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Abstract 

 
Aspects can be used in a harmful way that 

invalidates desired properties. Rigorous specification 
and analysis of aspect design is thus highly desirable. 
This paper presents an approach to model-checking 
state-based specification of aspect-oriented design. It 
is based on a rigorous formalism for capturing 
crosscutting concerns with respect to the design-level 
state models of classes. An aspect model not only 
encapsulates pointcuts and advice, but also supports 
inter-model declarations, aspect precedence, and 
references to the behaviors of other classes in advice 
models. For verification purposes, we convert the 
aspect-oriented state model of a system into woven 
models and further transform the woven models and 
the non-base class models into FSP processes. The 
generated FSP processes are checked by the LTSA 
model checker against the desired system properties. 
We have applied our approach to the modeling and 
verification of a non-trivial aspect-oriented cruise 
control system. A total of 21 properties that provide a 
comprehensive coverage of the system requirements 
are successfully formalized and verified.    
 
1. Introduction 
 

Aspect-Oriented Programming (AOP) [12] 
modularizes crosscutting concerns into aspects with the 
advice invoked at the specified points of program 
execution. It is expected to “improve reuse and ease of 
change…, and ultimately creating more value for 
producers and consumers alike” [18]. While the ability 
to modularize crosscutting concerns appears to 
improve quality, aspect-oriented software development 
does not assure correctness by itself. For example, 
AOP supports a variety of composition strategies, 
“from the clearly acceptable to the questionable” [16]. 
Aspects can be used in a harmful way that invalidates 
desired properties [10][11] and even destroys the 

conceptual integrity of programs [16]. A piece of 
around advice may completely alter the behavior of the 
base classes no matter whether it is expected or 
unexpected. Therefore, aspects must be applied with 
care. To assure the quality of an aspect-oriented 
system, rigorous analysis of aspect design is highly 
desirable.  Existing methods for aspect-oriented design 
modeling have focused on the formalisms for aspect 
specification. Since UML is a widely applied tool for 
modeling object-oriented design, exploring the meta-
level notation of UML or extending the UML notation 
has been a dominant approach for specifying 
crosscutting concerns [17]. This approach, however, 
lacks the ability of rigorous verification due to the 
informal or semi-formal nature of UML.  

This paper presents an approach to model-checking 
state-based specification of aspect-oriented design. It is 
based on rigorous notations (e.g. pointcuts, advice, 
aspects) for capturing crosscutting concerns with 
respect to the design-level state models of classes. An 
aspect-oriented state model consists of class models, 
aspect models, and aspect precedence. For verification 
purposes, we first compose aspect models into class 
models by an explicit weaving mechanism. Then we 
transform the woven models and the class models not 
affected by the aspects into FSP processes. Finally we 
apply the LTSA model checker [14] to verifying the 
generated FSP processes against the desired system 
properties. Our experiment has shown that the model-
checking approach is highly effective in assuring the 
quality of aspect-oriented design. 

The rest of this paper is organized as follows. 
Section 2 is a brief introduction to the LTSA model-
checker. Section 3 describes aspect-oriented state 
models for design specification. Section 4 discusses 
verification of the aspect-oriented models. Section 5 
presents the empirical study. Section 6 reviews the 
related work. Section 7 concludes the paper. 
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2. Background: LTSA and FSP 
 

The model checker LTSA (Labeled Transition 
System Analyzer) [14] mechanically verifies whether 
or not a model satisfies the particular properties 
required of a system when it is implemented. A model 
is a simplified, abstract description of the behavior of a 
system. Through exhaustive exploration of the state 
space, LTSA checks for both desirable and undesirable 
properties for all possible sequences of events and 
actions. The modeling approach of LTSA is based on 
labeled transitions systems (LTS), where transitions in 
a state machine are labeled with action names. Since 
representing state machines graphically severely limits 
the complexity of problems that can be addressed, 
LTSA introduces a textual (algebraic) notation, FSP 
(Finite State Processes), to describe system models. It 
can translate FSP descriptions to the equivalent 
graphical LTS description.  

An FSP process consists of one or more local 
processes separated by commas. The description is 
terminated by a full stop.  A local process can be a 
primitive local process, a sequential composition, a 
conditional process, or is defined using action prefix 
(“->”) and choice (“|”). Shared actions in concurrent 
processes indicate synchronization between the 
processes. Parallel composition (“||”) can be used to 
form composite processes.  

LTSA allows system properties to be defined as 
(safety and progress) property processes and/or Fluent 
Linear Temporal Logic (FLTL) assertions. A safety 
property process P asserts that any trace including 
actions in the alphabet of P is accepted by P. A 
progress property asserts that in an infinite execution 
of a target system, at least one of the actions listed in 
the property will be executed infinitely often (the 
progress properties are actually a subset of liveness 
properties). Properties can also be specified as state-
oriented logical propositions in FLTL. As states in FSP 
are implicit, LTSA takes an approach that maps an 
action trace into a sequence of abstract states described 
by fluents. A fluent is defined as fluent FL = 
<{s1,…sm}, {e1,…en} initially B,  where B is the initial 
value, s1,…sm are the initiating actions, and e1,…en are 
the terminating actions. FL becomes true when any of 
the initiating actions occur and false when any of the 
terminating actions occur. In other words, a fluent 
holds at a time instant if and only if it holds initially or 
some initiating actions has occurred, and in both cases, 
no terminating action has yet occurred. An action 
fluent is a fluent such that the action itself is the 
initiating action and other actions are the terminating 
ones. An action fluent becomes true immediately when 
the action occurs and false when the next action 

occurs. Fluent expressions can be constructed by 
applying normal logical operators (conjunction, 
disjunction, negation, implication, and equivalence) to 
fluents. FLTL assertions are formed by applying 
temporal operators to fluent expressions. They specify 
the desired properties that are true for every possible 
execution of a system. 

 
3. Aspect-Oriented State Models 
 
3.1. Class Models 
 

A state model M consists of states S, events E, and 
transitions T.  Transition (si, e[φ], sj) ∈ T means that 
event e∈E results in state sj∈ S from state si∈ S under 
guard condition φ (φ is optional). For the state model of 
a given class, S, E, and T represent object states, public 
constructor/methods, functionality implemented by the 
constructor/methods, respectively. s∈S can be a 
concrete object state or a state invariant. A guard 
condition is a logical formula constructed by using 
constants, instance variables, and functions (methods 
with return values).  

For convenience, we use α to denote the state 
before an object is created (as in [2]) and the new event 
to represent the constructor (we often omit α in state 
diagrams, though). Usually, a class model includes α 
in S and new in E. Object construction transition, (α, 
new[φ], s0)∈ T, creates an object with initial state s0 
under condition φ. Thus we can determine the initial 
state of a given state model from its object construction 
transition. To distinguish states and events of different 
classes, we use C.e, C.s and C (si, e[φ], sj) to denote 
the event e, state s, and transition (si, e[φ], sj) in the 
state model of class C. 

 
Figure 1. The state model for Connection class 

 

 
Figure 2. The state model of Timer class 

 
As part of our running example, Figures 1 and 2 

show the state models of classes Connection and Timer 
in the aspect-oriented Telecom simulation [1]. The 
states of the Connection class are Pending, Completed, 
and Dropped, and the events are new, complete and 
drop. Typically, a connection is established by the 
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complete event at the Pending state and then dropped 
by the drop event at the Completed state. The states in 
the Timer class model are Stopped and Started; the 
events are new, start, stop, and getTime.  

 
3.2. Modeling Aspect-Oriented Design 

 
As in AOP [12], aspects in our approach are 

explored to modularize concerns that crosscut or are 
separate from primary concerns (i.e. classes). Our 
approach, however, aims to capture crosscutting 
features with respect to abstract class models (similar 
to the UML 2.0 protocol state machines [20], except 
for the post-conditions of transitions), as opposed to 
the abstraction level of programming constructs or 
control flow graphs. The preliminary modeling 
formalism was originally developed for the purposes of 
test generation from aspect-oriented state models 
[23][25]. A major problem with the model-based 
testing is that we have to inspect the aspect-oriented 
state models by hand when test execution reports a 
failure. If the models are proven correct, it can be 
determined that the failure has to do with the code. 
This paper exploits a generalized formalism for 
specification of aspect-oriented design so that 
verification of correctness can be automated. It thus 
improves the model-based testing process for aspect-
oriented programs. 

An aspect model consists of inter-model 
declarations (ID), state pointcuts (SP), transition 
pointcuts (TP), and advice models (AM). An inter-
model declaration introduces one or more new 
transition (state or event) to the base models. For an 
introduced transition C(si, e[φ], sj), if si, sj, and/or e are 
not yet in base model C, then they become a new state 
or event in C. A join point is a transition or state in a 
base model. A pointcut picks out a group of join 
points. Pointcuts are defined as follows: 

(1) pointcut <cutname> <transition-variable>:  
             <base><transition> {,<base> <transition>} 

(2) pointcut <cutname> (<state-variable>): 
             <base>.<state>{,<base>.<state>} 

where (1) and (2) define transition and state pointcuts, 
respectively; <cutname> identifies a pointcut; <transition-
variable> is a formal transition, (si, e[φ], sj), where si, e, 
and sj are variables; and <base>.<state> refers to a state 
in the base model. A transition or state variable serves 
as a unified reference to multiple transitions or states in 
one or more base models.  

The advice for a pointcut, specified by a state 
model, describes the control logic applied to each join 
point picked out by the pointcut. An advice model can 
be empty, which means removal of the transitions 
picked out by the pointcut from the base models. An 
advice model that modifies a transition (e.g. the guard 

condition or resultant state) in a base model can simply 
have one transition. Figure 3 shows the model for a 
Checking aspect that applies to the Connection class in 
Figure 1. The first pointcut completeAtDropped picks 
out the transition join point (Dropped, complete, 
Completed) in the Connection model. The advice (with 
an empty model) means that at the Dropped state, the 
complete event is not applicable. The third pointcut 
dropAtPending picks out the transition (Pending, drop, 
Dropped). The advice is that the resultant state of the 
drop event at the Pending state should be Pending 
(remain unchanged).  

 
Figure 3. The Checking aspect model 

 
Figure 4. The Timing aspect model 

 
Figure 4 shows the model of the Timing aspect in 

the Telecom simulation. The first pointcut picks out the 
transition (Pending, complete, Completed) in the 
Connection model. The advice is to start timing once 
this transition has happened. Similarly, the second 
pointcut picks out the transition (Completed, drop, 
Dropped). The advice is to stop timing once the 
transition has happened. The third pointcut picks out 
the object creation transition of Connection, the advice 
is to create a Timer object and get ready for timing 
(Timer is called a non-base class in an advice model - it 
is used but not affected by aspects).  

Note that both Checking and Timing take 
Connection as the base class. To deal with aspect 
interference, we can specify an explicit precedence 

Aspect Timing 
pointcut startTiming (Pending, complete, Completed):  
              Connection (Pending, complete, Completed)  
advice startTiming 

Timer.start Pending Completed Timer.Startedcomplete 

Timer.stop Completed Dropped Timer.Stoppeddrop 

pointcut endTiming (Completed, drop, Dropped):  
              Connection (Completed, drop, Dropped)  
advice endTiming 

pointcut init (α, new, Pending): Connection (α, new, Pending)  
advice init 

Timer.new Pending Timer.Stoppednew 

Pending 

drop 

Aspect Checking 
pointcut completeAtDropped (Dropped, complete, Completed):   

Connection (Dropped, complete, Completed)       // join point 
advice completeAtDropped    // remove the transition 
pointcut self (si, e, si):   

Connection (Completed, complete, Completed),  // join point 
Connection (Dropped, drop, Dropped)                 // join point 

advice self    // remove the transitions 
pointcut dropAtPending (Pending, drop, Dropped):   

Connection (Pending, drop, Dropped)                  // join point 
advice dropAtPending  
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relation (>) between aspects. It is a partial-order 
relation on the given set of aspect models. In the 
Telecom example, we have Checking > Timing, i.e., 
Checking is applied before Timing. Multiple pointcuts 
in the same aspect can also share join points. The order 
in which their advice is applied to the shared 
transitions depends on their occurrences in the aspect 
model. As such, the aspect-oriented state model of a 
system consists of class models, aspect models, and a 
precedence relation on the aspect models. 
 
4. Checking Aspect-Oriented Models 
 

To verify an aspect-oriented state model, we first 
weave aspect models into their base class models. This 
results in woven state models. Then we convert the 
woven models and the models of those classes not 
modified by the aspects into respective FSP behavior 
processes and verify if they have unreachable states. 
Meanwhile, we formalize the properties to be verified 
according to the system requirements. The properties 
are expressed as (safety and progress) property 
processes and/or FLTL assertions. Finally, we 
compose all behavior and property processes into a 
system-level process and feed the resultant process into 
LTSA. LTSA then verifies whether or not the 
properties are violated. If violated, it reports a trace to 
property violation (i.e., counterexample). This helps 
improve the aspect-oriented state model or examine 
correctness of system properties. Figure 5 shows the 
general process for verifying the aspect-oriented state 
models. A prototype tool has been implemented in the 
MACT (Model-based Aspect Checking and Testing) 
toolkit to automate the transformation from aspect-
oriented state models into FSP processes. In the 
following, we focus on the two core components of the 
verification process: weaving for checking and 
converting woven models and class models into FSP 
behavior processes. 
 
4.1. Weaving for Checking 
 

In aspect models, inter-model declarations 
introduce new transitions, states, and events to base 
models. State and transition pointcuts are a naming 
mechanism for mapping state/event variables in advice 
models to the counterparts selected from base models 
by pointcut expressions. The selected transitions are 
then replaced with corresponding advice models or 
transitions. To represent woven state models, we 
slightly extend the state models described in Section 
3.1. Specifically, a generalized transition in a woven 
model is of the form (si, e1[φ1]->e2[φ1]->…-> ek[φk], 
sj) where φl (l=1,…k) is the guard for event el. It means 

the sequence of guarded events e1[φ1]->e2[φ1]->…-> 
ek[φk] (called a composite event) results in state sj from 
si. Typically, one of these events belongs to the base 
class whereas the rest are events of other classes 
involved. If there is only one event in the sequence, the 
transition reduces to a traditional one.  

 
Figure 5. The model-checking process 

 
Now we present the weaving algorithm that 

composes an aspect model with a base model for 
checking purposes. Let “:=” be the assignment 
operator, M.S, M.E and M.T be the sets of states, 
events, and transitions of state model M, respectively.   

Algorithm 1 (Weaving for Checking). Given base 
model BM and aspect model A = (ID, SP, TP, AM). 
The woven state model, WM, of composing aspect A 
into base model BM results from the following 
procedure: 
(1) Initially, WM := BM; 
(2) For each inter-model declaration in ID that is 

defined on BM, add each new transition into 
WM.T.  If states (or events) used in the new 
transitions have not yet in WM.S (or WM.E), add 
them into WM.S (or WM.E). 

(3) For each advice model in AM that involves non-
base classes, combine the transitions that use states 
and events of the non-base classes into composite 
events (leaving out the states of the non-base 
classes). Let AM’ denote the new set of advice 
models.  

(4) For each transition pointcut in TP, replace each 
transition in WM.T picked out by the pointcut with 
the corresponding advice model in AM’. If the 
advice model uses a state variable defined by some 
state pointcut in SP, then replace the state variable 
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with the corresponding state in WM.S according to 
the state pointcut. 

 
Consider the Checking aspect in Figure 3. It has no 

inter-model declarations and only the base class is 
involved. Nothing needs to be done in steps (2) and 
(3). Step 4 removes three transitions from the 
Connection state model and changes the resultant state 
of one transition. Weaving Checking with Connection 
will result in the woven model in Figure 6.  

 
Figure 6. The woven model of Checking and Connection 

 
A woven model can further be composed with 

other aspect models for the same base class. The order 
in which multiple aspects are applied is determined by 
the aspect precedence relation. As such, we can apply 
the Timing aspect to the woven model in Figure 6. Step 
(3) in the above algorithm compresses the advice of 
startTiming, endTiming and init into the following 
composite transitions, respectively:  

(Pending, complete -> Timer.start, Completed) 
(Completed, drop -> Timer.stop, Dropped) 
(α, new - > Timer.new, Pending) 

Then step (4) substitutes the join point transitions with 
the respective composite transitions. Thus, weaving the 
Checking and Timing aspects with Connection leads to 
the woven model in Figure 7. It depicts how timing is 
applied to the connection process. 
 

 
Figure 7. Woven model for Checking/Timing/Connection 

 
4.2. From Woven Models to FSP Processes 
 

For a given aspect-oriented state model, we weave 
all aspects with their base classes and transform the 
model into a set of woven state models together with 
the models of those non-base classes. Then we convert 
each woven model and class model (not modified by 
aspects) into an FSP process. To do so, we first 
generate the top-level FSP process named after the 
(base) class. This process starts with the initial state of 
the (base) class. 

The general algorithm for transforming a woven (or 
class) model into an FSP consists of two procedures: 
FSP process generation and recursive FSP local 
process generation. The algorithm is described below.   
 

Algorithm 2 (Conversion of a State Model into an 
FSP). Generating a complete FSP process for a given 
state model  

Procedure 1: FSP process generation 
Input: a state model  
Output: an FSP process with all local processes 
Steps:  

S1.1 Let TraversedStates be all the states whose 
local processes are already generated. 
Initially TraversedStates = ∅; 

S1.2  Find the initial state (denoted as initState) 
from the object construction transition of 
the model;  

S1.3  The top-level process is modelName = 
initState (the object construction event is 
abstracted away), where modelName is the 
name of the (base) class;  

S1.4 Generate the local process for initState 
using Procedure 2 below;  

S1.5 Concatenate the top-level process in S1.3 
with the subprocess in S1.4 and replace 
the last occurrence of ‘,’ with ‘).’, which 
means the end of a process; 

S1.6  Report unreachable for any state in the 
state model but not in TraversedStates; 

S1.7  Return the resulting process of S1.5. 
 
Procedure 2: FSP local process generation 
Input: a state model and a state s in the model 
Output: an FSP local process 
Steps:  

S2.1 The initial process text: s = (;  
S2.2 Find all transitions in the model that start 

with state s. Suppose E is the set of events 
involved in the transitions. 
S2.2.1  For the first transition, (s, ce, s’), 

transform it to a clause ce -> s’;   
S2.2.2  For each of other transitions, say 

(s, ce, s’), transform it to a clause | 
ce ->s’, where “|” is the choice 
construct. 

S2.2.3  For each event e in E, if there is 
one or more conditional transition 
(s, e[φ1], s1),...,(s, e[φk], sk) 
(suppose φ1∨...∨ φk is not always 
true),  generate a clause | e ->s.  

S2.2.4 Concatenate the initial process text, 
the clauses in the above steps, and 
“,” (end of a local process);  

S2.3  Add s into TraversedStates;  
S2.4  For each transition, (s, e[φ], s’), such that 

the local process for s’ is not generated 
yet, repeat Procedure 2 for s’.   

S2.5  Return the resultant process in S2.2.4. 

Pending Completed 

Complete ->  
Timer.start 

drop -> 
 Timer.stop 

drop 

Dropped 

new -> 
Timer.new 
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new Completed 

complete drop 
drop 

Dropped 
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For clarity, algorithm 2 does not deal with the 
naming convention. In fact, it has to follow the naming 
convention of LTSA. Specifically, we capitalize 
process (i.e. model) and local process (i.e. state) names 
and use a lower case for the first letter of each event 
name. To differentiate the events of different classes, 
we always prefix an event with its class name (starting 
with a lower case letter according to the LTSA naming 
convention, though). For example, the generated FSP 
process for the woven model in Figure 7 is as follows: 

CONNECTION = PENDING, 
PENDING =  

(connection.complete -> timer.start -> COMPLETED 
| connection.drop -> PENDING), 

COMPLETED =  
    (connection.drop -> timer.stop -> DROPPED). 

Finally, we need to define the system-level process for 
an aspect-oriented state model. To do so, we compose 
the FSP processes for all woven state models and non-
base class models. For the previous Telecom example, 
the system-level FSP process is:  

|| TELECOM = (CONNECTION || TIMER). 

Putting this together with the FSP processes for the 
woven model and the Time class model, we have 
obtained the complete FSP specification for the 
Telecom subsystem that consists of the Connection and 
Timer classes and Checking and Timing aspects. 
 
5. Empirical Study 
 

The running example in the previous sections has 
been verified against a number of properties. This 
section reports the application of our approach to a 
non-trivial aspect-oriented cruise control system. Its 
AspectJ implementation has 690 lines of code, 
including 143 lines of aspect code. As an aspect-
oriented refactoring of a legacy Java applet [14], the 
system provides engine control (engineOn, engineOff, 
accelerate, brake) and cruise control (on, off, and 
resume) operations. Engine control events are 
processed by a CarSimulator object and cruise control 
events by a Controller object. Figure 8 shows the 
system architecture, where a small circle represents a 
relationship between a base class and an aspect. 
CruiseControlIntegrator composes CarSimulator with 
such cruise control components as CruiseDisplay and 
Controller, whereas aspect SpeedControlIntegrator 
composes SpeedControl with Controller. The 
CarSimulatorFix aspect solves a safety problem with 
the legacy system, which was found when we were 
testing the first executable aspect-oriented version. The 
failure is that the car starts accelerating immediately 

when, at the initial system state (engine is off), one 
first accelerates the car and then turns on the ignition.  

According to the cruise control system 
requirements, we have formalized 21 properties, 
focusing on the required effects of the aspects. For 
example, the following two properties apply to the 
CarSimulatorFix and CruiseControlIntegrator aspects: 

• The cruise controller cannot be active before 
the ignition has ever been on.  

• The cruise controller should not be active after 
the controller or car engine is turned off. 

They are inter-object state invariants between 
CarSimulator and Controller and thus affected by the 
CarSimulatorFix and CruiseControlIntegrator aspects. 
Similarly, the following two requirements apply to the 
SpeedControlIntegrator aspect:  

• The cruising state cannot be entered before the 
speed control is enabled. 

• The standby state cannot be entered before the 
speed control is disabled. 

They are inter-object state invariants between 
Controller and SpeedControl and affected by the 
SpeedControlIntegrator aspect.  

 
Figure 8. The aspect-oriented cruise control system 

We have successfully verified all of the formalized 
properties against our aspect-oriented design model. 
No property violation was found. To further evaluate 
whether or not the model-checking approach can detect 
design defects, we created 33 variations (mutants) of 
the correct aspect-oriented model of the cruise control 
system according to the potential detects of aspect 
design (e.g. missing join points). 12 of them led to a 
deadlock and 21 violated one or more properties (e.g. 
variation 3-7 violated two properties #6 and #14). All 
mutants are determined to be flawed design models. 
This indicates that the model-checking approach is 
indeed effective in aspect verification. 
 
6. Related Work 
 

There is a growing body of work on aspect-oriented 
modeling with UML. This work exploits the meta-level 
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notation of UML or extends the UML notation for 
specifying crosscutting concerns. It is not concerned 
with the verification of aspect models due to the 
informal or semi-formal nature of UML [24]. A recent 
survey can be found in [17].  

Since finite state models have long been in use for 
rigorous specification of object-oriented software [2], 
sate-based aspect modeling is of particular interest. 
Elrad et al. have proposed an approach to aspect-
oriented modeling with Statecharts [4]. Base state 
models and aspect state models are represented by 
different regions of Statecharts. An aspect first 
intercepts the events sent to the base state models and 
then broadcast the events to the base state models. 
Composition of base models and aspect models relies 
on a specific naming convention as the weaving 
mechanism is implicit. In comparison, our work uses a 
rigorous formalism for capturing crosscutting elements 
(join points, pointcuts, and advice) with respect to state 
models. Aspects and classes are composed through an 
explicit weaving mechanism. Xu and Nygard [22] have 
developed aspect-oriented Petri nets for threat-driven 
modeling and verification of secure software. 
Verification is conducted with respect to the 
correctness and absence of threat scenarios, as opposed 
to desired system properties.  

Several methods for model-checking aspect-
oriented programs have been proposed. Ubayashi and 
Tamai [19] use model-checking to verify whether the 
woven code of an aspect-oriented program contains 
unexpected behavior. They propose a framework that 
allows crosscutting properties to be defined as an 
aspect and thus separated from the program body. 
Denaro and Monga [3] report a preliminary experience 
with model-checking a concurrency control aspect. 
They manually build the aspect model in PROMELA 
(the SPIN input language) and verify the deadlock 
problem of the synchronization policy. Since the 
transformation is done by hand, the conformance 
between the PROMELA program and aspect code 
remains an open issue. Nelson et al. [15] use both 
model checkers and model-builders to verify woven 
programs. The above work [3][15][19] does not 
involve aspect-oriented modeling.  

Krishnamurthi et al. [13] adapt model-checking for 
verifying properties against advice modularly. Given a 
set of properties and a set of pointcut designators, this 
approach automatically generates sufficient conditions 
on the program’s pointcuts to enable verification of 
advice in isolation. It assumes that the programs and 
advice are given as state machines, which represent the 
control-flow graphs of program fragments. In a series 
of papers, Katz and his group have addressed various 
issues of model-checking aspect-oriented code. In [9], 
model checking tasks are automatically generated for 

the woven code of aspect-oriented programs. In [8], 
they treat crosscutting scenarios as aspects and use 
model checking to prove the conformance between the 
scenario-based specification of aspects and the systems 
with aspects woven into them. In [7], they propose an 
approach to generic modular verification of code-level 
aspects. They check an aspect state machine against the 
desired properties whenever it is woven over a base 
state machine that satisfies the assumptions of the 
aspect. A single state machine is constructed using the 
tableau of the LTL description of the assumptions, a 
description of the join points, and the state machine of 
the aspect code. 

Our work is different from the above methods for 
model-checking aspect-oriented programs. The 
crosscutting notions (pointcuts, advice, and aspects) of 
the aspect-oriented state models in our approach are 
specified with respect to the design-level state models, 
as opposed to the programming constructs or control 
flow graphs of aspect-oriented programs. Aspect 
models are allowed to introduce new states, events, and 
transitions. Generally speaking, it is more difficult to 
handle the state space explosion problem at the code 
level than at the design level. Duo the complexity of 
code, “model checking programs (of real applications) 
often cannot completely analyze the program’s state 
space since it runs out of memory” [21]. For assuring 
the quality of aspect code, we provide a combination of 
model-checking for correct design specification and 
model-based test generation for conformance testing of 
aspect code. Nevertheless, the approaches to modular 
verification of aspects [7][13] can be adopted to 
enhance our work. 
 
7. Conclusions 
 

We have presented a rigorous approach to 
automated verification of aspect-oriented design 
specification. This method can lead to two important 
benefits: (1) uncovering aspect design problems before 
code is written. This will reduce development costs due 
to the earlier detection of problems; and (2) 
determining programming faults through model-based 
testing. The model-based testing method [23] generates 
test cases from an aspect-oriented state model for 
exercising the resultant aspect-oriented program. A 
failure of test execution only indicates that the code 
does not conform to the model. When correctness of 
the model is assured by the model-checking method, 
each failure of test execution implies that the code is 
faulty (as long as the test oracle including test result 
evaluation is reliable). Therefore, the combination of 
the model-checking and model-based testing methods 
can assure the quality of aspect-oriented programs.  
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The model-checking method also offers a potential 
for generating test cases from an aspect-oriented state 
model. The basic idea is to transform property 
violation traces (i.e., counterexamples) into test cases. 
Our future work will investigate how to define 
properties for test generation from counterexamples 
and integrate the generated test cases with the existing 
model-based testing method. 
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