
Veri�cation and Validation of Knowledge�Based

Systems with Formal Speci�cations

Pedro Meseguer�

Universitat Polit�ecnica de Catalunya

Departament de Llenguatges i Sistemes Inform�atics

Barcelona� Spain

Email� meseguer�lsi�upc�es

Alun D� Preece

University of Aberdeen� Computing Science Department

Aberdeen AB� �UE� Scotland

Phone� �		 
��	 ������
 FAX� �		 
��	 ���	��

Email� apreece�csd�abdn�ac�uk

�Current address� Institut d�Investigaci�o en Intellig�encia Arti�cial �IIIA�� Consejo Superior de Inves	

tigaci�ones Cienti�cas� 
��
� Bellaterra� Spain�

�



Abstract

This paper examines how formal speci�cation techniques can support the ver�

i�cation and validation �V�V� of knowledge�based systems� Formal speci�cation

techniques provide levels of description which support both veri�cation and valida�

tion� and V�V techniques feed back to assist the development of the speci�cations�

Developing a formal speci�cation for a system requires the prior construction of

a conceptual model for the intended system� Many elements of this conceptual

model can be e�ectively used to support V�V� Using these elements� the V�V

process becomes deeper and more elaborate and it produces results of a better

quality compared with the V�V activities which can be performed on systems de�

veloped without conceptual models� However� we note that there are concerns in

using formal speci�cation techniques for V�V� not least being the e�ort involved

in creating the speci�cations�

Keywords Knowledge�based systems� arti�cial intelligence� formal speci�cation� veri�

�cation� validation� life�cycle�

�



� Introduction

Unlike most conventional software� knowledge�based systems �KBS� are rarely validated

and veri�ed against an explicit speci�cation of user requirements� Probably the main

reason for this is the lack of a complete and common understanding of the task which a

KBS is intended to perform among end�users� human experts and KBS builders� This

lack of understanding is supported by �i� the di	culty to de�ne and describe precisely

typical KBS tasks and �ii� the di	culty of communication among them due to the use of

di
erent languages� Typically� development proceeds in an exploratory manner�usually

via prototyping�until a system is produced which is deemed to embody the implicit

requirements of the prospective users� This explains why most of the early e
orts to

validate KBS involved comparing their performance directly against the performance

of human performers� rather than against any speci�cation document �Buchanan and

Shortli
e� ��
���

The problems with this approach are obvious� the validation is inherently prone to

bias and� even when an �acceptable� system is deemed to have been produced� it is not

clear what the system actually does �or may fail to do�� Much of the work done in re�

cent years to improve the state of veri�cation and validation �V�V� practice for KBS has

held on to the assumption that� because KBS are di	cult to specify� practical V�V tech�

niques should not depend upon the existence of detailed speci�cation documents� This

assumption is clearly seen in� for example� the work done on checking KBS for domain�

independent anomalies such as inconsistency and incompleteness �Preece et al�� ������ as

well as in the quantitative techniques for comparing KBS with human �experts� �O�Keefe

et al�� ��
���

�



Such techniques have been shown to be e
ective� but to a limited extent only� This

paper will examine the limitations of a number of �state�of�the�art� KBS V�V tech�

niques� and will assess how the power of the techniques can be extended when precise

speci�cation documents are available for the system� We will focus upon formal spec�

i�cations� because informal and pseudo�formal speci�cations are too weak to provide a

foundation for V�V� �We note� however� that non�formal speci�cations may be approxi�

mated by formal speci�cations and employed for partial V�V� this is the role played by

the pseudo�formal speci�cations in �Laurent� �������

Therefore� the main aim of this paper is to examine the ways in which formal speci��

cation techniques can support the V�V of KBS� In doing so� two related issues naturally

come under consideration� Firstly� it becomes apparent that veri�cation and validation

techniques can� in turn� support the development of formal speci�cations� Secondly� it

becomes necessary to consider how speci�cation� veri�cation and validation techniques

need to be applied within the whole KBS development process� This paper will touch

upon these issues� although they will need more detailed consideration in their own right�

Veri�cation and Validation of KBS Before proceeding� it is necessary brie�y to

de�ne the terms veri�cation and validation for the purposes of this paper� Veri�cation

is a process aimed at demonstrating whether a system meets its speci�ed requirements�

this is often called �building the system right� �O�Keefe et al�� ��
��� which we take to

mean �checking the system against its �preferably explicit and formal� speci�cations��

Validation is a process aimed at demonstrating whether a system meets the user�s true

requirements�often called �building the right system�� Veri�cation and validation can

be viewed as a set of techniques and an associated process in which the techniques are

�



applied� as part of the whole development process �for example� static veri�cation of the

knowledge base� followed by dynamic testing of the whole KBS �Preece� �������

Formal Speci�cation Techniques for KBS Like V�V� formal speci�cation tech�

niques for KBS include a number of techniques �formal speci�cation languages of various

kinds� and processes �for example� transformation from a pseudo�formal speci�cation to

an implementation through several levels of detail�� In software engineering� a formal

speci�cation for a software system includes �Potter et al�� ������ �i� some speci�cation of

the input�output behaviour of the system �establishing the correct relation between data

and results� and �ii� a description of how this behaviour can be e
ected� The �rst element

corresponds to a black box view of the system� caring only for an external requirement

of I�O behaviour� while the second element corresponds to a glass box view� prescribing

the internal workings of the required system �Ghezzi et al�� ������

The term user requirements speci�cation conventionally refers to �i� only� implying

that the prospective users do not care how their required system behaviour is achieved� In

fact� from the standpoint of traditional software speci�cation� �ii� is perhaps controversial�

since it blurs the distinction between speci�cation and design� However� this type of

speci�cation is a major feature of current KBS formal speci�cation techniques �Fensel

and van Harmelen� ����� Treur and Wetter� ������ and can be of great bene�t in V�V�

so we will not debate its appropriateness here� We note� however� that current formal

speci�cation techniques for KBS tend to merge �i� and �ii� into a single description� so

that the I�O behaviour must be determined from the speci�cation as a whole�

�



� Veri�cation and Validation of KBS

The earliest validation technique in AI was Alan Turing�s proposal on how to decide if a

program could be considered �intelligent�� commonly known as the �Turing test� �Turing�

������ This is a blind test where the evaluator communicates through a teletype with a

person and a program� if the evaluator is unable to di
erentiate between the person and

the program� the program is considered to be intelligent� Although many criticisms have

been levelled against the Turing test as a general procedure to characterize intelligent

behaviour� the idea of blind testing has remained central in KBS validation from the

earliest systems on �see� for instance� the validation of the MYCIN system �Buchanan

and Shortli
e� ��
�� and blind testing in medical KBS �Chandrasekaran� ��
����

In addition to testing� KBS developers realized that rule bases could be analyzed

for anomalies which are indicative of errors in the construction of the KBS� and which

can lead to faulty behaviour at run�time� Commonly considered anomalies included

inconsistency� redundancy� subsumption� circularity� unreachable goals� and un�reable

rules� Tools to detect such anomalies were called veri�ers due to the logical nature of the

tests� Early veri�ers� performed pair�wise comparison of rules �Suwa et al�� ��
��� more

sophisticated techniques including the e
ect of rule chaining were used in �Ginsberg�

��

�� The use of such veri�ers has been widely acknowledged as being complementary

to the necessity of testing� Nowadays� validators perform a combination of veri�cation

and testing methods in order to obtain maximum evidence as to the correctness of KBS�

It is well known that software validation cannot be delayed until implementation� Oth�

erwise� there is too high a risk that errors will be found late which may be very expensive

to correct� This principle� coming from software engineering� also applies to knowledge

�



engineering� However� most of the validation approaches developed for KBS assume to

work on an implemented system �in the context of prototyping�� Several authors have

made proposals to include validation during the early stages of KBS development� but

this does not appear to have become common practice� and there is consequently little

published evidence of the practical usability of existing techniques early in development�

��� Dominant V�V Techniques for KBS

Currently� the dominant techniques for V�V activities can be clustered in four main

groups�

� Inspection

� Static veri�cation

� Empirical testing

� Empirical evaluation

Inspection techniques aim at detecting semantically incorrect knowledge in the KB�

Inspection is performed manually� by a human who has expertise in the application do�

main� During development this is usually the same expert who provided the knowledge

for the KB� but at some point the KB should be inspected by an expert independent

of those involved in the KBS development� �Typically� this technique can be used only

infrequently due to the lack of availability of experts��� Inspection is mostly able to iden�

tify errors in isolated KB elements� when errors come from the interaction of several KB

elements�for instance� chaining of several rules�human inspectors are usually unable

to detect it �by eye��

�



Static veri�cation checks the KB for anomalies� An anomaly is a static pattern in the

KB structure which suggest the presence of an error in the encoded knowledge �Meseguer�

������ Typically� the anomaly pattern is a counterexample of a general property which

should hold in the KBS� for example� consistency� Detected anomalies need to be ana�

lyzed to determine whether they represent a real error or just a minor defect coming from

the encoding process in the selected knowledge representation� Only the most limited

veri�cation checks can be performed manually� generally this process requires computa�

tional support by automated tools� Depending on the capabilities of the veri�cation� the

checks it may perform range from a limited to an exhaustive search for anomalies in the

KB �Meseguer and Verdaguer� ������ It is worth noting that� although the properties to

be checked are to a essentially domain�independent� veri�cation tools depend on the spe�

ci�c semantics of the knowledge representation language used� For this reason� veri�ers

cannot be reused among KBS using di
erent knowledge representation languages�

Empirical testing aims at checking KBS correctness by executing the system on sample

data sets� To guarantee complete correctness� testing has to be exhaustive� that is� every

potential input should be tested� This is obviously not feasible for real applications�

so testing only analyzes a �nite set of test data� the test set� The selection of the test

set is crucial to the e
ectiveness of the testing process� While in software engineering

random testing has been shown to be the most cost�e
ective technique� in knowledge

engineering the combination of structural and functional testing seems to be superior to

other techniques �Rushby and Crow� ����� Zualkernan et al�� ������

Structural testing aims at executing as many of the KB components as possible� for

example� �ring as many rules as possible� and instantiating as many object attributes as






possible� Functional testing checks the function of the KBS by comparing its observed

input�output relationship with that speci�ed in the requirements� without considering

internal structure� Real test cases are usually scarce� so test cases have to be synthesized

automatically by test case generators� A �nal di	culty in KBS testing occurs when the

application domain is so ill�de�ned that �correct� behaviour is not well�de�ned �there is

no �gold standard��� In such cases� it is necessary to make some de�nition as to what

is to be considered a �correct� or �acceptable� solution for each test case� usually� the

correct solution is approximated by a consensus among the opinions of several human

experts�

Evaluation addresses the relation between the operational KBS and the �nal user�

Typical evaluation issues are technical performance� acceptability� inclusion in the or�

ganization� responsibility issues� and so on� Empirical evaluation is performed by using

the operational KBS either in a controlled environment �laboratory evaluation� or in the

working environment ��eld evaluation�� KBS evaluation is a human activity which is

highly application�dependent�

Of these four groups� inspection and empirical evaluation methods are clearly application�

dependent and they are not candidates for potential reuse across di
erent KBS� On the

other hand� veri�cation and testing methods can be reused to a great extent on di
erent

KBS� even though the computational tools supporting the methods are usually bound

to speci�c knowledge representation languages� However� even in the reusable meth�

ods� the role of human experts remains signi�cant� because they are needed to evaluate

veri�cation and testing outputs�

�



��� Limitations of Current Approaches

While success has been achieved using the above techniques� there are still causes for

concern� The presence of requirements which are hard to formalize or express without

ambiguity induces di
erent weaknesses in the V�V process� This kind of requirement

is di	cult to validate� and so one never knows to what extent such requirements are

ful�lled� This problem becomes more di	cult when di
erent requirements coming from

di
erent users are to be integrated� Here there is an extra issue� to guarantee the internal

consistency of the set of requirements� In any case� there is no rigorous way to verify the

correspondence between a set of requirements and its �nal implementation�

The absence of formal speci�cations limits the capability of KBS veri�cation� which

remains constrained to assuring that some domain�independent properties hold in the

system� An example of a domain�independent property is consistency� which means

that from a consistent input the KBS cannot produce a contradictory output� Domain�

independent properties appear as prerequisites for adequate functioning of a KBS� and

they should be tested� However� although they are necessary they are not su	cient

because they say little about the level of actual KBS correctness� Consider a �somewhat

exaggerated� analogy comparing knowledge engineering with numerical programming�

checking a rule base for consistency is analogous to checking in a numerical program that

no computation arrives to over�ow or under�ow� Obviously� it is something useful to

know� but it has nothing to do with the correctness of the computation� one can have a

consistent rule base �or a neither�over�owing�nor�under�owing numerical program� that

performs totally incorrect computations� which nevertheless are consistent�

To evaluate correctness� a number of domain�dependent properties should be tested�

��



these contain constraints that the KBS output must satisfy to comply with the domain

knowledge� Some examples of domain�dependent properties in the medical domain are

the following� �i� in diagnosis� a KBS cannot ignore a cause which may put the patient�s

life in danger �for example� a dangerous bacteria� even if the chance of it being the actual

cause of the illness is small� and �ii� in treatment� a KBS cannot prescribe a drug dose

which causes a risk to the patient�s life�

Results from testing indicate that the system performs adequately on a set of cases�

and it is reasonable to expect that the system will behave in the same way on similar

cases� If the test set is representative of the set of possible inputs �which in complex

KBS rarely occurs�� this may represent enough evidence for non�critical tasks� However�

when a new case appears� we cannot be sure that the system will behave properly on it

�except for trivial cases� or very speci�c applications where advanced testing techniques

can be applied��

In addition to the weaknesses induced by the presence of ambiguous or hard to formal�

ize requirements� another important limitation of current V�V techniques comes from

the fact that they are only applicable to implemented KBS� As we have stated previously�

validation cannot be delayed until implementation� otherwise the cost of correcting er�

rors can be very high� Ignoring validation until implementation is �nished has also an

important impact on KBS design� typically� KBS are constructed to be executed but

not to be validated �nor to be maintained� etc��� This makes the validation task more

di	cult� and as a consequence� in many occasions it can only provide indirect evidence

of the properties to be tested and of the quality of KBS parts�

In summary� the main weakness of current V�V approaches with respect to imple�

��



mented KBS lies in the fact that they do not really bring con�dence in the quality of

the system as a whole and of the system parts� V�V methods should provide adequate

answers to issues such as correctness� completeness� robustness� precision� safety� and

so forth� Currently� many of these questions are answered only partially or by indirect

evidence only� To overcome these defects V�V methods have to employ more precise

information about the task the KBS is required to perform� Formal speci�cations can

play a fundamental role in accomplishing this goal�

� Formal Speci�cations for V�V

Strictly speaking� no veri�cation or validation is possible without speci�cations� by the

de�nition of veri�cation �Section ��� While some of the existing veri�cation techniques

may appear to operate in the absence of any speci�cations� in reality they make reference

to implicit speci�cations� for example� the techniques for verifying the consistency of

knowledge bases make reference to some model of consistency� which can be considered a

domain�independent requirement �that the KBS be free from inconsistency� �Preece et al��

������ Similarly� early validation e
orts comparing a KBS against human performers

made implicit reference to a requirement that the KBS should emulate such human

performers �Buchanan and Shortli
e� ��
���

Once the necessity for speci�cations is clear� it must be said that the more precise

and detailed are the speci�cations� the more thorough will be the V�V process� At the

least�desirable extreme we have the case where the sole requirement is implicit emulation

of human performers� If we have informal or semi�formal statements�of�requirements for

the system� then we can devise tests to determine if the system complies with these

��



requirements� however� because the requirements are not stated formally�

� there is no way to be sure if we have tested them completely �or to what extent we

have tested them��

� they may be ambiguous� incomplete and incorrect�

The most desirable case� then� is to have requirements that are speci�ed formally �with a

well�de�ned syntax and semantics�� Such speci�cations are produced by formal methods

and� thus� such methods clearly have a role in the V�V process for KBS�

��� Formal Speci�cations for KBS

A growing number of formal speci�cation languages are available�and have already been

used�to specify KBS� We can categorise them roughly according to the intent of their

developers�

� General purpose speci�cation languages� developed in the context of conventional

software engineering� for the speci�cation of any type of software system� For

example� Z �Plant and Gold� ����� and VDM �Haugh� ��

� have been used to

specify KBS�

� Special purpose speci�cation languages� predominately European in origin� devel�

oped for the purpose of specifying complex knowledge�based reasoning systems�

Among the best known are DESIRE� KARL and �ML��� surveyed in �Fensel and

van Harmelen� ����� Treur and Wetter� ������

Although some work has been done applying general purpose speci�cation languages

to KBS �Krause et al�� ������ for our purposes the second category is more attractive

��



Informal or semi-formal
"conceptual model"

Formal
specification

Implemented
KBS

Iterative refinement

Implementation
Informal description

Formal description

Key

Figure �� Using a formal speci�cation in KBS development�

because the facilities of the languages are well�suited to specifying KBS and these lan�

guages are better�suited to the practical needs of KBS developers� Using special purpose

speci�cation languages a speci�cation can be developed gradually� as a re�nement of

informal and semi�formal descriptions of the system� see Figure �� Here� the infor�

mal description�typically called the �conceptual model� in various methodologies�is

iteratively re�ned to create a more precise formal speci�cation� with both descriptions

undergoing gradual modi�cation during the process� The formal speci�cation keeps the

structure and vocabulary of the conceptual model� It is kept to make easier the com�

munication with domain experts in the development and validation process� The formal

description will form the basis for the implementation� later we discuss the various ways

in which this can be done�

In fact� the possibilities of using formal speci�cations are richer than shown in Fig�

ure �� We may want to have several formal speci�cations� providing di
erent formal

descriptions of the system� for example�

� At di
erent levels of detail� for example� a black box speci�cation of the system�

showing the input�output relations only� and a complementary glass box description

��



of the system� showing internal aspects of its required behaviour� These two views

of a KBS speci�cation have been referred to as the problem speci�cation and the so�

lution speci�cation�or as the �contract� and �blueprint��respectively �Batarekh

et al�� ������

� Of di
erent �models� of the system� for example� the cooperation model may de�

scribe how the system interacts with its users� while a separate task model may

describe the tasks the system performs on its own �Wielinga et al�� ������

��� Formal Speci�cations for V�V

From an idealistic point�of�view� the goal in performing veri�cation and validation is to

deliver a KBS that is as reliable as possible� more pragmatically� the goal is to deliver

a KBS that is as reliable as necessary�given the users� needs �Miller� ������ The most

important decision is that of what to verify and validate�

When formal speci�cations are available� they provide more opportunities for doing

V�V than are available otherwise� Figure ��a� shows what V�V can be done when the

only available descriptions of the system are an informal statement of requirements� and

the implementation itself�

The implementation can be veri�ed for internal consistency and apparent complete�

ness� and validated for �approximate� compliance with the informal requirements� using

the methods described in Section �� but that is all� The weaknesses of V�V conducted

to this extent were highlighted at the end of the previous section� These weaknesses can

be repaired by the use of formal speci�cations in the following way�

� Issues caused by the presence of ambiguous requirements are now eliminated be�

��



cause V�V is performed using formal speci�cations� which are not ambiguous�

Obviously� there exists the problem of constructing such formal speci�cations from

the informal requirements� This issue can be considered separately from the veri�

�cation process� which can be performed in a much clean way�

� V�V activities are no longer delayed until implementation� Formal speci�cations

provide statements which are amenable to analysis and veri�ed in their own form

�something that was impossible for the informally stated requirements�� In this

sense� formal speci�cations allow V�V activities to be included in the early stages

of KBS development�

In addition� when formal speci�cations are available many more V�V opportunities

exist� as shown in Figure ��b�� Here� there are the two levels of formal speci�cation�

black box and glass box�in addition to the implementation� Note that� in this context�

validation is the whole process� which is composed by the �rst step between the informal

conceptual model and the black box speci�cation� plus the subsequent veri�cation steps

through to implementation� Hence� validation is performed by veri�cation at several

levels of abstraction�

The availability of the multiple formal descriptions provides support for additional�

� Intra�model V�V �V�V of a single description of the KBS in and of itself�� be�

cause the formal descriptions of the KBS can be veri�ed and validated in and of

themselves� for properties such as consistency and completeness �appropriately de�

�ned�� these descriptions can also be validated manually for correctness� because

the speci�cations are unambiguous�

��



Informal or semi-formal
"conceptual model"

"Black box" formal
specification

Implemented
KBS

Validation

"Glass box" formal
specification

Verification

Verification

Verification

Verification

Verification

Informal
requirements

Implemented
KBS

Validation

Verification

(a) (b)

Figure �� V�V opportunities� �a� without any formal speci�cation� �b� with two levels

of formal speci�cation�

� Inter�model V�V �V�V between di
erent descriptions of the system�� because

di
erent descriptions of the system can be veri�ed with respect to one another� this

supports validation because one level of description can be the user�s requirements�

made explicit�

Since the formal speci�cations are descriptions of the system� V�V techniques may

be used to ensure the validity of the speci�cations themselves in the above contexts�

As described in Section �� a formal speci�cation provides �i� a description of the

intended I�O behaviour� and �ii� a description of how this behaviour can be constructed�

Some of the potential uses of a formal speci�cation in V�V are the following�

� To give structure to the domain knowledge� providing a vocabulary of knowledge

elements which can be used in V�V�

� To allow veri�cation of the intended I�O behaviour in a �black box� manner�

��



� To allow veri�cation of the way a solution is constructed by the system� in a �glass

box� manner� The structure of the domain knowledge plus the speci�cation of how

the solution should be constructed must be su	cient to devise V�V techniques

speci�c to the task performed by the system� to provide the necessary level of

con�dence in the reliability of the system�

� Some languages� such as DESIRE �Treur and Wetter� ����� and KARL �Fensel and

van Harmelen� ����� produce executable speci�cations� They can be used to test

the system against the ideal behaviour provided by the speci�cations�

Further to the last point above� it is worth noting that languages producing executable

speci�cations are typically less expressive than non�executable ones in the sense that the

latter can deal with in�nite domains� while executable speci�cations are restricted to

�nite domains� On the other hand� executable speci�cations can be executed� which is

doubly valuable for V�V purposes� �i� it shows the feasibility of the speci�cation with

respect to an implementation� and �ii� it demonstrates an ideal behaviour of the system�

which can be used to test these speci�cations against a particular implementation� To

use non�executable speci�cations for these purposes� symbolic execution techniques are

required� Typically they produce very large lists of logical predicates as output� which

are di	cult to manage in practice �Kemmerer� ��
���

The various V�V techniques described in Section � can�and in some cases must�

be rede�ned in this context� The question of verifying the speci�cations themselves is

still open� as few of the existing special�purpose KBS speci�cation languages have well�

developed proof techniques at present� If general�purpose speci�cation languages are

used� then their existing proof techniques apply� but these have been found to entail a

�




great deal of labour when KBS are speci�ed �Haugh� ��

�� However� extended versions

of the existing V�V techniques for KBS become possible� we consider each of the four

groups of techniques described in Section ��

Inspection In intra�model V�V� at the speci�cation level� it is often argued that the

unambiguous nature of formal speci�cations permits easier direct validation via inspec�

tion by customers and�in the case of KBS�domain experts� This is made di	cult in

practice when unfamiliar and unintuitive notations are employed for the formal descrip�

tions� although this di	culty may be alleviated to some extent because the declarative

nature of much of the speci�cation �for example� logical rules� is more comprehensible to

non�programmers than procedural descriptions� In addition� some graphical interfaces

are being developed in association with formal speci�cation languages� these graphical

interfaces can make the communication with domain experts easier� Although all these

facilities can alleviate the problem of understanding formal speci�cations for customers

and domain experts� we believe however� that it will usually be more practical to em�

ploy the semi�formal conceptual model in this capacity as a more intelligible �though not

unambiguous in and of itself� version of the speci�cation�

Like a formal speci�cation� the conceptual model provides an implementation�independent

description of the intended task� and therefore can be inspected by domain experts with�

out the burden of implementation details� At this level� inspection aims at evaluating the

knowledge quality and completeness with respect to the intended task� If necessary�

due to ill�de�nition or ambiguity�formal speci�cations can complement the conceptual

model� In this case� domain experts would likely require assistance from the knowledge

engineers to deal with formal languages�

��



In inter�model V�V� the high degree of structure provided by a formal speci�cation

can be used manually to check for the detection of corresponding structures in the imple�

mented system� The conceptual model may play a role here also� at the implementation

stage� one can check the correspondence between the conceptual model and the �nal

implementation of the system�

Static Veri�cation Static veri�cation is possibly the group of V�V techniques most

enhanced by the introduction of formal speci�cations� Here� the speci�cations allow

veri�cation �i� to be performed on the same speci�cation� and �ii� to check either the

speci�cation or the implementation for domain�dependent properties� Both lead to sig�

ni�cant advances over the current state of static veri�cation�

In intra�model V�V at the speci�cation level� if a formal speci�cation is to be veri�ed

according to the properties for static veri�cation �consistency� redundancy� etc�� then

these properties need to be de�ned in relation to the formal speci�cation language �see

�van Harmelen and Aben� ����� for an initial approach in this direction�� Once this

is done� however� the reusability of this approach is high� because the same anomalies

can be checked for in any speci�cation written using the language� Furthermore� formal

speci�cation languages provide additional opportunities for veri�cation by some of the

techniques� as a bene�t of their features� For example� the modular architecture and

declaration of hierarchies of types �sorts� provided by languages like DESIRE� KARL

and �ML�� permit additional properties to be checked in static veri�cation �for example�

violation of modularity� and type mis�matches��

In addition to checking the speci�cation for domain�independent properties� it can

be checked for domain�dependent ones� This can be performed in an inter�model V�V

��



among di
erent levels of speci�cations� Thus� in Figure � �b�� a �glass box� speci�cation

can be veri�ed against a �black box� speci�cation� The necessity to verify speci�cations

themselves has already been acknowledged in software engineering�

Static veri�cation can also be employed to detect structural nonconformances between

speci�cation levels and implementation� This provides an automatic �and hence more

reliable� version of the inter�model inspectional veri�cation discussed above� Recall that�

in addition to the I�O behaviour� a formal speci�cation describes how this behaviour

can be achieved� This implies that a formal speci�cation provides� to some extent�

elements of the KBS structure� After implementation� these elements can be checked

to verify whether their functionality meets their speci�cation� This is an important

step towards constructing correct and reliable KBS because �i� veri�cation is no longer

limited to general purpose properties� it can check domain�dependent properties� and �ii�

veri�cation can be made of speci�c parts of the KBS structure� providing direct evidence

of correctness for these parts�

Empirical Testing The �rst bene�t that empirical testing obtains from formal speci�

�cations is that testing can be performed on the formal speci�cation itself� In this way

knowledge engineers can assess whether they are specifying the intended system� This

view has been already considered in software engineering �Kemmerer� ��
��� in order

to prevent the development of costly formal speci�cation proofs which are at the end

unachievable in practice� In general� this may require symbolic execution of formal spec�

i�cations� However� executable speci�cation languages like DESIRE �Treur and Wetter�

����� and KARL �Fensel and van Harmelen� ����� are directly testable can be of great

help in early stages of KBS development� Testing speci�cations directly can take the

��



conventional form of running test cases on an executable speci�cation� or can take the

form of proving properties �such properties corresponding to �test cases�� of the speci��

cation� In order to do this� proof techniques must have been de�ned for the speci�cation

language�

Once testing has been performed on the formal speci�cation of the system� an idealised

view of the development process would suggest that empirical testing on the implemented

system is unnecessary� because the implementation should be shown to be compliant

with the previous speci�cations� Although the presence of formal speci�cations may

suggest that testing is unnecessary� this view is currently too extreme and impractical�

and is likely to remain so for the foreseeable future� The translation from speci�cations

to implementation is largely performed manually� and some errors can be introduced�

Therefore� testing is still necessary to obtain empirical evidence that the implemented

system behaves properly on a set of cases� Testing can be performed in its classical

variants� structural and functional� and formal speci�cations provide extra support for

both approaches� A formal speci�cation provides the intended I�O behaviour� so it

contains all the information needed to perform functional testing� On the other hand�

the level of structure in formal speci�cations can be used to support structural testing�

In addition� speci�cations can help greatly in the selection of the test set� or if no test

cases are available� to support its automatic generation�

Finally� executable speci�cations may simplify the testing process of implemented

systems� The speci�cation execution acts as the gold pattern which the implemented

system must follow� so it is easy to identify behaviour di
erences and mismatches between

the execution traces of both systems� This brings new perspectives on testing techniques�

��



which were unforseen with past approaches�

Empirical Evalation This aspect of V�V would seem at �rst to bene�t little from

the use of formal speci�cations� However� a number of possibilities exist� For example� it

is possible to use a formalised model of the required cooperation between KBS and users

to check for potential system integration problems in a more principled way�and at an

earlier stage in development�than would otherwise be possible� Secondly� subjective

requirements such as �user friendliness� can be approximately expressed by means of

pseudo�formal speci�cations� and then become amenable to V�V methods other than

experimental evaluation �Laurent� ������

Regarding practical experiences of the use of formal speci�cations in the context of

V�V� to our knowledge no such experiences exist so far� The development of conceptual

models for knowledge engineering and their representation in formal languages is quite

a new approach� and their potential use for V�V is a topic of current investigation� of

which this paper is an example� Given the bene�ts that formal speci�cations may o
er�

it is foreseeable that the use of these techniques will support more principled KBS V�V

in the near future�

��� Outstanding Issues

While formal speci�cation techniques o
er clear bene�ts to V�V� there are a number of

unclear issues at present�

Nature of the Development Process One question concerns the nature of the de�

velopment process incorporating formal speci�cation with V�V� Should a transformation

��



Informal or semi-formal
"conceptual model"

Implemented
KBS

Validation

Complete formal
specification

Transformation 

Verification

(a)

Informal or semi-formal
"conceptual model"

Implemented
KBS

Validation

 Formal
"mini-model"

Verification 

(b)

 Formal
"mini-model"

Figure �� Using formal speci�cations for V�V� �a� transformation from complete formal

speci�cation� �b� use of �mini�models��

approach be adopted� wherein the speci�cation is gradually re�ned into an implementa�

tion� as shown in Figure ��a�� This is attractive from the V�V point�of�view because it

is easier to promote and control validity throughout the process� all veri�cation is per�

formed directly upon the formal speci�cation �bene�tting from its well�de�ned syntax

and semantics�� and correctness is then assured by the transformation process� However�

taking the transformational approach requires a signi�cant e
ort for developers� who

must construct several levels of re�ned speci�cation until an acceptable implementation

is achieved� �The question of e
ort involved in creating formal speci�cations is addressed

by the companion papers in this special issue��

The transformational approach contrasts with the more conventional approach shown

previously in Figure ��b�� where an implementation is crafted with the intention that

it will comply with the speci�cation� without actually being derived from it� V�V

techniques are used to establish the compliance between the descriptions�

��



Completeness of Formal Speci�cations Another important question concerns the

completeness of the speci�cations� that is� whether the speci�cation should �and� in

complex cases� whether it can� describe every aspect of the system� One approach

to development is to aim towards building a formal speci�cation which is a complete

description of the KBS� This can then be transformed �as in Figure ��a�� or constructed

into an implementation�

An alternative approach is to specify di
erent aspects of the system as independent

�mini�models�� against which the implemented system can be veri�ed �Bellman� ������

see Figure ��b�� There may be a strong practical reason for choosing the latter approach�

when the KBS is complex and ill�structured� requiring a great deal of knowledge aqui�

sition� analysis and re�nement �typically supported by exploratory prototyping� before

a reasonably complete version exists� However� transformational implementation is no

longer possible because the speci�cation is not complete�

� Conclusions

In knowledge engineering� the V�V activity is a kind of �watching eye� aimed at detecting

deviations between what is intended to be built and the artifact being built� To perform

this task� V�V requires information about the intended KBS� The more information that

is available� and the more precise that information� the better the validation process will

be� This will have a direct impact in the quality of the �nal KBS�

Conceptual models of the intended task appear to be essential in KBS construction�

These models play a fundamental role in the validation process� because they act as the

reference to compare against at any stage of KBS development� Conceptual models allow

��



one to structure the domain knowledge� identifying domain�dependent properties which

can be e
ectively tested� These properties can provide direct evidence of the di
erent

dimensions to be evaluated in V�V� Importantly� this checking can be made at any stage

in the development process� so the di	culties of including V�V activities during KBS

construction are removed by this approach�

Conceptual models can support the development of well�structured formal speci�ca�

tions� The presence of formal speci�cations eliminates one of the main weaknesses in

V�V process� the use of vague or ambiguous requirements� Formal speci�cations can

be used to verify the system� and to de�ne precisely its boundaries �one of the classi�

cal problems in KBS validation�� In addition to describing the I�O behaviour� formal

speci�cations de�ne how this behaviour can be achieved� This brings more information

for V�V� because a formal speci�cation provides� to some extent� elements of the KBS

structure� These elements can be e
ectively used in the V�V process� which is no longer

forced to be a �black box� testing process�

The construction of conceptual models and their translation into formal speci�cations

is neither an easy nor currently a complete task� Some typical KBS tasks remain elusive

to formal speci�cation� and the speci�cation construction can be a costly process� Topics

for immediately�necessary future work include�

� making concrete the proposals for using formal speci�cations with the various V�V

techniques� and evaluating the e
ectiveness of doing so�

� investigating the utility and practicality of di
erent approaches to formal speci��

cation �e�g� �mini�models� versus complete speci�cation��

��



� development of development processes in which all of the techniques can be applied

and managed e
ectively�

These issues remain open in knowledge engineering� but they should not be obstacles to

the development and use of formal speci�cations for KBS construction� Their bene�ts

will improve the quality of KBS in the near future�

References

Batarekh� A�� Preece� A� D�� Bennett� A�� and Grogono� P� ������� Specifying an expert

system� Expert Systems with Applications� ������
������

Bellman� K� L� ������� The modeling issues inherent in testing and evaluating knowledge�

based systems� Expert Systems with Applications� �������������

Buchanan� B� G� and Shortli
e� E� H� ���
��� The problem of evaluation� In Buchanan�

B� G� and Shortli
e� E� H�� editors� Rule�Based Expert Systems� the MYCIN Exper�

iments of the Stanford Heuristic Programming Project� chapter ��� pages �����

�

Addison�Wesley� Reading MA�

Chandrasekaran� B� ���
��� On evaluating AI systems for medical diagnosis� AI Maga�

zine� �����������

Fensel� D� and van Harmelen� F� ������� A comparison of languages which operationalise

and formalise kads models of expertise� Knowledge Engineering Review� ���������

����

��



Ghezzi� C�� Jazayeri� M�� and Mandrioli� D� ������� Fundamentals of Software Engineer�

ing� Prentice Hall� New York�

Ginsberg� A� ���

�� Knowledge�base reduction� A new approach to checking knowledge

bases for inconsistency � redundancy� In Proc� �th National Conference on Arti�cial

Intelligence �AAAI ��	� volume �� pages �
���
��

Haugh� J� ���

�� The application of formal speci�cation techniques to knowledge�based

system development� In UK IT �� Conference Publication� pages ����
� London�

University College� Information Engineering Directorate�

Kemmerer� R� A� ���
��� Testing formal speci�cations to detect design errors� IEEE

Transactions on Software Engineering� ������������

Krause� P� J�� Byers� P�� Hajnal� S�� and Fox� J� ������� The use of object�oriented

process speci�cation for the veri�cation and validation of decision support systems�

In Laurent� J��P� and Ayel� M�� editors� Veri�cation
 Validation and Test of KBS�

John Wiley � Sons� New York�

Laurent� J��P� ������� Proposals for a valid terminology in kbs validation� In Neumann�

B�� editor� Proceedings of the ��th European Conference on Arti�cial Intelligence

�ECAI 
�	� pages 
���
��� New York� John Wiley � Sons�

Meseguer� P� ������� Incremental veri�cation of rule�based expert systems� In Neumann�

B�� editor� Proceedings of the ��th European Conference on Arti�cial Intelligence

�ECAI 
�	� New York� John Wiley � Sons�

�




Meseguer� P� and Verdaguer� A� ������� Veri�cation of multi�level rule�based expert

systems� Theory and practice� International Journal of Expert Systems� Research

and Applications� �������������

Miller� L� A� ������� Dynamic testing of knowledge bases using the heuristic testing

approach� Expert Systems with Applications� �������������

O�Keefe� R� M�� Balci� O�� and Smith� E� P� ���
��� Validating expert system performance�

IEEE Expert� �����
�����

Plant� R� T� and Gold� D� ������� Increasing expert system reliability through the use

of a formal speci�cation� In Culbert� C�� editor� AAAI�
� Workshop on Knowledge

Based Systems Veri�cation
 Validation and Testing� AAAI�

Potter� B�� Sinclair� J�� and Till� D� ������� An Introduction to Formal Speci�cation and

Z� Prentice�Hall� New York�

Preece� A� D� ������� Towards a methodology for evaluating expert systems� Expert

Systems� �������������

Preece� A� D�� Shinghal� R�� and Batarekh� A� ������� Principles and practice in verifying

rule�based systems� Knowledge Engineering Review� �������������

Rushby� J� and Crow� J� ������� Evaluation of an expert system for fault detection�

isolation� and recovery in the manned maneuvering unit� NASA Contractor Report

CR��
����� SRI International� Menlo Park CA�

Suwa� M�� Scott� A� C�� and Shortli
e� E� H� ���
��� An approach to verifying complete�

ness and consistency in a rule�based expert system� AI Magazine� �����������

��



Treur� J� and Wetter� T�� editors ������� Formal Speci�cation of Complex Reasoning

Systems� Ellis�Horwood� Chichester�

Turing� A� ������� Computing machinery and intelligence� Mind� ���������
�

van Harmelen� F� and Aben� M� ������� Applying rule�base anomalies to KADS inference

structures� In Gamble� R� and Landauer� C�� editors� Working Notes from IJCAI�
�

Workshop on Veri�cation and Validation of Knowledge�Based Systems�

Wielinga� B� J�� Schreiber� A� T�� and Breuker� J� A� ������� KADS� a modelling approach

to knowledge engineering� Knowledge Acquisition� ����������

Zualkernan� I� A�� Tsai� W��T�� and Kirani� S� ������� Testing expert systems using

conventional techniques� In Proceedings of ��th Annual Computer Software and

Applications Conference� pages ��������

��


