
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

1

A Critical Performance Study of Memory Mapping on Multi-

Core Processors: An Experiment with k-means Algorithm

with Large Data Mining Data Sets

S. N. Tirumala Rao

JNTUK
Kakinada
A.P, India

 E. V. Prasad
JNTUK

Kakinada
A.P, India

 N. B. Venkateswarlu
AITAM
Tekkali

A.P. India

ABSTRACT

Increased availability of Multi-Core processors is forcing us to

re-design algorithms and applications so as to exploit the

available computational power from multiple cores. It is not un-

common to employ memory mapping of files in applications

involving huge I/O bandwidth to improve the response/service

times. This paper mainly focuses on performance of memory

mapped files on Multi-Core processors. Experiments are carried

out with k-means algorithm, a popular Data mining (DM)

clustering algorithm, to explore the potential of Multi-Core

hardware under OpenMP API and POSIX threads. Observations

are made both with static and dynamic threads of OpenMP.

Experiments are also conducted with both simulated and real

data sets. Experiments indicate that memory mapping of files

gives considerable benefit on Multi-Core processors also. In

addition, the benefit increased with increased physical memory

size. Also, the benefit of memory mapping with the selected

algorithm is increasing with number of cores.

Categories and Subject Descriptors

C.1 processor architectures , C.1.2 Multiple Data Stream

Architectures (Multiprocessors) , Parallel processors ,C.1.4

Parallel Architectures H. information Systems H.3.3 Information

Search and Retrieval ,Clustering, D. Software ,D.1 Parallel

programming.

General Terms

Performance, Design, Experimentation and Verification.

Keywords

OpenMP, mmap(), fread(), POSIX threads, scalability, Multi-

Core and k-means.

1. INTRODUCTION
In the recent years, many network and other applications, which

demand huge I/O(Input/Output) overhead, are reported to be

using a special I/O feature known as mmap() to improve their

performance. For example, John et.al., [10] studied the

performance of Apache Server. In addition, Avadis Tevanian et

al., [1] also reported that there would be the CPU time benefit

by making use of memory mapping rather than conventional I/O

in Mach Operating Systems. Nevertheless, Joseph, et al., [3] had

also revealed that there was clear cut performance advantage of

mmap over fread and iostream, because of the huge datasets to

be accessed. Most data mining algorithms also must consider the

I/O actions carefully, as they would minimize their effects. The

well known commands in LINUX like grep, fgrep, egrep and

find also use memory mapping concept for large data files. Most

of the commercial data mining tools and public domain tools

such as Clusta, Xcluster, Rosetta, FASTLab, Weka etc., support

DM algorithms, which accepts data sets in flat file form or CSV

(comma separated values) form. Thus, they use standard I/O

functions such as fgetc(), fscanf(). However, fread () is also in

wide use with many DM algorithms [14, 15].

Reading a byte from a file by using fread() incur three

I/O operations such as (1)Removing a cache block to

accommodate new disk block. (2)Reading this disk block into the

buffer cache. (3) Copying the same block into the process

address space from buffer. If the removed cache block is dirty, it

needs another I/O to update dirty block to disk. However in the

memory mapping, entire file is mapped into the process address

space such that the file is treated as an extension of virtual

address space of the process. Here, when we need a byte from

the mapped file, the block (Having the byte) is directly copied to

memory. So the major amount of difference comes only before

applying the algorithm on data. The percentage of benefit of

mmap() in algorithm time is less compared to the percentage

benefit in reading the file. S.N.Tirumala Rao et al.,[13] studied

the benefit of memory mapping with popular data clustering

algorithm, k-means. They have reported that on serial computers,

use of memory mapped() files reduce the CPU time requirements

of the k-means algorithm.

Also, in the literature we may find efforts to parallelize

the k-means and other DM algorithms to reduce the CPU time

requirements. Manasi N. Joshi [7] describes clustering large data

sets as time consuming and processor intensive. The

implementation of the parallel version of a popular clustering

algorithm exploits the inherent data parallelism in the k-means

algorithm and makes use of the message-passing model. Dhillon

I.S et al.[5] proposes a parallel implementation of k-means

clustering algorithm based on message passing model. It also

proves that the scale up of algorithm is with the increase of the

number of data points.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

2

More over, the scenario is changing in the recent years

with the availability of Multi-Core processors. Obviously, one

may be interested to get the maximum benefit from the HW

(Hardware). The amount of improvement in performance by the

use of a Multi-Core processor is dependent on the software

algorithms and their implementation. In particular, the possible

gains are limited by the part of the software that can be

"parallelized" to run on multiple cores simultaneously; this effect

is proposed by Amdahl's law. Software benefits are from Multi-

Core architecture, where code can be executed in parallel. Under

most operating systems, this requires a code to execute in

separate threads or processes. Each application runs on a system

of its own process, so multiple applications will be benefited

from Multi-Core architectures. Each application may also have

multiple threads but, it must be specifically mentioned to utilize

multiple threads. As of now, the above stated popular DM tools

both commercial/open-source have not been utilized Multi-Core

architecture effectively so far.

In this paper, we propose to study the benefit of

memory mapping on Multi-Core processors. For the purpose of

experimentation, we have used k-means [6] algorithm which is

reported to be second widely used DM algorithm. Two widely

used multi-threading utilities known as POSIX threads and

OpenMP threads are used while mapping the selected algorithm

on Multi-Core processors.

2. MAPPING THE ALGORITHMS TO

MULTI-CORE PROCESSORS
In the literature, we may find researchers presently using

OpenMP and POSIX threads to exploit the available parallelism

with Multi-Core machines.

2.1 OpenMP
OpenMP is an API which allows the user to introduce

parallelism to the program with minimal time to modify source

code. Of course, every one will be interested to achieve

efficiency and scalability without much development time. Thus,

OpenMP is planned to reduce development time. In a nutshell,

OpenMP API contains some pragmas with which one can specify

the compiler that a section of code shall be run in parallel. More

over if the compiler does not support OpenMP pragmas, the

program need not be modified, and simply it will run in serial

mode [9]. OpenMP automatically parallelizes of some parts of

code. Hence, it introduces some overhead in the computation that

makes it significantly heavier. To expect some improvements,

the granularity of the threads created by OpenMP has to be the

coarsest possible. Otherwise, the total computational time is

dominated by the time needed for creating the threads. OpenMP

allows user only to control the number of threads which are

created in a loop or for dealing with a part of the program [11].

In OpenMP, there is no global way to control the total

number of threads that are run on the machine. Controlling the

total number of created threads is more difficult; it may become

important which would induce a great loss of efficiency. Thus, to

avoid this, we have programmed two functions, one that

effectively has a parallel section and the other is purely

sequential. The recursive calls need not create new threads. They

are all done calling the purely sequential function. A shared

counter on the number of threads allows controlling it. In

OpenMP there is no need for synchronization for accessing

particular shared variable. OpenMP provides implicit locking

facility. This technique allows significant speed up in most cases;

it induces significant changes in the source code. It distributes

the execution of the associated statement among the members of

the team that encounter it. 1) Work sharing construct do not

launch new threads. 2) There is no barrier upon entry to work-

sharing construct. 3) There is an implied barrier at the end of a

work sharing construct. OpenMP assigns one task per processor.

Each user thread is mapped one system thread [15].

2.1.1 Scheduling
OpenMP supports loop level scheduling. This defines how loop

iterations are assigned to each participating thread. Scheduling

types include:

 static

o Each thread is assigned a chunk of iterations in

fixed fashion (round robin).

 dynamic

o Each thread is initialized with a chunk of threads,

then as each thread completes its iterations, it gets

assigned the next set of iterations.

 guided

o Iterations are divided into pieces that successively

decrease exponentially, with chunk being the

smallest size. This is a form of load balancing that

is less.

 runtime

o Scheduling is deferred until run time. The

schedule type and chunk size can be chosen by

setting the environment variable

OMP_SCHEDULE.

2.2 Posix threads
The POSIX threads API does not aim at automatic

parallelization. It just allows the programmer to create new

threads. As the programmer has to decide what will be

performed in parallel, it allows a full control on what occurs in

each thread. The main drawback of using directly POSIX thread

API inside the arithmetic is that it leads to perform many system

calls that may hinder the performances on small examples. The

programmer has to adopt synchronization mechanism to access a

particular shared variable. POSIX applications are not portable

as OpenMP. Posix threads provide explicit locking facility.

POSIX threads assign many short tasks for few processors.

Several user threads are mapped to one system thread. It does not

have a dedicated kernel thread [15].

In our experimentations, we have used first two options.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

3

2.3 Implementing Parallel K-Means

Algorithm
This section mainly focuses on implementing a parallel k-means

with fread() and mmap().

2.3.1 The k-means Algorithm
0. Select some number of clusters, k.

1. Select initial cluster points.

2. Cluster each record do_clustering() method.

3. Calculate new cluster centers. Compare the new cluster points

with initial cluster points. If both are same, stop and print the

new cluster centers as output. Otherwise, take new cluster

centers as initial cluster centers and go to step 2. Computational

complexity of k-means algorithm is O(kndI), where n=number of

samples or records to be clustered, d=dimensionality, and I=

number of iterations.

For fuller details of serial k-means algorithms, readers

are advised to refer to any popular DM books [6]. The parallel

versions of k-means were implemented with OpenMP API using

data parallelism technique. Main computational burden in k-

means algorithm is step 2. That is, we need to classify each

record to a cluster by calculating the distance between itself and

all the initial clusters. This is the component which we propose

to parallelize using both OpenMP and POSIX threads to get the

benefit of Multi-Core processors. In a nutshell, data parallelism

divides the input data into independent sets and processes

simultaneously. This is used in our algorithm also. The pseudo

code for the implementation of parallel k-means is stated below.

2.3.2 Pseudo code
 0. Select some number of clusters, k.

1. Select initial cluster points.

2. omp_set_num_threads(here no of threads are 5);

3. /* Start of parallel code */

 #pragma omp parallel sections

 {

 #pragma omp section

 do_clustering(0);

 #pragma omp section

 do_clustering(1);

 #pragma omp section

 do_clustering(2);

 #pragma omp section

 do_clustering(3);

 #pragma omp section

 do_clustering(4);

 }

/*The data is evenly distributed among the entire do_clustering

functions. The #pragma omp parallel sections, assign each

do_clustering function to a separate thread. Thread wise cluster

wise totals are calculated. */

4. Implicit barrier for the threads /* End of parallel code */

5. Sum up the cluster wise totals and cluster wise count.

6. Calculate the new cluster points. Compare the new cluster

points with previous cluster points. If both are same, go to

step 7, other wise Set new cluster points as current cluster

points and go to step 3.

7. Display final cluster points.

As mentioned above, OpenMP allows for some explicit control

when parallelizing loops. In the examples cited above, OpenMP

uses internal heuristics to allocate each iteration of the loop to a

particular thread1
.

The omp_set_num_threads represents an OpenMP

runtime library routine, used to set the required number of

threads. In this method, the number of threads is set as 5. An

OpenMP program begins as a single thread of execution, called

Master thread. The master thread executes sequentially, when it

encounters a parallel construct, the master thread creates a team

of specified number of (in this example it is 5) threads and

master thread becomes a member of the team. When a master

thread encounters the line #pragma omp parallel sections, a team

of threads are created to execute parallel sections. Each section is

identified by an OpenMP #pragma omp section. The

do_clustering(0) function, with parameter zero, clusters first 1/5

of given samples. The steps to distribute the records are 1)

Number of records to clustered = Total number of records/

Number of threads. 2) Starting row = Number of records to be

clustered * Thread number. 3) Ending row = Starting row +

Number of records to be clustered. The remaining samples are

equally distributed among the remaining threads.

3. EXPERIMENTAL WORK
For our experimentation, we have used the following computers.

1. Intel(R) Core(™)2 Quad CPU Q6600 @2.40GHz

processor, 1 MB Cache memory.

2. Intel Pentium Dual-Core 2.80 GHz processor with 1

GB RAMS, 1 MB Cache.

3. Intel Single Core processor Speed 2.2GHz with 1 MB

cache.

In order to standardize our observations, we have used same

RAM’s, HD(Hard Disk), and Cache with all the selected

computers. Fedora 9 Linux (Kernel 2.6.25-14, Red Hat version

6.0.52) equipped with GNU C++ (gcc version 4.3) is used in our

study. We have used both OpenMP and POSIX threads to study

their performance on Multi-Core processors.

In our experiments, Pocker hand data set [12] and

randomly generated data set are used. Random data set is

generated to have 20 million records with the dimensionality of

20. Pokers set have 1 million records with ten attributes

(dimensions). All the algorithms are tested with a maximum data

file size of 2 GB. In all the graphs, number of clusters as K,

dimensions as d, number of records as N.

In a nutshell, the following forms of selected algorithm are used.

1. Parallel implementation of k-means with fread ()

(PFk-means)

1

http://www.nersc.gov/nusers/help/tutorials/openmp/do_clause.

html

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

4

2. Parallel implementation of k-means with mmap ()

(PMk-means)

3. Serial implementation of k-means with mmap()

(SMk-means)

4. Serial implementation of k-means with fread() (SFk-

means)

In addition, we have used the following notations in our figures

which convey type of machine, threads package used, data set

used and OS.

1. QORL signifying Quad-Core - OpenMP –Random Data

Set – Linux OS

2. DORL signifying Dual-Core - OpenMP- Random Data

Set – Linux OS

3. QOPL signifying Quad-Core – OpenMP – Pokers Data

Set – Linux OS

4. DOPL signifying Dual-Core – OpenMP - Pokers Data

Set – Linux OS

5. DPsRL signifying Dual-Core – Posix Threads –

Random Data Set – Linux OS

6. QPsRL signifying Quad-Core – Posix Threads –

Random Data Set – Linux OS

7. QRL Signifying Quad-Core – OpenMP and POSIX

threads - Random Data Set – Linux OS

The PFk-means and PMk-means are parallelized using OpenMP

API and POSIX Threads. In this section, the focus is laid on

analyzing the performance improvement in PMk-means

clustering algorithm over PFk-means clustering, with respect to

its execution times(User-time, System-time and Real-time). The

observations of SFk-means and SMk-means are also recorded.

We have used time command available in Linux to

measure the times consumed by our algorithms. When the

program completes its execution, time command reports user

time, system time, and real time (elapsed time). The user time is

the amount of time the CPU spends in executing the users

program. The system time is, the amount of time the CPU spends

in kernel mode. The real time is the time gap between the

invocation of the program and termination of the program.

Primarily, we have experimented our algorithms by bringing the

Linux system in single user mode to avoid effect other programs.

However, some more experiments were carried out while few

tens of people are logged in the machine. Our conclusions are

observed to be independent of number of users.

S.N.Tirumala Rao et al.,[13] reported the benefit of

memory mapping over fread(), read(), fgetc() based solutions

with serial k-means algorithm on single core processor. In order

to investigate its benefit in the selected Dual-Core and Quad-

Core systems, we have conducted numerous experiments by

varying different parameters such as number of records, number

of clusters and dimensionality. Figures shows benefit of memory

mapping concept with conventional fread() on Dual-Core and

Quad-Core machines with single thread, i.e., serial K-Means.

Observations indicate that memory mapping of data

files gives speed up on Multi-Core processors also and the speed

up increases in a number of dimensions, number of records and

number of clusters. Also, this supports the scalability of the

concept on Multi-Core processors like serial processors which is

reported in [13]. This paper also analyses the performance of

parallel k-means with static threads and dynamic threads of

OpenMP. In POSIX thread based k-means also data is divided

into five equal parts for five threads. The same algorithms run

under Dual-Core and Quad-Core architectures.

3.1 Quad-Core and Dual-Core and OpenMP

API
The observations of parallel k-means algorithm using five

OpenMP static threads were analyzed. In this method, data is

divided into five equal parts among the static threads. That is, if

we happened to have N records, each thread is made to run the

k-means algorithm on N/5 records. That is, first thread carries

k-means algorithm on first N/5 records; the second thread works

on next N/5 records, and vice versa. For all the threads, initial

cluster centres will be taken as same. We have experimentally

found that our algorithms are consistently giving better results

for five numbers of static threads. Thus, we have given the

reports of our results for the same. We believe that this may not

be the case with when number of cores increases.

OpenMP based PMk-means algorithm consistently

gave benefit in real time, user time and system time over PFk-

means algorithm, irrespective of the number of records,

dimensions, clusters and size of RAM in both Dual-Core and

Quad-Core machines (see Figure 1 to 3). The percentage of

mmap() benefit in parallel k-means algorithm is higher

compared to serial k-means algorithm which were depicted in the

Figure 4 to 5. The effect of RAM size is observed by varying

size of the RAM in steps of 0.5GB from 0.5GB to 3GB i.e.,

0.5GB, 1GB, 1.5GB, 2GB, 2.5GB, 3GB. The percentage of

PMk-means real time and user time benefit decreases as the size

of RAM increases in both the Dual-Core and Quad-Core. The

percentage of PMk-means system time increases as RAM

increases which were depicted in Table 1 and 2 in annexure. Our

observations corroborates that memory mapped versions of our

experiments take less time compared to equivalent fread() based

versions.

QORL-Observations

0.000

50.000

100.000

11 12 13 14 15 16 17 18 19 20

Records In Millions

R
ea

l T
im

e
In

Se
co

nd
s

PFk-means RAM=3GB PMk-means d=10 K=10

Figure 1: Observations of k-means on Quad-Core machine

Figure 2: Observations of k-means on Quad-Core

machine.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

5

In OpenMP k-means performance with static threads also compared

to the dynamic threads by varying number of threads and distributing

data equally among threads. The number of threads is varied and

observations are noted. It could be observed that PMk-means gives

more real time, user time, system time benefit over PFk-means with

either static threads or dynamic threads of OpenMP under both the

architectures, which can be observed from Figure 6 and 7.

The OpenMP based PMk-means real time benefit

increases as RAM increases where as the speed variation is

minor in system time and user time in both Dual-Core and Quad-

Core. In order to explore the reasons, we have carried out

separate timing measurements for only processing (i.e., carrying

out k-means clustering algorithm) and initial data reading. This

indicates that major benefit is coming from the second one which

is also reported in [13]. Also, the OpenMP based PFK-means

real time and system time benefit increases with RAM size.

However, the PFk-means real time benefit is very high which

may be also attributed to the same reason mentioned above. The

OpenMP based PMk-means real time, user time and system time

and the benefit increases with the number of cores increases

irrespective of number of records, clusters and dimensions. Also,

the OpenMP based PFk-means real time and user time speed

increases with the number of cores irrespective of number of

records, clusters and dimensions. As the number of cores

increases the number of threads creation, termination and

scheduling time increases, so the system time benefit may

automatically be reduced as number of cores increases. The

observations of this section are drawn from Table 3 and 4. These

observations support that both memory mapped() based and

fread() based algorithms are getting benefited by using multiple

cores which is shown from Figure 8 to 9.

QORL-Observations

0.000

0.500

1.000

1.500

2.000

2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24

Static Threads

Sy
ste

m
 T

im
e I

n

Se
co

nd
s

PFk-means RAM=3GB PMk-means N=15M K=2 d=10

ORL-Observations

0.000
5.000

10.000
15.000

20.000
25.000

2 3 4 5 6 7 8 9 10

Clusters

Re
al

 T
im

e

Sp
ee

d
Up

Smk-means RAM=1GB

PMk-means Dual-Core

PMk-means Quad-Core N=15M d=10

ORL-Observations

0.000

20.000

40.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Records In Million

R
ea

l T
im

e

S
p

ee
d

 U
p

SMk-means RAM=1GB PMk-means Dual-Core

PMk-means Quad-Core d=10 K=10

3.2 Quad-Core and Dual-Core and POSIX

API
We have conducted a series of experiments with our

algorithm using POSIX threads also. POSIX based PMk-means

algorithm gives more real-time and system-time benefit

compared to PFk-means algorithm, irrespective of the number of

records, dimensions, clusters and size of RAM in both Dual-Core

and Quad-Core architectures, which could be observed in Figure

10. This can be attributed to the POSIX thread creation. In

POSIX based threading, one process is created to each thread and

assigned to a core. Thus, the benefit in real time is falling

considerably. But the percentage of PMk-means real time benefit

decreases and system time benefit increases as the size of RAM

increases which could be observed from Table 5 and 6.Also,

Figure 11 indicated that, POSIX based PFk-means algorithm

gives more user-time benefit compared to PMk-means algorithm

irrespective of the number of records, dimensions, clusters,

QORL-Observations

0.000

1.000

2.000

3.000

2 3 4 5 6 7 8 9 10

Clusters

S
ys

te
m

 T
im

e

In
 S

ec
o

n
d

s
PFk-means RAM=3GB PMk-means N=20M d=10

Figure 3 Observations of k-means on Quad-Core machine.

DORL-Observations

1.000

1.050

1.100

1.150

1.200

1.250

1.300

2 3 4 5 6 7 8 9 10

Clusters

%
of

 m
m

ap
()

Us
er

 T
im

e

Be
ne

fit

SMk-means RAM=1GB PMk-means N=20M d=10

 Fig 4: Observations of k-means on Dual-Core.

DORL-Observations

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

11 12 13 14 15 16 17 18 19 20

Records In Millions

%m
ma

p()
 R

ea
l T

im
e

Be
ne

fit

SMk-means RAM=1GB PMk-means d=10 K=10

 Figure 5: Observations of k-means on Dual-Core.

QORL-Observations

1.000

1.500

2.000

2.500

3.000

3.500

2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24

Static Threads

Re
al

 T
im

e
In

 S
ec

on
ds

PFk-means RAM=3GB PMk-means N=20M K=2 d=10

Figure 6: Observations of k-means on Quad-Core machine.

Figure 7: Observations of k-means on Quad-Core machine.

Figure 9: Speed up Observations of k-means.

Figure 8: Speed up observations of k-means.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

6

except at the size of RAM equal to 0.5GB. The user time benefit

decreases as the size of RAM increases, the maximum

percentage of benefit is four only, which could be observed from

the Table 7 and 8.

The POSIX based PMk-means, real time, system time

and user time speed increases as the number of cores increases

irrespective of number of records, clusters, dimensions and size

of RAM. The Quad-Core real time speed is very high as

compared to Dual-Core real time speed. The POSIX based PMk-

means, real time and system time speed is high compared to PFk-

means real time speed and system speed respectively,

irrespective of number of records, dimensions and clusters.

These conclusions are drawn from observations given Table 9

and 10.

3.3 OpenMP VS POSIX Comparison
We have also compared OpenMP and POSIX based algorithms.

OpenMP based PMk-means implementation takes less real time,

user time and system time compared to POSIX based PMk-

means irrespective of the number of records, dimensions and

clusters for real data (pokers) and simulated data in both Dual-

core and Quad-Core (see Figure 12 and 13).

4. CONCLUSION
The concept of memory mapping supported by Linux is studied

in comparison to commonly used fread() based I/O with k-means

clustering algorithm. The computational benefit of mmap() over

fread() based algorithm is independent of number of samples,

dimensions and number of clusters on Quad-Core and Dual-Core

shared memory architecture. The percentage of mmap() benefit is

more in parallel k-means than serial k-means in selected Multi-

Core machines. It is also observed that the static thread based

implementations result in better performance over dynamic

threads under Quad-Core architecture with OpenMP. The

percentage of system time benefit increases in PMk-means

algorithm with the increase of RAM size. The percentage of user

time and real time benefit decreases in PMk-means algorithm as

size of RAM increases even though considerable amount of

benefit could be observed. Parallel k-means with mmap() is more

scalable compared to the parallel k-means with fread()

irrespective of the number of cores, number of records, number

of dimensions, clusters and the size of the RAM. Also, OpenMP

based PMk-means is more scalable compared to the POSIX

based PMk-means.

5. REFERENCES
[1] “A UNIX interface for shared memory and memory mapped

files under mach” , www.72.14.235.104

[2] ECE 222 System Programming Concepts lecturer notes on

system calls, www.parl.clemson.edu

[3] fread/ifstream, read/mmap performance results

www.lastmind.net.

[4] Gray, A. and Moore, A. (July.-2004), “Data structures for

fast statistics”, Tutorial presented at the International

Conference on Machine Learning, Banff, Alberta, Canada.

[5] I. S. Dhillon and D. S. Modha, “A Data Clustering

Algorithm on Distributed Memory Multiprocessors In

Large-Scale Parallel Data Mining” , Lecture Notes in

Artificial Intelligence, vol. 1759, Springer-Verlag, pp 245-

260, March 2000.

[6] Jiawei Han and Micheline Kamber (2006),”Data Mining

concepts and Techniques”, 2nd edition Morgan Kaufmann

Publishers, San Francisco.

[7] Manasi N. Joshi, “Parallel K - Means Algorithm on

Distributed Memory Multiprocessors”, Project Report,

Computer Science Department University of Minnesota,

Twin Cities, Spring 2003.

[8] N.B.Venkateswarlu, M.B.Al-Daoud and S.A Raberts

(1995), “Fast k-means Clustering Algorithms”, University

of Leads School of Computer Studies Research Report

Series Report 95.18.

[9] OpenMP Architecture , “OpenMP C and C++ Application

Program Interface”, http://www.openmp.org/

[10] Optimized performance analysis of Apache-1.0.5 server,

www.isi.edu

[11] “Parallel Programming In OpenMP” by Rohit Chandra ,

Ramesh Menon , Leo Dagum , David Kohr , Dror Maydan

DPsRL-Observations

0.000

0.500

1.000

1.500

2 3 4 5 6 7 8 9 10

Clusters

Sy
st

em
 T

im
e I

n

Se
co

nd
s

Pfk-means N=20M d=10 PMk-means RAM=3GB

Figure 10: Observations of k-means on Dual-Core machine.

 QPsPL-Observations

0.000

0.500

1.000

1.500

2.000

2.500

2 3 4 5 6 7 8 9 10

Clusters

Us
er

 T
im

e I
n

Se
co

nd
s

PFk-means RAM=1GB PMk-means N=1M d=10

Figure 11: Observations of k-means on Quad-Core machine

QRL-Observations

0.290

0.310

0.330

0.350

0.370

0.390

2 3 4 5 6 7 8 9 10

Clusters

Sy
ste

m
 T

im
e I

n

Se
co

nd
s

OpenMP PMk-means RAM=2GB POSIX PMk-means d=10 N=15M

Figure 13: Observations of k-means on Quad-core machine.

QRL-Observations

0.000

1.000

2.000

3.000

4.000

1 2 3 4 5 6 7 8 9 10

Records In Million

Re
al

Tim
e I

n S
ec

on
ds

OpenMP PMk-means RAM=3GB POSIX PMk-means K=10 d=10

Figure 12: Observations of k-means on Quad-Core machine.

file:///C:\Documents%20and%20Settings\Chandragupta\Local%20Settings\My%20Documents\iisc-vizag13-9-09\submitted\iisc-vizag13-9-09\submitted\www.72.14.235.104
file:///C:\Documents%20and%20Settings\Chandragupta\Local%20Settings\My%20Documents\iisc-vizag13-9-09\submitted\iisc-vizag13-9-09\submitted\www.parl.clemson.edu
file:///C:\Documents%20and%20Settings\Chandragupta\Local%20Settings\My%20Documents\iisc-vizag13-9-09\submitted\iisc-vizag13-9-09\submitted\www.lastmind.net
http://www.openmp.org/

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

7

and Jeff McDonald, Academic press, A Harcourt Science

and Technology Company, USA,2001.

[12] Rabert cattral and Franz Oppacher Carleton University,

Department of Computer Science Intelligent systems

research unit, Canada, http://archive.ics.uci.edu/ml/datasets/

Poker+Hand

[13] S .N. Tirumala Rao, E. V. Prasad, N. B. Venkateswarlu

and B. G. Reddy, “Significant performance evaluation of

memory mapped files with clustering algorithms”, IADIS

International conference on applied computing, Portugal pp

.455-460, 2008.

[14] Tuba Islam,“An unsupervised approach for Automatic

Language dentification”, Master Thesis, Bogaziqi

University, Istambul, Turkey,2003.

[15] Yen-Yu chen, Dingquing Gasu, Torsten Suel (2002), “I/O

Efficient Techniques for computing page rank”, Department

of computer and information science, Polytechnique

university, Brooklyn, Technical Report -CIS-2002-03.

ANNEXURE

Table 1: Quad-Core Real time observations of k-means algorithm by varying RAM with random data for dimensionality 10 and clusters 10 under

Linux environment.

Table 2: Quad-Core System time observations of k-means algorithm by varying RAM with random data for 10 million records and dimensions 10

under Linux environment.

No Of

Clusters

<-Quad-Core -–OpenMP---PFk-means--->

System-Time

Quad-Core--OpenMP --PMk-means ->

System-Time

%of mmap() Benefit

RAM

0.5GB

RAM

1.5GB

RAM

2.5GB

RAM

3GB

RAM

0.5GB

RAM

1.5GB

RAM

2.5GB

RAM

3GB
RAM 0.5GB RAM 3GB

2 4.206 1.303 1.211 1.192 0.899 0.089 0.227 0.214 78.63 82.05

4 4.213 1.297 1.216 1.179 0.959 0.095 0.200 0.212 77.24 82.02

6 5.611 1.325 1.209 1.188 1.993 0.152 0.181 0.223 64.48 81.23

8 5.078 1.297 1.230 1.201 1.841 0.183 0.209 0.204 63.75 83.01

10 5.756 1.306 1.209 1.183 1.985 0.203 0.217 0.188 65.51 84.11

Table 3: k-means Real-Time Speed Up Comparison of single-core, Dual-Core and Quad-Core at 15 Million records and dimensions 10 at 1GB RAM

under Linux environment.

No Of
Clusters

-Single-Core-OpenMP---

 Real-Time 1GB RAM

<-----Dual-Core--------------OpenMP------>

Real-Time 1GB RAM

<-----Quad-Core-------OpenMP--------->

Real-Time 1GB RAM

SFk-

means(S1)

SMk-

means

Speed-

UP
PFk-

means(P1)

PMk-

means(P2) S1/P1 S1/P2
PFk-

means(P3)

PMk-

means(P4) S1/P3 S1/P4

2 24.104 16.259 1.483 15.420 1.568 1.563 15.372 11.156 1.225 2.161 19.677

4 28.954 14.789 1.958 16.777 2.271 1.726 12.749 11.574 1.687 2.502 17.163

6 54.688 39.933 1.369 20.967 6.674 2.608 8.194 13.381 3.215 4.087 17.010

8 52.203 37.728 1.384 20.521 6.085 2.544 8.579 12.818 2.838 4.073 18.394

10 84.258 60.487 1.393 24.054 10.048 3.503 8.386 14.464 4.673 5.825 18.031

Records in

Million

<-Quad-Core –OpenMP--PFk-means->

Real-Time

Quad-Core-OpenMP -PMk-means ->

Real-Time
%of mmap() Benefit

RAM

0.5GB

RAM

1.5GB

RAM

2.5GB

RAM

3GB

RAM

0.5GB

RAM

1.5GB

RAM

2.5GB

RAM

3GB
RAM 0.5GB RAM 3GB

11 253.763 4.162 4.065 4.066 67.208 3.462 3.400 3.387 73.52 16.70

13 425.436 4.863 4.861 4.841 91.207 4.058 4.069 4.015 78.56 17.06

15 533.361 6.281 5.696 5.582 112.951 4.642 4.645 4.620 78.82 17.23

19 812.045 13.901 7.094 7.065 157.193 5.948 5.883 5.775 80.64 18.26

20 862.789 17.658 7.441 7.580 164.806 6.229 6.321 6.386 80.90 15.75

http://archive.ics.uci.edu/ml/datasets/%20Poker+Hand
http://archive.ics.uci.edu/ml/datasets/%20Poker+Hand
http://archive.ics.uci.edu/ml/datasets/%20Poker+Hand

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

8

Table 4: k-means Real-Time Speed up Comparison of single-core, Dual-Core and Quad-Core at 15Million records and dimensions 10 at 3GB RAM

under Linux environment

No Of
Clusters

-Single-Core—OpenMP---

 Real-Time 3GB RAM

<-----Dual-Core---------------OpenMP------>

 Real-Time 3GB RAM

<-----Quad-Core-------OpenMP--------->

 Real-Time 3GB RAM

SFk-

means(S1)

SMk-

means

Speed-

UP
PFk-

means(P1)

PMk-

means(P2) S1/P1 S1/P2
PFk-

means(P3)

PMk-

means(P4) S1/P3 S1/P4

2 10.617 9.279 1.144 2.863 1.614 3.708 6.578 2.304 0.963 4.608 11.02

4 16.485 14.790 1.115 3.480 2.337 4.737 7.054 2.387 1.441 6.906 11.44

6 41.808 39.993 1.045 7.513 6.477 5.565 6.455 4.343 3.322 9.627 12.59

8 39.258 37.861 1.037 7.248 5.990 5.416 6.554 3.795 2.804 10.345 14.00

10 62.946 60.769 1.036 11.246 10.073 5.597 6.249 5.526 4.879 11.391 12.90

Table 5: Quad-Core Real time observations of k-means algorithm by varying RAM with random data for 10 million records and dimensions

10 under Linux environment

No Of

Clusters

<--Quad-Core –POSIX--PFk-means-->

Real-Time

Quad-Core--POSIX -PMk-means ->

Real-Time
%of mmap() Benefit

RAM

0.5GB

RAM

1.5GB

RAM

2.5GB

RAM

3GB

RAM

0.5GB

RAM

1.5GB

RAM

2.5GB

RAM

3GB
RAM 0.5GB RAM 3GB

2 36.033 1.187 1.225 1.298 25.031 0.992 0.851 0.896 30.53 30.97

4 30.237 1.381 1.512 1.496 17.196 1.045 1.104 0.999 43.13 33.22

6 67.185 2.614 2.592 2.614 43.920 2.536 2.318 2.316 34.63 11.40

8 46.982 2.507 2.610 2.589 32.668 2.150 2.226 2.187 30.47 15.53

10 75.982 4.013 3.941 3.933 64.240 3.774 3.497 3.519 15.45 10.53

Table 6: Quad-Core System time observations of k-means algorithm by varying RAM with random data for 10 million records and dimensions 10

under Linux environment.

No Of

Clusters

<--Quad-Core --POSIX--PFk-means----->

System-Time

Quad-Core---POSIX --PMk-means ->

System-Time
%of mmap() Benefit

RAM

0.5GB

RAM

1.5GB

RAM

2.5GB

RAM

3GB

RAM

0.5GB

RAM

1.5GB

RAM

2.5GB

RAM

3GB
RAM 0.5GB

RAM

3GB

2 2.555 0.615 0.614 0.634 1.465 0.234 0.233 0.249 42.66 60.73

4 2.364 0.609 0.616 0.628 0.744 0.257 0.205 0.264 65.91 60.99

6 3.670 0.618 0.620 0.626 1.721 0.226 0.198 0.244 58.66 67.57

8 3.101 0.625 0.625 0.642 1.351 0.224 0.225 0.226 43.53 65.89

10 3.862 0.605 0.646 0.637 2.909 0.236 0.213 0.215 52.49 68.45

Table 7: Quad-Core User time observations of k-means algorithm by varying RAM with random data for 10 million records and dimensions 10

under Linux environment

No Of

Clusters

--Quad-Core -–POSIX---PFk-means-->

User-Time

--Quad-Core---POSIX --PMk-means ->

User-Time
%of mmap() Benefit

RAM

0.5GB

RAM

1.5GB

RAM

2.5GB

RAM

3GB

RAM

0.5GB

RAM

1.5GB

RAM

2.5GB

RAM

3GB
RAM 0.5GB RAM 3GB

2 2.116 1.937 2.157 2.360 1.993 3.257 2.507 2.931 5.81 -24.19

4 2.997 2.668 3.126 2.984 2.792 3.357 3.696 3.121 6.84 -4.59

6 8.570 7.035 7.270 7.285 7.770 8.840 8.026 8.254 9.33 -13.30

8 7.781 6.739 6.881 6.694 7.849 7.674 7.488 7.620 -0.87 -13.83

10 13.193 11.935 11.812 11.717 12.897 12.678 12.284 12.195 2.24 -4.08

Table 8: Dual-Core User time observations of k-means algorithm by varying RAM with random data for 15 million records and clusters 10 under

Linux environment.

No Of

Dimensions

<--- Dual--Core –POSIX---PFk-means--->

User-Time

--Dual-Core –POSIX---PMk-means--->

User-Time
%of mmap() Benefit

RAM

0.5GB

RAM

1.5GB

RAM

2.5GB

RAM

3GB

RAM

0.5GB

RAM

1.5GB

RAM

2.5GB

RAM

3GB
RAM 0.5GB RAM 3GB

2 20.348 20.342 20.049 20.018 20.566 20.709 20.529 20.699 -1.07 -3.40

4 22.017 22.156 22.028 21.733 22.231 22.680 22.609 22.441 -0.97 -3.26

6 35.681 30.528 30.529 30.272 33.427 31.213 32.013 30.887 6.32 -2.03

8 29.696 24.854 24.805 24.806 27.544 25.293 25.403 25.264 7.25 -1.85

10 26.393 22.027 22.930 22.734 25.608 22.434 22.455 22.491 2.97 1.07

Table 9: k-means Real-Time Speed Up Comparison of single-core, Dual-Core and Quad-Core at 15 Million records and dimensions 10 at 1GB RAM

under Linux environment.

No Of
Clusters

-Single-Core--POSIX------

Real-Time 1GB RAM

<-----Dual-Core--------------POSIX------>

Real-Time 1GB RAM

<-----Quad-Core-------POSIX--------->

Real-Time 1GB RAM

SFk-

means(S1)

SMk-

means

Speed-

UP
PFk-

means(P1)

PMk-

means(P2) S1/P1 S1/P2
PFk-

means(P3)

PMk-

means(P4) S1/P3 S1/P4

2 24.104 16.259 1.48 15.694 12.129 1.54 1.99 9.052 7.412 2.66 3.25

4 28.954 14.789 1.96 16.699 3.504 1.73 8.26 10.070 1.608 2.88 18.01

6 54.688 39.933 1.37 21.209 8.397 2.58 6.51 12.061 3.525 4.53 15.51

8 52.203 37.728 1.38 20.357 7.531 2.56 6.93 11.816 3.349 4.42 15.59

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

9

10 84.258 60.487 1.39 24.687 11.639 3.41 7.24 13.964 9.387 6.03 8.98

Table 10: k-means Real-Time Speed Up Comparison of single-core, Dual-Core and Quad-Core at 15 Million records and dimensions 10 at 3GB

RAM under Linux environment.

No Of
Clusters

-Single-Core—POSIX----

Real-Time 3GB RAM

<-----Dual-Core-----------POSIX------>

Real-Time 3GB RAM

<-----Quad-Core-------POSIX--------->

Real-Time 3GB RAM

SFk-

means(S1)

SMk-

means

Speed-

UP
PFk-

means(P1)

PMk-

means(P2) S1/P1 S1/P2
PFk-

means(P3)

PMk-

means(P4) S1/P3 S1/P4

2 10.617 9.279 1.14 3.196 2.536 3.32 4.19 2.032 1.409 5.22 7.54

4 16.485 14.790 1.11 4.190 3.466 3.93 4.76 2.093 1.678 7.88 9.82

6 41.808 39.993 1.05 8.841 8.394 4.73 4.98 3.911 3.338 10.69 12.52

8 39.258 37.861 1.04 7.865 7.595 4.99 5.17 3.760 3.268 10.44 12.01

10 62.946 60.769 1.04 12.303 11.646 5.12 5.40 5.869 5.626 10.73 11.19

