
SEQUENTIAL ENERGY ALLOCATION STRATEGIES FOR CHANNEL ESTIMATION

Raghuram Rangarajan, Raviv Raich, and Alfred O. Hero III

Department of EECS, University of Michigan, Ann Arbor, MI 48109-2122, USA
{rangaraj, ravivr, hero}@eecs.umich.edu

ABSTRACT

The context of this paper is adaptive waveform design for estimating
parameters of an unknown channel under average energy constraints.
This paper focuses on the simpler problem of adaptive waveform-
amplitude design for which we obtain interesting analytical results.
We treat an N -step design problem where a fixed waveform can be
transmitted into the channel N times with amplitudes that can be
chosen as a function of past channel outputs. For N = 2 and a
linear Gaussian channel model, we derive the optimal amplitude to
transmit at the second step as a function of the first measurement.
This adaptive 2-step energy allocation strategy gives a mean-squared
error (MSE) improvement of at least 1.7dB relative to the optimal
non-adaptive strategy. Motivated by the optimal two-step strategy
we propose a suboptimal adaptive N -step strategy that can achieve
an MSE improvement of more than 5dB for N = 50. Applications
of our results to MIMO and inverse scattering channel models are
discussed.

Index Terms— Parameter estimation, adaptive control, energy
allocation, maximum likelihood, MMSE.

1. INTRODUCTION

One of the important components in adaptive sensing is the need for
energy management. Most applications are limited by peak power or
average power. Hence it is important to consider energy limitations
in waveform design problems. Most previous research has focussed
on waveform design under peak power constraints [1, 2]. There has
been little effort in adaptive energy management strategies that allo-
cate different amounts of energy to the waveforms over time. In this
paper, we find optimal sequential energy allocation strategies for a
general class of estimation problems under an average power con-
straint and show performance gains over non-adaptive design strate-
gies.

Measurement-adaptive estimation has countless number of im-
portant applications in a wide variety of areas such as communica-
tions and control, medical imaging, radar systems, system identi-
fication, and inverse scattering. By measurement-adaptive estima-
tion we mean that one has control over the way measurements are
made, e.g., through the selection of waveforms, projections, or trans-
mitted energy. The standard solution for estimating parameters from
adaptive measurements is the maximum likelihood (ML) estimator.
For the case of classic linear Gaussian model, i.e., a Gaussian obser-
vation with unknown mean and known variance, it is well-known [3]
that the ML estimator is unbiased and achieves the unbiased Cramér
Rao lower bound (CRB). Many researchers have looked at improv-
ing parameter estimation performance by adding a small estimator
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bias to reduce the MSE. Stein showed that this leads to better estima-
tors that give lower MSE than the linear least squares (LS) estimator
for estimating the mean in a multivariate Gaussian distribution with
dimension greater than two [4]. Other alternatives such as shrinkage
estimator [5], Tikhonov regularization [6], and covariance shaping
least squares (CSLS) estimator [7] have also been proposed in the
literature. None of these approaches to improve performance incor-
porate the notion of sequential energy allocation in their work.

In this paper, we formulate a problem of adaptively selecting
waveform amplitudes for estimating parameters of a linear Gaussian
channel model under an average energy constraint over the wave-
forms and over the number of transmissions. Waveform amplitude
design can be cast as sequential parameter estimation where a trans-
mitted waveform is measured at a receiver after passing through a
channel having unknown parameters. We first obtain closed-form
expressions for the MSE for the optimal two-step sequential energy
allocation strategy for a scalar parameter in a multivariate linear
Gaussian model. We then extend these results to the case of vec-
tor parameters. Furthermore we provide an N -step sequential strat-
egy which yields more than 5dB gain over non-adaptive methods.
We conclude by providing applications to channel estimation and
imaging. The results in this paper summarize the results of [8] and
represent a significant extension of our previous paper [9].

2. PROBLEM SETTING FOR ESTIMATION

We denote vectors in
� M by boldface lower case letters and matrices

in
� M×N by boldface uppercase letters. The symbol ‖ · ‖ refers to

the l2-norm of a vector, i.e., ‖x‖ =
√

xHx, where (·)H denotes the
conjugate transpose. Let θ = [θ1, . . . , θM ] be the M -element vec-
tor of unknown parameters. The problem of waveform design is to
select the sequence of waveforms {xi}N

i=1 in order to best estimate
the parameters θ in the model

yi = H(xi)θ + ni, i = 1, 2, . . . , N, (1)

where H(xi) = [h1(xi),h2(xi), . . . ,hM (xi)] is a known K ×M
matrix and N indicates the number of time steps. The T -element de-
sign vectors, {xi}N

i=1 can depend on the past measurements: xi =
xi(y1, . . . , yi−1), where yi is the ith K-element received signal
vector. The noise vectors {ni}N

i=1 are independent identically dis-
tributed (i.i.d) circularly symmetric complex Gaussian random vari-
ables with zero mean and variance σ2 denoted by ni ∼ CN (0, σ2I).
When H(x) is linear in x, we can write hj(x) = Hjx, j =
1, 2, . . . , M . In this case H(·) is uniquely determined by the ma-
trices {H1, H2, . . . , HM}. For the case of a scalar parameter θ1,
the measurements are

yi = h1(xi)θ1 + ni, i = 1, 2, . . . , N. (2)

We evaluate the performance of the measurement scheme in terms
of the MSE of the ML estimator of θ1 given {yi}N

i=1 subject to the



energy constraint, E
[∑N

i=1 ‖xi‖2
]
≤ E0, where E0 is the total

available energy and E [·] denotes the statistical expectation. The
ML estimator of θ1 for the N -step procedure is given by

θ̂
(N)
1 =

∑N

i=1 h1(xi)
Hyi∑N

i=1 ‖h1(xi)‖2
(3)

and the corresponding MSE = E
[
|θ̂(N)

1 − θ1|2
]

is

MSE(N)
(
{xi}N

i=1

)
= E

[∣∣∣∣∣

∑N

i=1 h1(xi)
Hni∑N

i=1 ‖h1(xi)‖2

∣∣∣∣∣

2]
. (4)

Denote Ei(y1, . . . ,yi−1) = ‖xi(y1, . . . ,yi−1)‖2, where Ei rep-
resents the energy allocated at each time step i. The total energy in
the measurements is given by

E
[
{xi(y1, . . . ,yi−1)}N

i=1

]
= E

[
N∑

i=1

Ei(y1, . . . ,yi−1)

]
. (5)

Our goal is to find the best sequence of the transmitted signals {xi}N
i=1

to minimize the MSE(N) in (4) under the average energy constraint

E
[∑N

i=1 ‖xi‖2
]
≤ E0. Define SNR

(
{xi}N

i=1

)
as

SNR(N)
(
{xi}N

i=1

)
=

E
[
{xi(y1, . . . ,yi−1)}N

i=1

]

σ2
. (6)

The average energy constraint can be rewritten as SNR(N) ≤ SNR0,
where SNR0 = E0/σ2. Minimizing MSE(N) subject to an SNR
constraint SNR(N) ≤ SNR0 is equivalent to minimizing MSE(N) ×
SNR(N) [8]. The product of MSE(N) and SNR(N) is given by

MSE(N)×SNR(N) = E

[∣∣∣∣∣

∑N

i=1 h1(xi)
Hni∑N

i=1 ‖h1(xi)‖2

∣∣∣∣∣

2] E
[∑N

i=1 ‖xi‖2
]

σ2
.

As a benchmark for comparison, we consider the non-adaptive case
where xi(y1, . . . ,yi−1) =

√
Ei x̄i. Here x̄i, Ei are determin-

istic quantities, independent of y1, y2, . . . , yi−1, ‖x̄i‖ = 1, and∑N

i=1 Ei ≤ E0. For the model (2), MSE(N) is given by

MSE(N) =
σ2

∑N

i=1 ‖h1(xi)‖2
=

σ2

∑N

i=1 Ei
‖h1(x̄i)‖

2

‖x̄i‖
2

≥ σ2

E0λm
,

(7)
where equality is achieved iff ∀i x̄i = vm, the normalized eigen-
vector corresponding to λm, the maximum eigenvalue of the chan-
nel matrix HH

1 H1. Note λm = maxx(xHHH
1 H1x)/(xHx) =

maxx ‖h1(x)‖2/‖x‖2 . Furthermore, the performance of the ML
estimator does not depend on the energy allocation. Hence, with-
out loss of generality we can assume that all energy is allocated
to the first transmission. The minimum MSE for the one-step (or
non-adaptive N -step) strategy is then given by MSE(1)

min = 1/S̃NR0,
where S̃NR0 = λmSNR0. We first look at a two-step sequential
design procedure.

3. OMNISCIENT TWO-STEP SEQUENTIAL STRATEGY

In the two-step sequential procedure, we have N = 2 time steps
where in each time step i = 1, 2, we can control input waveform xi

to obtain signal yi. The two-step ML estimator of θ1 from (3) is

θ̂
(2)
1 =

h1(x1)
Hy1 + h1(x2)

Hy2

‖h1(x1)‖2 + ‖h1(x2)‖2
(8)
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Fig. 1. Plot of the optimal solution to the normalized energy trans-
mitted at the second stage as a function of received signal at first
stage.

and the corresponding MSE(2) to be minimized from (4) is

MSE(2) = E

[ |h1(x1)
Hn1 + h1(x2)

Hn2|2
(‖h1(x1)‖2 + ‖h1(x2)‖2)2

]
. (9)

We assume that the shape of the optimal designs, i.e., {xi/‖xi‖}
is the one-step optimum given by vm defined below (7) and mini-
mize the MSE over the energy of the waveforms. Denote ‖x1‖ =√

E0α1 and ‖x2(y1)‖ =
√

E0α2(y1). The average energy con-
straint, E [x1,x2(y1)] = E

[
‖x1‖2 + ‖x2‖2

]
≤ E0 can be rewrit-

ten as α2
1 + E

[
α2

2(y1)
]
≤ 1. We use Lagrangian multipliers to

minimize the MSE(2) in (9) with respect to α1 and α2(·) under this
energy constraint. The optimal design for the two-step procedure is
x∗

2(y1) =
√

E0α
∗
2(y1)vm, where

α∗
2(y1) = β

(∣∣∣∣
h1(vm)H

‖h1(vm)‖
(y1 −

√
E0α

∗
1h1(vm)θ1)

σ

∣∣∣∣
)

(10)

has MSE satisfying MSE(2)
min × S̃NR0 = η∗

2 ≈ 0.68, and α∗
1 ≈

0.7421. The optimal solution in terms of β(·) is shown in Fig. 1.
This solution depends on the unknown parameter θ1 and thus we
will call this minimizer an “omniscient” energy allocation strategy.
The two-step strategy yields a 32% improvement in performance or
a 1.7dB gain in terms of SNR. The product MSE(2) × S̃NR0 is
plotted for various values of α1 using both simulations (dotted) and
theory (solid) in Fig. 2. The details of the derivation can be found
in [8].

The “omniscient” solution (10) depends on the parameter to be
estimated. Here, we prove that we can approach the optimal two-
step solution by implementing a θ1-independent energy allocation
strategy when θ1 is bounded, i.e., θ1 ∈ [θa, θb], θa, θb ∈ � . Since
we do not know the value of the actual parameter, we replace θ1 by
a ‘guess’ of θ1 say θg in the optimal solution to the energy at the
second stage given in (10). The resulting suboptimal design is

x2 =
√

E0 β

(∣∣∣∣ñ1 +
α∗

1‖h1(vm)‖
√

E0

σ
(θ1 − θg)

∣∣∣∣
)

vm, (11)

where ñ1 = h1(vm)H
(
y1 −

√
E0α

∗
1h1(vm)θ1

)
/λmσ ∼ CN (0, 1).

When the optimal two-step design is used with θg in place of θ1,

η(z) = MSE(2) × S̃NR
(2)

is

η(z) = E

[
α∗2

1 |ñ1|2 + β2(|ñ1 + z|)
(α∗2

1 + β2(|ñ1 + z|))2
]

E
[
α∗2

1 + β2(|ñ1 + z|)
]
,
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Fig. 2. Reduction in MSE for varying values of energy transmitted
at the first stage, α1.

where z = α∗
1

√
E0‖h1(vm)‖(θ1 − θg)/σ = α∗

1

√
S̃NR0(θ1 − θg)

and S̃NR
(2)

= λmSNR(2). Therefore, MSE(2) × S̃NR
(2)

is a func-
tion of z only and is optimum at z = 0. Note that when SNR be-

comes sufficiently small MSE(2) × S̃NR
(2)

approaches its minimal
value. Hence instead of performing one two-step procedure, we per-
form a set of N independent two-step procedures with equal energy
E0/N and average the estimates from each step to get the new esti-
mate. In such a way, we reduce the SNR at each stage, thereby elim-
inating the effect of the unknown parameter θ1. As N → ∞, z → 0

and the optimum two-step MSE(2) × S̃NR
(2)

= η∗
2 is achieved. The

complete proof can be found in [8].

4. DESIGN OF N -STEP PROCEDURE

In Section 3, we looked at the optimal two-stage sequential design
procedure for energy allocation and proved that we can achieve the
optimal performance using an N × 2-step strategy. In this sec-
tion, we generalize the solution from the two-step case to an N -step
strategy. We assume that the shape of the transmitted waveform is
fixed and look at the energy allocation among the various steps. Let
the energy at step k be denoted as α2

k(y1, . . . ,yk−1), i.e., xk =
vmαk(y1, . . . ,yk−1), 1 ≤ k ≤ N . Then

α1 = A1, αk = AkI

(
|∑k−1

i=1 h1(xi)
Hni|2∑k−1

i=1 ‖h1(xi)‖2σ2
≥ ρk

)
, k ≥ 2.

Note that the definition of the energy at each stage is recursive. This
suboptimal energy allocation for the N -step case is an approxima-
tion to the optimal threshold like solution for the two-step case. We
choose A = [A1, . . . , AN ] and ρ = [ρ1, . . . , ρN ] appropriately to
satisfy the average energy constraint. The intuition behind the choice
of A, ρ is motivated by an asymptotic result in [8]. We evaluate the
performance of this suboptimal approach using simulations. Perfor-
mance gain GN (in dB) is presented in Fig. 3. We see that in 50
steps, we are able to achieve a gain of more than 5dB! Moreover, by
the same argument presented in Section 3, SNR decreases at each
step which implies that as the number of steps increases, the lack of
knowledge on θ1 has a limited effect on the overall performance.
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Fig. 3. Plot of gain over non-adaptive energy allocation strategy ob-
tained by implementing the adaptive N -step procedure as a function
of N through theory [8] and simulations.

5. VECTOR PARAMETER CASE

A general N -step procedure for the case of M unknown parameters
is defined in (1). For the multiple parameter case, we consider the
trace of the MSE matrix as a measure of performance. The problem
of multiple parameter estimation is more complicated than estima-
tion of a single parameter for the following reason. We showed in
Section 2 that independent of the shape of xi, any non-adaptive en-
ergy allocation strategy is to assign all energy to the first step, i.e., a
one step strategy with total energy E0. But this is not true for a
multiple parameter setting. Let us consider a simple example of esti-
mating two parameters θ = [θ1 θ2]

T in the model y = H(x)θ +n,
where

H(x) =

[
x1 x2

0 x2

]
, (12)

x = [x1 x2]
T , y = [y1 y2]

T , and n = [n1 n2]
T ∼ CN (0, σ2I).

Then for a one-step process, we have MSE(1)(θ1) = 2σ2/x2
1 and

MSE(1)(θ2) = σ2/x2
2. Minimizing the tr(MSE(1)) = MSE(1)(θ1)+

MSE(1)(θ2) (tr denotes the trace) over the energy constraint ‖x‖2 ≤
E0 = 1, we get x1 = x2 = 1/

√
2 and tr(MSE(1)

min) = 6σ2. Now
consider the following two-step non-adaptive energy design.

Step 1. Tx : x = [x1 0]T , Rx : y1 = x1θ1 + n1,

Step 2. Tx : x = [0 x2]
T , Rx : [1 1]y2 = 2x2θ2 + [1 1]n2.

Minimizing MSE(2) = MSE(2)(θ1) + MSE(2)(θ2) = σ2/x2
1 +

σ2/2x2
2 over the energy constraint, we get x1 = x2 = 1/

√
2 and

tr(MSE(2)
min) = 3σ2. This translates to a 3dB gain in SNR for the

two-step non-adaptive strategy over the one step approach. We con-
trol the input x = [x1 x2]

T such that we have different energy allo-
cation for each column of the matrix H. By specifically designing
the two-step non-adaptive strategy given in step 1 and step 2, we
have reduced the estimation of the vector parameter θ = [θ1, θ2] to
two independent problems of estimating scalar parameters θ1 and θ2

respectively. For each of these scalar estimators, we design two N -
step sequential procedures as in Section 4 for scalar controls x1 and
x2 to obtain an improvement in performance of estimating θ. Ap-
plying the N -step design to both x1 and x2, we have MSE(N)(θi) =

GN MSE(2)
min(θi) and hence tr(MSE(N)) = GN tr(MSE(2)

min). In other
words, we would obtain the gains of the N -step procedure over non-
adaptive strategies for the vector parameter case as well.



6. APPLICATIONS OF SEQUENTIAL ESTIMATION

6.1. MIMO Channel Estimation

One important component in a MIMO system is the need to accu-
rately estimate the channel state information (CSI) at the transmitter
and receiver. Recently, [2] proposed four different training based
methods for the flat block-fading MIMO system including the least
squares and best linear unbiased estimator (BLUE) approach for the
case of multiple LS channel estimates. In order to estimate the r × t
channel matrix Θ with t transmit and r receive antennas, N ≥ t
training vectors X = [x1, . . . ,xN ] are transmitted. The correspond-
ing received signal is R = ΘX + M, where R = [r1, . . . , rN ] is
a r × N matrix, M = [m1, . . . ,mN ] is the r × N matrix of sen-
sor noise, xi is the t × 1 complex vector of transmitted signals and
mi is the r × 1 complex zero-mean white noise vector. Let P0 be
the transmitted training power constraint, i.e., ‖X‖2

F = P0, ‖ · ‖F

indicates Frobenius norm (‖X‖F =
√

tr(XHX)) and σ2 denote the
variance of receiver noise. Assuming co-located transmitter and re-
ceiver arrays and multiple training periods available within the same
coherency time (quasi-static) to estimate the channel, the set of re-
ceived signals can be rewritten in the following form:

yi = H(Xi)θ + ni i = 1, 2, . . . , K, (13)

where yi = vec(Ri), θ = vec(Θ),ni = vec(Mi), vec(·) de-
notes the column-wise concatenation of the matrix and H(Xi) =
(Xi ⊗ I)T is a linear function of the input Xi, which is the same
model described in (1). In [2], a method of linear combining the
estimates from each of the K stages was proposed and the MSE ob-
tained for the estimation using K stages of transmission was shown
to be MSE(K)

LS = σ2t2r/P0, where P0 is the total power used in the
K steps, i.e.,

∑K

i=1 ‖Xi‖2
F ≤ P0. If we have enough training sam-

ples, we could completely control the matrix H(Xi) through our in-
put Xi and we can make H(Xi) orthogonal. In this case (13) along
with the average power constraint E

[∑
i
‖Xi‖2

F
]
≤ P0 falls in the

framework of the problem of adaptive energy allocation in Sections
4 and 5 where the problem is then separable into N independent
estimation problems of scalar parameters. Having K steps in the
training sequence also directly enables us to implement our K-step
strategy to achieve optimal performance. Hence it directly follows
that using our strategy we are guaranteed to achieve the optimal er-
ror given by MSE(K)

LS ≈ GKσ2t2r/P0, which we have shown to be
at least 5dB (in 50 steps) better than any non-adaptive strategy.

6.2. Inverse Scattering Problem

The problem of imaging a medium using an array of transducers has
been widely studied in many research areas such as mine detection,
ultrasonic medical imaging, and non-destructive testing. The goal
in imaging is to detect and image small scatterers in a known back-
ground medium. We apply our concept of designing a sequence of
measurements to image a medium of multiple scatterers using an
array of transducers. The imaging area (or volume) is divided into
V voxels and the channel, denoted ai, between a candidate voxel i
and the N transducers is given by the homogeneous Green’s func-
tion and ignores the effect of multiple scattering. Each voxel can
be characterized by its scatter coefficient, e.g., radar cross-section,
{θi}V

i=1, which indicates the proportion of the received field that is
re-radiated. Thus the channel between the transmitted field and the
measured backscattered field at the transducer array is Adiag(θ)AT ,
where A = [a1, a2, · · · , aV ], θ = [θ1, θ2, · · · , θV ]T , and diag(θ)
is a V × V diagonal matrix with θi as its ith diagonal element. The

probing mechanism for imaging of the scatter cross section generates
the following sequence of noise contaminated signals

yi = Adiag(θ)AT
xi + ni = H(xi)θ + ni, (14)

where H(xi) = Adiag(AT xi). The goal is to find estimates for
the scattering coefficients θ under the average energy constraint to
minimize the MSE. If A is a square matrix, then we can condition
diag(AT xi) to have a single non zero component on any one of
the diagonal elements, which translates to isolating the ith column
for any i. As in Section 5, we can perform V independent N -step
experiments to guarantee the N -step gains of at least 5dB over the
standard single step ML estimation for imaging [10].

7. CONCLUSIONS

In this paper we considered the N -step adaptive waveform-amplitude
design problem for estimating parameters of an unknown channel
under average energy constraints. For N = 2 and a linear Gaus-
sian channel model, we found the optimal amplitude to transmit at
the second step as a function of the first measurement for a scalar
parameter case. We showed that this two-step adaptive strategy ob-
tained an improvement of at least 1.7dB over any non-adaptive strat-
egy. We then designed a suboptimal N -stage procedure based on the
two-step approach and proved gains of more than 5dB in N = 50
steps. Furthermore, we extended our results to the case of vector
parameters. To conclude, we provided applications of our design to
MIMO and inverse scattering channel models.
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