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ABSTRACT 

Increased availability of Multi-Core processors is forcing us to 

re-design algorithms and applications so as to exploit the 

available computational power from multiple cores. It is not un-

common to employ memory mapping of files in applications 

involving huge I/O bandwidth to improve the response/service 

times.  This paper mainly focuses on performance of memory 

mapped files on Multi-Core processors. Experiments are carried 

out with k-means algorithm, a popular Data mining (DM) 

clustering algorithm, to explore the potential of Multi-Core 

hardware under OpenMP API and POSIX threads.  Observations 

are made both with static and dynamic threads of OpenMP. 

Experiments are also conducted with both simulated and real 

data sets. Experiments indicate that memory mapping of files 

gives considerable benefit on Multi-Core processors also. In 

addition, the benefit increased with increased physical memory 

size. Also, the benefit of memory mapping with the selected 

algorithm is increasing with number of cores. 

Categories and Subject Descriptors 

C.1 processor architectures , C.1.2 Multiple Data Stream 

Architectures (Multiprocessors) ,  Parallel processors ,C.1.4 

Parallel Architectures  H. information Systems H.3.3 Information 

Search and Retrieval ,Clustering, D. Software ,D.1  Parallel 

programming. 

General Terms 

Performance, Design, Experimentation and Verification. 

Keywords 

OpenMP, mmap(), fread(), POSIX threads, scalability, Multi-

Core and  k-means. 

1. INTRODUCTION 
In the recent years, many network and other applications, which 

demand huge I/O(Input/Output) overhead, are reported to be 

using a special I/O feature known as mmap() to improve their 

performance. For example, John et.al., [10] studied the 

performance of Apache Server. In addition, Avadis Tevanian et 

al., [1] also reported that there would be the CPU time benefit 

by making use of memory mapping rather than conventional I/O  

 

in Mach Operating Systems. Nevertheless, Joseph, et al., [3] had 

also revealed that there was clear cut performance advantage of 

mmap over fread and iostream, because of the huge datasets to 

be accessed. Most data mining algorithms also must consider the 

I/O actions carefully, as they would minimize their effects. The 

well known commands in LINUX like grep, fgrep, egrep and 

find  also use memory mapping concept for large data files. Most 

of the commercial data mining tools and public domain tools 

such as Clusta, Xcluster, Rosetta, FASTLab, Weka etc., support 

DM algorithms, which accepts data sets in flat file form or CSV 

(comma separated values) form. Thus, they use standard I/O 

functions such as fgetc(), fscanf(). However, fread () is also in 

wide use with many DM algorithms [14, 15].  

Reading a byte from a file by using fread() incur three 

I/O operations such as (1)Removing a cache block to 

accommodate new disk block. (2)Reading this disk block into the 

buffer cache. (3) Copying the same block into the process 

address space from buffer. If the removed cache block is dirty, it 

needs another I/O to update dirty block to disk.  However in the 

memory mapping, entire file is mapped into the process address 

space such that the file is treated as an extension of virtual 

address space of the process. Here, when we need a byte from 

the mapped file, the block (Having the byte) is directly copied to 

memory. So the major amount of difference comes only before 

applying the algorithm on data. The percentage of benefit of 

mmap() in algorithm time is less compared to the percentage 

benefit in reading the file. S.N.Tirumala Rao et al.,[13] studied 

the benefit of memory mapping with popular data clustering 

algorithm, k-means. They have reported that on serial computers, 

use of memory mapped() files reduce the CPU time requirements 

of the k-means algorithm. 

Also, in the literature we may find efforts to parallelize 

the k-means and other DM algorithms to reduce the CPU time 

requirements. Manasi N. Joshi [7] describes clustering large data 

sets as time consuming and processor intensive. The 

implementation of the parallel version of a popular clustering 

algorithm exploits the inherent data parallelism in the k-means 

algorithm and makes use of the message-passing model. Dhillon 

I.S et al.[5] proposes a parallel implementation of k-means 

clustering algorithm based on message passing model. It also 

proves that the scale up of algorithm is with the increase of the 

number of data points. 
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More over, the scenario is changing in the recent years 

with the availability of Multi-Core processors. Obviously, one 

may be interested to get the maximum benefit from the HW 

(Hardware). The amount of improvement in performance by the 

use of a Multi-Core processor is dependent on the software 

algorithms and their implementation. In particular, the possible 

gains are limited by the part of the software that can be 

"parallelized" to run on multiple cores simultaneously; this effect 

is proposed by Amdahl's law. Software benefits are from Multi-

Core architecture, where code can be executed in parallel. Under 

most operating systems, this requires a code to execute in 

separate threads or processes. Each application runs on a system 

of its own process, so multiple applications will be benefited 

from Multi-Core architectures. Each application may also have 

multiple threads but, it must be specifically mentioned to utilize 

multiple threads. As of now, the above stated popular DM tools 

both commercial/open-source have not been utilized Multi-Core 

architecture effectively so far. 

In this paper, we propose to study the benefit of 

memory mapping on Multi-Core processors. For the purpose of 

experimentation, we have used k-means [6] algorithm which is 

reported to be second widely used DM algorithm. Two widely 

used multi-threading utilities known as POSIX threads and 

OpenMP threads are used while mapping the selected algorithm 

on Multi-Core processors. 

2. MAPPING THE ALGORITHMS TO 

MULTI-CORE PROCESSORS 
In the literature, we may find researchers presently using 

OpenMP and POSIX threads to exploit the available parallelism 

with Multi-Core machines. 

2.1 OpenMP 
OpenMP is an API which allows the user to introduce 

parallelism to the program with minimal time to modify source 

code. Of course, every one will be interested to achieve 

efficiency and scalability without much development time. Thus, 

OpenMP is planned to reduce development time. In a nutshell, 

OpenMP API contains some pragmas with which one can specify 

the compiler that a section of code shall be run in parallel. More 

over if the compiler does not support OpenMP pragmas, the 

program need not be modified, and simply it will run in serial 

mode [9]. OpenMP automatically parallelizes of some parts of 

code. Hence, it introduces some overhead in the computation that 

makes it significantly heavier. To expect some improvements, 

the granularity of the threads created by OpenMP has to be the 

coarsest possible. Otherwise, the total computational time is 

dominated by the time needed for creating the threads. OpenMP 

allows user only to control the number of threads which are 

created in a loop or for dealing with a part of the program [11]. 

In OpenMP, there is no global way to control the total 

number of threads that are run on the machine. Controlling the 

total number of created threads is more difficult; it may become 

important which would induce a great loss of efficiency. Thus, to 

avoid this, we have programmed two functions, one that 

effectively has a parallel section and the other is purely 

sequential. The recursive calls need not create new threads. They 

are all done calling the purely sequential function. A shared 

counter on the number of threads allows controlling it. In 

OpenMP there is no need for synchronization for accessing 

particular shared variable. OpenMP provides implicit locking 

facility. This technique allows significant speed up in most cases; 

it induces significant changes in the source code. It distributes 

the execution of the associated statement among the members of 

the team that encounter it. 1) Work sharing construct do not 

launch new threads. 2) There is no barrier upon entry to work-

sharing construct. 3) There is an implied barrier at the end of a 

work sharing construct. OpenMP assigns one task per processor. 

Each user thread is mapped one system thread [15]. 

2.1.1 Scheduling 
OpenMP supports loop level scheduling. This defines how loop 

iterations are assigned to each participating thread. Scheduling 

types include:  

 static  

o Each thread is assigned a chunk of iterations in 

fixed fashion (round robin).  

 dynamic  

o Each thread is initialized with a chunk of threads, 

then as each thread completes its iterations, it gets 

assigned the next set of iterations.  

 guided  

o Iterations are divided into pieces that successively 

decrease exponentially, with chunk being the 

smallest size. This is a form of load balancing that 

is less. 

 runtime  

o Scheduling is deferred until run time. The 

schedule type and chunk size can be chosen by 

setting the environment variable 

OMP_SCHEDULE. 

2.2 Posix threads  
The POSIX threads API does not aim at automatic 

parallelization. It just allows the programmer to create new 

threads. As the programmer has to decide what will be 

performed in parallel, it allows a full control on what occurs in 

each thread.  The main drawback of using directly POSIX thread 

API inside the arithmetic is that it leads to perform many system 

calls that may hinder the performances on small examples. The 

programmer has to adopt synchronization mechanism to access a 

particular shared variable. POSIX applications are not portable 

as OpenMP. Posix threads provide explicit locking facility. 

POSIX threads assign many short tasks for few processors. 

Several user threads are mapped to one system thread. It does not 

have a dedicated kernel thread [15]. 

In our experimentations, we have used first two options. 



©2010 International Journal of Computer Applications (0975 – 8887)  

Volume 1 – No. 9 

3 

 

2.3 Implementing Parallel K-Means 

Algorithm 
This section mainly focuses on implementing a parallel k-means 

with fread() and mmap().  

2.3.1 The k-means Algorithm 
0. Select some number of clusters, k. 

1. Select initial cluster points. 

2. Cluster each record do_clustering() method. 

3. Calculate new cluster centers. Compare the new cluster points 

with initial      cluster points. If both are same, stop and print the 

new cluster centers as output. Otherwise, take new cluster 

centers as initial cluster centers and go to step 2. Computational 

complexity of k-means algorithm is O(kndI), where n=number of 

samples or records to be clustered, d=dimensionality, and I= 

number of iterations. 

For fuller details of serial k-means algorithms, readers 

are advised to refer to any popular DM books [6]. The parallel 

versions of k-means were implemented with OpenMP API using 

data parallelism technique. Main computational burden in k-

means algorithm is step 2. That is, we need to classify each 

record to a cluster by calculating the distance between itself and 

all the initial clusters. This is the component which we propose 

to parallelize using both OpenMP and POSIX threads to get the 

benefit of Multi-Core processors. In a nutshell, data parallelism 

divides the input data into independent sets and processes 

simultaneously. This is used in our algorithm also. The pseudo 

code for the implementation of parallel k-means is stated below. 

2.3.2 Pseudo code 
        0.            Select some number of clusters, k. 

1. Select initial cluster points.  

2. omp_set_num_threads(here no of threads are 5);  

3. /* Start of parallel code    */ 

                     #pragma omp parallel sections  

       { 

                          #pragma omp section 

             do_clustering(0); 

                          #pragma omp section  

                            do_clustering(1); 

                          #pragma omp section  

                            do_clustering(2);               

                          #pragma omp section  

                            do_clustering(3);                   

                          #pragma omp section  

                             do_clustering(4); 

       } 

/*The data is evenly distributed among the entire do_clustering 

functions. The #pragma omp parallel sections, assign each 

do_clustering function to a separate thread. Thread wise cluster 

wise totals are calculated. */ 

4.    Implicit barrier for the threads /* End of parallel code */  

5.    Sum up the cluster wise totals and cluster wise count. 

6.  Calculate the new cluster points. Compare the new cluster 

points with previous   cluster points. If both are same, go to 

step 7, other wise Set new cluster points as current cluster 

points and go to step 3.  

7.   Display final cluster points. 

As mentioned above, OpenMP allows for some explicit control 

when parallelizing loops. In the examples cited above, OpenMP 

uses internal heuristics to allocate each iteration of the loop to a 

particular thread1
.  

The omp_set_num_threads represents an OpenMP 

runtime library routine, used to set the required number of 

threads. In this method, the number of threads is set as 5. An 

OpenMP program begins as a single thread of execution, called 

Master thread. The master thread executes sequentially, when it 

encounters a parallel construct, the master thread creates a team 

of specified number of (in this example it is 5) threads and 

master thread becomes a member of the team. When a master 

thread encounters the line #pragma omp parallel sections, a team 

of threads are created to execute parallel sections. Each section is 

identified by an OpenMP #pragma omp section. The 

do_clustering(0) function, with parameter zero, clusters first 1/5 

of given samples. The steps to distribute the records are 1) 

Number of records to clustered = Total number of records/ 

Number of threads. 2) Starting row = Number of records to be 

clustered * Thread number. 3) Ending row = Starting row + 

Number of records to be clustered.   The remaining samples are 

equally distributed among the remaining threads.  

3. EXPERIMENTAL WORK 
For our experimentation, we have used the following computers. 

1. Intel(R) Core(™)2 Quad CPU Q6600 @2.40GHz 

processor, 1 MB Cache memory.  

2. Intel Pentium Dual-Core 2.80 GHz processor with 1 

GB RAMS, 1 MB Cache. 

3. Intel Single Core processor Speed 2.2GHz with 1 MB 

cache. 

In order to standardize our observations, we have used same 

RAM’s, HD(Hard Disk), and Cache with all the selected 

computers. Fedora 9 Linux (Kernel 2.6.25-14, Red Hat version 

6.0.52) equipped with GNU C++ (gcc version 4.3) is used in our 

study. We have used both OpenMP and POSIX threads to study 

their performance on Multi-Core processors. 

In our experiments, Pocker hand data set [12] and 

randomly generated data set are used. Random data set is 

generated to have 20 million records with the dimensionality of 

20. Pokers set have 1 million records with ten attributes 

(dimensions). All the algorithms are tested with a maximum data 

file size of 2 GB. In all the graphs, number of clusters as K, 

dimensions as d, number of records as N. 

In a nutshell, the following forms of selected algorithm are used. 

1. Parallel implementation of k-means with fread () 

(PFk-means)  

                                                             

1 

http://www.nersc.gov/nusers/help/tutorials/openmp/do_clause.

html 
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2. Parallel implementation of k-means with mmap () 

(PMk-means)  

3. Serial implementation of  k-means with mmap() 

(SMk-means) 

4. Serial implementation of  k-means with fread() (SFk-

means) 

In addition, we have used the following notations in our figures 

which convey type of machine, threads package used, data set 

used and OS. 

1. QORL signifying Quad-Core - OpenMP –Random Data 

Set – Linux OS 

2. DORL signifying Dual-Core - OpenMP- Random Data 

Set – Linux OS 

3. QOPL signifying Quad-Core – OpenMP – Pokers Data 

Set – Linux OS 

4. DOPL signifying Dual-Core – OpenMP - Pokers Data 

Set – Linux OS 

5. DPsRL signifying Dual-Core – Posix Threads – 

Random Data Set – Linux OS 

6. QPsRL signifying Quad-Core – Posix Threads – 

Random Data Set – Linux OS 

7. QRL Signifying Quad-Core – OpenMP and POSIX 

threads -  Random Data Set – Linux OS 

The PFk-means and PMk-means are parallelized using OpenMP 

API and POSIX Threads. In this section, the focus is laid on 

analyzing the performance improvement in PMk-means 

clustering algorithm over PFk-means clustering, with respect to 

its execution times(User-time, System-time and Real-time). The 

observations of SFk-means and SMk-means are also recorded.   

We have used time command available in Linux to 

measure the times consumed by our algorithms. When the 

program completes its execution, time command reports user 

time, system time, and real time (elapsed time). The user time is 

the amount of time the CPU spends in executing the users 

program. The system time is, the amount of time the CPU spends 

in kernel mode. The real time is the time gap between the 

invocation of the program and termination of the program. 

Primarily, we have experimented our algorithms by bringing the 

Linux system in single user mode to avoid effect other programs. 

However, some more experiments were carried out while few 

tens of people are logged in the machine. Our conclusions are 

observed to be independent of number of users. 

S.N.Tirumala Rao et al.,[13] reported the benefit of 

memory mapping over fread(), read(), fgetc() based solutions 

with serial k-means algorithm on single core processor. In order 

to investigate its benefit in the selected Dual-Core and Quad-

Core systems, we have conducted numerous experiments by 

varying different parameters such as number of records, number 

of clusters and dimensionality. Figures shows benefit of memory 

mapping concept with conventional fread() on Dual-Core and 

Quad-Core machines with single thread, i.e.,  serial K-Means.  

Observations indicate that memory mapping of data 

files gives speed up on Multi-Core processors also and the speed 

up increases in a number of dimensions, number of records and 

number of clusters. Also, this supports the scalability of the 

concept on Multi-Core processors like serial processors which is 

reported in [13]. This paper also analyses the performance of 

parallel k-means with static threads and dynamic threads of 

OpenMP. In POSIX thread based k-means also data is divided 

into five equal parts for five threads. The same algorithms run 

under Dual-Core and Quad-Core architectures. 

3.1 Quad-Core and Dual-Core and OpenMP 

API 
The observations of parallel k-means algorithm using five 

OpenMP static threads were analyzed. In this method, data is 

divided into five equal parts among the static threads. That is, if 

we happened to have N records,   each thread is made to run the 

k-means algorithm on N/5 records.   That is,   first thread carries 

k-means algorithm on first N/5 records; the second thread works 

on next N/5 records, and vice versa. For all the threads, initial 

cluster centres will be taken as same. We have experimentally 

found that our algorithms are consistently giving better results 

for five numbers of static threads. Thus, we have given the 

reports of our results for the same. We believe that this may not 

be the case with when number of cores increases. 

OpenMP based PMk-means algorithm consistently 

gave benefit in  real time, user time and system time over PFk-

means algorithm, irrespective of the number of records, 

dimensions, clusters and size of RAM in both Dual-Core and 

Quad-Core machines (see Figure 1 to 3 ). The percentage of 

mmap() benefit in parallel k-means algorithm is higher  

compared to serial k-means algorithm which were depicted in the 

Figure 4 to 5. The effect of RAM size is observed by varying 

size of the RAM in steps of 0.5GB from 0.5GB to 3GB i.e., 

0.5GB, 1GB, 1.5GB, 2GB, 2.5GB, 3GB. The percentage of 

PMk-means real time and user time benefit decreases as the size 

of RAM increases in both the Dual-Core and Quad-Core. The 

percentage of PMk-means system time increases as RAM 

increases which were depicted in Table 1 and 2 in annexure. Our 

observations corroborates that memory mapped versions of our 

experiments take less time compared to equivalent fread() based 

versions. 
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Figure 1: Observations of k-means on Quad-Core machine 

 

Figure 2: Observations of k-means on Quad-Core 

machine. 
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In OpenMP k-means performance with static threads also compared 

to the dynamic threads by varying number of threads and distributing 

data equally among threads. The number of threads is varied and 

observations are noted. It could be observed that PMk-means gives 

more real time, user time, system time benefit over PFk-means with 

either static threads or dynamic threads of OpenMP under both the 

architectures, which can be observed from Figure 6 and 7. 

The OpenMP based PMk-means real time benefit 

increases as RAM increases where as the speed variation is 

minor in system time and user time in both Dual-Core and Quad-

Core. In order to explore the reasons, we have carried out 

separate timing measurements for only processing (i.e., carrying 

out k-means clustering algorithm) and initial data reading. This 

indicates that major benefit is coming from the second one which 

is also reported in [13]. Also, the OpenMP based PFK-means 

real time and system time benefit increases with RAM size. 

However, the PFk-means real time benefit is very high which 

may be also attributed to the same reason mentioned above. The 

OpenMP based PMk-means real time, user time and system time 

and the benefit increases with the number of cores increases 

irrespective of number of records, clusters and dimensions. Also, 

the OpenMP based PFk-means real time and user time speed 

increases with the number of cores irrespective of number of 

records, clusters and dimensions. As the number of cores 

increases the number of threads creation, termination and 

scheduling time increases, so the system time benefit may 

automatically be reduced as number of cores increases.   The 

observations of this section are drawn from Table 3 and 4. These 

observations support that both memory mapped() based and 

fread() based algorithms are getting benefited by using multiple 

cores which is shown from Figure 8 to 9. 
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3.2 Quad-Core and Dual-Core and POSIX 

API 
We have conducted a series of experiments with our 

algorithm using POSIX threads also. POSIX based PMk-means 

algorithm gives more real-time and system-time benefit 

compared to PFk-means algorithm, irrespective of the number of 

records, dimensions, clusters and size of RAM in both Dual-Core 

and Quad-Core architectures, which could be observed in Figure 

10.  This can be attributed to the POSIX thread creation. In 

POSIX based threading, one process is created to each thread and 

assigned to a core. Thus, the benefit in real time is falling 

considerably. But the percentage of PMk-means real time benefit 

decreases and system time benefit increases as the size of RAM 

increases which could be observed from Table 5 and 6.Also, 

Figure 11 indicated that, POSIX based PFk-means algorithm 

gives more user-time benefit compared to PMk-means algorithm 

irrespective of the number of records, dimensions, clusters, 
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Figure 3 Observations of k-means on Quad-Core machine. 
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         Fig 4: Observations of k-means on Dual-Core. 
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        Figure 5: Observations of k-means on Dual-Core. 
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Figure 6: Observations of k-means on Quad-Core machine. 

 

 

 

 

 

 

 

 

Figure 7: Observations of k-means on Quad-Core machine. 

 

 

 

Figure 9: Speed up Observations of k-means. 

 

Figure 8: Speed up observations of k-means. 
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except at the size of RAM equal to 0.5GB. The user time benefit 

decreases as the size of RAM increases, the maximum 

percentage of benefit is four only, which could be observed from 

the Table 7 and 8.   

The POSIX based PMk-means, real time, system time 

and user time speed increases as the number of cores increases 

irrespective of number of records, clusters, dimensions and size 

of RAM. The Quad-Core real time speed is very high as 

compared to Dual-Core real time speed. The POSIX based PMk-

means, real time and system time speed is high compared to PFk-

means real time speed and system speed respectively, 

irrespective of number of records, dimensions and clusters. 

These conclusions are drawn from observations given Table 9 

and 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 OpenMP VS POSIX Comparison 
We have also compared OpenMP and POSIX based algorithms. 

OpenMP based PMk-means implementation takes less real time, 

user time and system time compared to POSIX based PMk-

means irrespective of the number of records, dimensions and 

clusters for real data (pokers) and simulated data in both Dual-

core and Quad-Core ( see Figure 12 and 13 ). 

 

 

 

 

 

 

 

 

 

 

 

4. CONCLUSION 
The concept of memory mapping supported by Linux is studied 

in comparison to commonly used fread() based I/O with k-means 

clustering algorithm. The computational benefit of mmap() over 

fread() based algorithm is independent of number of samples, 

dimensions and number of clusters on Quad-Core and Dual-Core 

shared memory architecture. The percentage of mmap() benefit is 

more in parallel k-means than serial k-means in selected Multi-

Core machines. It is also observed that the static thread based 

implementations result in better performance over dynamic 

threads under Quad-Core architecture with OpenMP. The 

percentage of system time benefit increases in PMk-means 

algorithm with the increase of RAM size. The percentage of user 

time and real time benefit decreases in PMk-means algorithm as 

size of RAM increases even though considerable amount of 

benefit could be observed. Parallel k-means with mmap() is more 

scalable compared to the  parallel k-means with fread() 

irrespective of the number of cores, number of records, number 

of dimensions, clusters and the size of the RAM. Also, OpenMP 

based PMk-means is more scalable compared to the POSIX 

based PMk-means. 
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Figure 10: Observations of k-means on Dual-Core machine. 
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Figure 11: Observations of k-means on Quad-Core machine 
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Figure 13: Observations of k-means on Quad-core machine. 
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Figure 12: Observations of k-means on Quad-Core machine. 
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ANNEXURE  
 

Table 1: Quad-Core Real time observations of k-means algorithm by varying RAM with random data for dimensionality 10 and clusters 10 under 

Linux environment. 

 

 

Table 2: Quad-Core System time observations of  k-means algorithm by varying RAM  with random data for 10 million records  and  dimensions 10  

under  Linux environment. 

 

No Of 

Clusters 

<-Quad-Core -–OpenMP---PFk-means---> 

System-Time 

Quad-Core--OpenMP --PMk-means -> 

System-Time 

%of mmap() Benefit 

RAM 

0.5GB 

RAM 

1.5GB 

RAM 

2.5GB 

RAM 

3GB 

RAM 

0.5GB 

RAM 

1.5GB 

RAM 

2.5GB 

RAM 

3GB 
RAM 0.5GB RAM 3GB 

2 4.206 1.303 1.211 1.192 0.899 0.089 0.227 0.214 78.63 82.05 

4 4.213 1.297 1.216 1.179 0.959 0.095 0.200 0.212 77.24 82.02 

6 5.611 1.325 1.209 1.188 1.993 0.152 0.181 0.223 64.48 81.23 

8 5.078 1.297 1.230 1.201 1.841 0.183 0.209 0.204 63.75 83.01 

10 5.756 1.306 1.209 1.183 1.985 0.203 0.217 0.188 65.51 84.11 

 

Table 3:  k-means Real-Time Speed Up Comparison of single-core, Dual-Core and Quad-Core at 15 Million records and dimensions 10 at 1GB RAM 

under Linux environment. 

 

No Of 
Clusters 

-Single-Core-OpenMP--- 

  Real-Time   1GB RAM 

<-----Dual-Core--------------OpenMP------> 

Real-Time  1GB RAM 

<-----Quad-Core-------OpenMP---------> 

Real-Time  1GB RAM 

SFk-

means(S1) 

SMk-

means 

Speed-

UP 
PFk-

means(P1) 

PMk-

means(P2) S1/P1 S1/P2 
PFk-

means(P3) 

PMk-

means(P4) S1/P3 S1/P4 

2 24.104 16.259 1.483 15.420 1.568 1.563 15.372 11.156 1.225 2.161 19.677 

4 28.954 14.789 1.958 16.777 2.271 1.726 12.749 11.574 1.687 2.502 17.163 

6 54.688 39.933 1.369 20.967 6.674 2.608 8.194 13.381 3.215 4.087 17.010 

8 52.203 37.728 1.384 20.521 6.085 2.544 8.579 12.818 2.838 4.073 18.394 

10 84.258 60.487 1.393 24.054 10.048 3.503 8.386 14.464 4.673 5.825 18.031 

Records in 

Million 

<-Quad-Core –OpenMP--PFk-means-> 

Real-Time 

Quad-Core-OpenMP -PMk-means -> 

Real-Time 
%of mmap() Benefit 

RAM 

0.5GB 

RAM 

1.5GB 

RAM 

2.5GB 

RAM 

3GB 

RAM 

0.5GB 

RAM 

1.5GB 

RAM 

2.5GB 

RAM 

3GB 
RAM 0.5GB RAM 3GB 

11 253.763 4.162 4.065 4.066 67.208 3.462 3.400 3.387 73.52 16.70 

13 425.436 4.863 4.861 4.841 91.207 4.058 4.069 4.015 78.56 17.06 

15 533.361 6.281 5.696 5.582 112.951 4.642 4.645 4.620 78.82 17.23 

19 812.045 13.901 7.094 7.065 157.193 5.948 5.883 5.775 80.64 18.26 

20 862.789 17.658 7.441 7.580 164.806 6.229 6.321 6.386 80.90 15.75 

http://archive.ics.uci.edu/ml/datasets/%20Poker+Hand
http://archive.ics.uci.edu/ml/datasets/%20Poker+Hand
http://archive.ics.uci.edu/ml/datasets/%20Poker+Hand
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Table 4:  k-means Real-Time Speed up Comparison of single-core, Dual-Core and Quad-Core at 15Million records and dimensions 10   at 3GB RAM 

under Linux environment 

No Of 
Clusters 

-Single-Core—OpenMP--- 

  Real-Time   3GB RAM 

<-----Dual-Core---------------OpenMP------> 

  Real-Time  3GB RAM 

<-----Quad-Core-------OpenMP---------> 

          Real-Time  3GB RAM 

SFk-

means(S1) 

SMk-

means 

Speed-

UP 
PFk-

means(P1) 

PMk-

means(P2) S1/P1 S1/P2 
PFk-

means(P3) 

PMk-

means(P4) S1/P3 S1/P4 

2 10.617 9.279 1.144 2.863 1.614 3.708 6.578 2.304 0.963 4.608 11.02 

4 16.485 14.790 1.115 3.480 2.337 4.737 7.054 2.387 1.441 6.906 11.44 

6 41.808 39.993 1.045 7.513 6.477 5.565 6.455 4.343 3.322 9.627 12.59 

8 39.258 37.861 1.037 7.248 5.990 5.416 6.554 3.795 2.804 10.345 14.00 

10 62.946 60.769 1.036 11.246 10.073 5.597 6.249 5.526 4.879 11.391 12.90 

Table 5: Quad-Core Real time observations of k-means algorithm by varying RAM with random data for 10 million records and                 dimensions 

10 under Linux environment 

No Of 

Clusters 

<--Quad-Core –POSIX--PFk-means--> 

Real-Time 

Quad-Core--POSIX -PMk-means -> 

Real-Time 
%of mmap() Benefit 

RAM 

0.5GB 

RAM 

1.5GB 

RAM 

2.5GB 

RAM 

3GB 

RAM 

0.5GB 

RAM 

1.5GB 

RAM 

2.5GB 

RAM 

3GB 
RAM 0.5GB RAM 3GB 

2 36.033 1.187 1.225 1.298 25.031 0.992 0.851 0.896 30.53 30.97 

4 30.237 1.381 1.512 1.496 17.196 1.045 1.104 0.999 43.13 33.22 

6 67.185 2.614 2.592 2.614 43.920 2.536 2.318 2.316 34.63 11.40 

8 46.982 2.507 2.610 2.589 32.668 2.150 2.226 2.187 30.47 15.53 

10 75.982 4.013 3.941 3.933 64.240 3.774 3.497 3.519 15.45 10.53 

Table 6: Quad-Core System time observations of  k-means algorithm by varying RAM  with random data for 10 million records  and  dimensions 10  

under  Linux environment. 

No Of 

Clusters 

<--Quad-Core --POSIX--PFk-means-----> 

System-Time 

Quad-Core---POSIX --PMk-means -> 

System-Time 
%of mmap() Benefit 

RAM 

0.5GB 

RAM 

1.5GB 

RAM 

2.5GB 

RAM 

3GB 

RAM 

0.5GB 

RAM 

1.5GB 

RAM 

2.5GB 

RAM 

3GB 
RAM 0.5GB 

RAM 

3GB 

2 2.555 0.615 0.614 0.634 1.465 0.234 0.233 0.249 42.66 60.73 

4 2.364 0.609 0.616 0.628 0.744 0.257 0.205 0.264 65.91 60.99 

6 3.670 0.618 0.620 0.626 1.721 0.226 0.198 0.244 58.66 67.57 

8 3.101 0.625 0.625 0.642 1.351 0.224 0.225 0.226 43.53 65.89 

10 3.862 0.605 0.646 0.637 2.909 0.236 0.213 0.215 52.49 68.45 

Table 7:  Quad-Core User time observations of  k-means algorithm by varying RAM  with random data for 10 million records  and   dimensions 10  

under  Linux environment  

No Of 

Clusters 

--Quad-Core -–POSIX---PFk-means--> 

User-Time 

--Quad-Core---POSIX --PMk-means -> 

User-Time 
%of mmap() Benefit 

RAM 

0.5GB 

RAM 

1.5GB 

RAM 

2.5GB 

RAM 

3GB 

RAM 

0.5GB 

RAM 

1.5GB 

RAM 

2.5GB 

RAM 

3GB 
RAM 0.5GB RAM 3GB 

2 2.116 1.937 2.157 2.360 1.993 3.257 2.507 2.931 5.81 -24.19 

4 2.997 2.668 3.126 2.984 2.792 3.357 3.696 3.121 6.84 -4.59 

6 8.570 7.035 7.270 7.285 7.770 8.840 8.026 8.254 9.33 -13.30 

8 7.781 6.739 6.881 6.694 7.849 7.674 7.488 7.620 -0.87 -13.83 

10 13.193 11.935 11.812 11.717 12.897 12.678 12.284 12.195 2.24 -4.08 

Table 8:  Dual-Core User time observations of  k-means algorithm by varying RAM  with random data for 15 million records  and  clusters 10  under  

Linux environment. 

No Of 

Dimensions 

<--- Dual--Core –POSIX---PFk-means---> 

User-Time 

--Dual-Core –POSIX---PMk-means---> 

User-Time 
%of mmap() Benefit 

RAM 

0.5GB 

RAM 

1.5GB 

RAM 

2.5GB 

RAM 

3GB 

RAM 

0.5GB 

RAM 

1.5GB 

RAM 

2.5GB 

RAM 

3GB 
RAM 0.5GB RAM 3GB 

2 20.348 20.342 20.049 20.018 20.566 20.709 20.529 20.699 -1.07 -3.40 

4 22.017 22.156 22.028 21.733 22.231 22.680 22.609 22.441 -0.97 -3.26 

6 35.681 30.528 30.529 30.272 33.427 31.213 32.013 30.887 6.32 -2.03 

8 29.696 24.854 24.805 24.806 27.544 25.293 25.403 25.264 7.25 -1.85 

10 26.393 22.027 22.930 22.734 25.608 22.434 22.455 22.491 2.97 1.07 

Table 9:  k-means Real-Time Speed Up Comparison of single-core, Dual-Core and Quad-Core at 15 Million records and dimensions 10   at 1GB RAM 

under Linux environment. 

No Of 
Clusters 

-Single-Core--POSIX------ 

Real-Time   1GB RAM 

<-----Dual-Core--------------POSIX------> 

Real-Time  1GB RAM 

<-----Quad-Core-------POSIX---------> 

Real-Time  1GB RAM 

SFk-

means(S1) 

SMk-

means 

Speed-

UP 
PFk-

means(P1) 

PMk-

means(P2) S1/P1 S1/P2 
PFk-

means(P3) 

PMk-

means(P4) S1/P3 S1/P4 

2 24.104 16.259 1.48 15.694 12.129 1.54 1.99 9.052 7.412 2.66 3.25 

4 28.954 14.789 1.96 16.699 3.504 1.73 8.26 10.070 1.608 2.88 18.01 

6 54.688 39.933 1.37 21.209 8.397 2.58 6.51 12.061 3.525 4.53 15.51 

8 52.203 37.728 1.38 20.357 7.531 2.56 6.93 11.816 3.349 4.42 15.59 
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10 84.258 60.487 1.39 24.687 11.639 3.41 7.24 13.964 9.387 6.03 8.98 

Table 10:  k-means Real-Time Speed Up Comparison of single-core, Dual-Core and Quad-Core at 15 Million records and dimensions 10   at 3GB 

RAM under Linux environment. 

No Of 
Clusters 

-Single-Core—POSIX---- 

Real-Time   3GB RAM 

<-----Dual-Core-----------POSIX------> 

Real-Time  3GB RAM 

<-----Quad-Core-------POSIX---------> 

Real-Time  3GB RAM 

SFk-

means(S1) 

SMk-

means 

Speed-

UP 
PFk-

means(P1) 

PMk-

means(P2) S1/P1 S1/P2 
PFk-

means(P3) 

PMk-

means(P4) S1/P3 S1/P4 

2 10.617 9.279 1.14 3.196 2.536 3.32 4.19 2.032 1.409 5.22 7.54 

4 16.485 14.790 1.11 4.190 3.466 3.93 4.76 2.093 1.678 7.88 9.82 

6 41.808 39.993 1.05 8.841 8.394 4.73 4.98 3.911 3.338 10.69 12.52 

8 39.258 37.861 1.04 7.865 7.595 4.99 5.17 3.760 3.268 10.44 12.01 

10 62.946 60.769 1.04 12.303 11.646 5.12 5.40 5.869 5.626 10.73 11.19 

 


