In the late phase, the logistic model overestimates the
mal-packet propagation. This is because the model in Eq.
(1) does not consider the congestion and packet losses,
which can slow down mal-packet propagation. Also, the lo-
gistic model predict a 100% infection ratio, which is not the
case in our simulation.

Based on Fig. 8, one natural question is whether disabling
packet losses could lead to a better model fitting. To answer
this question, we disable packet collision, and plot the frac-
tion of infected nodes and the fitted logistic curve, which is
also illustrated in Fig. 8. As we can see, although both curves
move left relatively, the logistic curve still overestimates the
propagation speed at a late phase. At the early stage, both
curves illustrate a very fast propagation.

4.6. Average number of devices infected per second

We plot the average number of infected nodes per second
in Fig. 9. We can see that as more sensor nodes are compro-
mised, the average number of infected nodes is decreasing.
This can slow down the mal-packet propagation.

This also helps explain the difference demonstrated in
Fig. 8. The model illustrated in Eq. (1) assumes the same
discovery ratio every time, which is not the case in our
situation.

5. Immunization-based mal-packet defense

We present an immunization-based mal-packet defense
mechanism in this section. The following notations in Ta-
ble 1 are used throughout the rest of the paper.

5.1. Network model as random graph

We use a homogeneous Poisson point process [2] to
model the distribution of sensor nodes. We assume that
each node has a communication range of radius r. There-
fore, two nodes are linked together if and only if they are
not farther apart than a certain threshold. Consider N
nodes that are uniformly distributed in a square area with
side length of X. Therefore, for a node A, the number of
nodes falling inside the circle around A, i.e., the number
of neighbors of node A, is equal to r2k, where k is the net-
work density and is equal to N

X2.
Under this assumption, we can use a random graph to

model the deployment of sensor nods. pk, the probability
that a randomly picked node has k neighbors, is then equal
to kk

k!
e�k; k ¼ 0;1;2; . . ..

We perform a simple simulation to demonstrate this
match. We simulate the deployment of 4000 nodes in a
square area of 1250 by 1250 m2. Each node has a transmis-
sion radius of 25. We plot the degree distribution of these
sensor nodes, as illustrated in Fig. 10a. In Fig. 10a, the solid
line indicates the theoretical Poisson distribution.

Based on this simulation, we can calculate pk. To illus-
trate whether pk follows a Poisson distribution, we make
a Quantile–Quantile plot (Q–Q plot) between a theoretical
Poisson distribution and pk, as illustrated in Fig. 10b. As
seen in Fig. 10b, most of data points fall almost perfectly
along the line, which is a good indicator that pk is Poisson
distributed. The parameter for the Poisson distribution can
be estimated as k ¼ 5:2160. Therefore, in the following, we
assume that pk follows a Poisson distribution and perform
the analysis in 5.2.

5.2. Effect of selective immunization

Our basic idea is to select an appropriate set of nodes to
immunize. By immunization, we mean that these nodes
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Fig. 10. Node degree distribution.
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are immune to the propagated mal-packets. In this way,
the selected node can help disintegrate the network, thus
preventing or slowing down the large-scale propagation
of mal-packets. In practice, after we identify this set of
nodes, we can take various approaches to immunize.
Therefore, our question becomes how to choose the appro-
priate set of nodes in order to partition the WSN network into
as many separate pieces as possible.

It is not a good idea to immunize all the sensor nodes.
We expect that different types of sensor nodes may be de-
ployed to avoid monoculture of the underlying WSN hard-
ware, thus realizing immunization. For a WSN consisting of
Mica motes from CrossBow Corporation [19], the more
powerful IMote2 motes can be deployed at critical loca-
tions for immunization purposes. Due to cost concerns, a
large-scale WSN consisting of only IMote2 motes is much
more expensive than a WSN of the same size with most
of its nodes being the low-cost Mica motes. As a different
example, for applications which are not time-sensitive,
we can deploy sensor nodes at these critical locations con-
trolling and intentionally delaying traffic flows in WSNs.
These sensor nodes may deploy a different yet more
expensive version of software. It is thus desirable to immu-
nize a selective set of sensor nodes due to implementation
costs.

Intuitively, the immunization of those most highly-
connected nodes can help slow down the propagation of
mal-packets because more connections between nodes
are removed under this situation. Therefore, in the follow-
ing, we conduct a series of simulations to demonstrate the
effect of selective immunization.

We simulate the deployment of 5,000 nodes over
square areas of 1250 � 1250 m2, 1300 � 1300 m2, and
1350 � 1350 m2, respectively. This deployment can lead
to reasonable network density. A sparse deployment which
leads to network disconnected can prevent the large-scale
infection of mal-packets itself. On the other hand, if the
network is densely deployed, for example, every sensor
node has a connection to almost all the other nodes. It is
thus helpless to immunize only a portion of nodes.
We use the following metrics to measure the effect of
immunization:

1. Connection ratio Cp: The ratio of the size of the largest
component to the size of the remaining network when
we remove the top p percent most connected nodes
(and their related edges);

2. Remaining link ratio Lp: The fraction of remained links
after we remove the top p percent of most connected
nodes;

3. Distribution of component sizes: The distribution of the
sizes of connected components in terms of nodes. Here,
a component is a subset of vertices in the graph each of
which is reachable from the other through some path.

These metrics can effectively measure the impacts of
selective immunization on mal-packet propagation. Cp

reflects the size of the largest component, which gives
the best situation the infection can reach. Lp indicates the
fraction of remained links after selective immunization.
Intuitively, the smaller the value of Lp, the slower the
mal-packet can spread across the network. Distribution of
component sizes gives the distribution of the sizes of con-
nected components. The different sizes of the component
from which the infected node starts infection may limit
the total number of sensor nodes that this infection will
infect. In case the initial infected node starts infection from
within the largest remaining component, the size of the
largest remaining component gives the best situation the
infection can reach.

5.2.1. Connection Ratio
Simulation results of the connection ratio are illustrated

in Fig. 11. We have the following observations.
First, given a fixed immunization rate, the sparser the

network, the smaller the largest remaining component be-
comes. This is what we expect.

Second, there exists a percolation threshold [14] for
these simulations, where Cp drops dramatically when the
immunization rate exceeds the threshold. For example,
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for the area 1350 � 1350 m2, the threshold is roughly 0.22.
We can see that the sparser the network, the smaller the
percolation threshold becomes. This indicates that fewer
nodes are needed to be immunized in order to disconnect
the network.

We also observe a dramatic decrease of the largest com-
ponent when the immunization rate reaches some value.
For example, given the 1300 � 1300 area, when the immu-
nization rate reaches 30%, its largest component size drops
dramatically. This phenomenon, which has been exten-
sively studied in random graphs, is called percolation
[14]. Therefore, in Section 5.2.3, we further extend our
study when 30% nodes are removed.

5.2.2. Remaining link ratio
Simulation results of the remaining link ratio are illus-

trated in Fig. 12. We observe a slight decrease of the
remaining link ratio when the network becomes sparser.
This is also what we expect.

Based on Fig. 12, we can see that the remaining link
ratio Lp decreases dramatically with the increase of immu-
nization rate. A smaller value of Lp indicates a slower
mal-packet propagation. This is also what we expect.
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Fig. 12. Remaining link ratio.
5.2.3. Distribution of component sizes
Simulation results of the distribution of component

sizes are illustrated in Fig. 13. We can see that when the
network is sparser, after the removal of top 30% most con-
nected nodes, there are more small components and fewer
large components. Smaller components can slow down or
prevent the propagation of mal-packets. This is also what
we expect.

5.3. Analysis of distribution of component sizes

The distribution of component sizes is an important
indication of mal-packet propagation. In this section, with
the help of random graph theory [14], we present the the-
oretical analysis of the distribution of component sizes.

First, we need to study the probability distribution of
the number of second neighbors of one node, say node A,
in one graph. To do this, we use qk to denote the normal-
ized distribution of the number of edges k emanating from
vertex B other than the edge AB. Based on [14], we have

qk ¼
ðkþ 1Þpkþ1P

jjpj
; ð2Þ

where we recall pj gives the probability that a randomly
picked node has k neighbors. Here,

P
jjpj is the average de-

gree of a vertex and its purpose is for normalization [14].
We further define the probability generating function for

pk as G0ðxÞ ¼
P1

k¼0pkxk. The generating function for qk is de-
fined as G1ðxÞ ¼ G00ðxÞ

z [14], where z denotes the mean num-
ber of neighbors of a randomly chosen vertex.

Randomly pick one edge in a graph, for example, edge
AB. Following edge AB, we can reach vertex B. Consider
the distribution of the sizes of those clusters reachable
by node B and let H1ðxÞ be the probability generating func-
tion that generates the distribution of the sizes of these
clusters. Based on [14], we have

H1ðxÞ ¼ x
X1

k¼0

qk½H1ðxÞ�k ¼ xG1ðH1ðxÞÞ: ð3Þ

If we randomly pick one vertex, the distribution of the
sizes of the clusters to which this randomly chosen vertex
belong to is:
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Fig. 13. Component size distribution after immunization.
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H0ðxÞ ¼ x
X1

k¼0

pk½H1ðxÞ�k ¼ xG0ðH1ðxÞÞ: ð4Þ

Assuming that pk follows a Poisson degree distribution,
as we have illustrated in Section 5.1, following the basic
ideas proposed in [14], we have G0ðxÞ ¼ G1ðxÞ ¼ ezðx�1Þ.

Based on Eq. (3), we have:

H1ðxÞ ¼ xðq0 þ q1H1ðxÞ þ q2Hð2Þ1 ðxÞ þ . . .Þ: ð5Þ

Note that q0 ¼ p1
<k> ¼ z1e�z

1!
=z ¼ ez. Starting from H1ðxÞ ¼

q0x, substituting this into the right part of Eq. (5), and
ignoring the part at order x2 and higher, we have
H1ðxÞ ¼ xðq0 þ q1q0xÞ, where q0 ¼ ez. Based on Eq. (2),
q1 ¼ 2p2

z ¼ ze�z.
Therefore, H1ðxÞ ¼ xe�z þ ðxe�zÞ2z. Substituting this into

the right part of Eq. (4), we have H0ðxÞ ¼ xðp0 þ p1ðxe�zþ
ðxe�zÞ2zÞ þ . . .Þ.

By computing the coefficient of dH0ðxÞ
dx2 , we can get the

probability P2 of a randomly chosen vertex belonging to
components of size 2 is P2 ¼ ze�2z.

Following this approach, we can iteratively compute the
component size distribution for a given WSN network [14].

We simulate the empirical distribution of the compo-
nent sizes. The simulation configuration we use is
1350 � 1350 m2 with 5000 nodes, in which top 35% most
connected nodes are immunized. We use the Depth-First-
Search algorithms to compute the component sizes. Based
on our analysis in Section 5.1, we use a Poisson distribution
to generate pk and use the above methodology to calculate
the theoretical distribution of component sizes.

The result is illustrated in Fig. 14. Theoretical analysis
denotes the analysis results through above methodology.
Note that the theoretical analysis proposed in [14] is used
for a very large network. Here, we use a limited number of
nodes which is typical for WSNs. This may account for the
mismatch of the result.

With the above analysis, we present a simple approach
to identify immunization nodes in order to prevent or slow
down the large-scale mal-packet propagation in WSNs.
Based on how many nodes are deployed over an area with
a certain size, we can estimate the percolation threshold to
disintegrate the network. This threshold enables us to cal-
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Fig. 14. Theory and simulation – component size distribution after
immunization.
culate the number of neighbor threshold, denoted as Nth,
above which one node should be immunized. Each node
is then pre-equipped with Nth. After the deployment, each
sensor node can measure connectivity information
through a local Hello protocol and count the number of
one-hop neighbors, denoted as Nn. If Nn of one node A is
larger than Nth, node A should be immunized. Node A can
then report its location to the field officer.
6. Related work

Few research works are focused on mal-packets on
wireless networks. Yan and Eidenbenz [9,10] analyzed
the worm propagation in Bluetooth networks and investi-
gate the impact of mobility patterns on Bluetooth worm
propagation. Khayam and Radha [11] proposed a topologi-
cally-aware worm propagation model (TWPM) for WSNs.
By incorporating MAC and network layer considerations,
TWPM captures both time and space propagation dynam-
ics. De et al. [12] modelled the node compromise in WSNs
based on epidemic theory. Gu and Noorani [15] presented
attack approaches to construct specially crafted data mes-
sage to facilitate mal-packet propagation in wireless sensor
networks. Based on percolation theory, Zou et al. [17] also
applied immunization-based approach to protect worm
propagation in Email networks. Yang et al. [21] illustrated
the feasibility of sensor worms on Mica2 motes. Then the
philosophy of survivability through heterogeneity is used
to explore techniques of software diversities to combat
sensor worms. In [25], Xie et al. studied the feasibility of
leveraging the existing P2P overlay structure for distribut-
ing automated security patches to vulnerable machines
and examined two approaches. Zhu et al. [26] proposed a
graph-partitioning approach to contain the propagation
of a mobile worm in the context of cellular networks. The
proposed methodology was shown to effectively limit the
spread of MMS and SMS based worms.
7. Conclusions and future work

In this paper, based on 802.15.4, we present a mal-
packet propagation model in wireless sensor networks
and a preliminary analysis of this model using TOSSIM.
We study the mal-packet propagation dynamics under dif-
ferent protocol parameters and different network density.
Based on percolation and random graph theory, we further
propose an immunization-based countermeasure to pro-
tect WSNs from a large-scale outbreak of mal-packets.
We select the most connected nodes to immunize and
study their impact on preventing and slowing down mal-
packet propagation.

Future work includes demonstrating the impacts of var-
ious factors of WSNs on mal-packet propagation dynamics.
These factors include different network topology, the real-
istic characteristics of wireless sensor network including
radio irregularity and transmission unreliability, and so
on. It is also important to study practical defense schemes
to prevent the large-scale outbreaks of mal-packets and
systematically evaluate the proposed defense schemes.
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