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ABSTRACT
This paper introduces NS-2 TCP-Linux, a new NS-2 TCP
implementation that embeds the source code of TCP con-
gestion control modules from Linux kernels. Compared to
existing NS-2 TCP implementations, NS-2 TCP-Linux has
three improvements: 1) a standard interface for congestion
control algorithms similar to that in Linux 2.6, ensuring bet-
ter extensibility for emerging congestion control algorithms;
2) a redesigned loss detection module (i.e. Scoreboard) that
is more accurate; and 3) a new event queue scheduler that in-
creases the simulation speed. As a result, NS-2 TCP-Linux

is more extensible, runs faster and produces simulation re-
sults that are much closer to the actual TCP behavior of
Linux. In addition to helping the network research com-
munity, NS-2 TCP-Linux will also help the Linux kernel
community to debug and test their new congestion control
algorithms.

In this paper, we explain the design of NS-2 TCP-Linux.
We also present a preliminary evaluation of three aspects of
NS-2 TCP-Linux : extensibility to new congestion control
algorithms, accuracy of the simulation results and simula-
tion performance in terms of simulation speed and memory
usage.

Based on these results, we strongly believe that NS-2

TCP-Linux is a promising alternative or even a replace-
ment for existing TCP implementations in NS-2. We call
for participation to test and improve this new TCP imple-
mentation.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks; I.6.3 [Simulation and Modeling]:
Application

General Terms
Simulation, Performance
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1. MOTIVATION
The TCP modules in NS-2 [7] were originally based on

source code of the BSD kernel in the 1990s. Over the years,
NS-2 TCP modules have tremendously helped the research
community to analyze and understand TCP behavior, and
led to the development of several new congestion control
algorithms.

However, as major operating systems have evolved during
the past decade, the TCP modules in NS-2 have deviated
significantly from the mainstream operating systems such as
FreeBSD and Linux. This leads to many difficulties in using
NS-2:

• Extensibility: As NS-2’s code structure deviates from
that of mainstream operating systems, it becomes harder
and harder to implement the NS-2 counterpart of a
Linux algorithm. For new algorithm designers, it is
a huge burden to implement the same algorithms in
both NS-2 and a real system such as Linux.

• Validity of NS-2 results: As many improvements have
been implemented in Linux but not in NS-2, the per-
formance predicted by NS-2 simulation has become
significantly different from the Linux performance. This
problem has recently been noted in the literature [21].

• Simulation speed: NS-2 users often suffer from long
simulation time when they try to simulate scenarios
with LDFP (long-distance fat-pipe) networks. [6] shows
some examples in which the simulator might take up
to 20 hours to finish a 200-second simulation.

As a result, researchers these days often find it easier to use
the Linux kernel and Dummynet [28] as tools for protocol
research than to use NS-2. However we argue that, as a sim-
ulator, NS-2’s utility in supporting network research is sim-
ply irreplaceable, especially with its flexibilities in topologies
and scales.

Hence, we design NS-2 TCP-Linux in the spirit of clos-
ing the gap between the implementation community which
works on Linux system and the analysis community which
currently uses NS-2 as a tool. NS-2 TCP-Linux has three
design goals:

• Enhance extensibility by allowing users to import con-
gestion control algorithms directly from the Linux source
code;



Name Meaning Equivalent in
NS-2 TCPAgent

snd
ssthresh

slow-start threshold ssthresh

snd
cwnd

integer part of the
congestion window

trunc(cwnd )

snd
cwnd cnt

fraction of congestion
window

trunc(cwnd ˆ2)
%trunc(cwnd )

icsk ca
priv

a 512-bit array to
hold per-flow state
for a congestion
control algorithm

n/a

icsk ca
ops

a pointer to the
congestion control
algorithm interface

n/a

Table 1: Important variables in tcp sk

• Provide simulation results that are close to Linux per-
formance;

• Improve the simulation speed for LDFP networks.

Our preliminary results show that, by carefully redesigning
the NS-2 TCP module, these goals can be achieved.

2. TCP CONGESTION CONTROL MODULE
IN LINUX 2.6

This section gives a brief introduction to the TCP imple-
mentation in Linux 2.6. We focus on interfaces and performance-
related features, which strongly influence the design of NS-2

TCP-Linux.
The Linux kernel introduced the concept of congestion

control modules in version 2.6.13 [5, 20]. A common inter-
face is defined for congestion control algorithms. Algorithm
designers can implement their own congestion control algo-
rithms as Linux modules easily. As of version 2.6.16-3, Linux
has incorporated nine congestion control algorithms in the
official release version and there are new implementations
coming up as well.

2.1 Interface for Congestion Control Modules
In Linux, all the state variables for a TCP connection are

stored in a structure called tcp sk. Table 1 lists the most
important state variables for congestion control.

When a congestion control decision is to be made (e.g.,
upon the arrival of a new acknowledgment or when a loss
is detected), the Linux kernel calls the corresponding func-
tions in the congestion control module, via pointers in the
icsk ca ops structure, as shown in Figure 1(a). All functions
in the module take the address of tcp sk as a parameter so
that the functions have the flexibility to change the TCP
connection’s state variables.

Three functions in the icsk ca ops structure are required
to be implemented to ensure the basic functionalities of con-
gestion control. They are:

• cong avoid : This function is called when an ACK is
received. This function is expected to implement the
changes in the congestion window for the normal case,
without loss recovery. In TCP-Reno (Reno) [18, 24],
this means slow-start and congestion avoidance. Fig-
ure 1(b) is an example of this function.

• ssthresh: This function is called when a loss event oc-
curs. It is expected to return the slow-start threshold
after a loss event. For example, the return value is half
of snd cwnd in Reno, as shown in Figure 1(c).

• min cwnd : This function is called when a fast retrans-
mission occurs, after the ssthresh function. It is ex-
pected to return the value of congestion window after
a loss event. In Reno, the return value is snd ssthresh,
as shown in Figure 1(d).1

As an example, Figure 1 is a very simple implementation
(Reno) for this interface.2

More complicated congestion control algorithms might re-
quire more operations such as obtaining high resolution RTT
samples. These advanced functions are introduced in [5, 2].

2.2 Differences in TCP Implementations be-
tween Linux and NS-2

The Linux TCP implementation [29] closely follows the
relevant RFCs. However, there are a few major differences
between the existing NS-2 implementation and Linux imple-
mentation, leading to a discrepancy between the NS-2 simu-
lation results and Linux performance. Here we list three ma-
jor differences that might result in significant performance
discrepancy:

1. SACK processing [25]: current NS-2 TCP (e.g. NS-2

TCP-Sack1 and NS-2 TCP-Fack) times out when a
retransmitted packet is lost again. Linux SACK pro-
cessing may still recover if a retransmitted packet is
lost. This difference leads to better performance by
the Linux kernel in scenarios with high loss rates.

2. Delayed ACK: the Linux receiver disables delayed ACKs
in the first few packets. This difference leads to faster
congestion window growth when the window size is
small.

3. D-SACK [19]: current NS-2 TCP implementations do
not process D-SACK information; Linux uses D-SACK
information to infer the degree of packet reordering in
the path and adjusts the duplicated ACK threshold so
that Linux has better performance in scenarios with
severe packet reordering.

The design of NS-2 TCP-Linux tries to eliminate these dif-
ferences to achieve better accuracy.

3. DESIGN OF NS-2 TCP-LINUX
We believe that NS-2 will benefit from a new TCP im-

plementation which conforms to Linux congestion control

module interface. The benefits are two-fold. First, the
research community can use NS-2 to analyze Linux algo-
rithms, without implementing the NS-2 version of a Linux

1Linux has a complicated rate-halving process and
min cwnd is used as the lower bound of the congestion win-
dow in a rate-halving process after a loss event. In NS-2,
NS-2 TCP-Linux has a simplified version of rate-halving,
and the congestion window can be set to min cwnd directly.
2A complete congestion control module in Linux also re-
quires routine module-support functions such as module reg-
ister function. These are not necessary for a TCP implemen-
tation in NS-2 TCP-Linux.



/* Create a constant record for the

 * interface function pointers of this

 * congestion control algorithm */

struct tcp_congestion_ops simple_reno = {

.name        = "simple_reno",

.ssthresh   = nr_ssthresh,

.cong_avoid   = nr_cong_avoid,

.min_cwnd  = nr_min_cwnd

};

(a) Data structure declaration

/* This function increases congestion window for

 * each acknowledgment

 */

void nr_cong_avoid (struct tcp_sk *tp, ...)

{

if (tp->snd_cwnd < tp->snd_ssthresh)

{

//slow start

tp->snd_cwnd++;

} else {

//congestion avoidance

if (tp->snd_cwnd_cnt < tp->snd_cwnd)

{

// the increment is not enough for 1 pkt

// we increase the fraction of cwnd

tp->snd_cwnd_cnt++;

 } else {

// we can increase cwnd by 1 pkt now.

tp->snd_cwnd++;

tp->snd_cwnd_cnt = 0;

 }

}

}

(b) Window increment function

/* This function returns the slow-start threshold

 * after a congestion event.

 */

u32 nr_ssthresh(struct tcp_sk *tp)

{

return max(tp->snd_cwnd/2,2);

}

(c) Slow-start threshold adjustment function

/* This function returns the congestion window

 * after a congestion event -- it is called AFTER

 * the function nr_ssthresh in Figure 1 (c).

 */

u32 nr_min_cwnd(struct tcp_sk *tp)

{

return    tp->snd_ssthresh;

}

(d) Window reduction function

Figure 1: A sample implementation (simplified
Reno) of the Linux congestion control module in-
terface. NS-2 TCP-Linux uses the same interface.
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Figure 2: Code structure of NS-2 TCP-Linux

The boxes in yellow shades are components from existing
NS-2 source code or the Linux kernel. The four boxes out-
side the shades are NS-2 TCP-Linux components.

algorithm. This leads to an improvement in both produc-
tivity and accuracy. Second, NS-2 can also be a tool for the
Linux community to debug and test their new congestion
control algorithms. This leads to more reliable and better
understood implementations.

3.1 NS-2 interface for Linux congestion con-
trol modules

NS-2 TCP-Linux introduces a new TCPAgent, LinuxTC-

PAgent, that implements the Linux congestion control mod-
ule interface. LinuxTCPAgent loosely follows the design of
Linux ACK processing (the tcp ack function in Linux), in-
cluding routines for RTT sampling, SACK processing, fast
retransmission and transmission timeout. It allows the ac-
tual Linux kernel source code to be used as implementations
of different congestion control algorithms.

LinuxTCPAgent uses two glue mechanisms to facilitate
whole-file imports from Linux kernel source code:

• ns-linux-util.h and ns-linux-util.cc: a set of data struc-
ture declarations that allow the C++ code in NS-2 to
interact with the C code in Linux;

• ns-linux-c.h and ns-linux-c.c: a set of macros that re-
define many Linux system calls that are not relevant
to congestion control.

Together, they serve as a highly simplified environment for
embedding Linux TCP source code. The code structure is
shown in Figure 2.

For users, LinuxTCPAgent supports a command line op-
tion to select congestion control modules. Thus, users of
NS-2 TCP-Linux can easily include new congestion control
algorithms from Linux source code and run simulation with
existing NS-2 scripts after minimal changes. This process is
described in detail in [2, 1].

3.2 Scoreboard1: More Accurate Loss Detec-
tion

Scoreboard1 is a new scoreboard implementation that com-
bines the advantage of Scoreboard-RQ in NS-2 and the Linux
SACK processing routine (sacktag write queue).
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Figure 3: State machine of each packet

As in Linux SACK processing, each packet in the retrans-
mission queue is in one of the four possible states: InFlight,
Lost, Retrans or SACKed. The state transition diagram is
shown in Figure 3.

A packet that is sent for the first time, but not acknowl-
edged and not considered lost, is in InFlight state. It enters
the SACKed state when the packet is selectively acknowl-
edged by SACK, or enters the Lost state when either a re-
transmission timeout occurs, or the furthest SACKed packet
is more than 3 packets ahead of it (FACK policy). When a
lost packet is retransmitted, it enters the Retrans state.

Finally, the most challenging part is the transition from
the Retrans state to the Lost state, which happens when
a retransmitted packet is lost again. We approximate the
Linux implementation: When a packet is retransmitted, it
is assigned a snd nxt (similar to Scoreboard in NS-2 TCP-

Fack) which records the packet sequence number of the next
data packet to be sent. Additionally, it is assigned a retrx id

which records the number of packets that are retransmitted
in this loss recovery phase, as shown in the first two nodes
in Figure 4. The (snd nxt,retrx id) pair helps to detect the
loss of a retransmitted packet in the following ways:

1. When another InFlight packet is SACKed or acknowl-
edged with its sequence number higher than 3+snd nxt

of the retransmitted packet, the retransmitted packet
is considered lost; or

2. When another Retrans packet is SACKed or acknowl-
edged with its own retrx id higher than retrx id+3, the
retransmitted packet is considered lost.3

With the definition of per-packet state, Scoreboard1 has a
clear image of the number of packets in the network (which
is the sum of the numbers of packets in the InFlight and
Retrans states). This number is compared against the con-
gestion window to enforce congestion control.

To improve the speed of SACK processing, Scoreboard1

incorporates a one-pass traversing scheme extended from
Scoreboard-RQ. Scoreboard1 organizes all the packets into
a linked list. Each node of the linked list is either a single

3Strictly speaking, the Linux implementation uses a slightly
different scheme for the this case: when a packet is ac-
knowledged, and if the current timestamp is higher than
an unacknowledged packet’s transmission timestamp plus
RTO, the unacknowledged packet is considered to be lost
(head timeout). This scheme has more overhead in both
simulation speed and memory usage. The retrx id scheme
in NS-2 TCP-Linux is an approximate version of the
head timeout scheme. This difference might affect the
throughput prediction when the number of packets in flight
is smaller than 3.

Retrans

seq: 1

retrx id:1

snd_nxt:20

Retrans

seq: 2

retrx id:2

snd_nxt:20

next blocknext block

Lost

first seq: 3

last seq:  5

next block

SACKed

first seq: 6

last seq:  8

next block

In Flight

first seq: 9

last seq: 10

next block

SACKed

first seq:11

last seq: 11

next block

Figure 4: SACK queue data structure

packet in the Retrans state, or a block of packets in other
states, as shown in Figure 4.

The linked list allows Scoreboard1 to traverse the retrans-
mission queue only once every acknowledgment, regardless
of the number of SACK blocks in the acknowledgment.

3.3 SNOOPy: a Faster Event Queue
The current NS-2 (Version 2.29) scheduler uses a calen-

dar queue [13], also called a timing wheel, to store simulation
events. A calendar queue is essentially a hash table of simu-
lation events, with the events’ time as the keys; each bucket
has a sorted linked list to store events whose times fall on
the same “second” (which is the hash value) but possibly in
different “minutes”. To insert a new event, the queue cal-
culates the event’s destination bucket via the hash value of
its time, and the event is inserted into the in-order position
in the destination bucket via linear search along the linked
list. To dequeue the next event, the queue traverses all the
buckets to find the bucket with the earliest event. The cal-
endar queue can achieve an averaged complexity of O(1) in
both dequeue and enqueue operations, if the bucket width
(i.e., the length of a “second”) is properly set [13].

Clearly, the efficiency of the calendar queue is determined
by the width of each bucket and the number of buckets in
the hash table, and demands a trade-off between the two: If
the width of a bucket is too large, inserting an event takes
too long. If the number of buckets is too high, dequeuing
an event takes too long. It has been suggested [10] that the
bucket size should be dynamically set to the average interval
in the fullest bucket. The NS-2 calendar queue takes this
suggestion in setting the bucket width.4

However, this technique only works if the events are evenly
distributed in the calendar queue. The simulation perfor-
mance may degrade significantly with uneven event distri-
bution. For example, it is very common for users to set
an “end time” before a simulation starts. This end time
corresponds to an event many hours ahead in the far future,
while most of the other events in the simulation are clustered
within several ms in the near future. If this end time event
happens to be in the fullest bucket, the average interval in
the fullest bucket will be in the order of hours or minutes,
and NS-2 will set the bucket width to be very large. In this
case, most of the events (clustered within ms) will go into a
few buckets. The calendar queue hence degrades into a few

4Unlike [10], NS-2 does not update the bucket width until
the number of events is too large or too small. This differ-
ence further degrades performance when the bucket width
is set to an inefficient value while the number of events in
the queue remains at a similar level for a long time.
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linked lists and long linear search happens in event inser-
tion. Similar problems happen in simulations with LDFP
networks where TCP burstiness usually generates uneven
event distribution.

To fix this problem, we add an average interval estima-
tion into the calendar queue scheduler. We use the aver-
age interval of each pair of dequeued events, averaged over a
whole queue size of dequeued events, as an estimation of the
bucket width. If the event departure pattern is unchanged
over time, this width results in the complexity of O(1) in
both dequeue and enqueue operation.

To address the possible change of event departure pat-
terns, we also implement a SNOOPy Calendar Queue [30],
which dynamically adjusts the bucket width by balancing
the linear search cost in the event insertion operations and
the event dequeuing operation.

With these improvements, the scheduler performs consis-
tently in a variety of simulation setups.

4. SIMULATION RESULTS
We evaluate simulation results from NS-2 TCP-Linux ac-

cording to three goals: extensibility, accuracy and perfor-
mance. To demonstrate extensibility, we import six new
TCP congestion control algorithms from Linux to NS-2. To
validate accuracy, we compare NS-2 TCP-Linux simulation
results with results from a Dummynet testbed [28], part
of the WAN-in-Lab infrastructure [8]. To evaluate perfor-
mance, we compare the simulation time and memory usage
of NS-2 TCP-Linux and NS-2 TCP-Sack1, the best TCP
implementation in NS-2.5 Finally, we present a real exam-
ple on how NS-2 TCP-Linux helps the Linux community to
debug and test congestion control implementations.

The setup of our NS-2 scenario is shown in Figure 5. There
is one FTP flow running from the sender to the receiver for
900 seconds. We record the congestion window every 0.5
second.

The setup of our Dummynet experiment is shown in Fig-
ure 6. In the experiments, the application is Iperf with a
large enough buffer. We read the /proc/net/tcp file every
0.5 second to get the congestion window value of the Iperf
flow and compare the congestion window trajectories with
the simulation results.

4.1 Extensibility
We have imported all nine congestion control algorithms

from Linux 2.6.16-3 to NS-2 TCP-Linux. Six of them are
not in the current NS-2 release (2.29): Scalable-TCP [22],
BIC-TCP [33], CUBIC [27], H-TCP [23], TCP-Westwood
[16], and TCP-Hybla [14]. Table 2 shows congestion win-
dow trajectories with these six algorithms. To make the

5We also tried other existing implementations in NS-2. NS-2
TCP-Reno and NS-2 TCP-NewReno have many more time-
outs than NS-2 TCP-Sack1, leading to poorer accuracy than
NS-2 TCP-Sack1. NS-2 TCP-Fack and NS-2 TCP-Sack-
RH have similar results as NS-2 TCP-Sack1 but run much
slower due to the inefficient implementation of Scoreboard.

FreeBSD 5.2.1

Dummynet

100Mbps, 64ms, 220pkt buffer

Linux

2.6.16.3

Sender

Linux

2.6.16.1

Receiver 100Mbps, 64ms, 220pkt buffer

Hardware:

SuperMicro 1U servers with 2G memory and PCI Express bus

CPU: Intel Xeon 2.80Hz * 2 (with hyperthreading)

NIC: Intel e1000 Copper GE cards * 2

Figure 6: Setup of Dummynet Experiments

figures readable, we rescale the time axes to include only six
congestion epochs in each figure.

Table 2 shows that the congestion window trajectories
predicted by NS-2 TCP-Linux are very similar to the re-
sults in Linux. The two cases which have most significant
differences are TCP-Hybla, and TCP-Cubic. TCP-Hybla
measures the round trip delay to set its additive increment
(AI) parameter. Due to jitter in the Dummynet router, the
Linux host measures higher delay in the testbed and cal-
culates a higher AI parameter for TCP-Hybla, leading to a
shorter length of congestion epoch than that in the simula-
tion results. TCP-Hybla also sets a large congestion window
in a flow’s start-up phase. Both NS-2 TCP-Linux and Linux
experience severe packet losses. But Linux receives a time-
out earlier than NS-2 TCP-Linux. This results in differences
of congestion window value at the start-up phase (though
the rates predicted by NS-2 TCP-Linux are very similar to
the Linux results). For TCP-Cubic, there are differences
in both the congestion widow trajectory and the length of
congestion epoch, which are still under investigation.

4.2 Accuracy
To evaluate accuracy, we compare the results of Linux, the

simulation results of NS-2 TCP-Linux and the simulation
results of NS-2 TCP-Sack1 with Reno and HighSpeed-TCP
[17] or NS-2 TCP-Vegas [12, 15], as shown in Table 3.

In general, the simulation results of NS-2 TCP-Linux are
much closer to the Linux results, especially for Reno and
Vegas. In the case of Reno, the difference between NS-2

TCP-Sack1 and Linux is mainly due to the “appropriate
byte counting” [11] implementation in Linux. The Vegas
case is even more interesting. Both NS-2 TCP-Linux and
Linux results have smaller congestion windows than the orig-
inal NS-2 implementation NS-2 TCP-Vegas. We found that
the combination of delayed ACKs and integer operations is
the source of the problem. With delayed ACKs, two packets
are sent into the network in a burst. Vegas can only measure
the second packet’s RTT due to the delayed ACK. Unfortu-
nately, this RTT measurement includes most of the queuing
delay introduced by the first packet in the burst.6 Such
a queuing delay is equivalent to almost one packet in the
bottleneck queue. With integer operations in the Linux im-
plementation and NS-2 TCP-Linux, Vegas sees one packet’s
worth of delay and stops increasing its congestion window
because the α parameter is set to 1. However, NS-2 TCP-

Vegas uses a high resolution “float” to calculate the available

6There is still a small gap between the two packets in a burst.
The gap depends on the edge link capacity, which is 10 times
the bottleneck link in our simulations and experiments.
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Table 2: Extensibility: congestion window trajectories of new congestion control algorithms: Scalable-TCP,
BIC-TCP, CUBIC, H-TCP, TCP-Westwood, and TCP-Hybla
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Table 3: Accuracy: congestion window trajectories of Reno, HighSpeed-TCP and TCP-Vegas

bandwidth and expected bandwidth. The results are con-
verted to an integer only at the last step of the comparison,
avoiding this problem.

We also ran simulations with different per-packet loss rates
in the bottleneck and compare the throughputs of simula-
tions and experiments. Figure 7 shows the throughputs of
a single TCP Reno flow (running for 600 seconds) with dif-
ferent per-packet loss rates in the link. Each experiment
or simulation is repeated 10 times and we present both the
average and error-bar in the figure.

The results with NS-2 TCP-Sack1 in NS-2 have a constant
gap from the Linux performance. This gap, in log scale,
implies a constant ratio in throughputs. The discrepancy is
due to the implementation differences explained in Section
2.2.

The simulation results for NS-2 TCP-Linux are very sim-
ilar to the experiment results of Linux, except for the case
when the per-packet loss rate is 10%. In this case, the Linux
receiver almost disabled delayed ACKs, achieving a better
performance than the simulation, whereas the delayed ACK
function in NS-2 TCPSink is not adaptive.
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Figure 7: Accuracy: throughputs with different ran-
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4.3 Performance
We ran simulations with Reno and HighSpeed-TCP, with

different numbers of flows (from 2 to 128), different round
trip propagation delays (from 4ms to 256ms) and different
capacities (from 1Mbps to 1Gbps) to test the speed and
memory usage. We compare the simulation performance of
NS-2 TCP-Linux with the performance of NS-2 TCP-Sack1.

Each case simulates the scenario for 200 seconds. All the
simulations are run on a server with an Intel Xeon 2.66GHz
CPU and a 512KB cache.

In most of the scenarios, NS-2 TCP-Linux and NS-2 TCP-

Sack1 have very similar simulation performance. Here we
present the figures with the most differences.

Figures 8 and 9 show the simulation time of HighSpeed
TCP simulations with different bottleneck capacities and
different numbers of flows respectively.

Both figures show that NS-2 TCP-Linux usually has a
very similar simulation speed to NS-2 TCP-Sack1. However,
NS-2 TCP-Sack1 does not perform consistently well and
has much longer simulation time when the capacity is high,
or the number of flows is large, due to the problem in the
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Figure 10: Performance: Memory usage of different
number of flows (x-axle in log scale)

calendar queue scheduler, discussed in Section 3.3. 7

To quantify the memory usage, we measure the memory
usage of the entire simulator process in the middle point
of the simulation. NS-2 TCP-Linux uses almost the same
amount of memory as NS-2 TCP-Sack1 in most of the sce-
narios. The only case with observable difference is with
Reno and with two flows, as shown in Figure 10. In this
case, NS-2 TCP-Linux uses about 1.7 MBytes (6% of 27.3
MBytes) more than NS-2 TCP-Sack1.

Based on these simulation results, we believe that NS-2

TCP-Linux can be a good alternative or even a replace-
ment for the existing NS-2 TCP modules, given its similar
performance in terms of speed and memory usage and its
advantages in terms of extensibility and accuracy.

4.4 An example: Fixing bugs in the Linux
HighSpeed TCP implementation

Finally, Figure 11 shows an example of how NS-2 TCP-

Linux can help the Linux community to test and debug the
implementations of new congestion control algorithms.

This figure illustrates three bugs in the HighSpeed TCP
implementation in Linux 2.6.16-3, found in our testings with
NS-2 TCP-Linux.8 The scenario is the same as in Figure
5, except that 32 NS-2 TCP-Linux flows are running with
HighSpeed TCP.

Three bugs are revealed in this scenario:

1. The effective value of congestion window (combining
snd cwnd and snd cwnd cnt) may be infinitely large,
as shown in the spikes in Figure 11. This is due to
a variable overflow of snd cwnd cnt. In the imple-
mentation, when snd cwnd cnt is larger than or equal
to snd cwnd, snd cwnd is increased by one, BEFORE

snd cwnd cnt is decreased by snd cwnd. In the rare
situation when snd cwnd cnt== snd cwnd, this oper-

7We also ran NS-2 TCP-Sack1 with our improved scheduler.
With the improved scheduler, NS-2 TCP-Sack1 consistently
runs in a very similar simulation speed to NS-2 TCP-Linux.
8In our testing process, we found different bugs in different
scenarios. Figure 11 is a carefully constructed example to
illustrate all three bugs, after we understood the details of
these bugs.
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Figure 11: Example: Bugs in Linux 2.6.16-3 imple-
mentation of HighSpeed TCP

ation leads to a value of −1 for snd cwnd cnt. Since
snd cwnd cnt is an unsigned variable, the negative value
causes overflow and results in an almost infinitely large
snd cwnd cnt. Rarely happens, this bug is spotted by
the variable tracing function of NS-2 TCP-Linux.

2. There are some flows (e.g. Flow 18 in Figure 11) that
never increase their congestion windows. This is due
to a bug that a flow’s AI parameter is zero if it quits
slow-start with a congestion window smaller than 38.
Flow 18 in Figure 11 is of this case.

3. Some flows never converge to fairness (e.g. Flow 0 and
Flow 3 in Figure 11). This is due to a bug that a flow’s
AIMD parameter is not changed when the flow’s con-
gestion window is decreased to a lower value. Once a
lucky flow gets a large congestion window, it always
keeps the AIMD parameter for the large window and
grows its congestion window faster than other flows.
Hard to be seen in simple cases, this bug is common
in scenarios with large number of flows and long sim-
ulation time.

We fixed these bugs and Figure 12 presents the results
from the same scenario with the bugfix patch. The conges-
tion window trajectories of these three flows are much fairer.
We further confirm from the detailed results that each of the
32 flows has an average throughput within ±18% range of
the fair-share rate in the 900 second simulation. We have
reported all these bugs to the Linux “netdev” mailing list,
and the patch will be applied in the future release.

This example demonstrates two unique and powerful func-
tions of NS-2 TCP-Linux in helping the implementation
community: First, as an full-functioned NS-2 module, NS-2

TCP-Linux provides the variable tracing function which can
capture rare events in the testing process. Second, with fast
simulation speed, NS-2 TCP-Linux provides a controlled en-
vironment to conduct repeatable simulations with complex
scenarios.

Seeing this example, we strongly believe that NS-2 TCP-

Linux can help the implementation community to debug,
test and understand new congestion control algorithms, and
it can close the gap between the implementation community
and the analysis community.
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Figure 12: Example: Corrected implementation of
HighSpeed TCP in Linux 2.6.16-3

5. RELATED WORK
One view of NS-2 TCP-Linux is as an NS-2 TCP imple-

mentation that simultaneously improves extensibility, accu-
racy and simulation speed. We are not aware of similar
efforts on improving NS-2 TCP extensibility. Related ef-
forts in improving NS-2 TCP speed and accuracy include
Scoreboard-RQ, and Scoreboard-RH. Scoreboard-RQ traverses
the retransmission queue once every acknowledgment, simi-
lar to NS-2 TCP-Linux. However, Scoreboard-RQ cannot
detect loss of retransmitted packets and generates many
more timeouts in lossy environments. On the other hand,
Scoreboard-RH, another scoreboard implementation, has to
traverse the retransmission queue for each SACK block, lead-
ing to low simulation speed.

More broadly speaking, NS-2 TCP-Linux is an effort to
utilize source code from real operating systems for network
simulation. In this regard, there are many related efforts
such as Simulation Cradle [21] and Linux UML Simula-
tor [9]. These efforts create an artificial environment around
the actual kernel and run the kernel as is; as a result, they
achieve better accuracy, in the sense that they can produce
results comparable to real systems in packet trace level.
These tools are greatly helpful in studying detailed protocol
behavior (such as three-way handshakes in TCP). However,
the associated costs are slower simulations and larger mem-
ory usage, making them difficult to perform long-running
complex scenario simulations. In contrast, NS-2 TCP-Linux

aims to improve NS-2 TCP only, and is meant for the TCP
congestion control community. It retains all the benefits of
the NS-2, and achieves accuracy in TCP behavior, in con-
gestion window trajectory level, without paying the costs in
simulation performance. As demonstrated in Section 4.4,
NS-2 TCP-Linux has its unique advantages in identifying
performance problems that happen in rare events or with
complex scenarios.

From the most general perspective, NS-2 TCP-Linux is
part of the spectrum of tools for TCP performance analysis.
As shown in Figure 13, this spectrum of tools spans from
abstract mathematic models such as [26, 31], to more real-
istic emulation systems such as Emulab [3] (emulated with
multiple Dummynet [28] machines), NetEm [20] and real
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Figure 13: A spectrum of tools for TCP perfor-
mance analysis

systems in both hosts and links such as WAN-in-Lab [8].
The more accurate and realistic the results, the higher the
simulation cost in terms of time, space or investment, and
the more complex the system. We believe that all the tools
in this spectrum are critical for TCP performance analysis,
each offering a unique perspective and insight, and none can
be replaced by others. In this sense, NS-2 TCP-Linux sits
right in the place with other existing NS-2 TCP modules,
as a packet level simulator.

6. CONCLUSION AND FUTURE WORK
As a new NS-2 module, NS-2 TCP-Linux provides more

accurate simulation results for Linux TCP, with similar sim-
ulation performance and much better extensibility to new
congestion control algorithms.

We expect that the new module can be widely used as an
alternative or even a replacement for the current NS-2 TCP
modules.

We also expect that the new module can help the Linux
community to use NS-2 to test and analyze new TCP al-
gorithms in the future. This can close the gap between
the analysis community and implementation community and
improve the research productivity.

Currently, this NS-2 module has its limitations. It might
not be able to simulate the Linux performance well in the
case where the packet reordering in the path is severe or
packet loss rate is extremely high. For the future work, we
plan to include D-SACK [19] processing and the congestion
window reduction undo function from Linux. We are also
considering developing a delayed ACK module for NS-2 that
performs similarly to Linux.

Since NS-2 TCP-Linux provides a very convenient plat-
form for testing different TCP congestion control protocols
in many scenarios, it is a good foundation towards a bench-
mark suite implementation for TCP congestion control al-
gorithms. We plan to enhance our benchmark suites [32, 4]
and summarize a set of NS-2 scenarios for the benchmark.
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