
Enhancing Locality for Recursive
Traversals of Recursive Structures

Youngjoon Jo and Milind Kulkarni
School of Electrical and Computer Engineering

Purdue University
{yjo,milind}@purdue.edu

Abstract
While there has been decades of work on developing au-
tomatic, locality-enhancing transformations for regular pro-
grams that operate over dense matrices and arrays, there has
been little investigation of such transformations for irregular
programs, which operate over pointer-based data structures
such as graphs, trees and lists. In this paper, we argue that,
for a class of irregular applications we call traversal codes,
there exists substantial data reuse and hence opportunity for
locality exploitation.

We develop a novel optimization called point blocking,
inspired by the classic tiling loop transformation, and show
that it can substantially enhance temporal locality in traver-
sal codes. We then present a transformation and optimiza-
tion framework called TreeTiler that automatically detects
opportunities for applying point blocking and applies the
transformation. TreeTiler uses autotuning techniques to de-
termine appropriate parameters for the transformation. For
a series of traversal algorithms drawn from real-world ap-
plications, we show that TreeTiler is able to deliver perfor-
mance improvements of up to 245% over an optimized (but
non-transformed) parallel baseline, and in several cases, sig-
nificantly better scalability.

Categories and Subject Descriptors D.3.4 [Processors]:
[compilers,optimization]

General Terms Languages

Keywords locality transformations, irregular programs,
tree traversals

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

1. Introduction
It has long been understood that locality is a crucial factor
in delivering high performance scientific applications. Over
the past several decades, there has been substantial work on
automatically transforming regular programs, which operate
over dense matrices and arrays, to enhance locality. These
investigations have led to the creation of catalogs of trans-
formations and techniques to determine when those trans-
formations are legal and effective [16]. In contrast, there has
been relatively little attention paid to locality in irregular
programs, which operate over pointer-based structures such
as trees and graphs. While there have been various tech-
niques and transformations proposed for enhancing the lo-
cality of specific irregular applications [2, 22, 24, 29], gen-
eral approaches to improving the locality of broad classes of
irregular applications are few and far between.

This lack of progress is unsurprising. Pointer-based data
structures are highly dynamic and the resulting memory-
access patterns of applications that use them are highly
input-dependent and unpredictable. As a result, the standard
techniques for reasoning about locality in regular applica-
tions are simply inapplicable1.

The apparent lack of structure in irregular programs can
be misleading. While the particular set of concrete memory
accesses may exhibit little regularity, at an abstract level
there are organizing principles governing these accesses,
such as the topology of the irregular data structure, or the
nature of operations on that data structure. Recent work
by Pingali et al. has suggested that there may, indeed, be
significant structure latent in irregular applications [25]. Can
this structure be exploited to transform irregular applications
so as to enhance locality?

In this paper, we focus on enhancing and exploiting tem-
poral locality in algorithms that perform repeated traversals
of recursive structures, such as trees, DAGs and graphs. Such

1 While there has been progress, in the form of complex compiler analyses
like shape analysis [11, 27], in discerning properties of irregular data
structures (primarily, their topology), these techniques have mostly been
put to ends such as verification and parallelization, rather than locality
enhancement.

applications are widespread; examples include scientific al-
gorithms such as Barnes-Hut [3], graphics algorithms such
as bounding volume hierarchies [34] and Lightcuts [36], and
data mining algorithms such as nearest neighbor and point
correlation [12]. The goal of each of these algorithms is
to compute a value (force, illumination, etc.) for each of a
set of entities (bodies, rays, etc.). This computation is per-
formed by constructing a tree-based acceleration structure
and then traversing that structure for each entity to compute
the desired value. In other words, these algorithms perform
repeated series of tree traversals.

The tree traversals performed by the aforementioned al-
gorithms are highly irregular in nature. This is because the
structure of the tree is determined primarily by the input data
and because the actual layout of the tree in memory is unpre-
dictable. Nevertheless, the trees constructed in these algo-
rithms are traversed numerous times, leading to significant
data reuse. Any time there is data reuse, there may be an
opportunity to exploit temporal locality.

By drawing an analogy with loop transformations in regu-
lar programs, where loop tiling has proved to be an effective
technique to improve locality in matrix codes, we develop
a novel, locality-enhancing transformation for tree traversal
codes that we call point blocking. Because point blocking
can be applied to any parallelizable tree traversal code, it is
a general transformation, and can be effectively employed in
all the applications mentioned previously.

We then describe TreeTiler, a compiler framework that
automatically identifies regions of programs where data
reuse implies that point blocking might be successfully ap-
plied. In regular programs, data reuse often arises in nested
loops that manipulate arrays and matrices, and can be read-
ily identified. In irregular programs, in contrast, data reuse is
often masked by pointer-manipulation operations. TreeTiler
identifies code where point blocking might be performed by
looking for recursive traversals of recursive structures. If
point blocking is legal for such a traversal, TreeTiler auto-
matically performs the transformation.

Point blocking, like loop tiling, requires that optimiza-
tion parameters be carefully tuned to match both the ap-
plication and the architecture. Autotuning has emerged as
a popular approach to parameter selection as it can select
optimization parameters for a particular execution scenario
without programmer intervention [31, 33, 37], a necessity
for any automated transformation framework. Because ir-
regular programs are highly input-dependent, TreeTiler uses
run-time profiling to guide its selection of parameters for
point-blocking.

Contributions
The contributions of this paper are threefold:

1. We present an abstract model of tree traversal codes that
allows reasoning about locality effects. We then describe
a novel transformation, point blocking, that applies to

recursive traversal of recursive structures, such as tree
traversals (Section 2).

2. We develop TreeTiler, a compiler that identifies opportu-
nities for applying point blocking and automatically per-
forms the transformation (Section 3).

3. We implement two autotuners that use run-time profiling
to automatically tune the parameters of a point-blocked
application (Section 4).

In Section 5, we evaluate the effectiveness of point block-
ing, and the TreeTiler transformation and tuning framework,
on a suite of five applications that perform tree traversals.
The automatically transformed applications achieve perfor-
mance improvements of up to 245% over hand-optimized
parallel baselines that do not use point-blocking. Further,
TreeTiler’s autotuning is able to select transformation pa-
rameters that are competitive with hand-tuned transforma-
tions. For several benchmarks, the locality benefits of point
blocking also result in significantly greater scalability.

2. Transformations for tree-traversal codes
In this section, we begin by discussing some background on
applications that perform recursive traversals over recursive
data structure. We next describe an abstract model for rea-
soning about the locality properties of such applications. Fi-
nally, we present the point blocking optimization, and dis-
cuss its locality effects in relation to our abstract model.

2.1 Background
As discussed in the introduction, we are interested in appli-
cations that perform repeated traversals of recursive struc-
tures such as trees, DAGs and graphs. Because these re-
peated traversals each access the same data structure, there
is an abundance of data reuse, and hence locality, to be ex-
ploited.

These applications all follow the same general pattern. To
explain this pattern, we will make reference to perhaps the
canonical tree-traversal algorithm, Barnes-Hut [3], whose
pseudocode is given in Figure 12. The outer loop of a traver-
sal code iterates over a set of entities or points; in Barnes-
Hut, these are the bodies in space (line 1). For each point, a
recursive structure, the environment is traversed; in Barnes-
Hut, the environment is an oct-tree built over the entities
(line 2). This traversal is performed recursively: at each node
in the environment, a check is made to see if the traver-
sal should be stopped (line 8) or whether it should continue
(lines 11–14). Because the traversal is recursive, it explores
the data structure in depth-first order.

Simple locality-enhancing transformations Because the
oct-tree in Barnes-Hut is a highly dynamic data structure,
exploiting locality in the traversals is difficult. However, as

2 The full Barnes-Hut algorithm consists of several phases; we concentrate
on the force computation phase, which is both the most time-consuming
phase, and the phase with the computational structure we are interested in.

1 Set<P o i n t> p o i n t s = /∗ e n t i t i e s ∗ /
2 O c t T r e e C e l l r o o t = /∗ e n v i r o n m e n t ∗ /
3 foreach (P o i n t p : p o i n t s) {
4 Recur se (p , r o o t) ;
5 }
6
7 void Recur se (P o i n t p , O c t T r e e C e l l c) {
8 i f (f a rEnough (p , c . cofm) | | c . i s L e a f) {
9 u p d a t e C o n t r i b u t i o n (p , c . cofm) ;

10 } e l s e {
11 foreach (O c t T r e e C e l l c h i l d : c . c h i l d r e n) {
12 i f (c h i l d != n u l l)
13 Recur se (p , c h i l d) ;
14 }
15 }
16 }

Figure 1. Force computation algorithm for Barnes-Hut

Objects Traversal size L2 miss % Improvement in cycles
(Bytes) rate (%) over un-optimized

10000 63, 944 21.61 67.3
100000 108, 656 44.97 45.9

1000000 139, 616 55.30 26.4

Table 1. Efficacy of sorting optimization for various traver-
sal sizes

the same tree is traversed by each point (the outer loop
in Figure 1), there is significant data reuse. Points that are
nearby in space are likely to perform very similar traversals
of the oct-tree, visiting the same set of tree nodes. Thus,
if these traversals are performed consecutively, the oct-tree
nodes visited during the first traversal are likely to remain
in cache during the second traversal, exploiting temporal
locality.

Such a locality-exploiting order of traversals can be ar-
ranged by processing the points according to their geometric
position (e.g., with a space-filling curve), so that adjacent
points in the sorted order are nearby geometrically [2, 29];
we use this optimization in the baseline we use in the eval-
uation of Section 5. Though the optimization has only been
applied to Barnes-Hut in the literature, we note that analo-
gous transformations can be applied to any traversal code: if
the points are sorted to maximize the overlap between con-
secutive traversals, locality can be improved.

This optimization loses its effectiveness as the traversal
sizes get larger. With a sufficiently large traversal, the least
recently visited nodes of the oct-tree will be evicted from
cache, and hence when the next point is processed those
nodes will have to be brought back in to cache, incurring
additional misses. Table 1 shows, for several tree sizes, the
average traversal size, the L2 miss rate of an optimized im-
plementation, and the % improvement in cycles over an un-
optimized implementation. The test system is a dual-core In-
tel Pentium with 32K L1 data cache per core and 1M shared
L2 cache. The efficacy of sorting is clear for small sizes:
in an input with 10,000 points, the sorting optimization im-
proves runtime by 67%. However, with an input of 1 million
points, the sorting optimization has much higher miss rates,
and only improves runtime by 26% compared to the un-

1 Set<P o i n t> p o i n t s = /∗ e n t i t i e s i n a l g o r i t h m ∗ /
2 Set<P o i n t> o b j e c t s = /∗ e n v i r o n m e n t o b j e c t s ∗ /
3 O c t T r e e C e l l r o o t = buildTreeAndComputeCofM (o b j e c t s) ;
4 foreach (P o i n t p : p o i n t s) {
5 foreach (O c t T r e e C e l l c : t r a v e r s e (r o o t , p)) {
6 i f (f a rEnough (p , c . cofm) | | c . i s L e a f) {
7 u p d a t e C o n t r i b u t i o n (p , c . cofm) ;
8 }
9 }

10 }

Figure 2. Abstract algorithm for tree-traversal

optimized version. Clearly, a more sophisticated optimiza-
tion is necessary to continue exploiting locality as traversal
sizes get larger.

2.2 An abstract model
Reasoning about locality in codes that traverse recursive
structures is difficult for a number of reasons. First, unlike
in regular applications, the structure of the key data struc-
tures is highly input-dependent. The oct-tree generated in
Barnes-Hut is dependent on the particular locations of the
points in the system. Furthermore, the data structures are dy-
namically allocated, and hence can be scattered throughout
memory. Finally, the traversals are not uniform; a traversal
can be truncated (e.g., due to the distance check in line 8
of Figure 1), and traversals for two different points are not
necessarily similar.

However, we can still reason about locality by consider-
ing the behavior of a traversal algorithm in a more abstract
sense. Rather than viewing a traversal as a recursive, depth-
first walk of a data structure, we can instead visualize the
traversal in terms of the actual nodes touched. Fundamen-
tally, processing a single point requires accessing some se-
quence of tree nodes. The particular arrangement within the
tree of those nodes is irrelevant; all that matters is the ulti-
mate sequence in which the nodes are touched. If we imag-
ine that there is an oracle function traverse that generates
the sequence of nodes accessed while processing a particular
point, we can rewrite the code of Figure 1 as shown in Fig-
ure 2. In other words, we can view the algorithm as a simple,
doubly-nested loop. Notably, for the purposes of locality, the
behavior of the original Barnes-Hut code is equivalent to
the abstract algorithm. All that matters is the sequence of
accesses; the additional computations required to determine
whether to continue a traversal or not do not affect local-
ity. Thus, the sequences of memory accesses for the code in
Figure 1 and Figure 2 are identical.

Recursive traversals as outer products This abstract algo-
rithm provides insight into why sorting the points (as dis-
cussed in Section 2.1) is useful for locality. Consider the be-
havior of two consecutive points, p1 and p2. In the unsorted
algorithm, there is little overlap between traverse(p1) and
traverse(p2). Most of the inner-loop accesses for the p2

iteration will result in cache misses. However, sorting the

1 P o i n t p [n] = /∗ e n t i t i e s ∗ /
2 O c t T r e e C e l l c [m] = /∗ t r a v e r s a l ∗ /
3 f o r (i n t i = 0 ; i < n ; i ++)
4 f o r (i n t j = 0 ; j < m; j ++)
5 Update (p [i] , c [j]) ; / / A[i] [j] = p [i]∗ c [j]
6
7 void Update (P o i n t p , O c t T r e e C e l l c) {
8 i f (f a rEnough (p , c . cofm) | | c . i s L e a f)
9 u p d a t e C o n t r i b u t i o n (p , c . cofm) ;

10 }

Figure 3. Traversals as outer product

points such that consecutive points have similar traversals
will result in cache hits.

When the points are sorted, the variability between con-
secutive traversals will be a fairly small second-order ef-
fect, so we can simply consider consecutive traversals in the
sorted case to be the same. This approximation lets us further
simplify the abstract algorithm. The outer loop iterates over
a vector (of points) and, for each point, the inner loop iter-
ates over a vector (containing the nodes of the traversal). If
there are n points, and the average traversal is m nodes, then
this is an O(mn) algorithm with an access pattern equiva-
lent to an m × n outer product. Figure 3 demonstrates this
correspondence, showing how a tree traversal is analogous
to the outer product of a vector p and a vector c.

Note that this model elucidates why the efficacy of the
sorting optimization decreases as traversals get larger. As
long as the average traversal of size m fits in cache, we incur
only cold misses on the traversal vector. However, as soon
as m exceeds cache, an LRU replacement policy will cause
each access to the traversal vector to miss.

2.3 Point blocking
Given the abstract, outer-product model of traversal codes
described above, several analogs of classical loop transfor-
mation techniques become apparent. For example, loop in-
terchange would place the traversal loop on the outside, with
the point loop on the inside. This corresponds to choosing a
node of the recursive data structure, then processing each
point that must interact with it. Makino proposed a vari-
ation of this transformation for Barnes-Hut [21], to facili-
tate vectorization. However, we note that, just as the original
code suffers from poor locality if the traversal vector exceeds
cache, the loop-interchanged code will suffer from poor lo-
cality if the point vector exceeds cache. For large inputs, this
is likely3.

While loop interchange may not produce an effective im-
plementation of a traversal code, loop tiling holds promise.
In particular, we propose tiling the point vector, which pro-
duces the code seen in Figure 4. Essentially, this code breaks
the points into blocks of size B. For each block, each node
of the recursive data structure is chosen, then each point in

3 In fact, for Barnes-Hut, the point vector has n elements, while the traversal
vector has O(logn) elements, so the interchanged code is more likely to
suffer cache misses than the original code.

1 P o i n t p [n] = /∗ e n t i t i e s ∗ /
2 O c t T r e e C e l l c [m] = /∗ t r a v e r s a l ∗ /
3 f o r (i n t i i = 0 ; i i < n ; i i += B) {
4 f o r (i n t j = 0 ; j < m; j ++)
5 f o r (i n t i = i i ; i < i i + B ; i ++)
6 Update (p [i] , c [j]) ; / / A[i] [j] = p [i]∗ c [j]
7 }

Figure 4. Point blocked traversal

!"

#"

$"

%"

&"

'"

("

)"#"

%"

$"

*"

+"

&"

'"

("

)")"

)")")"

)")"

)"

)"

)")"

)")")"

*" +"

)"

)"

)"

)"

)"

)"

)"

)"

,
-.

/0
"

1-2340"
530-64/." 7-64/."

)")")"

)")")"

)")"

)"

)"

)")"

)")")"

)"

)"

)"

)"

)"

)"

)"

)"

)")")"

)")")"

)")"

)"

)"

)")"

)")")"

)"

)"

)"

)"

)"

)"

)"

)"

%8-9:/."
!"""""";""""""<""""""=" !""""""="""""";""""""<" !""""""="""""";""""""<"

>.?"

>@?" >A?" >9?"

Figure 5. Traversal order of a sample tree

the block is processed for the chosen node. If B is chosen
correctly, the points in a block will never leave cache. Fur-
ther, regardless of how large the traversal is, each node of
the traversal will only incur a cache miss once per block4.
We call this optimization point blocking. Section 3 discusses
how to realize point blocking in actual traversal codes (rather
than the abstract code) and discusses sufficient conditions for
its legality.

Point blocking example
A simple example will help elucidate the process of per-
forming point blocking; we will explain both the concep-
tual behavior of the transformation, and illustrate how the
transformation is applied to code. We take the Barnes-Hut

4 In a traversal of a cyclic structure, certain nodes may be visited multiple
times, and may incur misses each time.

code of Figure 1 and the sample binary (for simplicity) tree
of Figure 5(d). Borrowing from the literature on loop trans-
formations in regular programs, and using our analogy of
tree traversal codes to vector outer products, we can visual-
ize our transformations in a two dimensional iteration space.
Figure 5(a) shows the original (unsorted) iteration space for
four points. Each circle in the iteration space represents one
node of the data structure being visited by one point. Each
column represents the accesses made by a particular point,
while each row represents the accesses made at a particular
node of the tree. Note that not every point visits each node, as
points’ traversals can be different. The arrows show the or-
der in which accesses are made. Point 1 traverses nodes A-F
in depth first order, then moves on to node Z, but the termi-
nation condition (line 8 of Figure 1) truncates the traversal
and prevents it from visiting node X. Next is point 3, and
the traversal is truncated at nodes C and Z. For point 4 the
traversal is truncated at node B, and finally point 2 has the
same traversal as point 1.

As discussed in Section 2.1, it is often possible to sort
the points, so that points with similar traversals are pro-
cessed consecutively. This results in the traversal order of
Figure 5(b)5. Point 2 is processed after point 1, and will en-
joy temporal locality from point 1’s previous traversal. The
problem arises when the traversal outsteps cache. For exam-
ple, if the cache can only fit 5 nodes, node A will no longer
be in cache by the time point 2 comes around to it, even
though point 1 accessed the node in its traversal.

Point blocking changes the order as in Figure 5(c). This
is for a block size of 4, and the blocks are shown as red
rectangles. Now, even if the cache can only fit 5 nodes,
points 2, 3 and 4 can exploit temporal locality from point 1’s
previous access. As in loop tiling, we must take care to keep
the point vector in cache by sizing the blocks appropriately.
Note that the point blocked code must preserve the traversals
of individual points. Points 3 and 4 do not interact with node
E in the untransformed code, and hence when node E is
visited by the point block, points 3 and 4 should be skipped.
A simple point blocked implementation is shown in Figure 6.
Nodes are accessed on a per-block basis, and points that
need to recurse further are added to a next block (line 19). A
complete, more complex example will be discussed next.

3. Automatic transformation with TreeTiler
In the previous sections we have discussed how loop trans-
formations can significantly reduce cache misses in codes
that repeatedly traverse trees and other recursive structures.
Realizing these transformations is non-trivial because each
point may have a different traversal (i.e., each point may
require traversing a different portion of the data structure).
As long as the differences in traversals between consecutive
points are small, the point blocking transformation can be

5 Changing the order of points does not affect the set of nodes that each
point must access.

1 Set<P o i n t> p o i n t s = /∗ e n t i t i e s ∗ /
2 O c t T r e e C e l l r o o t = /∗ e n v i r o n m e n t ∗ /
3 Block b = new Block () ;
4 foreach (P o i n t p : p o i n t s) {
5 b . add (p) ;
6 i f (b . s i z e == b l o c k S i z e) {
7 Recur se (r o o t , b) ;
8 b = new Block () ;
9 }
10 } / / ha nd l e r e m a i n i n g p o i n t s
11
12 void Recur se (O c t T r e e C e l l c , Block b) {
13 Block nextB = new Block () ;
14 f o r (i n t i = 0 ; i < b . s i z e ; i ++) {
15 P o i n t p = b . p [i] ;
16 i f (f a rEnough (p , c . cofm) | | c . i s L e a f) {
17 u p d a t e C o n t r i b u t i o n (p , c . cofm) ;
18 } e l s e {
19 nextB . add (p) ;
20 }
21 }
22 i f (nextB . s i z e > 0) {
23 foreach (O c t T r e e C e l l c h i l d : c . c h i l d r e n) {
24 i f (c h i l d != n u l l)
25 Recur se (c h i l d , nextB) ;
26 }
27 }
28 }

Figure 6. Point blocked code for Barnes-Hut

effective; nevertheless, we must ensure that these differing
behaviors are respected by the transformation. In this sec-
tion, we describe an analysis and transformation framework,
called TreeTiler, which can apply the transformations auto-
matically. TreeTiler is written as a series of passes in the
JastAdd framework [7], which enables analysis and trans-
formation of Java programs.

TreeTiler consists of several passes, which we describe in
more detail in the following sections:

1. Identifying targets for point blocking. TreeTiler finds pos-
sible transformation opportunities by looking for code
that performs repeated traversals of recursive structures.
(Section 3.1).

2. Verifying correctness. TreeTiler analyzes the depen-
dences in the identified loop to determine whether point
blocking can be legally performed. (Section 3.2).

3. Applying point blocking. If point blocking is legal, TreeTiler
automatically performs the transformation. (Section 3.3).

3.1 Identifying opportunities for point blocking
While recognizing a traversal code structure can be expe-
dited with programmer annotations, many traversal codes
have a common algorithmic structure that does not require
annotations to recognize. In particular, many traversal codes
are written by recursive function calls on recursive data
structures. If an application performs repeated recursive
traversals of a recursive structure, TreeTiler will identify
it as a candidate for point blocking.

Thus, the first step in this phase is to determine whether
an algorithm consists of a recursive traversal of a recursive
structure. Hereafter, we will use Java terminology and refer

1 c l a s s O c t T r e e C e l l {
2 O c t T r e e C e l l [] c h i l d r e n ;
3 void Recur se (P o i n t p) {
4 i f (f a rEnough (p , cofm) | | i s L e a f) {
5 u p d a t e C o n t r i b u t i o n (p , cofm) ;
6 } e l s e {
7 foreach (O c t T r e e C e l l c h i l d : c h i l d r e n) {
8 i f (c h i l d != n u l l)
9 c h i l d . Recu r se (p) ;
10 }
11 }
12 }
13}

Figure 7. Passing recursive class via implicit argument

to functions as methods, and data structures as classes. We
define a recursive class as a class with fields of its own type
(which we call its children). This class represents the nodes
of the structure being traversed, and the traversal of a point
is realized by recursively calling a method on the children
of a node. The recursive method has some termination con-
dition dependent on both the point being processed and the
current node being traversed. If the termination condition is
satisfied, the recursion is stopped, and the traversal proceeds
with recursion at a previous method call. Depth-first order is
maintained naturally by the program stack.

This doubly recursive structure is illustrated for Barnes-
Hut in Figure 1. The node class OctTreeCell is a recursive
class with fields children that are also of type OctTreeCell.
The method Recurse (lines 7-16) is a recursive method that
takes a recursive class as an argument. The traversal is real-
ized by calling Recurse on the children of a node (line 13).
A termination condition stops the recursion if the point is far
enough away from the node (line 8).

The algorithmic structure that we want to identify must
be a combination of both recursive method calls and recur-
sive structures. Recognizing each individually is trivial. A
recursive method, m, can be recognized by finding a call to
itself within a method’s body6. A recursive structure can be
recognized by finding a class, c, with at least one field f of
the same class (or superclass).

We must then determine whether the recursive method
performs a recursive traversal of any identified recursive
structures. This might happen in one of two ways: (i) if m
takes an object o of class c as an argument, and passes o.f
as an argument to the recursive call; or (ii) if m is a member
method of c and it performs the recursive call by invoking
f.m() (in other words, the data structure node is the implicit
“this” argument). The former was illustrated in Figure 1.
Figure 1 could be re-written to Figure 7, where the explicit
argument child in line 13 of Figure 1 has changed to the
implicit argument in line 9 of Figure 7. Using implicit argu-
ments is common programming style, and TreeTiler handles
both cases.

6 A more sophisticated approach is to look for cycles in a call graph; the
simple approach here suffices for our benchmarks.

Having identified a recursive traversal of a recursive
structure, TreeTiler’s next goal is to determine if it is re-
peated. To do so, TreeTiler uses a call graph analysis to de-
termine that the recursive method is called (either directly,
or through a chain of calls) from a loop in the application. If
there is a single path from the enclosing loop to the recursive
method, TreeTiler transforms the code as described in Sec-
tion 3.3. TreeTiler will perform the transformations for every
kernel it identifies that is a repeated recursive traversal of a
recursive data structure.

3.2 Correctness of transformation
As in any loop transformation in regular programs, our trans-
formation must preserve dependences to ensure correctness.
We will refer to the iteration space of our simple example,
which was depicted in Figure 5.

Note that while the transformed code walks the iteration
space in a different order than the original code, a few key
aspects of the execution order are preserved. First, for a
given point, nodes are visited in the same order. Hence, intra-
point dependences (dependences that point “down” in the
iteration space) are preserved. Second, if the data structure
being traversed is a tree, for a given node, points “visit”
the node in the same order. Hence, while not all inter-point
dependences are respected by the transformation, intra-node
dependences, where values on a node are updated as it is
visited by points, are preserved as well.

Other types of dependences are not preserved. For exam-
ple, if processing a point changes the tree structure, subse-
quent points’ iteration spaces will be affected, and the trans-
formed traversal order may produce different results. Fur-
ther, if the structure being traversed is not a tree, there may
be multiple paths to reach a certain node, or a traversal may
access a node multiple times; in these situations, inter-point
dependences (even those that are intra-node) may not be pre-
served by the transformation. Section 3.4 discusses some of
the implications of traversals of non-tree data structures.

To handle these situations, TreeTiler performs two checks.
First, it ensures that the data structure is not morphed during
the traversal (i.e., that the recursive fields are not written to).
Second, TreeTiler checks if the traversal is parallelizeable as
a conservative guarantee that there are no problematic inter-
point dependencies. If both checks pass, then point blocking
is legal. Note that parallelizability is a sufficient condition for
point blocking to be legal, not a necessary one; tree traver-
sals where values on nodes are updated as points visit them
can be transformed, but not parallelized.

3.3 Implementation of transformation
Once we have identified the recursive structures that can be
transformed correctly, the next step is to realize the trans-
formation efficiently. A generic recursive structure that we
have identified will look like Figure 8. Our analysis will find
a recursive method associated (explicitly or implicitly) with
a recursive class (lines 10-17), and the call path to an en-

1 Set<P o i n t> p o i n t s = /∗ e n t i t i e s i n a l g o r i t h m ∗ /
2 O b j e c t o1 = /∗ s o m e t h i n g loop i n v a r i a n t ∗ /
3 foreach (P o i n t p : p o i n t s) {
4 O b j e c t o2 = /∗ s o m e t h i n g loop v a r i a n t ∗ /
5 / / do s o m e t h i n g − p r o l o g u e
6 O b j e c t o3 = r e c u r s e (p , o1 , o2 , r o o t) ;
7 / / do s o m e t h i n g − e p i l o g u e
8 }
9
10 void r e c u r s e (P o i n t p , O b j e c t o1 , O b j e c t o2 , Node node) {
11 / / do s o m e t h i n g
12 i f (cond) {
13 foreach (Node c h i l d : node . c h i l d r e n) {
14 r e c u r s e (p , o1 , o2 , c h i l d) ;
15 }
16 }
17 }

Figure 8. Original generic recursive structure

closing loop (lines 3-8). There can be an arbitrary number of
methods in the call path, which may or may not have return
values. There can be arbitrary code between each method
call on the path to the recursive method (lines 5, 7). And
there can be arbitrary arguments passed along methods in
the call path. The generic code shows two such arguments,
one that is loop variant and another that is loop invariant with
regard to the enclosing loop. This distinction is necessary be-
cause loop variants will require extra space, proportional to
the size of the block. The type of the arguments or return
values is irrelevant, they are deemed Object for the sake of
illustration. Arbitrary intermediate methods are not shown in
Figure 8, and discussed further in Section 3.3.3.

The transformed code of the generic recursive structure
is shown in Figure 9. The automatically generated block
classes corresponding to the transformed code are discussed
in Appendix A. We will now discuss the transformation step
by step. We will first explain how TreeTiler operates in the
simple case: code such as Barnes-Hut. We will then describe
how TreeTiler handles complications in the basic algorith-
mic pattern: multiple recursive calls within a method, and
chains of method calls between the loop and the recursive
method.

3.3.1 Basic transformation
The first step in tiling a recursive code is to transform the
enclosing loop (the entry to the call path to the recursive
method) to be over blocks of points, rather than single points.
In the original code, each point is processed by calling foo on
the root node. In the transformed code, points will be added
to a block instead (line 9 of Figure 9); once this block is
full, a modified version of foo will be called on the entire
block. Note that this block may contain more than just the
point; any loop-variant arguments to foo (such as o2) are also
placed in the block. The block also contains space for the
return value of foo, as it is also loop variant. Loop invariant
arguments (such as o1) are passed to foo without change.

The original enclosing loop can have arbitrary code be-
fore (prologue, line 5 of Figure 8) and after (epilogue, line
7 of Figure 8) the method call. The prologue need not be

1 Set<P o i n t> p o i n t s = /∗ e n t i t i e s i n a l g o r i t h m ∗ /
2 O b j e c t o1 = /∗ s o m e t h i n g loop i n v a r i a n t ∗ /
3 Block b = /∗ b l o c k i n s t a n c e ∗ /
4 B l o c k S t a c k s t a c k = /∗ s t a c k i n s t a n c e ∗ /
5 / / a u t o t u n i n g code t o be added here
6 foreach (P o i n t p : p o i n t s) {
7 O b j e c t o2 = /∗ s o m e t h i n g loop v a r i a n t ∗ /
8 / / do s o m e t h i n g − p r o l o g u e
9 b . add (p , o2) ;
10 i f (b . s i z e == b l o c k S i z e) {
11 s t a c k . s e t [0] . b l o c k = b ;
12 r e c u r s e (o1 , r o o t , b) ;
13 f o r (i n t i = 0 ; i < b . s i z e ; i ++) {
14 P o i n t p = b . p [i] ;
15 O b j e c t o2 = b . o2 [i] ;
16 O b j e c t o3 = b . r e t f o o [i] ;
17 / / do s o m e t h i n g − e p i l o g u e
18 }
19 b . r e c y c l e () ;
20 }
21 } / / ha nd l e r e m a i n i n g p o i n t s
22
23 void r e c u r s e (O b j e c t o1 , Node node ,

B l o c k S t a c k s t a c k , i n t l e v e l) {
24 B l o c k Se t b s e t = s t a c k . s e t [l e v e l] ;
25 Block b = b s e t . b l o c k ;
26 Block nextB = b s e t . n e x t B l o c k ;
27 nextB . r e c y c l e () ;
28 i f (Block . t u n i n g) Block . workDone += b . s i z e ;
29 f o r (i n t i = 0 ; i < b . s i z e ; i ++) {
30 P o i n t p = b . p [i] ;
31 O b j e c t o2 = b . o2 [i] ;
32 / / do s o m e t h i n g
33 i f (cond) {
34 nextB . add (p , o2) ;
35 }
36 }
37 i f (nextB . s i z e > 0) {
38 s t a c k . s e t [l e v e l + 1] . b l o c k = nextB ;
39 foreach (Node c h i l d : node . c h i l d r e n) {
40 r e c u r s e (o1 , c h i l d , s t a c k , l e v e l + 1) ;
41 }
42 }
43 }

Figure 9. Transformed generic recursive structure

changed, as in the transformed code the prologue will be ex-
ecuted for each point of the block before the method call.
The epilogue however, must execute after the method call,
which will not be accomplished simply by leaving it at its
original position after a call to add to the block. The epi-
logue is moved to a new loop that iterates over points of the
block (lines 13-18 of Figure 9). This new loop has access to
the loop variant arguments, which were added to the block,
as well as the return value of foo.

The block b is recycled after it has been processed (line
19 of Figure 9). Recycling a block, simply sets its size to
0, so that the next invocation of add will overwrite previous
points. If the last points in the loop cannot fill a block, the
partial block is processed as in lines 12-18 of Figure 9.

The next step is to transform the recursive method that
performs the traversals. Because the traversals of individual
points are different, a block of points must traverse a set
of data structure nodes that is the union of the traversals of
all the points within the block. If a node from this superset
should not interact with a point in the block, that point
should be skipped. To ensure that points within a block skip

the appropriate nodes, we must somehow track which points
should interact with which nodes. In general this would
require space per point proportional to the entire traversal,
but the depth-first order allows us to use space proportional
to the depth of the traversal. This comes from the observation
that once a point is skipped for level l, it will also be skipped
for all subsequent levels l + n along a depth-first recursion
path. Because a given depth-first path through the tree only
accesses one tree node per level, we need only keep track of
a point’s information once at each level of the tree, which
results in one block’s worth of information per tree level.

Rather than allocate a new block at each level (as in
Figure 6), it is more efficient to preallocate a block stack,
which has a block set per level. Each set has a reference to
the current block for the level, and allocated space for any
block(s) that might be needed for the next level. The block
stack and the current level of the traversal, are passed to the
recursive method. The method is executed for each point
in the current block; recursive invocations in the original
code are replaced, and instead add points to the next level’s
block(s). Once each point has been processed for the current
level, the method is called on the next level’s block(s).

3.3.2 Handling multiple recursive calls
Interestingly we may need multiple blocks for the next level.
This is because in some algorithms, points access children in
different orders during their depth-first traversal. For exam-
ple, this situation arises in the Nearest Neighbor benchmark,
and is illustrated in Figure 10. Figure 10(a) shows the origi-
nal recursive method, and Figure 10(b) shows how it should
be transformed. The order in which the children are pro-
cessed can be either left first then right, or right first then left,
depending on the point. The transformed code must honor
both orders, by having two next blocks. Points that take the
first traversal order are added to the first block, while those
that take the second traversal order are added to the second
block. At the end of the current level, both next blocks are
processed in the appropriate order.

It may seem that we should have a next block for each re-
cursive invocation in the transformed method. For example,
in the generic code of Figure 8, where there are an arbitrary
number of children, it seems that we might need an arbitrary
number of blocks. The crucial difference between the sce-
nario in figure 8 and the scenario of Figure 10 is that the lat-
ter has a divergence of control flow dependent on the point’s
properties. Hence, the traversal orders may differ on a point-
by-point basis, and separate blocks are necessary to differen-
tiate between the orders. In the generic scenario, lines 13–15
in Figure 8 will be executed for all points in the block, hence
it can be replaced with a single block add call (line 34 of Fig-
ure 9). Lines 13–15 in Figure 8 are moved to lines 39-41 in
Figure 9.

TreeTiler decides the number of next blocks required
by starting at each recursive method call site within the
recursive method body, and expanding the call site to the

1 void r e c u r s e (P o i n t p , Node n) {
2 boolean cond = / / do s o m e t h i n g d e p e n d e n t on p
3 i f (cond) {
4 r e c u r s e (p , n . l e f t) ;
5 r e c u r s e (p , n . r i g h t) ;
6 } e l s e {
7 r e c u r s e (p , n . r i g h t) ;
8 r e c u r s e (p , n . l e f t) ;
9 }
10 }

(a) Original code
1 void r e c u r s e (Node n , B l o c k S t a c k s t a c k , i n t l e v e l) {
2 B l o ck S e t b s e t = s t a c k . s e t [l e v e l] ;
3 Block b = b s e t . b l o c k ;
4 Block nextB = b s e t . n e x t B l o c k ;
5 Block nextB2 = b s e t . n e x t B l o c k 2 ;
6 nextB . r e c y c l e () ;
7 nextB2 . r e c y c l e () ;
8 f o r (i n t i = 0 ; i < b . s i z e ; i ++) {
9 P o i n t p = b . p [i] ;
10 boolean cond = / / do s o m e t h i n g
11 i f (cond) {
12 nextB . add (p) ;
13 } e l s e {
14 nextB2 . add (p) ;
15 }
16 }
17 i f (nextB . s i z e > 0) {
18 s t a c k [l e v e l + 1] . b l o c k = nextB ;
19 r e c u r s e (p , n . l e f t) ;
20 r e c u r s e (p , n . r i g h t) ;
21 }
22 i f (nextB2 . s i z e > 0) {
23 s t a c k [l e v e l + 1] . b l o c k = nextB2 ;
24 r e c u r s e (p , n . r i g h t) ;
25 r e c u r s e (p , n . l e f t) ;
26 }
27 }

(b) Transformed code
Figure 10. Traversing different orders of children

largest control flow block that is control independent of the
point. Each expanded call site requires its own next block.
The required number of next blocks is synthesized in the
block set class, and each expanded call site is replaced with
a call to add points to the associated next block. At the end
of the recursive method, each next block is recursed upon if
not empty.

3.3.3 Handling intermediary methods
There can be an arbitrary number of intermediary methods
from the enclosing loop to the recursive method. The orig-
inal and transformed code for a intermediary method foo is
shown in Figure 11. The method may have arbitrary pro-
logues and epilogues, which must be transformed accord-
ingly. For intermediary methods, both the prologue and epi-
logue are executed once per block in the transformed code,
instead of once per point as in the original code. Therefore
both the prologue and epilogue must be moved to a new loop
(lines 2–6, 10–16 of Figure 11(b)). The new loops have ac-
cess to the loop variant arguments that were added to the
block. A graphical depiction of this change is shown in Fig-
ure 12 for a block size of 3. The prologue and epilogue are
shown in white circles, and the next method call is shown in

1 O b j e c t foo (P o i n t p , O b j e c t o1 , O b j e c t o2 , Node r o o t) {
2 / / do s o m e t h i n g − p r o l o g u e
3 r e c u r s e (p , o1 , o2 , r o o t) ;
4 / / do s o m e t h i n g − e p i l o g u e
5 re turn r e t ;
6 }

(a) Original code
1 void foo (O b j e c t o1 , Node r o o t , Block b) {
2 f o r (i n t i = 0 ; i < b . s i z e ; i ++) {
3 P o i n t p = b . p [i] ;
4 O b j e c t o2 = b . o2 [i] ;
5 / / do s o m e t h i n g − p r o l o g u e
6 }
7 B l o c k S t a c k s t a c k = /∗ s t a c k i n s t a n c e ∗ /
8 s t a c k . s e t [0] . b l o c k = b ;
9 r e c u r s e (o1 , r o o t , s t a c k , 0) ;
10 f o r (i n t i = 0 ; i < b . s i z e ; i ++) {
11 P o i n t p = b . p [i] ;
12 O b j e c t o2 = b . o2 [i] ;
13 / / do s o m e t h i n g − e p i l o g u e
14 b . r e t f o o [i] = r e t ;
15 c o n t in u e ;
16 }
17 }

(b) Transformed code
Figure 11. Intermediary methods

Points

Ex
ec

ut
io

n

Prologue

Epilogue

Method
Call

Figure 12. Iteration space prologues and epilogues

black squares. The original execution order is in full arrows,
and the transformed execution order is in dashed arrows.
The prologue is executed for all points in the block, then
the transformed method is called once on the block shown
as a rectangle. When the transformed method returns, the
epilogue is executed for all points in the block.

Return statements within intermediary methods must be
handled with care. To start, intermediary methods may no
longer have return values, as they will be different per point.
The return type of all intermediary methods are changed to
void, and space to save the return value is reserved within
the block. Each return statement must then be changed to
an assignment of the return value, to the space reserved
in the block (line 14 of Figure 11(b)). Then control flow
must ensure that code after the return statement is no longer
executed for that point. This is easier for epilogues. We can
simply insert a continue statement, which will make the loop
move on to the next point. (line 15 of Figure 11(b)).

Returns from method prologues require more careful
changes. We need to invalidate the current point, which is al-

ready in the block, to prevent the next intermediary method
and the epilogue from executing code for that point. We use
a “valid” array within the block and mark prologue returns
as invalid in that array. Subsequent intermediary methods
and epilogues will skip invalid points. Finally, before entry
to the recursive method, the block is compacted (all valid
points are moved forward in the array so there are no invalid
holes), to avoid the overhead of skipping over invalid points
for the computation intensive portion of execution. This is
not shown in Figure 11 for simplicity.

The block stack must be initialized before entry to the
recursive method. This was done in line 11 of Figure 9
for no intermediary methods. When there are intermediary
methods, the method just before the recursive method must
initialize the block stack, as shown in line 8 of Figure 11(b).

3.4 Discussion: generalization to DAGs and graphs
We note that TreeTiler identifies data structure traversals
by looking for recursive traversals of recursive structures.
While the discussion so far has focused on TreeTiler’s appli-
cation to traversals of trees, the framework’s identification
strategy may actually flag traversals of DAGs and general
graphs as potential optimization targets, as well. Interest-
ingly, the transformation presented here can be applied di-
rectly to these more general data structures; point blocking,
if legal, will have similar locality effects regardless of the
type of structure being traversed.

From the perspective of traversal algorithms, the key dis-
tinction between trees and the more general structures is that,
in the latter case, depth-first traversals may visit the same
node more than once. This means the correctness criteria
for point blocking are more complex than for trees. Nev-
ertheless, TreeTiler’s sufficient condition of looking for par-
allelizable loops means that there will be no inter-traversal
dependences, so point blocking will be correctly applied.
We leave the problem of checking more complex correct-
ness conditions, as well as an investigation of the efficacy of
point blocking for DAG and graph traversals to future work.

4. Autotuning
In the previous section, we have presented an approach to
identify recursive structures in tree traversal algorithms that
can be transformed correctly, and a systematic method to
transform the algorithm to enhance locality. Critical to the
performance of the transformation is the block size B. The
optimal block size is dependent on both machine parameters
(e.g., L1, L2 cache size) and algorithmic characteristics (e.g.,
density of a block at different depths, which we call the
effective block size). The notion of optimization parameters
affecting the performance of transformations is well known.
In recent years, there has been a large amount of research
on autotuning, where a compiler automatically selects the
best optimization parameters for a particular scenario [31,
33, 37]. In this section, we describe autotuning methods

Op#mal	

60	

70	

80	

90	

100	

110	

120	

130	

Base	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	
 1024	
 2048	

Ru
n#

m
es
	
 (s
)	

Block	
 Size	
 (#	
 of	
 par#cles)

(a) Barnes-Hut

Op#mal	

100	

200	

300	

400	

500	

600	

700	

Base	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	
 1024	
 2048	

Ru
n#

m
es
	
 (s
)	

Block	
 Size	
 (#	
 of	
 par#cles)

(b) Point Correlation

Op#mal	

60	

70	

80	

90	

100	

110	

120	

130	

Base	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	
 1024	
 2048	

Ru
n#

m
es
	
 (s
)	

Block	
 Size	
 (#	
 of	
 par#cles)

(c) Raytracing

Figure 13. Runtime with varying block sizes for Barnes-Hut, Point Correlation, Raytracing on Opteron

that automatically select a good block size to use for the
transformed algorithm.

Many autotuners can operate at compile time. For ex-
ample, in dense linear algebra, tile size is dependent on
machine parameters but independent of input characteris-
tics and hence can be determined when the library is com-
piled [37]. Because the optimal block size for point block-
ing is dependent on input characteristics as well as machine
parameters, TreeTiler’s autotuners must operate at run-time,
when the input is available.

4.1 Performance of various block sizes
In order to autotune different block sizes to choose the best
size, we must have some idea of the behavior of different
block sizes. Figure 13 shows the serial runtimes in seconds
with varying block sizes for three benchmarks on an Opteron
system with 128K of L1 cache and 1M of L2 cache. Intu-
itively, we would expect that a block size that is too small
would perform poorly due both to the additional instruc-
tion overhead incurred by point blocking and to the fact that
misses in the tree are incurred for every block (as discussed
in Section 2)—more blocks will result in more misses in the
traversal. However, if the block becomes too large to fit in
cache, then we will begin to incur misses on the points in-
stead. We thus expect there to be a “sweet spot,” where the
blocks are large enough to avoid most misses in the tree, but
small enough to fit in cache, an expectation borne out by the
results. In each figure, the best block size is highlighted, and
is surrounded by block sizes that perform worse. The left-
most point on the x axis is the baseline, which corresponds
to a block size of 1. For Raytracing, the baseline is faster than
block sizes of 2 or 4 because it executes fewer instructions.
For Barnes-Hut, enhanced locality almost counters instruc-
tion overhead for even a block size of 2, and for Point Cor-
relation, the enhanced locality is decisive. This difference in
behavior in benchmarks will be discussed in more detail in
Section 5.

The valley shape of the graphs in Figure 13 suggests a hill
climbing approach for finding the optimal block size. We can
visualize the autotuner as descending a valley, profiling per-
formance at different block sizes until the next largest block
size degrades performance. The optimal block size is the
lowest point in the valley. While this approach is attractive,

we found that there is a subtle tradeoff between obtaining a
representative sample of the points, and maintaining the lo-
cality of consecutive points, which militates against the hill
climbing approach. This is discussed in the next section.

4.2 Random sampling
The optimal block size is dependent on not only machine
parameters, but also algorithmic characteristics, which are
often input dependent. The optimal block size for Barnes-
Hut on one input may very well not be the optimal block
size for Barnes-Hut on another input. Hence the autotuner
must make decisions on a per input basis at runtime. The au-
totuner should consume only a fraction of the total number
of points, or else the overhead of the autotuning phase could
become significant. Complicating matters, the irregular na-
ture of the algorithms means that different regions of the data
structure might exhibit widely differing characteristics (e.g.,
the traversals of points that walk one part of a tree might be
much shorter than those that walk a different part of the tree).
An autotuner that investigates various block sizes only using
points from early in the execution may not see the full range
of possible behaviors. The problem then, is to make a good
decision representative of the all the points, while looking at
only a fraction.

A common approach to account for this variability is to
use random sampling. Randomly selecting the test points
from among all the points provides on average the best
representative of the entire set attainable. Because the points
have been sorted so that consecutive points have similar
traversals and enjoy temporal locality, we would like to take
random samples of blocks. When testing a block size of 5
from 1000 points, we want to choose a random sequence of
5 consecutive points, rather than constructing the block from
5 randomly sampled points.

However, even this consideration is not enough. The next
random block of 5 points sampled from the iteration space
may exhibit little inter-block temporal locality. In contrast, in
the actual execution, consecutively executed blocks will ex-
hibit significant inter-block temporal locality, as their points
are likely to have similar traversals. Thus, by introducing
random sampling to account for input irregularity and make
the autotuner’s profiling more representative of actual exe-
cution, we may experience less locality, making the behavior

less representative. We therefore investigate the performance
of two autotuners, described in the next section, that trade off
increased randomness of sampling and increased inter-block
locality.

4.3 Implementation of autotuning
This section discusses the implementation of the autotuner
in TreeTiler. As the transformations discussed in Section 3
are not useful without a good block size, the autotuner also
needs to be integrated into TreeTiler. TreeTiler will generate
transformed code for the tree traversal algorithm, and insert
autotuning code before the enclosing loop (e.g. point loop)
so that the best block size can be determined to be used for
the point loop.

There should be a limit on the number of points used for
autotuning to keep its overhead from becoming too high. We
set the limit to maximum 1% of the total points. If the total
number of points is too few, there might not be enough points
for autotuning. We can apply a runtime check on the total
number of points to decide whether to execute the autotuned
and transformed code path at all. All the benchmarks we
evaluate have one million points, of which 1% is 10,000. We
run each block size 5 times to average out irregularities, and
this allows us to test up to a block size of 512. We also test
the base case (the original code path), to check if we should
be applying our transformation at all.

Hill climbing lets us use fewer points for autotuning if
we arrive at an optimal block size before exhausting all the
points allotted for tuning. However hill climbing requires us
to test each block size 5 times consecutively before we know
whether to test the next block size. Without random sam-
pling, this method is susceptible to irregularities across the
input. One way to distribute the irregularities across differ-
ent block sizes is by consuming all 1% of the points, and
testing block sizes in interleaved order. Due to the tradeoff
discussed in Section 4.2 it is not clear whether random sam-
pling should be used. Hence we implement two autotuners
and compare their performance.

• Auto-rand uses random sampling with hill climbing
• Auto-seq uses sequential sampling with interleaved order

For Auto-rand, we use a hill climbing approach with
a threshold of 20%. The autotuner starts at a block size
of 8, and doubles the block size until the next block size
takes 20% longer than the minimum recorded runtime, or the
autotuner has consumed 1% of the total points. Then the best
block size is compared with the base case. For benchmarks
with a small optimal block size, the hill climbing approach
can save points by consuming less than 1% of the total. The
threshold was employed to ensure that noise in the profiling
does not cause us to stop searching too early.

For Auto-seq, we always consume 1% of the total points,
knowing in advance the maximum block size to test. Then
the block sizes are interleaved starting with a block size of

8 to the maximum block size, to distribute input irregular-
ities among the different block sizes. For example with a
maximum block size of 32, the order of block size tests
will be 8, 16, 32, 1, 8, 16, 32, 1 ... (a block size of 1 is the
base case), whereas for a hill climbing approach it would be
8, 8, 8, 8, 8, 16, 16, 16, 16, 16 ... This results in more repre-
sentative profiling at the cost of always consuming 1% of
the total points for autotuning.

An important correctness condition for both Auto-seq
and Auto-rand is that sampled points must be skipped in the
point loop after the autotuning phase. This is because pro-
cessing a point can have side-effects, and processing a point
twice can be incorrect. Skipping points for Auto-seq is triv-
ial. If P points have been used for autotuning, the point loop
can simply start from the P + 1st point. Skipping points for
Auto-rand is more complex because sampled points could
be anywhere. When using Auto-rand, the transformed code
skips over sampled points using the valid array mechanism
described in Section 3.3.3.

Simply recording the time to process a test block does not
consider the actual amount of work done (e.g. the traversal
size) of the points in that block. The points in a block of 10
may traverse 100 nodes (on a per point basis) and take 10 ms,
while the points in a block of 20 traverses 1000 nodes and
takes 40 ms. In this case the latter is a better block size, and
the recorded times should be normalized to the actual work
done for a fair comparison. The actual work done is profiled
in the recursive method as in line 28 of Figure 9. Profiling
is done only for the autotuning phase to minimize overhead
and prevent false sharing when the point loop is parallelized.

The autotuning loop is inserted at line 5 of Figure 9, and
is explained in more detail in Appendix B.

5. Evaluation
Using the methodology described in the previous sections,
TreeTiler is implemented as a Java source to source trans-
formation. It takes a set of Java files as input, recognizes the
recursive structure, performs the transformation, and outputs
transformed Java files. TreeTiler can be configured to output
transformed code with a fixed block size passed as an argu-
ment, or both flavors of autotuning described in Section 4.
We implement TreeTiler using the JastAdd Extensible Java
Compiler [7].

5.1 Evaluation Methodology
To demonstrate the efficacy of TreeTiler, we evaluate it on
five tree traversal algorithms, from various domains ranging
from scientific applications to data-mining and graphics. We
evaluate four versions of each benchmark.

• Base is the baseline described for each benchmark below.
• Block is a TreeTiler output without autotuning, using an

empirically determined optimal block size.

• Auto-seq is a TreeTiler output with autotuning using
sequential sampling with interleaved test order.

• Auto-rand is a TreeTiler output with autotuning using
random sampling with hill climbing test order.

Note that our baselines use standard optimizations pro-
posed for enhancing temporal locality among consecutive
points in tree traversal codes, as in [2, 29]. While these op-
timizations have been discussed for Barnes-Hut, we have
applied analogous transformations to other benchmarks.
Barnes-Hut uses a Hilbert space filling curve as in [2], and
Point Correlation and Nearest Neighbor sorts the points in
tree order as in [29]. Raytracing and Lightcuts schedule rays
in chunks of 8 × 8 squares to enhance temporal locality
among consecutive rays.

Barnes-Hut (BH) The Barnes-Hut algorithm is a scientific
kernel for performing N-body simulation [3], and has been
explained in detail in Section 2.1. We use the implemen-
tation from the Lonestar benchmark suite [17], augmented
with the optimizations from [2], and the class C input, which
has one million points.

Point correlation (PC) The two-point correlation is a spa-
tial statistic that is of fundamental importance in many natu-
ral sciences. It is defined as the number of pairs of points in
a dataset that lie within a given radius r of each other [12].
Finding the two-point correlation of a point can be accel-
erated by building a kdtree over the points, and pruning
nodes when the minimum distance to the hyper-rectangle
surrounding the node is larger than r [12]. Thus, PC involves
repeated traversals of a kdtree. One million points are ran-
domly generated in a three-dimensional space, and r is cho-
sen so that the average correlation is 3732, or 0.37% of the
total number of points. The benchmark finds the two-point
correlation for all the points.

Nearest neighbor (NN) Nearest neighbor search is an op-
timization problem that arises often in data-mining, and in-
volves finding closest points in metric spaces. NN is also
accelerated by a kdtree, by pruning nodes that cannot be
closer than the current closest find [12]. We implemented a
NN kernel, using exclusion based pruning and the kdtree as
discussed for PC. We randomly generate one million points
in an 7-dimensional space, and find the nearest neighbor for
all the points.

Raytracing (RT) Raytracing is a technique for rendering a
scene by tracing the path of light through pixels in an image
plane, and simulating the effects of the ray’s encounters
with scene objects. This can be accelerated using bounding
volume hierarchies (BVHs), tree structures that permit fast
determination of the objects a ray intersects. Our baseline
is an optimized BVH-based raytracer from [35]. A random
scene is generated with one million triangles. We rendered a
screen of 1024×1024, which amounts to roughly one million
rays.

Lighcuts (LC) Lightcuts is a scalable framework for com-
puting realistic illumination when there are many light
sources [36]. It uses the intuition in BH of approximating
multiple gravitational objects as one, by approximating mul-
tiple light sources as one. A binary tree of lights (e.g. light
tree) is constructed, and locally adaptive light cluster par-
titions are computed per ray by traversing the light tree,
while adhering to a fixed error bound. We used the Lightcuts
implementation from [30]. While the original Lightcuts pa-
per [36] renders scenes with up to 600, 000 lights, we found
the implementation we obtained takes a very long time to
render just 1, 000 lights. With only 1, 000 lights, the average
traversal isn’t deep enough for TreeTiler to be effective. We
use Lightcuts with a screen of 1024× 1024 and 16 lights to
demonstrate that TreeTiler can autotune and choose the base
case, where the transformation is not applied. The Lightcuts
source code consists of 62 files, and is the most complex
of our benchmarks. Nevertheless, TreeTiler can correctly
transform the relatively complex code of Lightcuts.

Platforms We evaluate our benchmarks on two systems
with different cache configurations.

• The Niagara system runs SunOS 5.10 and contains two
8-core UltraSPARC T2 chips in SMP configuration. Each
chip has 8K L1 data cache per core and 4M shared L2
cache. We present results up to 64 threads, at which point
our system is employing 4-way multithreading.

• The Opteron system runs Linux 2.6.24 and contains four
dual-core AMD Opteron 2222 chips in SMP configura-
tion. Each chip has 128K L1 data cache per core and 1M
L2 cache per core. We present results up to 8 threads.

TreeTiler is independent of any parallelization model, and
takes as input sequential code, and outputs sequential code.
As discussed in Section 3.2, parallelizability is a sufficient
condition for point blocking to be legal, not a necessary
one. Because we want to test our benchmarks on multicores,
we have manually parallelized both the benchmark baselines
and the three TreeTiler variants using the foreach construct
of the Galois system [18]. This foreach construct is im-
plemented internally by Java threads, and is analogous to
an OpenMP for loop. We simply add this foreach construct
to the point loop, and it parallelizes by processing multiple
points or blocks at once. The autotuning phase is not par-
allelized. We apply load balancing with work stealing im-
plemented via lock-free double-ended queues as in Cilk [9].
The granularity of work chunks is equal to the empirically
determined optimal block size of Block for Base and Block,
and the autotuned block size for Auto-seq and Auto-rand.
The benchmarks were written in Java 6 and executed on the
Java HotSpot VM version 1.6. A 12GB heap was used. To
account for the effects of JIT compilation, each configura-
tion was run 10 times, and the average of the latter 7 runs
was recorded. We show standard deviations of our tests in
Appendix C to support their statistical reliability. For each

Version Cycles Instructions CPI L1D miss L2 miss
(millions) (millions) rate(%) rate(%)

Base 1360984 782890 1.74 8.38 55.30
Block 498812 667840 0.75 1.32 18.14

Table 2. Performance counters for BH

benchmark, only the traversal phases were timed, and a full
GC (garbage collection) was forced before timing to mini-
mize the effects of GC in the autotuning phase. GC time is
excluded in the reported times.

5.2 Experimental Results
5.2.1 Barnes-Hut
Figure 14 shows the results for BH. Figure 14(a) shows
speedups of the transformed versions compared to the se-
rial baseline on the Niagara system. Figure 14(b) shows %
improvement of the transformed versions compared to the
parallel baseline on the Niagara system. Figure 14(c) shows
speedups of the transformed versions compared to the se-
rial baseline, and Figure 14(d) shows % improvement of the
transformed versions compared to the parallel baseline on
the Opteron system. This order of Figures will be used for
all the benchmarks.

Block performs best with % improvement of 76.4% and
76.9% on the Niagara and Opteron respectively. The auto-
tuners are slightly worse than the empirically determined
block size as expected, and Auto-seq with 70.8% and 77.9%
is slightly better than Auto-rand with 61.9% and 62.8% re-
spectively on the Niagara and Opteron.

These improvements are sustained as we increase the
number of threads for the Opteron system. For the Niagara
system, we note that the transformed versions’ advantage
over the baseline tapers off as the number of threads in-
creases beyond 16 threads. This is because on 32–64 threads,
the Niagara uses 2–4-way multithreading. The Niagara’s im-
plementation of multithreading is meant to hide latency:
when one thread stalls due to a cache miss, the second
thread can execute. As the Niagara is already hiding latency
through multithreading, it obviates the need for our transfor-
mations, which hide latency through restructuring.

To verify that the improvement of TreeTiler is indeed
from enhanced locality, we used Intel’s VTune profiling
framework to access the performance counters on the Pen-
tium system used in Table 1. The empirically determined
optimal block size for this system was 64. The performance
counter results are shown in Table 2. They show a drastic
reduction in CPI and cache misses with a performance im-
provement of 172%, which is even larger than reported for
the Niagara and Opteron. We also note a reduction in instruc-
tions, due to fewer accesses of the tree. While TreeTiler in-
curs overhead by adding instructions to access points within
a block, it can save instructions in accessing nodes of the
tree when points of a block have similar traversals.

5.2.2 Point correlation
Figure 15 shows the results for PC. We attain improvements
of up to 182.3%, 237.2% and 244.8% for Block, Auto-seq
and Auto-rand respectively on the Niagara. The maximum
improvements are 211.1%, 234.7% and 211.7% for Block,
Auto-seq and Auto-rand respectively on the Opteron. On
the Niagara we start with modest improvements for 1–4
threads, but the improvement is greatly enhanced for more
than 8 threads. We speculate that this is due to bus satura-
tion. PC performs fewer instructions per point per node com-
pared to BH, and hence is expected to be more bandwidth-
hungry. This demonstrates another advantage of our imple-
mentation: because the tiling transformation reduces cache
misses, it reduces bus pressure. Hence, the optimized im-
plementation can perform more operations before saturating
the bus. The Niagara is designed with more bus bandwidth
than the Opteron. Hence we see a saturation of the bus at 8
threads for the Niagara whereas, we see 200% improvement
due to bus saturation on the Opteron right away starting from
1 thread. The trend of diminishment in improvement for 32–
64 threads where the Niagara is hiding cache miss latency
through multithreading is evident here as in BH.

On the Niagara at 16–32 threads, the autotuners perform
better than the empirically determined optimal block size.
This suggests that the optimal block size is dependent on
the number of threads, which we do not factor in currently.
Currently the autotuning phase is performed sequentially.
We would expect the number of threads to affect the optimal
block size on systems like the Niagara that have shared L2
caches. In this case, the autotuners were “lucky,” and chose
a better block size for 16–32 threads.

5.2.3 Nearest neighbor
Figure 16 shows the results for NN. We attain improvements
of up to 84.7%, 69.4% and 76.5% for Block, Auto-seq
and Auto-rand respectively on the Niagara. The maximum
improvements are 117.2%, 96.9% and 97.9% for Block,
Auto-seq and Auto-rand respectively on the Opteron. On
the Niagara, we see the trends of bus saturation at above 8
threads giving more improvement for the transformed ver-
sions, and multithreading decreasing the improvements at
32–64 threads. The autotuners perform significantly worse
than Block for 64 threads. This is because the autotuners
consume 1% of the total points for autotuning, and these
points are processed sequentially. From Amdahl’s law, the
speedup attained with 99% of the work fully parallelized
among 64 processors is 39.2, and this sequential autotun-
ing phase limits the performance of the autotuners at many
threads.

5.2.4 Raytracing
Figure 17 shows the results for RT. The maximum improve-
ments are small, 3.3%, 0.2% and −1.2% for Block, Auto-
seq and Auto-rand respectively on the Niagara, and 17.5%,

0	

10	

20	

30	

40	

50	

60	

70	

1	
 2	
 4	
 8	
 16	
 32	
 64	

Sp
ee
du

p	

#	
 of	
 threads	

Base	

Block	

Auto-­‐seq	

Auto-­‐rand	

(a) Speedup vs serial on Niagara

0	

20	

40	

60	

80	

100	

1	
 2	
 4	
 8	
 16	
 32	
 64	

%
	
 im

pr
ov
em

en
t	

#	
 of	
 threads	

Block	

Auto-­‐seq	

Auto-­‐rand	

(b) % improvement vs parallel on Niagara

0	

1	

2	

3	

4	

5	

6	

7	

8	

1	
 2	
 4	
 8	

Sp
ee
du

p	

#	
 of	
 threads	

(c) Speedup vs serial on
Opteron

0	

20	

40	

60	

80	

100	

1	
 2	
 4	
 8	

%
	
 im

pr
ov
em

en
t	

#	
 of	
 threads	

(d) % improvement vs
parallel on Opteron

Figure 14. Results for Barnes-Hut

0	

10	

20	

30	

40	

50	

60	

1	
 2	
 4	
 8	
 16	
 32	
 64	

Sp
ee
du

p	

#	
 of	
 threads	

Base	

Block	

Auto-­‐seq	

Auto-­‐rand	

(a) Speedup vs serial on Niagara

0	

50	

100	

150	

200	

250	

300	

1	
 2	
 4	
 8	
 16	
 32	
 64	

%
	
 im

pr
ov
em

en
t	

#	
 of	
 threads	

Block	

Auto-­‐seq	

Auto-­‐rand	

(b) % improvement vs parallel on Niagara

0	

2	

4	

6	

8	

10	

12	

14	

1	
 2	
 4	
 8	

Sp
ee
du

p	

#	
 of	
 threads	

(c) Speedup vs serial on
Opteron

0	

50	

100	

150	

200	

250	

1	
 2	
 4	
 8	

%
	
 im

pr
ov
em

en
t	

#	
 of	
 threads	

(d) % improvement vs
parallel on Opteron

Figure 15. Results for Point Correlation

0	

10	

20	

30	

40	

50	

1	
 2	
 4	
 8	
 16	
 32	
 64	

Sp
ee
du

p	

#	
 of	
 threads	

Base	

Block	

Auto-­‐seq	

Auto-­‐rand	

(a) Speedup vs serial on Niagara

0	

20	

40	

60	

80	

100	

1	
 2	
 4	
 8	
 16	
 32	
 64	

%
	
 im

pr
ov
em

en
t	

#	
 of	
 threads	

Block	

Auto-­‐seq	

Auto-­‐rand	

(b) % improvement vs parallel on Niagara

0	

2	

4	

6	

8	

10	

1	
 2	
 4	
 8	

Sp
ee
du

p	

#	
 of	
 threads	

(c) Speedup vs serial on
Opteron

0	

20	

40	

60	

80	

100	

120	

140	

1	
 2	
 4	
 8	

%
	
 im

pr
ov
em

en
t	

#	
 of	
 threads	

(d) % improvement vs
parallel on Opteron

Figure 16. Results for Nearest Neighbor

0	

10	

20	

30	

40	

50	

60	

1	
 2	
 4	
 8	
 16	
 32	
 64	

Sp
ee
du

p	

#	
 of	
 threads	

Base	

Block	

Auto-­‐seq	

Auto-­‐rand	

(a) Speedup vs serial on Niagara

-­‐40	

-­‐30	

-­‐20	

-­‐10	

0	

10	

1	
 2	
 4	
 8	
 16	
 32	
 64	

%
	
 im

pr
ov
em

en
t	

#	
 of	
 threads	

Block	

Auto-­‐seq	

Auto-­‐rand	

(b) % improvement vs parallel on Niagara

0	

1	

2	

3	

4	

5	

1	
 2	
 4	
 8	

Sp
ee
du

p	

#	
 of	
 threads	

(c) Speedup vs serial on
Opteron

-­‐10	

-­‐5	

0	

5	

10	

15	

20	

1	
 2	
 4	
 8	

%
	
 im

pr
ov
em

en
t	

#	
 of	
 threads	

(d) % improvement vs
parallel on Opteron

Figure 17. Results for Raytracing

0	

10	

20	

30	

40	

50	

1	
 2	
 4	
 8	
 16	
 32	
 64	

Sp
ee
du

p	

#	
 of	
 threads	

Base	

Block	

Auto-­‐seq	

Auto-­‐rand	

(a) Speedup vs serial on Niagara

-­‐30	

-­‐20	

-­‐10	

0	

10	

20	

1	
 2	
 4	
 8	
 16	
 32	
 64	

%
	
 im

pr
ov
em

en
t	

#	
 of	
 threads	

Block	

Auto-­‐seq	

Auto-­‐rand	

(b) % improvement vs parallel on Niagara

0	

1	

2	

3	

4	

1	
 2	
 4	
 8	

Sp
ee
du

p	

#	
 of	
 threads	

(c) Speedup vs serial on
Opteron

-­‐10	

-­‐5	

0	

5	

10	

15	

1	
 2	
 4	
 8	

%
	
 im

pr
ov
em

en
t	

#	
 of	
 threads	

(d) % improvement vs
parallel on Opteron

Figure 18. Results for Lightcuts

Benchmark # Files LOC Transform time (ms) Total time (ms)
BH 5 364 8.3 998
PC 5 390 6.2 975
NN 3 367 5.4 810
RT 38 3810 10.8 1798
LC 59 4291 11.2 2342

Table 3. Lines of code and transformation times

12.7% and 2% for Block, Auto-seq and Auto-rand respec-
tively on the Opteron. For the Niagara, the autotuners choose
the base case sometimes. Because both the empirically deter-
mined block size and the autotuners only consider sequential
performance, the selected block size can yield performance
degradations when used in parallel. This can be mitigated by
parallelizing the autotuners, which we leave for future work.
We discuss why RT shows less improvement compared to
the previous benchmarks in Section 5.3

5.2.5 Lighcuts
Figure 18 shows the results for LC. We noted previously
that LC has a very small average traversal, and we do not
expect our transformation to be effective. For small average
traversals, the choice of block size is a secondary effect, and
we chose 32 for both systems. LC has a higher deviation
in runtimes than RT due to more computation per node,
which includes caching rays for fast radiance computation.
Hence the 10% pluses and minuses in improvement can be
considered within the noise range, and all versions perform
more or less similarly. The autotuners often choose the base
case, and, with the exception of 64 threads on the Niagara
where Amdahl’s law hurts the autotuners, the autotuners do
not perform worse than the baseline.

5.2.6 Transformation times
Table 3 shows the lines of code and transformation times for
our benchmarks. We show both the time it takes to perform
our transformation phase, and the total time including file
I/O and parsing. Our transformation phase has very small
overhead, amounting to less than 1% of the parsing time.

5.2.7 Block sizes
Table 4 shows the empirically determined optimal block
size, and the average block size chosen by each autotuner.
The autotuner block sizes are the average of the block sizes
chosen for the recorded latter 7 of 10 runs. The top 7 rows
are the Niagara, and the bottom 4 rows are the Opteron. The
results generally show that Auto-seq chooses a block size
closer to the optimal block size than Auto-rand, implying
that in the tradeoff discussed in Section 4.2, it is better to
attend to locality among samples at the start of the point
set, than obtaining randomized samples from the entire point
set. Although not decisive, this is also the general trend of
the experimental results in Figures 14–18. For RT on the
Niagara, and LC on both systems, Auto-rand reverts to the
base case successfully on many occasions. Auto-rand is
more successful in reverting to the base case because it can

Benchmark # Objects Tree type Paths Traversal size
Nodes Bytes

BH 1000000 OctTree Many 2708.78 139616
PC 1000000 KdTree Many 4070.77 183422
NN 1000000 KdTree Few 1950.55 218461
RT 1000000 BVH Few 909.96 21839
LC 16 BinaryTree Many 17.27 1796

Table 5. Average traversal sizes for each benchmark

better handle irregularities in the initial points with random
sampling, and always reverts to the base case for LC on the
Niagara.

5.3 Traversal and effective block sizes
We have shown that TreeTiler attains impressive improve-
ments for some benchmarks, while for others, even an em-
pirically determined optimal block size is no better than the
baseline. In Table 1, we saw that the L2 miss rate of an
untransformed code increases as the average traversal gets
larger. In this section we examine the average traversals of
each of our benchmarks, and introduce effective block size
as a metric to gauge the similarity of consecutive traversals.

Table 5 shows the average traversal sizes for each of our
benchmarks. The objects are the entities used to create the
data structures being traversed. We show traversal size in
both the number of data structure nodes traversed, and the
number of bytes accessed within the nodes. We note that BH
and PC have larger traversals (both in # nodes and bytes)
because processing a single point requires deeply traversing
many paths through the data structure. On the other hand
NN and RT have smaller traversals because the algorithms
are essentially guided searches, and processing a single point
essentially takes a single path through the data structure. NN
has a larger memory footprint relative to its # nodes because
the dimensionality is 7. While we expect LC to have similar
behavior to BH and PC, we were not able to test enough
objects due to performance limitations.

As discussed in Section 2.2, large traversal sizes result in
disastrous LRU cache replacement when the average traver-
sal does not fit in cache. TreeTiler reduces node misses by
processing multiple points at once, reducing the number of
node accesses. Benchmarks with large traversal sizes are
where we expect TreeTiler to yield the most improvement,
and this is borne out by our results. PC, NN and BH attain
improvements of up to 245%, 117% and 76% whereas there
is not much improvement for RT and LC. We see degrada-
tion in performance for RT and LC at 32+ threads because
there is not have much headroom for optimization, and be-
cause the autotuning phase is done serially. This serial phase
significantly limits speedup according to Amdahl’s Law.

When the average traversal is too large to fit in cache,
TreeTiler tries to fit a block of points in cache instead. The
actual block size will vary as the traversal progresses, and
the points within the block diverge on different paths. There-
fore what TreeTiler should target to fit in cache is not the
initial block size, but the average block size across the en-

Threads BH PC NN RT LC
Opt A-seq A-rand Opt A-seq A-rand Opt A-seq A-rand Opt A-seq A-rand Opt A-seq A-rand

1 32 27 11 32 32 82 4096 512 512 16 32 2 1 16 1
2 32 23 11 32 46 64 4096 512 440 16 32 3 1 16 1
4 32 30 18 32 32 64 4096 512 296 16 32 11 1 16 1
8 32 30 11 32 73 64 4096 512 512 16 32 3 1 16 1

16 32 18 18 32 37 64 4096 512 440 16 32 3 1 16 1
32 32 32 18 32 41 64 4096 512 440 16 32 15 1 16 1
64 32 32 15 32 37 73 4096 512 440 16 30 11 1 16 1
1 128 82 238 1024 512 512 2048 512 512 64 128 111 1 8 2
2 128 73 207 1024 457 512 2048 512 475 64 128 102 1 91 19
4 128 73 113 1024 512 403 2048 512 403 64 119 183 1 16 2
8 128 91 184 1024 457 512 2048 512 475 64 128 210 1 8 1

Table 4. Block sizes for Block, Auto-seq and Auto-rand

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	
 1024	

Eff
ec
/v
e	

Bl
oc
k	

Si
ze
	

Block	
 Size	

BH	

BH-­‐unsorted	

PC	

NN	

RT	

LC	

Figure 19. Effective block sizes for each benchmark

tire traversal. We measured effective block size, the average
of the actual block size at the beginning of each recursive
method call. Figure 19 shows the normalized effective block
size for 6 benchmarks across a range of initial block sizes,
where normalized effective block size = effective block size /
initial block size. Normalized effective block size is roughly
a measure of the convergence of traversals. The maximum
value of 1 means that traversals of all points with a block
are identical. Normalized effective block size gets smaller as
the initial block size gets larger, because more initial points
allow more divergence among them.

We have shown the normalized effective block size for
BH with and without sorting to demonstrate the importance
of sorting optimizations [2]. Not sorting for BH results in
a much smaller normalized effective block size, and hence
much less similarity in consecutive traversals. As a result,
while the optimal initial block size is 128 when transforming
our BH baseline, the optimal block size is 2048 when trans-
forming an unoptimized baseline. The effective block sizes
corresponding for each are 68.53 and 8.92, where sorted BH
has a larger effective block size with a smaller initial block
size. The relation is not linear due to various irregular ef-
fects, but do suggest some trends. The normalized effective
block size is very small for NN because at each recursive
call the block is potentially split into two blocks due to dif-
ferent orders of traversing children illustrated in Figure 10.
A very small normalized effective block size implies that the
optimal initial block sizes should be very large, and they are
found to be up to 4096 for NN.

6. Related Work
6.1 Locality Transformations
Salmon used Orthogonal Recursive Bisection [8] to directly
partition the point space to provide physical locality [28].
Singh et al. recognized that N-body problems already have a
representation of the spatial distribution encoded in the tree
data structure and partitioned the tree instead of partition-
ing the point space directly [29]. Amor et al. exploited lo-
cality among points by linearizing them using space filling
curves [2]. Han et al. proposed computation reordering in
Z-curve order (Z-SORT) that has better performance than
lexical sort at the cost of more overhead [14]. All of these
approaches improve locality up to a point, as discussed in
Section 2.1, and both our baseline and transformed code ex-
ploit some form of point sorting.

Singh et al. also proposed costzones to improve load bal-
ance across multiple Barnes-Hut timesteps; we expect their
effects are largely orthogonal to the transformations pre-
sented here. Amor et al. proposed communication optimiza-
tions for distributed memory systems. While we evaluate our
techniques on shared memory systems, we expect similar
improvements if applied to an optimized distributed mem-
ory implementation.

Pharr et al. addressed locality issues in raytracing where
the scene is too large to fit in memory [24]. They pro-
posed caching and lazy creation of texture and geometry,
and grouping rays into groups (“voxels”) to account for spa-
tial coherence between rays. Rays are partially traced on a
per voxel basis, and voxels are scheduled to maximize lo-
cality in already created texture and geometry. Mansson et
al. examined various heuristics for grouping secondary rays,
which are reflected from primary rays, to enhance locality in
deep raytracing [22]. Their heuristics are in essence a way of
sorting secondary rays. These approaches are very applica-
tion specific, neither are general transformations like ours.

Various techniques have been proposed to enhance spa-
tial locality in dynamic data structures [4–6, 14, 20, 23, 32].
Chilimbi et al. proposed techniques for using programmer
annotations to allocate subtrees to cache lines [5], and mov-
ing objects and fields around at GC time for spatial lo-
cality [6]. Lattner et al. proposed a technique that uses a
context-sensitive pointer analysis to segregate distinct in-

stances of heap allocations into separate memory pools,
which improves spatial locality for programs which allo-
cate multiple pointer based data structures but traverse only
one at a time [20]. While their work is of less utility for most
benchmarks discussed in this paper (with the exception of
LC), which allocate only a single tree, it is orthogonal to our
work, and we expect it to be fruitful for more complex appli-
cations with multiple pointer based data structures. Mellor-
Crummey et al. proposed a combination of data reordering
and computation reordering to improve memory hierarchy
performance for n2 interaction algorithms [23]. Han et al.
proposed a data reordering algorithm, GPART, that applies
hierarchical clustering on data without geometric coordinate
information [14]. We expect techniques to enhance spatial
locality to have positive effects on both our baseline and
transformed code, if the cost of data reordering can be amor-
tized over the computation.

6.2 Vectorization Transformations
Hernquist vectorized Barnes-Hut across nodes of the tree, so
that each point traverses all nodes at the same level simulta-
neously [15]. This approach effectively changes the order of
the tree traversal from depth-first to breadth-first. This has
two drawbacks. First, it changes the traversal order of the
tree, affecting the result in the presence of non-commutative
operations (such as floating-point addition). Second, there
typically are not many nodes per tree level, leading to short
vectors (and less parallelism).

Makino vectorized the tree traversal across points, in-
stead, leading to a per-point parallelization similar to our
baseline [21]. An interesting aspect of Makino’s approach
is that to enable vectorization, the code is transformed in a
manner similar to the loop interchanged implementation de-
scribed in Section 2.2. However, there are a few key points
to note. First a simple loop interchange does not suffice to
exploit locality. Second, Makino’s transformation relies on
a pre-computed traversal of the tree, and changes the order
in which particular tree nodes are visited by different points,
reducing the generality of his transformation.

Work on vectorizing Barnes-Hut have naturally extended
to GPU implementations of n-body algorithms [13, 19].
These implementations generally group many points in the
leaves of the tree, so that the points within a single leaf are
ensured to have identical interaction lists and can be divided
among processing units. The interaction lists are computed
on the CPU and sent to the GPU for mass parallel force
computation. The GPU’s natural execution model results in
traversals of the interaction list similar to tiling. However,
computing the interaction lists still requires traversing the
tree, and the locality penalties of a naı̈ve traversal remain.

6.3 Other Tree Traversal Transformations
Aluru et al. discussed changing the tree structure of Barnes-
Hut to improve performance [1]. We note that our transfor-
mations are independent of the type of tree used (indeed, the

tree in raytracing is different from that in Barnes-Hut), and
hence our approach can apply to their algorithm as well.

Rinard and Diniz used a commutativity analysis to paral-
lelize an N-body code in a unique manner [26]. Rather than
distributing the points among threads, they are able to prove
through compiler analysis that updates to the points com-
mute, and hence multiple threads can update points simulta-
neously. This is akin to parallelizing the traversal loop in our
abstract model, rather than the point loop.

Ghiya et al. proposed an algorithm to detect parallelism
in C programs with recursive data structures [10]. These tests
rely on shape analysis to provide information on whether the
data structure is a tree, DAG or general graph, and apply dif-
ferent dependence tests depending on data structure shape.
Their analyses focus on parallelization and do not consider
locality, but we believe their approaches might inform an au-
tomatic transformation framework that implements our tech-
niques.

7. Future work and conclusions
7.1 Future work
There is ample opportunity for further investigation in this
area. It seems intuitive that the best optimization parameters
for point blocking should be related to architectural param-
eters such as cache size and application attributes such as
traversal sizes and effective block sizes; it may be possible to
devise a simple analytical model based on a small number of
measurable parameters that can short-circuit the “guess and
check” autotuning process implemented by TreeTiler and ar-
rive at an effective solution more quickly.

TreeTiler currently implements a sufficient, but not nec-
essary, check for the legality of point blocking. Just as there
is a rich set of conditions for the legality of various loop
transformations in regular codes, there are a similar set of
conditions for the legality of point blocking. An interesting
avenue of future work is augmenting TreeTiler to evaluate
these more complex conditions. This will likely require a
shape analysis, and presents an interesting application for
existing analyses.

In general, this work elucidates that, even in irregular
applications, there may be significant structure that can be
exploited to improve locality. Just as we found that an analog
of loop tiling can provide substantial benefits to traversal
codes, an open question is whether there are other similarly
analogous transformations that can be applied to irregular
applications in a general manner.

7.2 Conclusions
In this paper, we demonstrated that, despite their seeming
irregularity, many traversal codes, which perform repeated
traversals of data structures such as trees and graphs, pos-
sess a common algorithmic structure that admits substantial
data reuse. We thus developed a novel optimization called
point blocking that exploits this data reuse. Popular exist-

ing locality enhancing techniques for these codes lose their
effectiveness as the traversal sizes increase. However, point
blocking, much like its regular analog, loop tiling, is able to
continue exploiting locality regardless of traversal size.

We developed an automatic transformation and optimiza-
tion framework called TreeTiler that determines when point
blocking can be applied and automatically transforms an
application to leverage the technique. TreeTiler then uses
run-time autotuning to select transformation parameters to
best exploit locality. We showed that TreeTiler can success-
fully automatically transform and tune a set of five bench-
mark traversal codes, achieving performance improvements
of up to 245% over optimized parallel baselines. Further-
more, these performance gains persist as the applications
scale, and, in fact, applications transformed by TreeTiler can
deliver better scalability than the untransformed baselines.

Acknowledgments
The authors would like to thank Bruce Walter for providing
the Raytracing benchmark code, and Sebastian Thees for
providing the Lightcuts benchmark code. We would also
like to thank the anonymous referees for providing insightful
comments. This research was supported in part with funding
from Intel and a grant from the Purdue Research Foundation.

References
[1] S. Aluru, J. Gustafson, G. M. Prabhu, and F. E. Sevilgen.

Distribution-independent hierarchical algorithms for the n-
body problem. J. Supercomput., 12:303–323, October 1998.

[2] M. Amor, F. Argüello, J. López, O. G. Plata, and E. L. Zapata.
A data parallel formulation of the barnes-hut method for n
-body simulations. In Proceedings of the 5th International
Workshop on Applied Parallel Computing, New Paradigms for
HPC in Industry and Academia, PARA ’00, pages 342–349,
London, UK, 2001. Springer-Verlag.

[3] J. Barnes and P. Hut. A hierarchical o(nlogn) force-
calculation algorithm. Nature, 324(4):446–449, December
1986.

[4] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-
conscious structure definition. In Proceedings of the ACM
SIGPLAN 1999 conference on Programming language design
and implementation, PLDI ’99, pages 13–24, New York, NY,
USA, 1999. ACM.

[5] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious
structure layout. In Proceedings of the ACM SIGPLAN 1999
conference on Programming language design and implemen-
tation, PLDI ’99, pages 1–12, New York, NY, USA, 1999.
ACM.

[6] T. M. Chilimbi and J. R. Larus. Using generational garbage
collection to implement cache-conscious data placement. In
Proceedings of the 1st international symposium on Memory
management, ISMM ’98, pages 37–48, New York, NY, USA,
1998. ACM.

[7] T. Ekman and G. Hedin. The jastadd extensible java compiler.
In Proceedings of the 22nd annual ACM SIGPLAN conference

on Object-oriented programming systems and applications,
OOPSLA ’07, pages 1–18, New York, NY, USA, 2007. ACM.

[8] G. C. Fox. A graphical approach to load balancing and sparse
matrix vector multiplication on the hypercube. Institute for
Mathematics and Its Applications, 13:37–+, 1988.

[9] M. Frigo, C. E. Leiserson, and K. H. Randall. The implemen-
tation of the cilk-5 multithreaded language. SIGPLAN Not.,
33(5):212–223, 1998.

[10] R. Ghiya, L. Hendren, and Y. Zhu. Detecting parallelism in
c programs with recursive data structures. IEEE Transactions
on Parallel and Distributed Systems, 1:35–47, 1998.

[11] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic
graph? a shape analysis for heap-directed pointers in c. In
POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
1–15, New York, NY, USA, 1996. ACM.

[12] A. G. Gray and A. W. Moore. N -Body Problems in Statistical
Learning. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors,
Advances in Neural Information Processing Systems (NIPS)
13 (Dec 2000). MIT Press, 2001.

[13] T. Hamada, T. Narumi, R. Yokota, K. Yasuoka, K. Nitadori,
and M. Taiji. 42 tflops hierarchical n-body simulations on
gpus with applications in both astrophysics and turbulence. In
SC ’09: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, pages 1–12,
New York, NY, USA, 2009. ACM.

[14] H. Han and C.-W. Tseng. Exploiting locality for irregular
scientific codes. IEEE Trans. Parallel Distrib. Syst., 17:606–
618, July 2006.

[15] L. Hernquist. Vectorization of tree traversals. J. Comput.
Phys., 87:137–147, March 1990.

[16] K. Kennedy and J. Allen, editors. Optimizing compilers for
modren architectures:a dependence-based approach. Morgan
Kaufmann, 2001.

[17] M. Kulkarni, M. Burtscher, K. Pingali, and C. Cascaval. Lon-
estar: A suite of parallel irregular programs. In 2009 IEEE
International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 65–76, April 2009.

[18] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. P. Chew. Optimistic parallelism requires
abstractions. SIGPLAN Not. (Proceedings of PLDI 2007),
42(6):211–222, 2007.

[19] M. H. L. Nyland and J. Prins. Fast n-body simulation with
cuda. GPU Gems, (3):677–695, 2007.

[20] C. Lattner and V. Adve. Automatic pool allocation: improv-
ing performance by controlling data structure layout in the
heap. In Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, PLDI
’05, pages 129–142, New York, NY, USA, 2005. ACM.

[21] J. Makino. Vectorization of a treecode. J. Comput. Phys.,
87:148–160, March 1990.

[22] E. Mansson, J. Munkberg, and T. Akenine-Moller. Deep co-
herent ray tracing. In Proceedings of the 2007 IEEE Sympo-
sium on Interactive Ray Tracing, pages 79–85, Washington,
DC, USA, 2007. IEEE Computer Society.

[23] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improv-
ing memory hierarchy performance for irregular applications
using data and computation reorderings. Int. J. Parallel Pro-
gram., 29(3):217–247, 2001.

[24] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering
complex scenes with memory-coherent ray tracing. In Pro-
ceedings of the 24th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’97, pages 101–108,
New York, NY, USA, 1997. ACM Press/Addison-Wesley Pub-
lishing Co.

[25] K. Pingali, M. Kulkarni, D. Nguyen, M. Burtscher,
M. Mendez-Lojo, D. Prountzos, X. Sui, and Z. Zhong. Amor-
phous data-parallelism in irregular algorithms. Technical Re-
port TR-09-05, Department of Computer Science, The Uni-
versity of Texas at Austin, February 2009.

[26] M. Rinard and P. C. Diniz. Commutativity analysis: a new
analysis technique for parallelizing compilers. ACM Trans.
Program. Lang. Syst., 19(6):942–991, 1997.

[27] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape anal-
ysis via 3-valued logic. ACM Transactions on Programming
Languages and Systems, 24(3), May 2002.

[28] J. K. Salmon. Parallel hierarchical N-body methods. PhD
thesis, Pasadena, CA, USA, 1991.

[29] J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy.
Load balancing and data locality in adaptive hierarchical n-
body methods: Barnes-hut, fast multipole, and radiosity. J.
Parallel Distrib. Comput., 27(2):118–141, 1995.

[30] S. Thees and C. Weiland. Implementing lightcuts. Technical
report, Fachhochschule Bonn-Rhein-Sieg, University of Ap-
plied Sciences, Fachbereich Informatik, July 2008.

[31] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K.
Hollingsworth. A scalable auto-tuning framework for com-
piler optimization. In IPDPS ’09: Proceedings of the 2009
IEEE International Symposium on Parallel&Distributed Pro-
cessing, pages 1–12, Washington, DC, USA, 2009. IEEE
Computer Society.

[32] D. N. Truong, F. Bodin, and A. Seznec. Improving cache be-
havior of dynamically allocated data structures. In Proceed-
ings of the 1998 International Conference on Parallel Archi-
tectures and Compilation Techniques, PACT ’98, pages 322–,
Washington, DC, USA, 1998. IEEE Computer Society.

[33] R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski: A library of
automatically tuned sparse matrix kernels. Journal of Physics:
Conference Series, 16(1), 2005.

[34] I. Wald. On fast construction of sah-based bounding volume
hierarchies. In RT ’07: Proceedings of the 2007 IEEE Sympo-
sium on Interactive Ray Tracing, pages 33–40, Washington,
DC, USA, 2007. IEEE Computer Society.

[35] B. Walter, K. Bala, M. Kulkarni, and K. Pingali. Fast ag-
glomerative clustering for rendering. In IEEE Symposium on
Interactive Ray Tracing (RT), pages 81–86, August 2008.

[36] B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and
D. Greenberg. Lightcuts: a scalable approach to illumination.
ACM Transactions on Graphics (SIGGRAPH), 24(3):1098–
1107, July 2005.

[37] C. Whaley, A. Petitet, and J. J. Dongarra. Automated empir-
ical optimization of software and the atlas project. Parallel
Computing, 27:2001, 2000.

A. Block class implementation
Figure 20 shows the implementation of the automatically
generated block classes corresponding to Figure 9. The
Block class allocates space for the loop variant arguments
passed to the recursive method, as well as the return values
of all intermediary methods. The BlockSet class has a ref-
erence to the current block, and allocates space for the next
blocks of the next level. The BlockStack class is simply an
array of BlockSets.

B. Autotuning code sample
Figure 21 shows the autotuning code inserted before the
point loop of the transformed generic algorithm (at line 5 of
Figure 9). With the exception of explicit code to skip over
sampled points for Auto-rand (lines 30, 35), the code is
common for both Auto-seq and Auto-rand. The autotuner
is integrated into the Block class. The autotuning loop is a
replica of the point loop with some additions. The point p is
now drawn from a samplePoint set by the autotuner (line 5).
Calls to tuneEntry and tuneExit are inserted before and after
the call path to the recursive method (lines 10, 16), to record
the time it took to process a test block. tuneExit configures
the next block size, and additionally sets a random sample
point for Auto-rand. tuneExit returns true if the autotuning
is complete to break out of the autotuning loop. nextSam-
ple (line 25) increments samplePoint, and additionally skips
over sampled points for Auto-rand. The original code path
is used for testing the base case (line 12). If the base case is
better than the best block size, the base case is used for the
point loop (lines 28-32).

C. Deviations of experimental tests
Table 6 shows the % of the standard deviations of the run-
times to the average runtime. The statistics are recorded for
the latter 7 of 10 runs. #T is the number of threads and Ba,
Bl, As, Ar denotes Base, Block, Auto-seq, Auto-rand re-
spectively. The top 7 rows are the Niagara, and the bottom 4
rows are the Opteron. Auto-rand has the largest deviation in
general because it is random and dependent on the samples.
Excluding the autotuners, the maximum deviation is 9.2% of
the average runtime, and generally much smaller, implying
that our results are statistically stable.

#T BH PC NN RT LC
Ba Bl As Ar Ba Bl As Ar Ba Bl As Ar Ba Bl As Ar Ba Bl As Ar

1 1.99 0.56 0.93 4.09 0.23 1.31 1.65 2.65 0.75 0.52 0.37 0.52 1.62 0.26 0.10 0.43 2.69 2.83 3.30 3.29
2 0.24 0.17 0.36 3.60 0.26 0.14 0.72 0.16 0.33 0.45 0.27 8.24 0.11 0.17 0.16 0.44 3.61 4.02 3.87 2.85
4 0.08 0.15 0.22 5.31 0.20 0.12 0.07 0.13 0.43 0.69 0.38 14.76 0.06 0.10 0.08 1.62 3.61 4.02 3.87 2.85
8 0.29 0.16 0.22 3.59 0.40 0.14 0.50 0.22 1.13 0.64 0.31 0.72 0.06 0.07 0.06 2.16 3.61 4.02 3.87 2.85

16 0.32 0.21 0.28 3.41 0.45 0.17 2.08 0.46 1.04 1.63 0.4 16.73 0.14 0.39 0.18 2.60 3.51 4.49 4.22 2.67
32 0.61 0.14 0.43 3.22 0.38 0.28 1.02 0.51 0.96 1.1 2.12 11.56 0.57 2.88 1.36 13.28 3.81 4.00 3.36 10.67
64 1.39 2.86 0.38 2.59 0.24 1.32 0.90 1.07 0.91 1.36 2.16 5.24 1.66 1.79 1.02 21.46 4.02 5.03 6.53 2.88
1 8.45 4.89 3.85 6.87 1.80 6.71 0.34 1.76 1.88 0.73 1.14 0.75 2.33 1.00 6.15 5.76 7.83 3.64 4.01 4.09
2 4.48 1.42 3.05 15.55 11.65 0.27 1.67 0.22 9.23 1.34 2.67 2.69 1.96 0.72 3.72 5.62 7.80 4.14 4.01 3.92
4 0.60 1.03 0.52 7.83 0.17 0.12 0.96 14.39 0.68 1.89 0.45 25.07 1.10 0.32 0.72 1.73 3.61 3.30 5.58 4.23
8 0.91 0.60 0.84 9.20 2.15 0.19 1.36 0.23 0.77 0.38 0.38 1.48 1.38 5.48 0.45 0.79 2.67 4.50 4.04 2.99

Table 6. Standard deviation of runtimes, as % of average runtime

1 c l a s s Block {
2 i n t s i z e ;
3 P o i n t [] p ;
4 O b j e c t [] o2 ;
5 O b j e c t [] r e t f o o ;
6
7 void add (P o i n t p , O b j e c t o2) {
8 p [s i z e] = p ;
9 o2 [s i z e] = o2 ;
10 s i z e ++;
11 }
12
13 void r e c y c l e () {
14 s i z e = 0 ;
15 }
16 }
17
18 c l a s s B l o c kS e t {
19 Block b l o c k ; / / j u s t r e f e r e n c e
20 Block n e x t B l o c k = /∗ a c t u a l a l l o c a t i o n ∗ /
21 / / more n e x t B l o c k s i f n e c e s s a r y
22 }
23
24 c l a s s B l o c k S t a c k {
25 B l o c k S e t [] s e t ;
26 }

Figure 20. Implementation of block classes

1 Set<P o i n t> p o i n t s = /∗ e n t i t i e s i n a l g o r i t h m ∗ /
2 O b j e c t o1 = /∗ s o m e t h i n g loop i n v a r i a n t ∗ /
3 Block b = /∗ b l o c k i n s t a n c e ∗ /
4 whi le (t rue) {
5 P o i n t p = p o i n t s [Block . s a m p l e P o i n t] ;
6 O b j e c t o2 = /∗ s o m e t h i n g loop v a r i a n t ∗ /
7 / / do s o m e t h i n g − p r o l o g u e
8 b . add (p , o2) ;
9 i f (b . s i z e == b l o c k S i z e) {
10 Block . t u n e E n t r y () ;
11 i f (b l o c k S i z e == 1) {
12 foo (p , o1 , o2 , r o o t) ;
13 } e l s e {
14 foo (o1 , r o o t , b) ;
15 }
16 i f (Block . t u n e E x i t ()) break ;
17 f o r (i n t i = 0 ; i < b . s i z e ; i ++) {
18 P o i n t p = b . p [i] ;
19 O b j e c t o2 = b . o2 [i] ;
20 O b j e c t o3 = b . r e t f o o [i] ;
21 / / do s o m e t h i n g − e p i l o g u e
22 }
23 b . r e c y c l e () ;
24 }
25 Block . nex tSample () ;
26 }
27 i n t i = Block . s a m p l e P o i n t ;
28 i f (b l o c k S i z e == 1) {
29 f o r (; i < p o i n t s . l e n g t h ; i ++) {
30 i f (Block . i sSampled (i)) c o n t i n u e ;
31 / / o r i g i n a l code
32 }
33 } e l s e {
34 f o r (; i < p o i n t s . l e n g t h ; i ++) {
35 i f (Block . i sSampled (i)) c o n t i n u e ;
36 / / t r a n s f o r m e d code
37 }
38 }

Figure 21. Autotuning code sample

